1
|
Loktionov A, Kobzeva K, Dorofeeva A, Babkina M, Kolodezhnaya E, Bushueva O. A Comprehensive Genetic and Bioinformatic Analysis Provides Evidence for the Engagement of COVID-19 GWAS-Significant Loci in the Molecular Mechanisms of Coronary Artery Disease and Stroke. JOURNAL OF MOLECULAR PATHOLOGY 2024; 5:385-404. [DOI: 10.3390/jmp5030026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
Abstract
Cardiovascular diseases (CVDs) significantly exacerbate the severity and mortality of COVID-19. We aimed to investigate whether GWAS-significant SNPs correlate with CVDs in severe COVID-19 patients. DNA samples from 199 patients with severe COVID-19 hospitalized in intensive care units were genotyped using probe-based PCR for 10 GWAS SNPs previously implicated in severe COVID-19 outcomes. SNPs rs17713054 SLC6A20-LZTFL1 (risk allele A, OR = 2.14, 95% CI 1.06–4.36, p = 0.03), rs12610495 DPP9 (risk allele G, OR = 1.69, 95% CI 1.02–2.81, p = 0.04), and rs7949972 ELF5 (risk allele T, OR = 2.57, 95% CI 1.43–4.61, p = 0.0009) were associated with increased risk of coronary artery disease (CAD). SNPs rs7949972 ELF5 (OR = 2.67, 95% CI 1.38–5.19, p = 0.003) and rs61882275 ELF5 (risk allele A, OR = 1.98, 95% CI 1.14–3.45, p = 0.01) were linked to a higher risk of cerebral stroke (CS). No associations were observed with AH. Bioinformatics analysis revealed the involvement of GWAS-significant loci in atherosclerosis, inflammation, oxidative stress, angiogenesis, and apoptosis, which provides evidence of their role in the molecular mechanisms of CVDs. This study provides novel insights into the associations between GWAS-identified SNPs and the risk of CAD and CS.
Collapse
Affiliation(s)
- Alexey Loktionov
- Department of Anesthesia and Critical Care, Institute of Continuing Education, Kursk State Medical University, 305004 Kursk, Russia
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305004 Kursk, Russia
| | - Ksenia Kobzeva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305004 Kursk, Russia
| | - Anna Dorofeeva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305004 Kursk, Russia
| | - Maryana Babkina
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305004 Kursk, Russia
| | - Elizaveta Kolodezhnaya
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305004 Kursk, Russia
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305004 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 305004 Kursk, Russia
| |
Collapse
|
2
|
Ahmad SS, Ahmed F, Alam MM, Ahmad S, Khan MA. Unravelling the role of dipeptidyl peptidases-8/9 (DPP-8/9) in inflammatory osteoporosis: a comprehensive study investigating chrysin as a potential anti-osteoporotic agent. J Pharm Pharmacol 2024:rgae109. [PMID: 39231440 DOI: 10.1093/jpp/rgae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
OBJECTIVES This study aimed to investigate the role of dipeptidyl peptidase-8 and 9 (DPP-8/9) enzymes in inflammatory bone loss using a 4-vinylcyclohexene diepoxide (VCD)-induced model in Wistar rats. Additionally, we evaluated the therapeutic potential of inhibiting these enzymes with the flavonoid chrysin. METHODS Inflammatory osteoporosis was induced by administering VCD that elevated interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) levels. DPP-8/9 enzyme expression and various bone markers were assayed using serum. Further analysis included bone microarchitecture, histology, and immunohistochemistry. Additionally, chrysin's potential to inhibit DPP-8/9 and mitigate VCD-induced inflammatory bone loss was also evaluated. KEY FINDINGS VCD administration in rats caused ovotoxicity that increased IL-6 and TNF-α levels, resulting in significant bone loss. Serum analysis revealed elevated bone resorption markers and DPP-8/9 enzyme levels. Inhibiting DPP-8/9 with 1G244 reversed these effects, confirmed by histology, immunohistochemistry, and micro-CT scans. Moreover, chrysin significantly reduced DPP-8/9 levels compared with the untreated group, improved bone markers, and lower inflammatory cytokines, indicating reduced osteoclastogenesis. CONCLUSION This study highlights the role of DPP-8/9 in inflammation-induced osteoporosis. Following inhibition of DPP-8/9, we observed improved bone markers with preservation of trabecular bone mineral density in rats. Additionally, chrysin demonstrated potential as an anti-DPP-8/9 agent, suggesting its viability for future therapeutic interventions in DPP-8/9-related inflammatory diseases.
Collapse
Affiliation(s)
- Syed Sufian Ahmad
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard, New Delhi 110062, India
| | - Faraha Ahmed
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard, New Delhi 110062, India
| | - Mohd Mumtaz Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard, New Delhi 110062, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard, New Delhi 110062, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard, New Delhi 110062, India
| |
Collapse
|
3
|
De Meyer GRY, Zurek M, Puylaert P, Martinet W. Programmed death of macrophages in atherosclerosis: mechanisms and therapeutic targets. Nat Rev Cardiol 2024; 21:312-325. [PMID: 38163815 DOI: 10.1038/s41569-023-00957-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
Atherosclerosis is a progressive inflammatory disorder of the arterial vessel wall characterized by substantial infiltration of macrophages, which exert both favourable and detrimental functions. Early in atherogenesis, macrophages can clear cytotoxic lipoproteins and dead cells, preventing cytotoxicity. Efferocytosis - the efficient clearance of dead cells by macrophages - is crucial for preventing secondary necrosis and stimulating the release of anti-inflammatory cytokines. In addition, macrophages can promote tissue repair and proliferation of vascular smooth muscle cells, thereby increasing plaque stability. However, advanced atherosclerotic plaques contain large numbers of pro-inflammatory macrophages that secrete matrix-degrading enzymes, induce death in surrounding cells and contribute to plaque destabilization and rupture. Importantly, macrophages in the plaque can undergo apoptosis and several forms of regulated necrosis, including necroptosis, pyroptosis and ferroptosis. Regulated necrosis has an important role in the formation and expansion of the necrotic core during plaque progression, and several triggers for necrosis are present within atherosclerotic plaques. This Review focuses on the various forms of programmed macrophage death in atherosclerosis and the pharmacological interventions that target them as a potential means of stabilizing vulnerable plaques and improving the efficacy of currently available anti-atherosclerotic therapies.
Collapse
Affiliation(s)
- Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| | - Michelle Zurek
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pauline Puylaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Espadinha M, De Loose J, Corthaut S, Thys S, Van Rymenant Y, Verhulst E, Benramdane S, Filippi N, Augustyns K, Van Wielendaele P, Pintelon I, De Meester I, Van der Veken P. Active site-directed probes targeting dipeptidyl peptidases 8 and 9. Eur J Med Chem 2024; 270:116389. [PMID: 38593588 DOI: 10.1016/j.ejmech.2024.116389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/13/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
Dipeptidyl peptidases (DPP) 8 and 9 are intracellular serine proteases that play key roles in various biological processes and recent findings highlight DPP8 and DPP9 as potential therapeutic targets for hematological and inflammasome-related diseases. Despite the substantial progress, the precise biological functions of these proteases remain elusive, and the lack of selective chemical tools hampers ongoing research. In this paper, we describe the synthesis and biochemical evaluation of the first active site-directed DPP8/9 probes which are derived from DPP8/9 inhibitors developed in-house. Specifically, we synthesized fluorescent inhibitors containing nitrobenzoxadiazole (NBD), dansyl (DNS) and cyanine-3 (Cy3) reporters to visualize intracellular DPP8/9. We demonstrate that the fluorescent inhibitors have high affinity and selectivity towards DPP8/9 over related S9 family members. The NBD-labeled DPP8/9 inhibitors were nominated as the best in class compounds to visualize DPP8/9 in human cells. Furthermore, a method has been developed for selective labeling and visualization of active DPP8/9 in vitro by fluorescence microscopy. A collection of potent and selective biotinylated DPP8/9-targeting probes was also prepared by replacing the fluorescent reporter with a biotin group. The present work provides the first DPP8/9-targeting fluorescent compounds as useful chemical tools for the study of DPP8 and DPP9's biological functions.
Collapse
Affiliation(s)
| | - Joni De Loose
- Laboratory of Medical Biochemistry, University of Antwerp, Belgium
| | - Sam Corthaut
- Laboratory of Medical Biochemistry, University of Antwerp, Belgium
| | - Sofie Thys
- Laboratory of Cell Biology and Histology, University of Antwerp, Belgium
| | | | - Emile Verhulst
- Laboratory of Medical Biochemistry, University of Antwerp, Belgium
| | - Siham Benramdane
- Laboratory of Medicinal Chemistry, University of Antwerp, Belgium
| | - Nicolò Filippi
- Laboratory of Medicinal Chemistry, University of Antwerp, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, University of Antwerp, Belgium
| | | | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp, Belgium
| | | | | |
Collapse
|
5
|
Lai Z, Wang C, Liu X, Sun H, Guo Z, Shao J, Li K, Chen J, Wang J, Lei X, Shu K, Feng Y, Kong D, Sun W, Liu B. Characterization of the proteome of stable and unstable carotid atherosclerotic plaques using data-independent acquisition mass spectrometry. J Transl Med 2024; 22:247. [PMID: 38454421 PMCID: PMC10921703 DOI: 10.1186/s12967-023-04723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/13/2023] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Currently, noninvasive imaging techniques and circulating biomarkers are still insufficient to accurately assess carotid plaque stability, and an in-depth understanding of the molecular mechanisms that contribute to plaque instability is still lacking. METHODS We established a clinical study cohort containing 182 patients with carotid artery stenosis. After screening, 39 stable and 49 unstable plaques were included in the discovery group, and quantitative proteomics analysis based on data independent acquisition was performed for these plaque samples. Additionally, 35 plaques were included in the validation group to validate the proteomics results by immunohistochemistry analysis. RESULTS A total of 397 differentially expressed proteins were identified in stable and unstable plaques. These proteins are primarily involved in ferroptosis and lipid metabolism-related functions and pathways. Plaque validation results showed that ferroptosis- and lipid metabolism-related proteins had different expression trends in stable plaques versus unstable fibrous cap regions and lipid core regions. Ferroptosis- and lipid metabolism-related mechanisms in plaque stability were discussed. CONCLUSIONS Our results may provide a valuable strategy for revealing the mechanisms affecting plaque stability and will facilitate the discovery of specific biomarkers to broaden the therapeutic scope.
Collapse
Affiliation(s)
- Zhichao Lai
- Department of Vascular Surgery, Chinese Academy of Medical Science, Peking Union Medical College Hospital, Peking Union Medical College, Shuaifuyuan 1St, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Chaonan Wang
- Department of Vascular Surgery, Chinese Academy of Medical Science, Peking Union Medical College Hospital, Peking Union Medical College, Shuaifuyuan 1St, Dongcheng District, Beijing, 100730, People's Republic of China
- Department of Hemangiomas & Vascular Malformations, Plastic Surgery Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | - Xiaoyan Liu
- Proteomics Research Center, Core Facility of Instruments, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Dongdansantiao 9St, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Haidan Sun
- Proteomics Research Center, Core Facility of Instruments, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Dongdansantiao 9St, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Zhengguang Guo
- Proteomics Research Center, Core Facility of Instruments, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Dongdansantiao 9St, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Jiang Shao
- Department of Vascular Surgery, Chinese Academy of Medical Science, Peking Union Medical College Hospital, Peking Union Medical College, Shuaifuyuan 1St, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Kang Li
- Department of Vascular Surgery, Chinese Academy of Medical Science, Peking Union Medical College Hospital, Peking Union Medical College, Shuaifuyuan 1St, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Junye Chen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Jiaxian Wang
- Eight-Year Program of Clinical Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Xiangling Lei
- Eight-Year Program of Clinical Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Keqiang Shu
- Department of Vascular Surgery, Chinese Academy of Medical Science, Peking Union Medical College Hospital, Peking Union Medical College, Shuaifuyuan 1St, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Yuyao Feng
- Department of Vascular Surgery, Chinese Academy of Medical Science, Peking Union Medical College Hospital, Peking Union Medical College, Shuaifuyuan 1St, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Deqiang Kong
- Department of Vascular Surgery, Chinese Academy of Medical Science, Peking Union Medical College Hospital, Peking Union Medical College, Shuaifuyuan 1St, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Wei Sun
- Proteomics Research Center, Core Facility of Instruments, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Dongdansantiao 9St, Dongcheng District, Beijing, 100730, People's Republic of China.
| | - Bao Liu
- Department of Vascular Surgery, Chinese Academy of Medical Science, Peking Union Medical College Hospital, Peking Union Medical College, Shuaifuyuan 1St, Dongcheng District, Beijing, 100730, People's Republic of China.
| |
Collapse
|
6
|
Bettecken A, Heß L, Hölzen L, Reinheckel T. Dipeptidyl-Aminopeptidases 8 and 9 Regulate Autophagy and Tamoxifen Response in Breast Cancer Cells. Cells 2023; 12:2031. [PMID: 37626841 PMCID: PMC10453625 DOI: 10.3390/cells12162031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The cytosolic dipeptidyl-aminopeptidases 8 (DPP8) and 9 (DPP9) belong to the DPPIV serine proteases with the unique characteristic of cleaving off a dipeptide post-proline from the N-termini of substrates. To study the role of DPP8 and DPP9 in breast cancer, MCF-7 cells (luminal A-type breast cancer) and MDA.MB-231 cells (basal-like breast cancer) were used. The inhibition of DPP8/9 by 1G244 increased the number of lysosomes in both cell lines. This phenotype was more pronounced in MCF-7 cells, in which we observed a separation of autophagosomes and lysosomes in the cytosol upon DPP8/9 inhibition. Likewise, the shRNA-mediated knockdown of either DPP8 or DPP9 induced autophagy and increased lysosomes. DPP8/9 inhibition as well as the knockdown of the DPPs reduced the cell survival and proliferation of MCF-7 cells. Additional treatment of MCF-7 cells with tamoxifen, a selective estrogen receptor modulator (SERM) used to treat patients with luminal breast tumors, further decreased survival and proliferation, as well as increased cell death. In summary, both DPP8 and DPP9 activities confine macroautophagy in breast cancer cells. Thus, their inhibition or knockdown reduces cell viability and sensitizes luminal breast cancer cells to tamoxifen treatment.
Collapse
Affiliation(s)
- Aaron Bettecken
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Lisa Heß
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Lena Hölzen
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, 79104 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, 79104 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Centre of Biological Signalling Studies BIOSS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
7
|
Torrecillas-Baena B, Camacho-Cardenosa M, Quesada-Gómez JM, Moreno-Moreno P, Dorado G, Gálvez-Moreno MÁ, Casado-Díaz A. Non-Specific Inhibition of Dipeptidyl Peptidases 8/9 by Dipeptidyl Peptidase 4 Inhibitors Negatively Affects Mesenchymal Stem Cell Differentiation. J Clin Med 2023; 12:4632. [PMID: 37510747 PMCID: PMC10380885 DOI: 10.3390/jcm12144632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
DPP4 may play a relevant role in MSC differentiation into osteoblasts or adipocytes. Dipeptidyl peptidase 4 (DPP4) inhibitors (DPP4i), such as sitagliptin and vildagliptin, are used as antidiabetic drugs. However, vildagliptin is not a specific DPP4i and also inhibits DPP8/9, which is involved in energy metabolism and immune regulation. The aim of this study is to evaluate how sitagliptin, vildagliptin or 1G244 (a DPP8/9 specific inhibitor) may influence cell viability, as well as osteogenic and adipogenic differentiation in human mesenchymal stem cells (MSC). Viability, apoptosis, osteoblastogenesis and adipogenesis markers, as well as protein synthesis of β-catenin, were studied in MSC cultures induced to differentiate into osteoblasts or adipocytes in the presence or absence of sitagliptin, vildagliptin or 1G244. The two tested DPP4i did not affect MSC viability, but 1G244 significantly decreased it in MSC and osteoblast-induced cells. Additionally, 1G244 and vildagliptin inhibited osteogenesis and adipogenesis, unlike sitagliptin. Therefore, inhibition of DPP4 did not affect MSC viability and differentiation, whereas inhibition of DPP8/9 negatively affected MSC. To the best of our knowledge, these results show for the first time that DPP8/9 have an important role in the viability and differentiation of human MSC. This data can be considered for human clinical use of drugs affecting DPP8/9 activity.
Collapse
Affiliation(s)
- Bárbara Torrecillas-Baena
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 14004 Córdoba, Spain
| | - Marta Camacho-Cardenosa
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Paloma Moreno-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Gabriel Dorado
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 14004 Córdoba, Spain
- Departamento Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain
| | - María Ángeles Gálvez-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 14004 Córdoba, Spain
| |
Collapse
|
8
|
Wiśniewska A, Czepiel K, Stachowicz A, Pomierny B, Kuś K, Kiepura A, Stachyra K, Surmiak M, Madej J, Olszanecki R, Suski M. The antiatherosclerotic action of 1G244 - An inhibitor of dipeptidyl peptidases 8/9 - is mediated by the induction of macrophage death. Eur J Pharmacol 2023; 944:175566. [PMID: 36739078 DOI: 10.1016/j.ejphar.2023.175566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Targeting cell death to induce favorable functional and morphological changes within atherosclerotic plaques has long been postulated as a promising anti-atherosclerotic strategy. In this regard, inhibition of dipeptidyl peptidases 8/9 has received special attention in the context of chronic inflammatory diseases due to its regulatory role in macrophage death in vivo. METHODS The present study investigates the influence of prolonged treatment with 1G244 - an inhibitor of dipeptidyl peptidases 8/9 - on the development of the advanced atherosclerosis plaque in apoE-knockout mice, using morphometric and molecular methods. RESULTS 1G244 administration has led to a reduction in atherosclerotic plaque size in an apoE-knockout mice model. Moreover, it reduced the content of in-plaque macrophages, attributed by immunohistochemical phenotyping to the pro-inflammatory M1-like activation state of these cells. Inhibition of dipeptidyl peptidases 8/9 augmented the lytic form of death response of activated macrophages in-vitro. CONCLUSIONS In summary, inhibition of DPP 8/9 elicited an anti-atherosclerotic effect in apoE-/- mice, which can be attributed to the lytic form of death induction in activated macrophages, as assessed by the in vitro BMDM model. This, in turn, results in a reduction of the plaque area without its transformation towards a rupture-prone morphology.
Collapse
Affiliation(s)
- Anna Wiśniewska
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Klaudia Czepiel
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Aneta Stachowicz
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Bartosz Pomierny
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna str., 30-688, Krakow, Poland
| | - Katarzyna Kuś
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Anna Kiepura
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Kamila Stachyra
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Marcin Surmiak
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, 8 Skawinska str., 31-066, Krakow, Poland
| | - Józef Madej
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Rafał Olszanecki
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Maciej Suski
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland.
| |
Collapse
|
9
|
Claesen K, De Loose J, Van Wielendaele P, De bruyn E, Sim Y, Thys S, De Meester I, Hendriks D. ProCPU Is Expressed by (Primary) Human Monocytes and Macrophages and Expression Differs between States of Differentiation and Activation. Int J Mol Sci 2023; 24:ijms24043725. [PMID: 36835137 PMCID: PMC9967989 DOI: 10.3390/ijms24043725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Carboxypeptidase U (CPU, TAFIa, CPB2) is a potent attenuator of fibrinolysis that is mainly synthesized by the liver as its inactive precursor proCPU. Aside from its antifibrinolytic properties, evidence exists that CPU can modulate inflammation, thereby regulating communication between coagulation and inflammation. Monocytes and macrophages play a central role in inflammation and interact with coagulation mechanisms resulting in thrombus formation. The involvement of CPU and monocytes/macrophages in inflammation and thrombus formation, and a recent hypothesis that proCPU is expressed in monocytes/macrophages, prompted us to investigate human monocytes and macrophages as a potential source of proCPU. CPB2 mRNA expression and the presence of proCPU/CPU protein were studied in THP-1, PMA-stimulated THP-1 cells and primary human monocytes, M-CSF-, IFN-γ/LPS-, and IL-4-stimulated-macrophages by RT-qPCR, Western blotting, enzyme activity measurements, and immunocytochemistry. CPB2 mRNA and proCPU protein were detected in THP-1 and PMA-stimulated THP-1 cells as well as in primary monocytes and macrophages. Moreover, CPU was detected in the cell medium of all investigated cell types and it was demonstrated that proCPU can be activated into functionally active CPU in the in vitro cell culture environment. Comparison of CPB2 mRNA expression and proCPU concentrations in the cell medium between the different cell types provided evidence that CPB2 mRNA expression and proCPU secretion in monocytes and macrophages is related to the degree to which these cells are differentiated. Our results indicate that primary monocytes and macrophages express proCPU. This sheds new light on monocytes and macrophages as local proCPU sources.
Collapse
Affiliation(s)
- Karen Claesen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Joni De Loose
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Pieter Van Wielendaele
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Emilie De bruyn
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Yani Sim
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Sofie Thys
- Laboratory of Cell Biology and Histology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Dirk Hendriks
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- Correspondence: ; Tel.: +32-3-265-27-27
| |
Collapse
|
10
|
Hui Y, Xu Z, Li J, Kuang L, Zhong Y, Tang Y, Wei J, Zhou H, Zheng T. Nonenzymatic function of DPP4 promotes diabetes-associated cognitive dysfunction through IGF-2R/PKA/SP1/ERp29/IP3R2 pathway-mediated impairment of Treg function and M1 microglia polarization. Metabolism 2023; 138:155340. [PMID: 36302455 DOI: 10.1016/j.metabol.2022.155340] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Impairment of regulatory T (Treg) cells function is implicated in the pathogenesis of immune imbalance-mediated cognitive impairment. A complete understanding of whether and how this imbalance affect cognitive function in type 2 diabetes is lacking, and the driver affecting this imbalance remains unknown. METHODS We examined the impact of enzymatic and non-enzymatic function of DPP4 on Treg cell impairment, microglia polarization and diabetes-associated cognitive defects and identified its underlying mechanism in type 2 diabetic patients with cognitive impairment and in db/db mice. RESULTS We report that DPP4 binds to IGF2-R on Treg cell surface and activates PKA/SP1 signaling, which upregulate ERp29 expression and promote its binding to IP3R2, thereby inhibiting IP3R2 degradation and promoting mitochondria-associated ER membrane formation and mitochondria calcium overload in Tregs. This, in turn, impairs Tregs function and polarizes microglia toward a pro-inflammatory phenotype in the hippocampus and finally leads to neuroinflammation and cognitive impairment in type 2 diabetes. Importantly, inhibiting DPP4 enzymatic activity in type 2 diabetic patients or mutating DPP4 enzymatic active site in db/db mice did not reverse these changes. However, IGF-2R knockdown or blockade ameliorated these effects both in vivo and in vitro. CONCLUSION These findings highlight the nonenzymatic role of DPP4 in impairing Tregs function, which may facilitate the design of novel immunotherapies for diabetes-associated cognitive impairment.
Collapse
Affiliation(s)
- Ya Hui
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, PR China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Zhiqiang Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, PR China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Jiaxiu Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, PR China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, PR China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Liuyu Kuang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Yuanmei Zhong
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Yunyun Tang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Junjie Wei
- Lingui Clinical Medical College, Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Huimin Zhou
- Department of General Medicine, Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Tianpeng Zheng
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, PR China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, PR China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541199, PR China; Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, PR China.
| |
Collapse
|
11
|
Cui C, Tian X, Wei L, Wang Y, Wang K, Fu R. New insights into the role of dipeptidyl peptidase 8 and dipeptidyl peptidase 9 and their inhibitors. Front Pharmacol 2022; 13:1002871. [PMID: 36172198 PMCID: PMC9510841 DOI: 10.3389/fphar.2022.1002871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Dipeptidyl peptidase 8 (DPP8) and 9 (DPP9) are widely expressed in mammals including humans, mainly locate in the cytoplasm. The DPP8 and DPP9 (DPP8/9) belong to serine proteolytic enzymes, they can recognize and cleave N-terminal dipeptides of specific substrates if proline is at the penultimate position. Because the localization of DPP8/9 is different from that of DPP4 and the substrates for DPP8/9 are not yet completely clear, their physiological and pathological roles are still being further explored. In this article, we will review the recent research advances focusing on the expression, regulation, and functions of DPP8/9 in physiology and pathology status. Emerging research results have shown that DPP8/9 is involved in various biological processes such as cell behavior, energy metabolism, and immune regulation, which plays an essential role in maintaining normal development and physiological functions of the body. DPP8/9 is also involved in pathological processes such as tumorigenesis, inflammation, and organ fibrosis. In recent years, related research on immune cell pyroptosis has made DPP8/9 a new potential target for the treatment of hematological diseases. In addition, DPP8/9 inhibitors also have great potential in the treatment of tumors and chronic kidney disease.
Collapse
Affiliation(s)
- Chenkai Cui
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Linting Wei
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yinhong Wang
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kexin Wang
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongguo Fu
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Rongguo Fu,
| |
Collapse
|
12
|
Association of the rs17574 DPP4 Polymorphism with Premature Coronary Artery Disease in Diabetic Patients: Results from the Cohort of the GEA Mexican Study. Diagnostics (Basel) 2022; 12:diagnostics12071716. [PMID: 35885620 PMCID: PMC9318249 DOI: 10.3390/diagnostics12071716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 12/28/2022] Open
Abstract
Previously, it has been reported that hypoalphalipoproteinemia (HA) is associated with rs17574 DDP4 polymorphism. Considering that in diabetic patients, HA is often present and is a risk factor for premature coronary artery disease (pCAD), the study aimed to evaluate the association of this polymorphism with pCAD in diabetic individuals. We genotyped the rs17574 polymorphism in 405 pCAD patients with T2DM, 736 without T2DM, and 852 normoglycemic individuals without pCAD and T2DM as controls. Serum DPP4 concentration was available in 818 controls, 669 pCAD without T2DM, and 339 pCAD with T2DM. The rs17574 polymorphism was associated with lower risk of pCAD (padditive = 0.007; pdominant = 0.003, pheterozygote = 0.003, pcodominant1 = 0.003). In pCAD with T2DM patients, DPP4 levels were lower when compared with controls (p < 0.001). In the whole sample, individuals with the rs17574 GG genotype have the lowest protein levels compared with AG and AA (p = 0.039) carriers. However, when the same analysis was repeated separately in all groups, a significant difference was observed in the pCAD with T2DM patients; carriers of the GG genotype had the lowest protein levels compared with AG and AA (p = 0.037) genotypes. Our results suggest that in diabetic patients, the rs17574G DPP4 allele could be considered as a protective genetic marker for pCAD. DPP4 concentrations were lower in the diabetic pCAD patients, and the rs17574GG carriers had the lowest protein levels.
Collapse
|
13
|
CD26 Deficiency Controls Macrophage Polarization Markers and Signal Transducers during Colitis Development and Resolution. Int J Mol Sci 2022; 23:ijms23105506. [PMID: 35628317 PMCID: PMC9141856 DOI: 10.3390/ijms23105506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 01/25/2023] Open
Abstract
Ulcerative colitis (UC) is a multifactorial condition characterized by a destructive immune response that failed to be attenuated by common regulatory mechanisms which reduce inflammation and promote mucosa healing. The inhibition of CD26, a multifunctional glycoprotein that controls the immune response via its dipeptidyl peptidase (DP) 4 enzyme activity, was proven to have beneficial effects in various autoimmune inflammatory diseases. The polarization of macrophages into either pro-inflammatory M1 or anti-inflammatory M2 subclass is a key intersection that mediates the immune-inflammatory process in UC. Hence, we hypothesized that the deficiency of CD26 affects that process in the dextran sulfate sodium (DSS)-induced model of UC. We found that mRNA expression of M2 markers arginase 1 and Fizz were increased, while the expression of M1 marker inducible NO synthase was downregulated in CD26−/− mice. Decreased STAT1 mRNA, as well as upregulated pSTAT6 and pSTAT3, additionally support the demonstrated activation of M2 macrophages under CD26 deficiency. Finally, we investigated DP8 and DP9, proteins with DP4-like activity, and found that CD26 deficiency is not a key factor for the noted upregulation of their expression in UC. In conclusion, we demonstrate that CD26 deficiency regulates macrophage polarization toward the anti-inflammatory M2 phenotype, which is driven by STAT6/STAT3 signaling pathways. This process is additionally enhanced by the reduction of M1 differentiation via the suppression of proinflammatory STAT1. Therefore, further studies should investigate the clinical potential of CD26 inhibitors in the treatment of UC.
Collapse
|
14
|
Li L, Liu S, Tan J, Wei L, Wu D, Gao S, Weng Y, Chen J. Recent advance in treatment of atherosclerosis: Key targets and plaque-positioned delivery strategies. J Tissue Eng 2022; 13:20417314221088509. [PMID: 35356091 PMCID: PMC8958685 DOI: 10.1177/20417314221088509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of vascular wall, is a progressive pathophysiological process with lipids oxidation/depositing initiation and innate/adaptive immune responses. The coordination of multi systems covering oxidative stress, dysfunctional endothelium, diseased lipid uptake, cell apoptosis, thrombotic and pro-inflammatory responding as well as switched SMCs contributes to plaque growth. In this circumstance, inevitably, targeting these processes is considered to be effective for treating atherosclerosis. Arriving, retention and working of payload candidates mediated by targets in lesion direct ultimate therapeutic outcomes. Accumulating a series of scientific studies and clinical practice in the past decades, lesion homing delivery strategies including stent/balloon/nanoparticle-based transportation worked as the potent promotor to ensure a therapeutic effect. The objective of this review is to achieve a very brief summary about the effective therapeutic methods cooperating specifical targets and positioning-delivery strategies in atherosclerosis for better outcomes.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Sainan Liu
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Jianying Tan
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Lai Wei
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Dimeng Wu
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Shuai Gao
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Yajun Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| |
Collapse
|
15
|
Molecular pathways and role of epigenetics in the idiopathic pulmonary fibrosis. Life Sci 2022; 291:120283. [PMID: 34998839 DOI: 10.1016/j.lfs.2021.120283] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/19/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with unknown etiological factors that can progress to other dangerous diseases like lung cancer. Environmental and genetic predisposition are the two major etiological or risk factors involved in the pathology of the IPF. Among the environmental risk factors, smoking is one of the major causes for the development of IPF. Epigenetic pathways like nucleosomes remodeling, DNA methylation, histone modifications and miRNA mediated genes play a crucial role in development of IPF. Mutations in the genes make the epigenetic factors as important drug targets in IPF. Transcriptional changes due to environmental factors are also involved in the progression of IPF. The mutations in human telomerase reverse transcriptase (hTERT) have shown decreased life expectancy in IPF patients. The TERT-gene is highly expressed in chronic smokers and makes the role of epigenetics evident. Drug like nintedanib acts through vascular endothelial growth factor receptors (VEGFR), while drug pirfenidone acts through transforming growth factor (TGF), which is useful in IPF. Gefitinib, a tyrosine kinase inhibitor of EGFR, is useful as an anti-fibrosis agent in preclinical models. Newer drugs such as Celgene-CC90001 and FibroGen-FG-3019 are currently under investigations acts through the modulating epigenetic mechanisms. Thus, the study on epigenetics opens a wide window for the discovery of newer drugs. This study provides an elementary analysis of multiple regulators of epigenetics and their roles associated with the pathology of IPF. Further, this review also includes epigenetic drugs under development in preclinical and clinical stages.
Collapse
|
16
|
Cunningham L, Kimber I, Basketter D, Simmonds P, McSweeney S, Tziotzios C, McFadden JP. Perforin, COVID-19 and a possible pathogenic auto-inflammatory feedback loop. Scand J Immunol 2021; 94:e13102. [PMID: 34755902 PMCID: PMC8646999 DOI: 10.1111/sji.13102] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022]
Abstract
During COVID‐19 infection, reduced function of natural killer (NK) cells can lead to both compromised viral clearance and dysregulation of the immune response. Such dysregulation leads to overproduction of cytokines, a raised neutrophil/lymphocyte ratio and monocytosis. This in turn increases IL‐6 expression, which promotes scar and thrombus formation. Excess IL‐6 also leads to a further reduction in NK function through downregulation of perforin expression, therefore forming a pathogenic auto‐inflammatory feedback loop. The perforin/granzyme system of cytotoxicity is the main mechanism through which NK cells and cytotoxic T lymphocytes eliminate virally infected host cells, as well as being central to their role in regulating immune responses to microbial infection. Here, we present epidemiological evidence suggesting an association between perforin expression and resistance to COVID‐19. In addition, we outline the manner in which a pathogenic auto‐inflammatory feedback loop could operate and the relationship of this loop to genes associated with severe COVID‐19. Such an auto‐inflammatory loop may be amenable to synergistic multimodal therapy.
Collapse
Affiliation(s)
- Louise Cunningham
- St. John's Institute of Dermatology, Guy's and St Thomas' Hospital, London, UK
| | - Ian Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sheila McSweeney
- St. John's Institute of Dermatology, Guy's and St Thomas' Hospital, London, UK
| | - Christos Tziotzios
- St. John's Institute of Dermatology, Guy's and St Thomas' Hospital, London, UK
| | - John P McFadden
- St. John's Institute of Dermatology, Guy's and St Thomas' Hospital, London, UK
| |
Collapse
|
17
|
Kang SM, Park JH. Pleiotropic Benefits of DPP-4 Inhibitors Beyond Glycemic Control. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2021; 14:11795514211051698. [PMID: 34733107 PMCID: PMC8558587 DOI: 10.1177/11795514211051698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022]
Abstract
Dipeptidyl peptidase (DPP)-4 inhibitors are oral anti-diabetic medications that block the activity of the ubiquitous enzyme DPP-4. Inhibition of this enzyme increases the level of circulating active glucagon-like peptide (GLP)-1 secreted from L-cells in the small intestine. GLP-1 increases the glucose level, dependent on insulin secretion from pancreatic β-cells; it also decreases the abnormally increased level of glucagon, eventually decreasing the blood glucose level in patients with type 2 diabetes. DPP-4 is involved in many physiological processes other than the degradation of GLP-1. Therefore, the inhibition of DPP-4 may have numerous effects beyond glucose control. In this article, we review the pleiotropic effects of DPP-4 inhibitors beyond glucose control, including their strong beneficial effects on the stress induced accelerated senescence of vascular cells, and the possible clinical implications of these effects.
Collapse
Affiliation(s)
- Seon Mee Kang
- Department of Internal Medicine, College of Medicine, Inje University, Busan, Republic of Korea.,Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| | - Jeong Hyun Park
- Department of Internal Medicine, College of Medicine, Inje University, Busan, Republic of Korea.,Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| |
Collapse
|
18
|
Yazbeck R, Jaenisch SE, Abbott CA. Dipeptidyl peptidase 4 inhibitors: Applications in innate immunity? Biochem Pharmacol 2021; 188:114517. [PMID: 33722535 PMCID: PMC7954778 DOI: 10.1016/j.bcp.2021.114517] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/25/2022]
Abstract
Dipeptidyl peptidase (DPP)-4 inhibitors are a class of orally available, small molecule inhibitors that prolong the insulinotropic activity of the incretin hormone glucagon-like peptide-1 (GLP-1) and are highly effective for the treatment of Type-2 diabetes. DPP4 can also cleave several immunoregulatory peptides including chemokines. Emerging evidence continues to implicate DPP4 inhibitors as immunomodulators, with recent findings suggesting DPP4 inhibitors modify specific aspects of innate immunity. This review summarises recent insights into how DPP4 inhibitors could be implicated in endothelial, neutrophil and monocyte/macrophage mediated immunity. Additionally, this review highlights additional avenues of research with DPP4 inhibitors in the context of the COVID-19 pandemic.
Collapse
Affiliation(s)
- R Yazbeck
- College of Medicine and Public Health & Flinders Health and Medical Research Institute, Flinders University, Adelaide, Australia; College of Science and Engineering, Flinders University, Adelaide, Australia.
| | - S E Jaenisch
- College of Medicine and Public Health & Flinders Health and Medical Research Institute, Flinders University, Adelaide, Australia; College of Science and Engineering, Flinders University, Adelaide, Australia.
| | - C A Abbott
- College of Medicine and Public Health & Flinders Health and Medical Research Institute, Flinders University, Adelaide, Australia; College of Science and Engineering, Flinders University, Adelaide, Australia.
| |
Collapse
|
19
|
Abstract
CONTEXT Obesity and type 2 diabetes are associated with chronic hyperinsulinemia, elevated plasma levels of dipeptidyl peptidase-4 (DPP4), and a pro-atherosclerotic milieu. EVIDENCE ACQUISITION PubMed search of the term "insulin and atherosclerosis," "hyperinsulinemia," "atherosclerosis," or "cardiovascular outcomes" cross-referenced with "DPP4." Relevant research and review articles were reviewed. EVIDENCE SYNTHESIS Hyperinsulinemia in the setting of insulin resistance promotes vascular inflammation, vascular smooth muscle cell growth, pathological cholesterol profile, hypertension, and recruitment of immune cells to the endothelium, all contributing to atherosclerosis. DPP4 has pleiotropic functions and its activity is elevated in obese humans. DPP4 mirrors hyperinsulinemia's atherogenic actions in the insulin resistant state, and genetic deletion of DPP4 protects rodents from developing insulin resistance and improves cardiovascular outcomes. DPP4 inhibition in pro-atherosclerotic preclinical models results in reduced inflammation and oxidative stress, improved endothelial function, and decreased atherosclerosis. Increased incretin levels may have contributed to but do not completely account for these benefits. Small clinical studies with DPP4 inhibitors demonstrate reduced carotid intimal thickening, improved endothelial function, and reduced arterial stiffness. To date, this has not been translated to cardiovascular risk reduction for individuals with type 2 diabetes with prior or exaggerated risk of cardiovascular disease. CONCLUSION DPP4 may represent a key link between central obesity, insulin resistance, and atherosclerosis. The gaps in knowledge in DPP4 function and discrepancy in cardiovascular outcomes observed in preclinical and large-scale randomized controlled studies with DPP4 inhibitors warrant additional research.
Collapse
Affiliation(s)
- Kaitlin M Love
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
20
|
Fluorescence Determination of Peptidase Activity Based on the Quenching of a Fluorophore-Labelled Peptide by Graphene Oxide. Protein J 2021; 40:682-688. [PMID: 33856620 DOI: 10.1007/s10930-021-09985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2021] [Indexed: 10/21/2022]
Abstract
In this study, a fluorescence detection strategy is reported for the peptidase activity assay, which is based on fluorescence resonance energy transfer (FRET) from a fluorophore-labelled peptide to graphene oxide (GO). By the hydrolysis of the peptide, the fluorophore-labelled peptide releases the fluorophore 5-carboxyfluorescein, which can avoid quenching from GO. Thus, the increased intensity of the obtained fluorescence signal in the assay is directly dependent on the peptidase activity. As a model case of the developed strategy, the activity determination of pancreatic elastase (PE) is performed. Under the optimal experimental conditions at an excitation wavelength of 494 nm, the activity of PE can be determined in the range from 0.003 to 0.10 U/mL, with a detection limit of 0.001 U/mL at the emission wavelength of 518 nm. This is ultra-sensitive for the determination of PE. The specificity of the method is demonstrated by the analysis of PE under complex conditions using fetal bovine serum as the substrate. Hence, the developed method might provide an intrinsically convenient, sensitive platform for the PE activity assay and related biochemical studies due to its homogeneous, and fluorescence-based detection strategy.
Collapse
|
21
|
Suski M, Wiśniewska A, Kuś K, Kiepura A, Stachowicz A, Stachyra K, Czepiel K, Madej J, Olszanecki R. Decrease of the pro-inflammatory M1-like response by inhibition of dipeptidyl peptidases 8/9 in THP-1 macrophages - quantitative proteomics of the proteome and secretome. Mol Immunol 2020; 127:193-202. [PMID: 32998073 DOI: 10.1016/j.molimm.2020.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/29/2020] [Accepted: 09/07/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cellular peptidases are an emerging target of novel pharmacological strategies in inflammatory diseases and cancer. In this context, the dipeptidyl peptidases 8 and 9 (DPP8/9) have gained special attention due to their activities in the immune cells. However, in spite of more than hundred protein substrates identified to date by mass spectrometry-based analysis, the cellular DPP8/9 functions are still elusive. METHODS We applied the proteomic approach (iTRAQ-2DLC-MS/MS) to comprehensively analyze the role of DPP8/9 in the regulation of macrophage activation by in-depth protein quantitation of THP-1 proteome and secretome. RESULTS Cells pre-incubated with DPP8/9 inhibitor (1G244) prior activation (LPS or IL-4/IL-13) diminished the expression levels of M1-like response markers, but not M2-like phenotype features. This was accompanied by multiple intra- and extra-cellular protein abundance changes in THP-1 cells, related to cellular metabolism, mitochondria and endoplasmic reticulum function, as well as those engaged with inflammatory and apoptotic processes, including previously reported and novel DPP8/9 targets. CONCLUSIONS Inhibition of DPP 8/9 had a profound effect on the THP-1 macrophage proteome and secretome, evidencing the decrease of the pro-inflammatory M1-like response. Presented results are to our best knowledge the first which, among others, highlight the metabolic effects of DPP8/9 inhibition in macrophages.
Collapse
Affiliation(s)
- Maciej Suski
- Chair of Pharmacology Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland.
| | - Anna Wiśniewska
- Chair of Pharmacology Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Katarzyna Kuś
- Chair of Pharmacology Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Anna Kiepura
- Chair of Pharmacology Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Aneta Stachowicz
- Chair of Pharmacology Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Kamila Stachyra
- Chair of Pharmacology Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Klaudia Czepiel
- Chair of Pharmacology Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Józef Madej
- Chair of Pharmacology Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Rafał Olszanecki
- Chair of Pharmacology Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| |
Collapse
|
22
|
Sternkopf M, Nagy M, Baaten CCFMJ, Kuijpers MJE, Tullemans BME, Wirth J, Theelen W, Mastenbroek TG, Lehrke M, Winnerling B, Baerts L, Marx N, De Meester I, Döring Y, Cosemans JMEM, Daiber A, Steven S, Jankowski J, Heemskerk JWM, Noels H. Native, Intact Glucagon-Like Peptide 1 Is a Natural Suppressor of Thrombus Growth Under Physiological Flow Conditions. Arterioscler Thromb Vasc Biol 2020; 40:e65-e77. [PMID: 31893947 DOI: 10.1161/atvbaha.119.313645] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE In patients with diabetes mellitus, increased platelet reactivity predicts cardiac events. Limited evidence suggests that DPP-4 (dipeptidyl peptidase 4) influences platelets via GLP-1 (glucagon-like peptide 1)-dependent effects. Because DPP-4 inhibitors are frequently used in diabetes mellitus to improve the GLP-1-regulated glucose metabolism, we characterized the role of DPP-4 inhibition and of native intact versus DPP-4-cleaved GLP-1 on flow-dependent thrombus formation in mouse and human blood. Approach and Results: An ex vivo whole blood microfluidics model was applied to approach in vivo thrombosis and study collagen-dependent platelet adhesion, activation, and thrombus formation under shear-flow conditions by multiparameter analyses. In mice, in vivo inhibition or genetic deficiency of DPP-4 (Dpp4-/-), but not of GLP-1-receptors (Glp1r-/-), suppressed flow-dependent platelet aggregation. In human blood, GLP-1(7-36), but not DPP-4-cleaved GLP-1(9-36), reduced thrombus volume by 32% and impaired whole blood thrombus formation at both low/venous and high/arterial wall-shear rates. These effects were enforced upon ADP costimulation and occurred independently of plasma factors and leukocytes. Human platelets did not contain detectable levels of GLP-1-receptor transcripts. Also, GLP-1(7-36) did not inhibit collagen-induced aggregation under conditions of stirring or stasis of platelets, pointing to a marked flow-dependent role. CONCLUSIONS Native, intact GLP-1 is a natural suppressor of thrombus growth under physiological flow conditions, with DPP-4 inhibition and increased intact GLP-1 suppressing platelet aggregation under flow without a main relevance of GLP-1-receptor on platelets.
Collapse
Affiliation(s)
- Marieke Sternkopf
- From the Institute for Molecular Cardiovascular Research (IMCAR) (M.S., C.C.F.M.J.B., J.W., W.T., B.W., J.J., H.N.), University Clinic Aachen, Germany
| | - Magdolna Nagy
- Department of Biochemistry (M.N., M.J.E.K., B.M.E.T., T.G.M., J.M.E.M.C., J.W.M.H.), Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Constance C F M J Baaten
- From the Institute for Molecular Cardiovascular Research (IMCAR) (M.S., C.C.F.M.J.B., J.W., W.T., B.W., J.J., H.N.), University Clinic Aachen, Germany
| | - Marijke J E Kuijpers
- Department of Biochemistry (M.N., M.J.E.K., B.M.E.T., T.G.M., J.M.E.M.C., J.W.M.H.), Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Bibian M E Tullemans
- Department of Biochemistry (M.N., M.J.E.K., B.M.E.T., T.G.M., J.M.E.M.C., J.W.M.H.), Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Julia Wirth
- From the Institute for Molecular Cardiovascular Research (IMCAR) (M.S., C.C.F.M.J.B., J.W., W.T., B.W., J.J., H.N.), University Clinic Aachen, Germany
| | - Wendy Theelen
- From the Institute for Molecular Cardiovascular Research (IMCAR) (M.S., C.C.F.M.J.B., J.W., W.T., B.W., J.J., H.N.), University Clinic Aachen, Germany
| | - Tom G Mastenbroek
- Department of Biochemistry (M.N., M.J.E.K., B.M.E.T., T.G.M., J.M.E.M.C., J.W.M.H.), Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Michael Lehrke
- Medical Clinic I (M.L., N.M.), University Clinic Aachen, Germany
| | - Benjamin Winnerling
- From the Institute for Molecular Cardiovascular Research (IMCAR) (M.S., C.C.F.M.J.B., J.W., W.T., B.W., J.J., H.N.), University Clinic Aachen, Germany
| | - Lesley Baerts
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Belgium (L.B., I.D.M.)
| | - Nikolaus Marx
- Medical Clinic I (M.L., N.M.), University Clinic Aachen, Germany
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Belgium (L.B., I.D.M.)
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), Munich, Germany (Y.D.).,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (Y.D.).,Division of Angiology, Swiss Cardiovascular Centre, Inselspital, Bern University Hospital, University of Bern, Switzerland (Y.D.)
| | - Judith M E M Cosemans
- Department of Biochemistry (M.N., M.J.E.K., B.M.E.T., T.G.M., J.M.E.M.C., J.W.M.H.), Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Andreas Daiber
- Center for Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany (A.D., S.S.)
| | - Sebastian Steven
- Center for Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany (A.D., S.S.)
| | - Joachim Jankowski
- From the Institute for Molecular Cardiovascular Research (IMCAR) (M.S., C.C.F.M.J.B., J.W., W.T., B.W., J.J., H.N.), University Clinic Aachen, Germany.,Experimental Vascular Pathology (J.J.), Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Johan W M Heemskerk
- Department of Biochemistry (M.N., M.J.E.K., B.M.E.T., T.G.M., J.M.E.M.C., J.W.M.H.), Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Heidi Noels
- From the Institute for Molecular Cardiovascular Research (IMCAR) (M.S., C.C.F.M.J.B., J.W., W.T., B.W., J.J., H.N.), University Clinic Aachen, Germany
| |
Collapse
|
23
|
Aini K, Fukuda D, Tanaka K, Higashikuni Y, Hirata Y, Yagi S, Kusunose K, Yamada H, Soeki T, Sata M. Vildagliptin, a DPP-4 Inhibitor, Attenuates Endothelial Dysfunction and Atherogenesis in Nondiabetic Apolipoprotein E-Deficient Mice. Int Heart J 2019; 60:1421-1429. [PMID: 31735774 DOI: 10.1536/ihj.19-117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors are novel antidiabetic agents with possible vascular protection effects. Endothelial dysfunction is an initiation step in atherogenesis. The purpose of this study was to investigate whether vildagliptin (Vilda) attenuates the development of endothelial dysfunction and atherosclerotic lesions in nondiabetic apolipoprotein E-deficient (ApoE-/-) mice. Eight-week-old nondiabetic ApoE-/- mice fed a Western-type diet received Vilda (50 mg/kg/day) for 20 weeks or 8 weeks. After 20 weeks of treatment, Vilda administration reduced atherogenesis in the aortic arch as determined by en face Sudan IV staining compared with the vehicle group (P < 0.05). Vilda also reduced lipid accumulation (P < 0.05) and vascular cell adhesion molecule-1 (VCAM-1) expression (P < 0.05) and tended to decrease macrophage infiltration (P = 0.05) into atherosclerotic plaques compared with vehicle. After 8 weeks of treatment, endothelium-dependent vascular reactivity was examined. Vilda administration significantly attenuated the impairment of endothelial function in nondiabetic ApoE-/- mice compared with the vehicle group (P < 0.05). Vilda treatment did not alter metabolic parameters, including blood glucose level, in both study protocols. To investigate the mechanism, aortic segments obtained from wild-type mice were incubated with exendin-4 (Ex-4), a glucagon-like peptide-1 (GLP-1) analog, in the presence or absence of lipopolysaccharide (LPS). Ex-4 attenuated the impairment of endothelium-dependent vasodilation induced by LPS (P < 0.01). Furthermore, Ex-4 promoted phosphorylation of eNOS at Ser1177 which was decreased by LPS in human umbilical endothelial cells (P < 0.05). Vilda inhibited the development of endothelial dysfunction and prevented atherogenesis in nondiabetic ApoE-/- mice. Our results suggested that GLP-1-dependent amelioration of endothelial dysfunction is associated with the atheroprotective effects of Vilda.
Collapse
Affiliation(s)
- Kunduziayi Aini
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Daiju Fukuda
- Department of Cardio-Diabetes Medicine, Tokushima University Graduate School of Biomedical Science
| | - Kimie Tanaka
- Division for Health Service Promotion, The University of Tokyo
| | | | | | - Shusuke Yagi
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Kenya Kusunose
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Hirotsugu Yamada
- Department of Community Medicine for Cardiology, Tokushima University Graduate School of Biomedical Sciences
| | - Takeshi Soeki
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| |
Collapse
|
24
|
Yazbeck R, Jaenisch S, Squire M, Abbott CA, Parkinson-Lawrence E, Brooks DA, Butler RN. Development of a 13C Stable Isotope Assay for Dipeptidyl Peptidase-4 Enzyme Activity A New Breath Test for Dipeptidyl Peptidase Activity. Sci Rep 2019; 9:4906. [PMID: 30894647 PMCID: PMC6427020 DOI: 10.1038/s41598-019-41375-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 03/07/2019] [Indexed: 01/15/2023] Open
Abstract
Dipeptidyl peptidase-4 inhibitors (DPP4i) are a class of orally available, small molecule inhibitors for the management of Type-II diabetes. A rapid, real-time, functional breath test for DPP4 enzyme activity could help to define DPP4i efficacy in patients that are refractory to treatment. We aimed to develop a selective, non-invasive, stable-isotope 13C-breath test for DPP4. In vitro experiments were performed using high (Caco-2) and low (HeLa) DPP4 expressing cells. DPP gene expression was determined in cell lines by qRT-PCR. A DPP4 selective 13C-tripeptide was added to cells in the presence and absence of the DPP4 inhibitor Sitagliptin. Gas samples were collected from the cell headspace and 13CO2 content quantified by isotope ratio mass spectrometry (IRMS). DPP4 was highly expressed in Caco-2 cells compared to HeLa cells and using the 13C-tripeptide, we detected a high 13CO2 signal from Caco2 cells. Addition of Sitaglitpin to Caco2 cells significantly inhibited this 13CO2 signal. 13C-assay DPP4 activity correlated positively with the enzyme activity detected using a colorimetric substrate. We have developed a selective, non-invasive, 13C-assay for DPP4 that could have broad translational applications in diabetes and gastrointestinal disease.
Collapse
Affiliation(s)
- Roger Yazbeck
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia. .,Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, South Australia, Australia.
| | - Simone Jaenisch
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.,Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, South Australia, Australia
| | - Michelle Squire
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Catherine A Abbott
- Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, South Australia, Australia.,College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Emma Parkinson-Lawrence
- School of Pharmacy and Medical Science, University of South Australia Cancer Research Institute, Adelaide, South Australia, Australia
| | - Douglas A Brooks
- School of Pharmacy and Medical Science, University of South Australia Cancer Research Institute, Adelaide, South Australia, Australia.,School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Ross N Butler
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.,School of Pharmacy and Medical Science, University of South Australia Cancer Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
25
|
Enz N, Vliegen G, De Meester I, Jungraithmayr W. CD26/DPP4 - a potential biomarker and target for cancer therapy. Pharmacol Ther 2019; 198:135-159. [PMID: 30822465 DOI: 10.1016/j.pharmthera.2019.02.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CD26/dipeptidyl peptidase (DPP)4 is a membrane-bound protein found in many cell types of the body, and a soluble form is present in body fluids. There is longstanding evidence that various primary tumors and also metastases express CD26/DPP4 to a variable extent. By cleaving dipeptides from peptides with a proline or alanine in the penultimate position at the N-terminus, it regulates the activity of incretin hormones, chemokines and many other peptides. Due to these effects and interactions with other molecules, a tumor promoting or suppressing role can be attributed to CD26/DPP4. In this review, we discuss the existing evidence on the expression of soluble or membrane-bound CD26/DPP4 in malignant diseases, along with the most recent findings on CD26/DPP4 as a therapeutic target in specific malignancies. The expression and possible involvement of the related DPP8 and DPP9 in cancer are also reviewed. A higher expression of CD26/DPP4 is found in a wide variety of tumor entities, however more research on CD26/DPP4 in the tumor microenvironment is needed to fully explore its use as a tumor biomarker. Circulating soluble CD26/DPP4 has also been studied as a cancer biomarker, however, the observed decrease in most cancer patients does not seem to be cancer specific. Encouraging results from experimental work and a recently reported first phase clinical trial targeting CD26/DPP4 in mesothelioma, renal and urological tumors pave the way for follow-up clinical studies, also in other tumor entities, possibly leading to the development of more effective complementary therapies against cancer.
Collapse
Affiliation(s)
- Njanja Enz
- Department of Thoracic Surgery, University Hospital Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Gwendolyn Vliegen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | - Wolfgang Jungraithmayr
- Department of Thoracic Surgery, University Hospital Rostock, Schillingallee 35, 18057 Rostock, Germany.
| |
Collapse
|
26
|
M2 Macrophages as a Potential Target for Antiatherosclerosis Treatment. Neural Plast 2019; 2019:6724903. [PMID: 30923552 PMCID: PMC6409015 DOI: 10.1155/2019/6724903] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/06/2018] [Accepted: 11/28/2018] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is a chronic progressive inflammation course, which could induce life-threatening diseases such as stroke and myocardial infarction. Optimal medical treatments for atherosclerotic risk factors with current antihypertensive and lipid-lowering drugs (for example, statins) are widely used in clinical practice. However, many patients with established disease still continue to have recurrent cardiovascular events in spite of treatment with a state-of-the-art therapy. Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of mortality worldwide. Hence, current treatment of atherosclerosis is still far from being satisfactory. Recently, M2 macrophages have been found associated with atherosclerosis regression. The M2 phenotype can secrete anti-inflammatory factors such as IL-10 and TGF-β, promote tissue remodeling and repairing through collagen formation, and clear dying cells and debris by efferocytosis. Therefore, modulators targeting macrophages' polarization to the M2 phenotype could be another promising treatment strategy for atherosclerosis. Two main signaling pathways, the Akt/mTORC/LXR pathway and the JAK/STAT6 pathway, are found playing important roles in M2 polarization. In addition, researchers have reported several potential approaches to modulate M2 polarization. Inhibiting or activating some kinds of enzymes, affecting transcription factors, or acting on several membrane receptors could regulate the polarization of the M2 phenotype. Besides, biomolecules, for example vitamin D, were found to affect the process of M2 polarization. Pomegranate juice could promote M2 polarization via unclear mechanism. In this review, we will discuss how M2 macrophages affect atherosclerosis regression, signal transduction in M2 polarization, and outline potential targets and compounds that affect M2 polarization, thus controlling the progress of atherosclerosis.
Collapse
|
27
|
de Vasconcelos NM, Vliegen G, Gonçalves A, De Hert E, Martín-Pérez R, Van Opdenbosch N, Jallapally A, Geiss-Friedlander R, Lambeir AM, Augustyns K, Van Der Veken P, De Meester I, Lamkanfi M. DPP8/DPP9 inhibition elicits canonical Nlrp1b inflammasome hallmarks in murine macrophages. Life Sci Alliance 2019; 2:2/1/e201900313. [PMID: 30718379 PMCID: PMC6362307 DOI: 10.26508/lsa.201900313] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 11/24/2022] Open
Abstract
Activating germline mutations in the human inflammasome sensor NLRP1 causes palmoplantar dyskeratosis and susceptibility to Mendelian autoinflammatory diseases. Recent studies have shown that the cytosolic serine dipeptidyl peptidases DPP8 and DPP9 suppress inflammasome activation upstream of NLRP1 and CARD8 in human keratinocytes and peripheral blood mononuclear cells. Moreover, pharmacological inhibition of DPP8/DPP9 protease activity was shown to induce pyroptosis in murine C57BL/6 macrophages without eliciting other inflammasome hallmark responses. Here, we show that DPP8/DPP9 inhibition in macrophages that express a Bacillus anthracis lethal toxin (LeTx)-sensitive Nlrp1b allele triggered significantly accelerated pyroptosis concomitant with caspase-1 maturation, ASC speck assembly, and secretion of mature IL-1β and IL-18. Genetic ablation of ASC prevented DPP8/DPP9 inhibition-induced caspase-1 maturation and partially hampered pyroptosis and inflammasome-dependent cytokine release, whereas deletion of caspase-1 or gasdermin D triggered apoptosis in the absence of IL-1β and IL-18 secretion. In conclusion, blockade of DPP8/DPP9 protease activity triggers rapid pyroptosis and canonical inflammasome hallmarks in primary macrophages that express a LeTx-responsive Nlrp1b allele.
Collapse
Affiliation(s)
- Nathalia M de Vasconcelos
- Department of Internal Medicine, Ghent University, Ghent, Belgium.,VIB-UGhent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Gwendolyn Vliegen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Amanda Gonçalves
- VIB-UGhent Center for Inflammation Research, VIB, Ghent, Belgium.,VIB Bioimaging Core, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Emilie De Hert
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Rosa Martín-Pérez
- Janssen Immunosciences, World Without Disease Accelerator, Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | - Nina Van Opdenbosch
- Department of Internal Medicine, Ghent University, Ghent, Belgium.,VIB-UGhent Center for Inflammation Research, VIB, Ghent, Belgium.,Janssen Immunosciences, World Without Disease Accelerator, Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | - Anvesh Jallapally
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Pieter Van Der Veken
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Mohamed Lamkanfi
- Department of Internal Medicine, Ghent University, Ghent, Belgium .,VIB-UGhent Center for Inflammation Research, VIB, Ghent, Belgium.,Janssen Immunosciences, World Without Disease Accelerator, Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| |
Collapse
|
28
|
Chen Y, Liu F, Wu K, Wu W, Wu H, Zhang W. Targeting dipeptidyl peptidase 8 genes inhibits proliferation, migration and invasion by inhibition of cyclin D1 and MMP2MMP9 signal pathway in cervical cancer. J Gene Med 2018; 20:e3056. [PMID: 30225951 DOI: 10.1002/jgm.3056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/19/2018] [Accepted: 09/12/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND DPP8 is a member of the dipeptidyl peptidase IV family, which belongs to the S9b protease subfamily. It regulates cell proliferation, apoptosis, migration and invasion during cancer progression. METHODS To investigate the role of DPP8 in cervical cancer, we examined DPP8 levels in cervical cancer tissues and cells. The localization of DPP8 was determined by immunofluorescence staining. Subsequently, SiHa and HeLa cells were treated with small interfering RNA (siRNA)-DPP8. We used cell cycle analysis, an 5-ethyl-2'-deoxyuridine assay proliferation assay and a cellular apoptosis assay to determine the effect of DPP8 on the proliferation and apoptosis of cervical cancer cells. We used a Transwell assay to assess the number of transfection cancer cells migrating through the matrix. A real-time polymerase chain reaction and western blot analysis were used to analyze the expression of related proteins and to determine the phenotype caused by the depletion or overexpression of DPP8 in cervical cancer cells. RESULTS We observed that DPP8 was highly expressed in cervical cancer tissues and cells. DPP8 expression was observed in the cytosol and in the perinuclear area, as well as in the nuclei of cervical cancer cells. Notably, when cells were treated with siRNA-DPP8, the expression of BAX increased, and the expression of cyclin D1, Bcl-2, MMP2 and MMP9 was downregulated. In cervical cancer cell lines, silencing the expression of DPP8 not only suppressed the proliferation, migration and invasion of the cervical cancer cells, but also promoted cervical cancer cell apoptosis. CONCLUSIONS The data obtained in the present study reveal that DPP8 promotes the progression of cervical cancer.
Collapse
Affiliation(s)
- Yurou Chen
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Fulin Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Kejia Wu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wanrong Wu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hanshu Wu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
29
|
Kehoe K, Noels H, Theelen W, De Hert E, Xu S, Verrijken A, Arnould T, Fransen E, Hermans N, Lambeir AM, Venge P, Van Gaal L, De Meester I. Prolyl carboxypeptidase activity in the circulation and its correlation with body weight and adipose tissue in lean and obese subjects. PLoS One 2018; 13:e0197603. [PMID: 29772029 PMCID: PMC5957431 DOI: 10.1371/journal.pone.0197603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 05/04/2018] [Indexed: 12/30/2022] Open
Abstract
Background Prolyl carboxypeptidase (PRCP) is involved in the regulation of body weight, likely by hydrolysing alpha-melanocyte-stimulating hormone and apelin in the hypothalamus and in the periphery. A link between PRCP protein concentrations in plasma and metabolic disorders has been reported. In this study, we investigated the distribution of circulating PRCP activity and assessed its relation with body weight and adipose tissue in obese patients and patients who significantly lost weight. Methods PRCP activity was measured using reversed-phase high-performance liquid chromatography in different isolated blood fractions and primary human cells to investigate the distribution of circulating PRCP. PRCP activity was measured in serum of individuals (n = 75) categorized based on their body mass index (BMI < 25.0; 25.0–29.9; 30.0–39.9; ≥ 40.0 kg/m2) and the diagnosis of metabolic syndrome. Differences in serum PRCP activity were determined before and six months after weight loss, either by diet (n = 45) or by bariatric surgery (n = 24). Potential correlations between serum PRCP activity and several metabolic and biochemical parameters were assessed. Additionally, plasma PRCP concentrations were quantified using a sensitive ELISA in the bariatric surgery group. Results White blood cells and plasma contributed the most to circulating PRCP activity. Serum PRCP activity in lean subjects was 0.83 ± 0.04 U/L and increased significantly with a rising BMI (p<0.001) and decreased upon weight loss (diet, p<0.05; bariatric surgery, p<0.001). The serum PRCP activity alteration reflected body weight changes and was found to be positively correlated with several metabolic parameters, including: total, abdominal and visceral adipose tissue. Plasma PRCP concentration was found to be significantly correlated to serum PRCP activity (0.865; p<0.001). Additionally, a significant decrease (p<0.001) in plasma PRCP protein concentration (mean ± SD) before (18.2 ± 3.7 ng/mL) and 6 months after bariatric surgery (15.7 ± 2.7 ng/mL) was found. Conclusion Our novel findings demonstrate that white blood cells and plasma contributed the most to circulating PRCP activity. Additionally, we have shown that there were significant correlations between serum PRCP activity and various metabolic parameters, and that plasma PRCP concentration was significantly correlated to serum PRCP activity. These novel findings on PRCP activity in serum support further investigation of its in vivo role and involvement in several metabolic diseases.
Collapse
Affiliation(s)
- Kaat Kehoe
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Wendy Theelen
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Emilie De Hert
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Shenguan Xu
- Section of Clinical Chemistry, Department of Medical Sciences, University of Uppsala, Uppsala, Sweden
| | - An Verrijken
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Edegem, Belgium
- Laboratory of Experimental Medicine and Paediatrics (LEMP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Erik Fransen
- StatUa Center for Statistics, University of Antwerp, Antwerp, Belgium
| | - Nina Hermans
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Per Venge
- Section of Clinical Chemistry, Department of Medical Sciences, University of Uppsala, Uppsala, Sweden
| | - Luc Van Gaal
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Edegem, Belgium
- Laboratory of Experimental Medicine and Paediatrics (LEMP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
- * E-mail:
| |
Collapse
|
30
|
Kim M, von Muenchow L, Le Meur T, Kueng B, Gapp B, Weber D, Dietrich W, Kovarik J, Rolink AG, Ksiazek I. DPP9 enzymatic activity in hematopoietic cells is dispensable for mouse hematopoiesis. Immunol Lett 2018; 198:60-65. [PMID: 29709545 DOI: 10.1016/j.imlet.2018.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/09/2018] [Accepted: 04/25/2018] [Indexed: 02/07/2023]
Abstract
Dipeptidyl peptidase 9 (DPP9) is a ubiquitously expressed intracellular prolyl peptidase implicated in immunoregulation. However, its physiological relevance in the immune system remains largely unknown. We investigated the role of DPP9 enzyme in immune system by characterizing DPP9 knock-in mice expressing a catalytically inactive S729A mutant of DPP9 enzyme (DPP9ki/ki mice). DPP9ki/ki mice show reduced number of lymphoid and myeloid cells in fetal liver and postnatal blood but their hematopoietic cells are fully functional and able to reconstitute lymphoid and myeloid lineages even in competitive mixed chimeras. These studies demonstrate that inactivation of DPP9 enzymatic activity does not lead to any perturbations in mouse hematopoiesis.
Collapse
Affiliation(s)
- Munkyung Kim
- Novartis Institute for Biomedical Research, CH-4056, Basel, Switzerland
| | - Lilly von Muenchow
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Thomas Le Meur
- Novartis Institute for Biomedical Research, CH-4056, Basel, Switzerland
| | - Benjamin Kueng
- Novartis Institute for Biomedical Research, CH-4056, Basel, Switzerland
| | - Berangere Gapp
- Novartis Institute for Biomedical Research, CH-4056, Basel, Switzerland
| | - Delphine Weber
- Novartis Institute for Biomedical Research, CH-4056, Basel, Switzerland
| | | | - Jiri Kovarik
- Novartis Institute for Biomedical Research, CH-4056, Basel, Switzerland
| | - Antonius G Rolink
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Iwona Ksiazek
- Novartis Institute for Biomedical Research, CH-4056, Basel, Switzerland.
| |
Collapse
|
31
|
Buljevic S, Detel D, Pugel EP, Varljen J. The effect of CD26-deficiency on dipeptidyl peptidase 8 and 9 expression profiles in a mouse model of Crohn's disease. J Cell Biochem 2018; 119:6743-6755. [PMID: 29693275 DOI: 10.1002/jcb.26867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/21/2018] [Indexed: 12/17/2022]
Abstract
The involvement of dipeptidyl peptidase (DP) IV/CD26 (DPP IV/CD26) family members in the pathogenesis of Crohn's disease (CD), an autoimmune inflammatory condition of the gut, is effected mainly through proteolytic cleavage of immunomodulatory substrates and DPP IV/CD26's costimulatory function. DP8 and DP9 are proteases with diverse functions including cell interactions, apoptosis, and immune response but their localization remains to be clarified. We assessed the impact of DPP IV/CD26 deficiency (CD26-/- ) on the expression profiles of DP8 and DP9 by qPCR and immunodetection as well as quantified DP8/9 enzyme activity in distinctive phases of a chemically-induced CD model in mice. CD26-/- did not affect colon DP8 mRNA expression, while the physiological concentration of DP8 protein is decreased in CD26-/- mice but rises in inflammation (P < 0.05). On the other hand, DP9 mRNA level is significantly increased in CD26-/- mice in inflammation as well as healing with the DP9 concentration being almost twofold increased (P < 0.05) in all experimental points in CD26-/- mice compared to wild-type indicating the expected up-regulation in CD26-/- conditions. Surprisingly, dominantly intracellular DP8 and DP9 were found in abundance in serum. DP8/9 activity is decreased in the inflamed colon, whereas its contribution to the overall serum DPP IV/CD26-like activity is negligible, suggesting the importance of their extra-enzymatic functions. To summarize, CD induction generated gene, protein and enzymatic changes of DP8 and DP9 so their involvement in inflammation development and/or healing process is implicated, especially in CD26-/- , and the question of their subcellular localization should be revised.
Collapse
Affiliation(s)
- Suncica Buljevic
- Faculty of Medicine, Department of Chemistry and Biochemistry, University of Rijeka, Rijeka, Croatia
| | - Dijana Detel
- Faculty of Medicine, Department of Chemistry and Biochemistry, University of Rijeka, Rijeka, Croatia
| | - Ester P Pugel
- Faculty of Medicine, Department of Histology and Embryology, University of Rijeka, Rijeka, Croatia
| | - Jadranka Varljen
- Faculty of Medicine, Department of Chemistry and Biochemistry, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
32
|
Kim M, Minoux M, Piaia A, Kueng B, Gapp B, Weber D, Haller C, Barbieri S, Namoto K, Lorenz T, Wirsching J, Bassilana F, Dietrich W, Rijli FM, Ksiazek I. DPP9 enzyme activity controls survival of mouse migratory tongue muscle progenitors and its absence leads to neonatal lethality due to suckling defect. Dev Biol 2017; 431:297-308. [PMID: 28887018 DOI: 10.1016/j.ydbio.2017.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 08/16/2017] [Accepted: 09/03/2017] [Indexed: 01/23/2023]
Abstract
Dipeptidyl peptidase 9 (DPP9) is an intracellular N-terminal post-proline-cleaving enzyme whose physiological function remains largely unknown. We investigated the role of DPP9 enzyme in vivo by characterizing knock-in mice expressing a catalytically inactive mutant form of DPP9 (S729A; DPP9ki/ki mice). We show that DPP9ki/ki mice die within 12-18h after birth. The neonatal lethality can be rescued by manual feeding, indicating that a suckling defect is the primary cause of neonatal lethality. The suckling defect results from microglossia, and is characterized by abnormal formation of intrinsic muscles at the distal tongue. In DPP9ki/ki mice, the number of occipital somite-derived migratory muscle progenitors, forming distal tongue intrinsic muscles, is reduced due to increased apoptosis. In contrast, intrinsic muscles of the proximal tongue and extrinsic tongue muscles, which derive from head mesoderm, develop normally in DPP9ki/ki mice. Thus, lack of DPP9 activity in mice leads to impaired tongue development, suckling defect and subsequent neonatal lethality due to impaired survival of a specific subset of migratory tongue muscle progenitors.
Collapse
Affiliation(s)
- Munkyung Kim
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | - Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Alessandro Piaia
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | - Benjamin Kueng
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | - Berangere Gapp
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | - Delphine Weber
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | - Corinne Haller
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | - Samuel Barbieri
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | - Kenji Namoto
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | - Thorsten Lorenz
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | - Johann Wirsching
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | | | | | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Iwona Ksiazek
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland.
| |
Collapse
|
33
|
Shi L, Ji Y, Liu D, Liu Y, Xu Y, Cao Y, Jiang X, Xu C. Sitagliptin attenuates high glucose-induced alterations in migration, proliferation, calcification and apoptosis of vascular smooth muscle cells through ERK1/2 signal pathway. Oncotarget 2017; 8:77168-77180. [PMID: 29100378 PMCID: PMC5652771 DOI: 10.18632/oncotarget.20417] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022] Open
Abstract
Background/Aims This study investigated the effects of sitagliptin on migration, proliferation, calcification and apoptosis of vascular smooth muscle cells (VSMCs) under high glucose (HG) conditions. Methods VSMCs were isolated from the thoracic aorta of Sprague Dawley rats. The cultured VSMCs were subjected to control medium, mannitol medium, HG medium (25 mM), pretreatment with 200 nM sitagliptin in control or HG medium, or the ERK1/2 inhibitor PD98059 in HG medium. Cell proliferation, migration, apoptosis and calcification were determined. Results HG conditions promoted the proliferation, migration, calcification and impairment of apoptosis in VSMCs compared with controls (P<0.05). Pretreatment with sitagliptin effectively attenuated proliferation, migration, calcification of cells and increased apoptosis of HG-cultured VSMCs as compared with the HG group (P<0.05). Culture with HG resulted in the up-regulation of p-ERK1/2 in VSMCs, whereas sitagliptin pretreatment could inhibit HG-induced p-ERK1/2 expression. In addition, the ERK1/2 inhibitor PD98059, inhibited proliferation, migration, calcification and promoted the apoptosis of HG-cultured VSMCs compared with the HG group (P<0.05). Conclusion The effects of sitagliptin on VSMC under high glucose condition were achieved through ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Lili Shi
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ye Ji
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Dandan Liu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ying Liu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ying Xu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yang Cao
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaoyan Jiang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Changqing Xu
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
34
|
Rea D, Van Elzen R, De Winter H, Van Goethem S, Landuyt B, Luyten W, Schoofs L, Van Der Veken P, Augustyns K, De Meester I, Fülöp V, Lambeir AM. Crystal structure of Porphyromonas gingivalis dipeptidyl peptidase 4 and structure-activity relationships based on inhibitor profiling. Eur J Med Chem 2017; 139:482-491. [PMID: 28826083 DOI: 10.1016/j.ejmech.2017.08.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
Abstract
The Gram-negative anaerobe Porphyromonas gingivalis is associated with chronic periodontitis. Clinical isolates of P. gingivalis strains with high dipeptidyl peptidase 4 (DPP4) expression also had a high capacity for biofilm formation and were more infective. The X-ray crystal structure of P. gingivalis DPP4 was solved at 2.2 Å resolution. Despite a sequence identity of 32%, the overall structure of the dimer was conserved between P. gingivalis DPP4 and mammalian orthologues. The structures of the substrate binding sites were also conserved, except for the region called S2-extensive, which is exploited by specific human DPP4 inhibitors currently used as antidiabetic drugs. Screening of a collection of 450 compounds as inhibitors revealed a structure-activity relationship that mimics in part that of mammalian DPP9. The functional similarity between human and bacterial DPP4 was confirmed using 124 potential peptide substrates.
Collapse
Affiliation(s)
- Dean Rea
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Roos Van Elzen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | - Hans De Winter
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | - Sebastiaan Van Goethem
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | - Bart Landuyt
- Animal Physiology and Neurobiology Section, Department of Biology, KULeuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | - Walter Luyten
- Animal Physiology and Neurobiology Section, Department of Biology, KULeuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | - Liliane Schoofs
- Animal Physiology and Neurobiology Section, Department of Biology, KULeuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | - Pieter Van Der Veken
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | - Vilmos Fülöp
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| |
Collapse
|
35
|
Ke X, Ke B, Wang X, Wu S, Yang R, Hu C. Additive effects of atorvastatin combined with sitagliptin on rats with myocardial infarction: a pilot study. Arch Med Sci 2017; 13:956-961. [PMID: 28721163 PMCID: PMC5510516 DOI: 10.5114/aoms.2017.68143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/28/2016] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Atorvastatin and sitagliptin are able to exert cardio-protective effects. However, whether atorvastatin plus sitagliptin could confer additive benefits for rats with myocardial infarction (MI) is unknown. MATERIAL AND METHODS Forty rats with MI were produced and 37 surviving rats were randomly divided into atorvastatin (10 mg/kg daily, n = 9), sitagliptin (10 mg/kg daily, n = 9), combined (10 mg/kg daily atorvastatin plus 10 mg/kg daily sitagliptin, n = 9), and control groups (3 ml normal saline daily, n = 10). Fourteen days later, cardiac function was detected and fasting venous blood was sampled for lipid profiles and glucose evaluation. Cardiac tissues were used for hematoxylin-eosin staining, for interleukin-6 (IL-6) and tumor necrotic factor-α (TNF-α) evaluation, and for rho-associated kinase 2 (ROCK2) assessment. RESULTS Fourteen days after MI, the inflammatory reaction regarding the degree of leukocyte infiltration and IL-6 and TNF-α expression in cardiac tissues was ameliorated in atorvastatin and sitagliptin groups compared to the control group (p < 0.05). In addition, ROCK2 was attenuated by either atorvastatin or sitagliptin (p < 0.05). Echocardiography showed that cardiac function was significantly improved with atorvastatin and sitagliptin therapy (p < 0.05). Overall, all these benefits were further enhanced by combined therapy, suggesting that atorvastatin combined with sitagliptin therapy has additive effects on reducing cardiac inflammation and improving cardiac function. No significant changes in lipid profiles or glucose were observed, suggesting that the benefits derived from atorvastatin and sitagliptin therapy might not depend on cholesterol and glucose modulation. CONCLUSIONS In rats with MI, atorvastatin plus sitagliptin therapy provides additive effects for cardio-protection, and mechanisms operating in these processes may be due to ROCK2 diminishment.
Collapse
Affiliation(s)
- Xiao Ke
- Department of Cardiology, Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, Guangdong, China
| | - Bin Ke
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xing Wang
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaoyun Wu
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rongfeng Yang
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chengheng Hu
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
36
|
Xu L, Cheng D, Huang Z, Ding S, Zhang W, Tan H, Shi H, Chen R, Zou Y, Wang TC, Yang X, Ge J. Histamine promotes the differentiation of macrophages from CD11b + myeloid cells and formation of foam cells through a Stat6-dependent pathway. Atherosclerosis 2017; 263:42-52. [PMID: 28600950 DOI: 10.1016/j.atherosclerosis.2017.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/16/2017] [Accepted: 05/18/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS The enzyme histidine decarboxylase (Hdc), which generates histamine, is highly expressed in CD11b+Gr-1+ myeloid cells that play a critical role in infection, inflammation and tumorigenesis. The aim of this study was to explore the role of Hdc-expressing CD11b+ myeloid cells or histamine in atherogenesis. METHODS Hdc-EGFP bacterial artificial chromosome (BAC) transgenic reporter mice (Hdc-EGFP) were used to track Hdc expression during the development of atherosclerosis. The expression of EGFP fluorescence was examined by immunofluorescence staining in a variety of adult tissues. Wild-type (WT), Apoe knockout (Apoe-/-), Hdc knockout (Hdc-/-), and Stat6 knockout (Stat6-/-) mice were used. Serum concentration of histamine was determined with ELISA. Changes in subsets of immune cells were evaluated by flow cytometry (FACS). Non-invasive tracking of the expression of CD11b+ myeloid cells was tested using 125I-anti-CD11b SPECT/CT imaging in the early stages of atherogenesis. Microarray analysis and RT-PCR were applied to detect gene expressions while Western blot was used to assess protein levels. RESULTS Using Hdc-EGFP transgenic mice, we demonstrated that Hdc+CD11b+ myeloid cells increase in the circulation in response to hypercholesterolemia and contribute to foam cell formation in atherosclerosis. Histamine deficiency in Hdc knockout (Hdc-/-) mice repressed the differentiation of CD11b+Ly6Chigh classically activated M1-type macrophages and CD11b+CD11c+ dendritic cells (DCs), which was associated with downregulation of signal transducer and activator of transcription 6 (Stat6) expression. Furthermore, the results of in vivo and in vitro studies demonstrated that histamine could promote macrophage differentiation and foam cell formation via the Stat6 signal. CONCLUSIONS Modulation of histamine and Stat6-signaling may represent an attractive therapeutic strategy for the prevention or treatment of atherosclerosis.
Collapse
Affiliation(s)
- Lili Xu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zheyong Huang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Suling Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Weiwei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ruizhen Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Timothy C Wang
- Department of Medicine and Irving Cancer Research Center, Columbia University, New York, NY 10032, USA
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
37
|
Zapletal E, Cupic B, Gabrilovac J. Expression, subcellular localisation, and possible roles of dipeptidyl peptidase 9 (DPP9) in murine macrophages. Cell Biochem Funct 2017; 35:124-137. [DOI: 10.1002/cbf.3256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 01/23/2017] [Accepted: 01/26/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Emilija Zapletal
- Laboratory for Experimental Haematology, Immunology and Oncology, Division of Molecular Medicine; Rudjer Boskovic Institute; Zagreb Croatia
| | - Barbara Cupic
- Laboratory for Experimental Haematology, Immunology and Oncology, Division of Molecular Medicine; Rudjer Boskovic Institute; Zagreb Croatia
| | - Jelka Gabrilovac
- Laboratory for Experimental Haematology, Immunology and Oncology, Division of Molecular Medicine; Rudjer Boskovic Institute; Zagreb Croatia
| |
Collapse
|
38
|
Vliegen G, Raju TK, Adriaensen D, Lambeir AM, De Meester I. The expression of proline-specific enzymes in the human lung. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:130. [PMID: 28462210 DOI: 10.21037/atm.2017.03.36] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pathophysiology of lung diseases is very complex and proteolytic enzymes may play a role or could be used as biomarkers. In this review, the literature was searched to make an overview of what is known on the expression of the proline-specific peptidases dipeptidyl peptidase (DPP) 4, 8, 9, prolyl oligopeptidase (PREP) and fibroblast activation protein α (FAP) in the healthy and diseased lung. Search terms included asthma, chronic obstructive pulmonary disease (COPD), lung cancer, fibrosis, ischemia reperfusion injury and pneumonia. Knowledge on the loss or gain of protein expression and activity during disease might tie these enzymes to certain cell types, substrates or interaction partners that are involved in the pathophysiology of the disease, ultimately leading to the elucidation of their functional roles and a potential therapeutic target. Most data could be found on DPP4, while the other enzymes are less explored. Published data however often appear to be conflicting, the applied methods divers and the specificity of the assays used questionable. In conclusion, information on the expression of the proline-specific peptidases in the healthy and diseased lung is lacking, begging for further well-designed research.
Collapse
Affiliation(s)
- Gwendolyn Vliegen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Tom K Raju
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
39
|
Tang Z, Li J, Shen Q, Feng J, Liu H, Wang W, Xu L, Shi G, Ye X, Ge M, Zhou X, Ni S. Contribution of upregulated dipeptidyl peptidase 9 (DPP9) in promoting tumoregenicity, metastasis and the prediction of poor prognosis in non-small cell lung cancer (NSCLC). Int J Cancer 2017; 140:1620-1632. [PMID: 27943262 PMCID: PMC5324565 DOI: 10.1002/ijc.30571] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/08/2016] [Accepted: 11/30/2016] [Indexed: 12/12/2022]
Abstract
Dipeptidyl peptidase 9 (DPP9) is encoded by DPP9, which belongs to the DPP4 gene family. Proteins encoded by these genes have unique peptidase and extra‐enzymatic functions that have been linked to various diseases including cancers. Here, we describe the expression pattern and biological function of DPP9 in non‐small‐cell lung cancer (NSCLC). The repression of DPP9 expression by small interfering RNA inhibited cell proliferation, migration, and invasion. Moreover, we explored the role of DPP9 in regulating epithelial‐mesenchymal transition (EMT). The epithelial markers E‐cadherin and MUC1 were significantly increased, while mesenchymal markers vimentin and S100A4 were markedly decreased in DPP9 knockdown cells. The downregulation of DPP9 in the NSCLC cells induced the expression of apoptosis‐associated proteins both in vitro and in vivo. We investigated the protein expression levels of DPP9 by tissue microarray immunohistochemical assay (TMA‐IHC) (n = 217). Further we found mRNA expression levels of DPP9 in 30 pairs of clinical NSCLC tissues were significantly lower than in the adjacent non‐cancerous tissues. Survival analysis showed that the overexpression of DPP9 was a significant independent factor for poor 5‐year overall survival in patients with NSCLC (p = 0.003). Taken together, DPP9 expression correlates with poor overall survival in NSCLC. What's new? Non‐small‐cell lung cancer (NSCLC) is associated with multiple genetic and epigenetic changes. Nonetheless, mechanisms underlying its initiation and progression are not well understood. The present study identifies a role for dipeptidyl peptidase 9 (DPP9), a DPP4 family member with suspected influence on tumor initiation and metastasis. In lung cancer cells in vitro, DPP9 repression inhibited cell proliferation, migration, and invasion, while its repression in vivo dramatically slowed tumor growth, greatly reducing tumor volume in DPP9 knockdown mice. In clinical NSCLC specimens, DPP9 upregulation was significantly associated with advanced TNM stage and was negatively prognostic for overall survival.
Collapse
Affiliation(s)
- Zhiyuan Tang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Jun Li
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Qin Shen
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Jian Feng
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Hua Liu
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Wei Wang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Liqin Xu
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Guanglin Shi
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xumei Ye
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Min Ge
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaoyu Zhou
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Songshi Ni
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
40
|
Gabrilovac J, Čupić B, Zapletal E, Kraus O, Jakić-Razumović J. Dipeptidyl peptidase 9 (DPP9) in human skin cells. Immunobiology 2017; 222:327-342. [DOI: 10.1016/j.imbio.2016.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/11/2016] [Accepted: 09/17/2016] [Indexed: 12/20/2022]
|
41
|
Waumans Y, Vliegen G, Maes L, Rombouts M, Declerck K, Van Der Veken P, Vanden Berghe W, De Meyer GRY, Schrijvers D, De Meester I. The Dipeptidyl Peptidases 4, 8, and 9 in Mouse Monocytes and Macrophages: DPP8/9 Inhibition Attenuates M1 Macrophage Activation in Mice. Inflammation 2016; 39:413-424. [PMID: 26454447 DOI: 10.1007/s10753-015-0263-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Atherosclerosis remains the leading cause of death in Western countries. Dipeptidyl peptidase (DPP) 4 has emerged as a novel target for the prevention and treatment of atherosclerosis. Family members DPP8 and 9 are abundantly present in macrophage-rich regions of atherosclerotic plaques, and DPP9 inhibition attenuates activation of human M1 macrophages in vitro. Studying this family in a mouse model for atherosclerosis would greatly advance our knowledge regarding their potential as therapeutic targets. We found that DPP4 is downregulated during mouse monocyte-to-macrophage differentiation. DPP8 and 9 expression seems relatively low in mouse monocytes and macrophages. Viability of primary mouse macrophages is unaffected by DPP4 or DPP8/9 inhibition. Importantly, DPP8/9 inhibition attenuates macrophage activation as IL-6 secretion is significantly decreased. Mouse macrophages respond similarly to DPP inhibition, compared to human macrophages. This shows that the mouse could become a valid model species for the study of DPPs as therapeutic targets in atherosclerosis.
Collapse
Affiliation(s)
- Yannick Waumans
- Laboratory of Medical Biochemistry, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Gwendolyn Vliegen
- Laboratory of Medical Biochemistry, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Lynn Maes
- Laboratory of Medical Biochemistry, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Miche Rombouts
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), University of Antwerp, Antwerp, Belgium
| | - Pieter Van Der Veken
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), University of Antwerp, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Dorien Schrijvers
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| |
Collapse
|
42
|
Okondo MC, Johnson DC, Sridharan R, Go EB, Chui AJ, Wang MS, Poplawski SE, Wu W, Liu Y, Lai JH, Sanford DG, Arciprete MO, Golub TR, Bachovchin WW, Bachovchin DA. DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis. Nat Chem Biol 2016; 13:46-53. [PMID: 27820798 DOI: 10.1038/nchembio.2229] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022]
Abstract
Val-boroPro (Talabostat, PT-100), a nonselective inhibitor of post-proline cleaving serine proteases, stimulates mammalian immune systems through an unknown mechanism of action. Despite this lack of mechanistic understanding, Val-boroPro has attracted substantial interest as a potential anticancer agent, reaching phase 3 trials in humans. Here we show that Val-boroPro stimulates the immune system by triggering a proinflammatory form of cell death in monocytes and macrophages known as pyroptosis. We demonstrate that the inhibition of two serine proteases, DPP8 and DPP9, activates the pro-protein form of caspase-1 independent of the inflammasome adaptor ASC. Activated pro-caspase-1 does not efficiently process itself or IL-1β but does cleave and activate gasdermin D to induce pyroptosis. Mice lacking caspase-1 do not show immune stimulation after treatment with Val-boroPro. Our data identify what is to our knowledge the first small molecule that induces pyroptosis and reveals a new checkpoint that controls the activation of the innate immune system.
Collapse
Affiliation(s)
- Marian C Okondo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Darren C Johnson
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ramya Sridharan
- Graduate Program in Pharmacology, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Eun Bin Go
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ashley J Chui
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mitchell S Wang
- Graduate Program in Pharmacology, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Sarah E Poplawski
- Department of Developmental, Chemical &Molecular Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Wengen Wu
- Department of Developmental, Chemical &Molecular Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Yuxin Liu
- Department of Developmental, Chemical &Molecular Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Jack H Lai
- Department of Developmental, Chemical &Molecular Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - David G Sanford
- Department of Developmental, Chemical &Molecular Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Michael O Arciprete
- Department of Developmental, Chemical &Molecular Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Todd R Golub
- The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - William W Bachovchin
- Department of Developmental, Chemical &Molecular Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, USA.,Arisaph Pharmaceuticals, Boston, Massachusetts, USA
| | - Daniel A Bachovchin
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Graduate Program in Pharmacology, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| |
Collapse
|
43
|
Justa-Schuch D, Silva-Garcia M, Pilla E, Engelke M, Kilisch M, Lenz C, Möller U, Nakamura F, Urlaub H, Geiss-Friedlander R. DPP9 is a novel component of the N-end rule pathway targeting the tyrosine kinase Syk. eLife 2016; 5. [PMID: 27614019 PMCID: PMC5039030 DOI: 10.7554/elife.16370] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/07/2016] [Indexed: 12/12/2022] Open
Abstract
The aminopeptidase DPP9 removes dipeptides from N-termini of substrates having a proline or alanine in second position. Although linked to several pathways including cell survival and metabolism, the molecular mechanisms underlying these outcomes are poorly understood. We identified a novel interaction of DPP9 with Filamin A, which recruits DPP9 to Syk, a central kinase in B-cell signalling. Syk signalling can be terminated by degradation, requiring the ubiquitin E3 ligase Cbl. We show that DPP9 cleaves Syk to produce a neo N-terminus with serine in position 1. Pulse-chases combined with mutagenesis studies reveal that Ser1 strongly influences Syk stability. Furthermore, DPP9 silencing reduces Cbl interaction with Syk, suggesting that DPP9 processing is a prerequisite for Syk ubiquitination. Consistently, DPP9 inhibition stabilizes Syk, thereby modulating Syk signalling. Taken together, we demonstrate DPP9 as a negative regulator of Syk and conclude that DPP9 is a novel integral aminopeptidase of the N-end rule pathway.
Collapse
Affiliation(s)
- Daniela Justa-Schuch
- Department of Molecular Biology, University Medical Center Goettingen, Goettingen, Germany
| | - Maria Silva-Garcia
- Department of Molecular Biology, University Medical Center Goettingen, Goettingen, Germany
| | - Esther Pilla
- Department of Molecular Biology, University Medical Center Goettingen, Goettingen, Germany
| | - Michael Engelke
- Institute of Cellular and Molecular Immunology, University Medical Center Goettingen, Goettingen, Germany
| | - Markus Kilisch
- Department of Molecular Biology, University Medical Center Goettingen, Goettingen, Germany
| | - Christof Lenz
- Department of Bioanalytics, Institute of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany.,Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ulrike Möller
- Department of Molecular Biology, University Medical Center Goettingen, Goettingen, Germany
| | - Fumihiko Nakamura
- Hematology Division, Department of Medicine, Harvard Medical School, Boston, United States.,Brigham and Women's Hospital, Boston, United States
| | - Henning Urlaub
- Department of Bioanalytics, Institute of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany.,Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ruth Geiss-Friedlander
- Department of Molecular Biology, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
44
|
Wilson CH, Zhang HE, Gorrell MD, Abbott CA. Dipeptidyl peptidase 9 substrates and their discovery: current progress and the application of mass spectrometry-based approaches. Biol Chem 2016; 397:837-56. [DOI: 10.1515/hsz-2016-0174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/04/2016] [Indexed: 12/16/2022]
Abstract
Abstract
The enzyme members of the dipeptidyl peptidase 4 (DPP4) gene family have the very unusual capacity to cleave the post-proline bond to release dipeptides from the N-terminus of peptide/protein substrates. DPP4 and related enzymes are current and potential therapeutic targets in the treatment of type II diabetes, inflammatory conditions and cancer. Despite this, the precise biological function of individual dipeptidyl peptidases (DPPs), other than DPP4, and knowledge of their in vivo substrates remains largely unknown. For many years, identification of physiological DPP substrates has been difficult due to limitations in the available tools. Now, with advances in mass spectrometry based approaches, we can discover DPP substrates on a system wide-scale. Application of these approaches has helped reveal some of the in vivo natural substrates of DPP8 and DPP9 and their unique biological roles. In this review, we provide a general overview of some tools and approaches available for protease substrate discovery and their applicability to the DPPs with a specific focus on DPP9 substrates. This review provides comment upon potential approaches for future substrate elucidation.
Collapse
|
45
|
Weishan L, Dechao L, Rongrong Q. [Effects of Porphyromonas gingivalis on interleukin-33 expression in rabbit vascular endothelium tissues]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2016; 34:354-357. [PMID: 28317351 DOI: 10.7518/hxkq.2016.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To investigate interleukin-33 (IL-33) in the arterial vascular endothelium of rabbits infected with Porphyromonas gingivalis (P. gingivalis), and to explore the relationship between P. gingivalis and atherosclerosis. METHODS A total of 24 rabbits were randomly divided into control and experimental groups. The experimental group received intravenous injection of P. gingivalis once a week for 12 weeks to establish a coronary atherosclerosis model. The rabbits in the control group were injected with equal volume of physiological saline. All the rabbits were killed after 13 weeks. The IL-33 expression levels in the arterial vascular endothelium of the rabbits were detected through immunohistochemistry, reverse transcription polymerase chain reaction, and Western blot analysis. The effects of P. gingivalis on the IL-33 expression in the arterial vascular endothelium of the rabbits were analyzed. RESULTS The relative expression levels of IL-33 mRNA in the vascular endothelium cells were 58.244±2.407, and the relative expression levels of IL-33 protein were 1.863±0.171 in the experimental group. The relative expression levels of IL-33 mRNA were 3.143±0.805, and the relative expression levels of IL-33 protein were 0.537±
0.028 in the control group. The expression levels of IL-33 mRNA and protein of vascular endothelium cells in the experimental group were significantly higher than those of the control group (P<0.01). CONCLUSIONS P. gingivalis infection promotes IL-33 expression levels in vascular endothelial cells and may regulate the occurrence and development of atherosclerosis.
.
Collapse
Affiliation(s)
- Li Weishan
- Dept. of Periodontal and Mucosal Diseases, The Affiliated Stomatology Hospital of Jiamusi University, Jiamusi 154007, China
| | - Li Dechao
- Dept. of Periodontal and Mucosal Diseases, The Affiliated Stomatology Hospital of Jiamusi University, Jiamusi 154007, China
| | - Qiu Rongrong
- Dept. of Periodontal and Mucosal Diseases, The Affiliated Stomatology Hospital of Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
46
|
Wagner L, Kaestner F, Wolf R, Stiller H, Heiser U, Manhart S, Hoffmann T, Rahfeld JU, Demuth HU, Rothermundt M, von Hörsten S. Identifying neuropeptide Y (NPY) as the main stress-related substrate of dipeptidyl peptidase 4 (DPP4) in blood circulation. Neuropeptides 2016; 57:21-34. [PMID: 26988064 DOI: 10.1016/j.npep.2016.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/21/2016] [Accepted: 02/25/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Dipeptidyl peptidase 4 (DPP4; EC 3.4.14.5; CD26) is a membrane-bound or shedded serine protease that hydrolyzes dipeptides from the N-terminus of peptides with either proline or alanine at the penultimate position. Substrates of DPP4 include several stress-related neuropeptides implicated in anxiety, depression and schizophrenia. A decline of DPP4-like activity has been reported in sera from depressed patient, but not fully characterized regarding DPP4-like enzymes, therapeutic interventions and protein. METHODS Sera from 16 melancholic- and 16 non-melancholic-depressed patients were evaluated for DPP4-like activities and the concentration of soluble DPP4 protein before and after treatment by anti-depressive therapies. Post-translational modification of DPP4-isoforms and degradation of NPY, Peptide YY (PYY), Galanin-like peptide (GALP), Orexin B (OrxB), OrxA, pituitary adenylate cyclase-activating polypeptide (PACAP) and substance P (SP) were studied in serum and in ex vivo human blood. N-terminal truncation of biotinylated NPY by endothelial membrane-bound DPP4 versus soluble DPP4 was determined in rat brain perfusates and spiked sera. RESULTS Lower DPP4 activities in depressed patients were reversed by anti-depressive treatment. In sera, DPP4 contributed to more than 90% of the overall DPP4-like activity and correlated with its protein concentration. NPY displayed equal degradation in serum and blood, and was equally truncated by serum and endothelial DPP4. In addition, GALP and rat OrxB were identified as novel substrates of DPP4. CONCLUSION NPY is the best DPP4-substrate in blood, being truncated by soluble and membrane DPP4, respectively. The decline of soluble DPP4 in acute depression could be reversed upon anti-depressive treatment. Peptidases from three functional compartments regulate the bioactivity of NPY in blood.
Collapse
Affiliation(s)
- Leona Wagner
- Deutschsprachige Selbsthilfegruppe für Alkaptonurie (DSAKU) e,V., Stuttgart, Germany; Probiodrug AG, Halle, Germany; Universitätsklinikum Erlangen, Department of Experimental Therapy, Erlangen, Germany.
| | - Florian Kaestner
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Raik Wolf
- Center for Clinical Chemistry, Microbiology and Transfusion, Klinikum St. Georg gGmbH, Germany; Probiodrug AG, Halle, Germany
| | | | | | | | - Torsten Hoffmann
- Center for Clinical Chemistry, Microbiology and Transfusion, Klinikum St. Georg gGmbH, Germany
| | - Jens-Ulrich Rahfeld
- Fraunhofer-Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, 06120 Halle, Germany
| | - Hans-Ulrich Demuth
- Fraunhofer-Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, 06120 Halle, Germany
| | - Matthias Rothermundt
- Department of Psychiatry, University of Münster, Münster, Germany; St. Rochus-Hospital Telgte, 48291 Telgte, Germany
| | - Stephan von Hörsten
- Universitätsklinikum Erlangen, Department of Experimental Therapy, Erlangen, Germany.
| |
Collapse
|
47
|
Tang ST, Su H, Zhang Q, Tang HQ, Wang CJ, Zhou Q, Wei W, Zhu HQ, Wang Y. Sitagliptin inhibits endothelin-1 expression in the aortic endothelium of rats with streptozotocin-induced diabetes by suppressing the nuclear factor-κB/IκBα system through the activation of AMP-activated protein kinase. Int J Mol Med 2016; 37:1558-66. [PMID: 27122056 PMCID: PMC4866950 DOI: 10.3892/ijmm.2016.2578] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 04/08/2016] [Indexed: 11/06/2022] Open
Abstract
Emerging evidence suggests that dipeptidyl peptidase-4 (DPP-4) inhibitors, including sitagliptin, exert favourable effects on the vascular endothelium. DPP-4 inhibitors suppress the degradation of glucagon-like peptide-1 (GLP‑1), which has been reported to enhance nitric oxide (NO) production. However, the effects of DPP-4 inhibitors on endothelin-1 (ET-1) expression in the aorta, as well as the underlying mechanisms responsible for these effects, have yet to be investigated in animal models of diabetes mellitus (DM). In the present study, the rats were randomly divided into the following four groups: i) control; ii) DM; iii) DM + low‑dose sitagliptin (10 mg/kg); and iv) DM + high‑dose sitagliptin (30 mg/kg). Apart from the control group, all the rats received a high-fat diet for 8 weeks prior to the induction of diabetes with an intraperitoneal injection of streptozotocin. The treatments were then administered for 12 weeks. The serum levels of ET-1, NO, GLP-1 and insulin were measured as well as endothelial function. The expression of ET-1, AMP-activated protein kinase (AMPK) and nuclear factor (NF)-κB/IκBα were determined. After 12 weeks of treatment, the diabetic rats receiving sitagliptin showed significantly elevated serum levels of GLP-1 and NO, and reduced levels of ET-1. Moreover, sitagliptin significantly attenuated endothelial dysfunction as well as the remodeling of the aortic wall. Notably, sitagliptin inhibited ET-1 expression at the transcriptional and translational level in the aorta, which may have been mediated by the suppression of the NF-κB/IκBα system induced by AMPK activation. The majority of the above-mentioned effects were dose dependent. Taken together, the findings of the present study indicate that sitagliptin inhibits ET-1 expression in the aortic endothelium by suppressing the NF-κB/IκBα system through the activation of the AMPK pathway in diabetic rats. These findings further demonstrate some of the vasoprotective properties of DPP-4 inhibitors in vivo.
Collapse
Affiliation(s)
- Song-Tao Tang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Huan Su
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Qiu Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Hai-Qin Tang
- Department of Geriatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Chang-Jiang Wang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Qing Zhou
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Hua-Qing Zhu
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Yuan Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, P.R. China
| |
Collapse
|
48
|
Henderson JM, Zhang HE, Polak N, Gorrell MD. Hepatocellular carcinoma: Mouse models and the potential roles of proteases. Cancer Lett 2016; 387:106-113. [PMID: 27045475 DOI: 10.1016/j.canlet.2016.03.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/24/2016] [Accepted: 03/24/2016] [Indexed: 02/07/2023]
Abstract
Primary liver cancer is the second most common cause of mortality from cancer. The most common models of hepatocellular carcinoma, which use a chemical and/or metabolic insult, xenograft, or genetic manipulation, are discussed in this review. In the tumour microenvironment lymphocytes, fibroblasts, endothelial cells and antigen presenting cells are important determinants of cell fate. These cells make a range of proteases that modify the biological activity of other proteins, particularly extracellular matrix proteins that alter cell migration of tumour cells, fibroblasts and leucocytes, and chemokines that alter leucocyte migration. The DPP4 family of post-proline peptidase enzymes modifies cell movement and the activities of many bioactive molecules including growth factors and chemokines.
Collapse
Affiliation(s)
- James M Henderson
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales 2006 Australia
| | - Hui Emma Zhang
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales 2006 Australia
| | - Natasa Polak
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales 2006 Australia
| | - Mark D Gorrell
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales 2006 Australia.
| |
Collapse
|
49
|
Chen Y, Gall MG, Zhang H, Keane FM, McCaughan GW, Yu DMT, Gorrell MD. Dipeptidyl peptidase 9 enzymatic activity influences the expression of neonatal metabolic genes. Exp Cell Res 2016; 342:72-82. [PMID: 26930324 DOI: 10.1016/j.yexcr.2016.02.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 02/07/2023]
Abstract
The success of dipeptidyl peptidase 4 (DPP4) inhibition as a type 2 diabetes therapy has encouraged deeper examination of the post-proline DPP enzymes. DPP9 has been implicated in immunoregulation, disease pathogenesis and metabolism. The DPP9 enzyme-inactive (Dpp9 gene knock-in; Dpp9 gki) mouse displays neonatal lethality, suggesting that DPP9 enzyme activity is essential in neonatal development. Here we present gene expression patterns in these Dpp9 gki neonatal mice. Taqman PCR arrays and sequential qPCR assays on neonatal liver and gut revealed differential expression of genes involved in cell growth, innate immunity and metabolic pathways including long-chain-fatty-acid uptake and esterification, long-chain fatty acyl-CoA binding, trafficking and transport into mitochondria, lipoprotein metabolism, adipokine transport and gluconeogenesis in the Dpp9 gki mice compared to wild type. In a liver cell line, Dpp9 knockdown increased AMP-activated protein kinase phosphorylation, which suggests a potential mechanism. DPP9 protein levels in liver cells were altered by treatment with EGF, HGF, insulin or palmitate, suggesting potential natural DPP9 regulators. These gene expression analyses of a mouse strain deficient in DPP9 enzyme activity show, for the first time, that DPP9 enzyme activity regulates metabolic pathways in neonatal liver and gut.
Collapse
Affiliation(s)
- Yiqian Chen
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Margaret G Gall
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Hui Zhang
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Fiona M Keane
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Geoffrey W McCaughan
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Denise M T Yu
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Mark D Gorrell
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
50
|
Heirbaut L, van Goethem S, Jansen K, de Winter H, Lamoen N, Joossens J, Cheng J, Chen X, Lambeir AM, de Meester I, Augustyns K, van der Veken P. Probing for improved selectivity with dipeptide-derived inhibitors of dipeptidyl peptidases 8 and 9: the impact of P1-variation. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00454c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of P1-variation on DPP8/9 inhibitor selectivity is investigated.
Collapse
Affiliation(s)
- Leen Heirbaut
- Medicinal Chemistry/UAMC
- University of Antwerp
- B-2610 Wilrijk-Antwerp
- Belgium
| | | | - Koen Jansen
- Medicinal Chemistry/UAMC
- University of Antwerp
- B-2610 Wilrijk-Antwerp
- Belgium
| | - Hans de Winter
- Medicinal Chemistry/UAMC
- University of Antwerp
- B-2610 Wilrijk-Antwerp
- Belgium
| | - Nicole Lamoen
- Laboratory of Medical Biochemistry
- University of Antwerp
- B-2610 Wirijk-Antwerp
- Belgium
| | - Jurgen Joossens
- Medicinal Chemistry/UAMC
- University of Antwerp
- B-2610 Wilrijk-Antwerp
- Belgium
| | | | - Xin Chen
- National Health Research Institutes
- Zhunan
- Taiwan
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry
- University of Antwerp
- B-2610 Wirijk-Antwerp
- Belgium
| | - Ingrid de Meester
- Laboratory of Medical Biochemistry
- University of Antwerp
- B-2610 Wirijk-Antwerp
- Belgium
| | - Koen Augustyns
- Medicinal Chemistry/UAMC
- University of Antwerp
- B-2610 Wilrijk-Antwerp
- Belgium
| | | |
Collapse
|