1
|
Cai K, Jiang H, Zou Y, Song C, Cao K, Chen S, Wu Y, Zhang Z, Geng D, Zhang N, Liu B, Sun G, Tang M, Li Z, Zhang Y, Sun Y, Zhang Y. Programmed death of cardiomyocytes in cardiovascular disease and new therapeutic approaches. Pharmacol Res 2024; 206:107281. [PMID: 38942341 DOI: 10.1016/j.phrs.2024.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Cardiovascular diseases (CVDs) have a complex pathogenesis and pose a major threat to human health. Cardiomyocytes have a low regenerative capacity, and their death is a key factor in the morbidity and mortality of many CVDs. Cardiomyocyte death can be regulated by specific signaling pathways known as programmed cell death (PCD), including apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis, etc. Abnormalities in PCD can lead to the development of a variety of cardiovascular diseases, and there are also molecular-level interconnections between different PCD pathways under the same cardiovascular disease model. Currently, the link between programmed cell death in cardiomyocytes and cardiovascular disease is not fully understood. This review describes the molecular mechanisms of programmed death and the impact of cardiomyocyte death on cardiovascular disease development. Emphasis is placed on a summary of drugs and potential therapeutic approaches that can be used to treat cardiovascular disease by targeting and blocking programmed cell death in cardiomyocytes.
Collapse
Affiliation(s)
- Kexin Cai
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Haoyue Jiang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China; Institute of health sciences, China medical university, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China
| | - Bo Liu
- The first hospital of China Medical University, Department of cardiac surgery, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China.
| | - Guozhe Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China.
| | - Man Tang
- Department of clinical pharmacology, College of Pharmacy, China medical university, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China.
| | - Zhao Li
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China; Institute of health sciences, China medical university, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China; Institute of health sciences, China medical university, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China.
| |
Collapse
|
2
|
Neufeldt D, Schmidt A, Mohr E, Lu D, Chatterjee S, Fuchs M, Xiao K, Pan W, Cushman S, Jahn C, Juchem M, Hunkler HJ, Cipriano G, Jürgens B, Schmidt K, Groß S, Jung M, Hoepfner J, Weber N, Foo R, Pich A, Zweigerdt R, Kraft T, Thum T, Bär C. Circular RNA circZFPM2 regulates cardiomyocyte hypertrophy and survival. Basic Res Cardiol 2024; 119:613-632. [PMID: 38639887 PMCID: PMC11319402 DOI: 10.1007/s00395-024-01048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) constitutes the most common genetic cardiac disorder. However, current pharmacotherapeutics are mainly symptomatic and only partially address underlying molecular mechanisms. Circular RNAs (circRNAs) are a recently discovered class of non-coding RNAs and emerged as specific and powerful regulators of cellular functions. By performing global circRNA-specific next generation sequencing in cardiac tissue of patients with hypertrophic cardiomyopathy compared to healthy donors, we identified circZFPM2 (hsa_circ_0003380). CircZFPM2, which derives from the ZFPM2 gene locus, is a highly conserved regulatory circRNA that is strongly induced in HCM tissue. In vitro loss-of-function experiments were performed in neonatal rat cardiomyocytes, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), and HCM-patient-derived hiPSC-CMs. A knockdown of circZFPM2 was found to induce cardiomyocyte hypertrophy and compromise mitochondrial respiration, leading to an increased production of reactive oxygen species and apoptosis. In contrast, delivery of recombinant circZFPM2, packaged in lipid-nanoparticles or using AAV-based overexpression, rescued cardiomyocyte hypertrophic gene expression and promoted cell survival. Additionally, HCM-derived cardiac organoids exhibited improved contractility upon CM-specific overexpression of circZFPM2. Multi-Omics analysis further promoted our hypothesis, showing beneficial effects of circZFPM2 on cardiac contractility and mitochondrial function. Collectively, our data highlight that circZFPM2 serves as a promising target for the treatment of cardiac hypertrophy including HCM.
Collapse
MESH Headings
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- RNA, Circular/metabolism
- RNA, Circular/genetics
- Humans
- Animals
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/pathology
- Cardiomyopathy, Hypertrophic/metabolism
- Induced Pluripotent Stem Cells/metabolism
- Rats
- Cell Survival
- Apoptosis/genetics
- Cells, Cultured
- Reactive Oxygen Species/metabolism
- RNA/genetics
- Animals, Newborn
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondria, Heart/genetics
- Transcription Factors/metabolism
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Dimyana Neufeldt
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Arne Schmidt
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Elisa Mohr
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Dongchao Lu
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Shambhabi Chatterjee
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Maximilian Fuchs
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Ke Xiao
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Wen Pan
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Sarah Cushman
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Christopher Jahn
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Malte Juchem
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Hannah Jill Hunkler
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Giuseppe Cipriano
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Bjarne Jürgens
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Kevin Schmidt
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Sonja Groß
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Mira Jung
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Jeannine Hoepfner
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Natalie Weber
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Roger Foo
- Institute of Molecular and Cell Biology, A*Star, Singapore, Singapore
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
- Core Facility Proteomics, Institute of Toxicology, Hannover, Germany
| | - Robert Zweigerdt
- Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Theresia Kraft
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany.
- Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany.
- Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany.
| |
Collapse
|
3
|
Martemucci G, Khalil M, Di Luca A, Abdallah H, D’Alessandro AG. Comprehensive Strategies for Metabolic Syndrome: How Nutrition, Dietary Polyphenols, Physical Activity, and Lifestyle Modifications Address Diabesity, Cardiovascular Diseases, and Neurodegenerative Conditions. Metabolites 2024; 14:327. [PMID: 38921462 PMCID: PMC11206163 DOI: 10.3390/metabo14060327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Several hallmarks of metabolic syndrome, such as dysregulation in the glucose and lipid metabolism, endothelial dysfunction, insulin resistance, low-to-medium systemic inflammation, and intestinal microbiota dysbiosis, represent a pathological bridge between metabolic syndrome and diabesity, cardiovascular, and neurodegenerative disorders. This review aims to highlight some therapeutic strategies against metabolic syndrome involving integrative approaches to improve lifestyle and daily diet. The beneficial effects of foods containing antioxidant polyphenols, intestinal microbiota control, and physical activity were also considered. We comprehensively examined a large body of published articles involving basic, animal, and human studie, as well as recent guidelines. As a result, dietary polyphenols from natural plant-based antioxidants and adherence to the Mediterranean diet, along with physical exercise, are promising complementary therapies to delay or prevent the onset of metabolic syndrome and counteract diabesity and cardiovascular diseases, as well as to protect against neurodegenerative disorders and cognitive decline. Modulation of the intestinal microbiota reduces the risks associated with MS, improves diabetes and cardiovascular diseases (CVD), and exerts neuroprotective action. Despite several studies, the estimation of dietary polyphenol intake is inconclusive and requires further evidence. Lifestyle interventions involving physical activity and reduced calorie intake can improve metabolic outcomes.
Collapse
Affiliation(s)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70121 Bari, Italy;
| | - Alessio Di Luca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (A.D.L.); (A.G.D.)
| | - Hala Abdallah
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70121 Bari, Italy;
| | | |
Collapse
|
4
|
Ma Y, Zhao HP, Yang LG, Li L, Wang AL, Zhang XJ, Wang K, Yang B, Zhu ZF, Zhang PJ, Wang JP, Chi RF, Li B, Qin FZ, Wang ZP. NADPH oxidase 2 mediates cardiac sympathetic denervation and myocyte autophagy, resulting in cardiac atrophy and dysfunction in doxorubicin-induced cardiomyopathy. Sci Rep 2024; 14:6971. [PMID: 38521855 PMCID: PMC10960835 DOI: 10.1038/s41598-024-57090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Doxorubicin has been used extensively as a potent anticancer agent, but its clinical use is limited by its cardiotoxicity. However, the underlying mechanisms remain to be fully elucidated. In this study, we tested whether NADPH oxidase 2 (Nox2) mediates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy, resulting in cardiac atrophy and dysfunction in doxorubicin-induced heart failure. Nox2 knockout (KO) and wild-type (WT) mice were randomly assigned to receive a single injection of doxorubicin (15 mg/kg, i.p.) or saline. WT doxorubicin mice exhibited the decreases in survival rate, left ventricular (LV) wall thickness and LV fractional shortening and the increase in the lung wet-to-dry weight ratio 1 week after the injections. These alterations were attenuated in Nox2 KO doxorubicin mice. In WT doxorubicin mice, myocardial oxidative stress was increased, myocardial noradrenergic nerve fibers were reduced, myocardial expression of PGP9.5, GAP43, tyrosine hydroxylase and norepinephrine transporter was decreased, and these changes were prevented in Nox2 KO doxorubicin mice. Myocyte autophagy was increased and myocyte size was decreased in WT doxorubicin mice, but not in Nox2 KO doxorubicin mice. Nox2 mediates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy-both of which contribute to cardiac atrophy and failure after doxorubicin treatment.
Collapse
Affiliation(s)
- Yuan Ma
- The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Hui-Ping Zhao
- The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Li-Guo Yang
- The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Lu Li
- Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Ai-Lin Wang
- The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Xiao-Juan Zhang
- The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Ke Wang
- The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Bin Yang
- The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Zong-Feng Zhu
- The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Pei-Jun Zhang
- Shanxi Datong University School of Medicine, Datong, 037009, Shanxi, People's Republic of China
| | - Jia-Pu Wang
- The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Rui-Fang Chi
- The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Bao Li
- The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Fu-Zhong Qin
- The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, People's Republic of China.
- Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
| | - Zhi-Peng Wang
- Institute for Radiation Protection, Taiyuan, 030006, Shanxi, People's Republic of China
| |
Collapse
|
5
|
Zhao J, Han Z, Ding L, Wang P, He X, Lin L. The molecular mechanism of aging and the role in neurodegenerative diseases. Heliyon 2024; 10:e24751. [PMID: 38312598 PMCID: PMC10835255 DOI: 10.1016/j.heliyon.2024.e24751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/09/2023] [Accepted: 01/12/2024] [Indexed: 02/06/2024] Open
Abstract
Aging is a complex and inevitable biological process affected by a combination of external environmental and genetic factors. Humans are currently living longer than ever before, accompanied with aging-related alterations such as diminished autophagy, decreased immunological function, mitochondrial malfunction, stem cell failure, accumulation of somatic and mitochondrial DNA mutations, loss of telomere, and altered nutrient metabolism. Aging leads to a decline in body functions and age-related diseases, for example, Alzheimer's disease, which adversely affects human health and longevity. The quality of life of the elderly is greatly diminished by the increase in their life expectancy rather than healthy life expectancy. With the rise in the age of the global population, aging and related diseases have become the focus of attention worldwide. In this review, we discuss several major mechanisms of aging, including DNA damage and repair, free radical oxidation, telomeres and telomerase, mitochondrial damage, inflammation, and their role in neurodegenerative diseases to provide a reference for the prevention of aging and its related diseases.
Collapse
Affiliation(s)
- Juanli Zhao
- Laboratory of Medical Molecular and Cellular Biology, College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Department of Pharmacology, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhenjie Han
- Laboratory of Medical Molecular and Cellular Biology, College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Li Ding
- Department of Pharmacology, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Ping Wang
- Hubei Research Institute of Geriatrics, Collaborative Innovation Center of Hubei Province, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiutang He
- Center for Monitoring and Evaluation of Teaching Quality, Jingchu University of Technology, Jingmen, 448000, China
| | - Li Lin
- Laboratory of Medical Molecular and Cellular Biology, College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China
| |
Collapse
|
6
|
Xue Z, Wu D, Zhang J, Pan Y, Kan R, Gao J, Zhou B. Protective effect and mechanism of procyanidin B2 against hypoxic injury of cardiomyocytes. Heliyon 2023; 9:e21309. [PMID: 37885736 PMCID: PMC10598540 DOI: 10.1016/j.heliyon.2023.e21309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
Background Cardiomyocyte ischemia and hypoxia are important causes of oxidative stress damage and cardiomyocyte apoptosis in coronary heart disease (CHD). Epidemiological investigation has shown that eating more plant-based foods, such as vegetables and fruits, may significantly decrease the risk of CHD. As natural antioxidants, botanicals have fewer toxic side effects than chemical drugs and have great potential for development. Procyanidin B2 (PB2) is composed of flavan-3-ol and epicatechin and has been reported to have antioxidant and anti-inflammatory effects. However, whether PB2 exerts protective effects on hypoxic cardiomyocytes has remained unclear. This study aimed to explore the protective effect of PB2 against cardiomyocyte hypoxia and to provide new treatment strategies and ideas for myocardial ischemia and hypoxia in CHD. Methods and results A hypoxic cardiomyocyte model was constructed, and a CCK-8 assay proved that PB2 had a protective effect on cardiomyocytes in a hypoxic environment. DCFH fluorescence staining, DHE staining, and BODIPY lipid oxidation assessment revealed that PB2 reduced the oxidative stress levels of cardiomyocytes under hypoxic conditions. TUNEL staining, Annexin V/PI fluorescence flow cytometry, and Western blot analysis of the expression of the apoptosis marker protein cleaved caspase-3 confirmed that PB2 reduced cardiomyocyte apoptosis under hypoxic conditions. JC-1 staining indicated that PB2 reduced the mitochondrial membrane potential of cardiomyocytes under hypoxia. In addition, transcriptomic analysis proved that the expression of 158 genes in cardiomyocytes was significantly changed after PB2 was added during hypoxia, of which 53 genes were upregulated and 105 genes were downregulated. GO enrichment analysis demonstrated that the activity of cytokines, extracellular matrix proteins and other molecules was changed significantly in the biological process category. KEGG enrichment analysis showed that the IL-17 signaling pathway and JAK-STAT signaling pathway underwent significant changes. We also performed metabolomic analysis and found that the levels of 51 metabolites were significantly changed after the addition of PB2 to cardiomyocytes during hypoxia. Among them, 39 metabolites exhibited increased levels, while 12 metabolites exhibited decreased levels. KEGG enrichment analysis showed that cysteine and methionine metabolism, arginine and proline metabolism and other metabolic pathways underwent remarkable changes. Conclusion This study proves that PB2 can reduce the oxidative stress and apoptosis of cardiomyocytes during hypoxia to play a protective role. Transcriptomic and metabolomic analyses preliminarily revealed signaling pathways and metabolic pathways that are related to its protective mechanism. These findings lay a foundation for further research on the role of PB2 in the treatment of CHD and provide new ideas and new perspectives for research on PB2 in the treatment of other diseases.
Collapse
Affiliation(s)
- Zhimin Xue
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danyu Wu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiefang Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiwen Pan
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rongsheng Kan
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Gao
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Binquan Zhou
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Yu Y, Tong D, Yu Y, Tian D, Zhou W, Zhang X, Shi W, Liu G. Toxic effects of four emerging pollutants on cardiac performance and associated physiological parameters of the thick-shell mussel (Mytilus coruscus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122244. [PMID: 37482340 DOI: 10.1016/j.envpol.2023.122244] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/01/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Robust cardiac performance is critical for the health and even survival of an animal; however, it is sensitive to environmental stressors. At present, little is known about the cardiotoxicity of emerging pollutants to bivalve mollusks. Thus, in this study, the cardiotoxic effects of four emergent pollutants, carbamazepine (CBZ), bisphenol A (BPA), tetrabromobisphenol A (TBBPA), and tris(2-chloroethyl) phosphate (TCEP), on the thick-shell mussel, Mytilus coruscus, were evaluated by heartbeat monitoring and histological examinations. In addition, the impacts of these pollutants on parameters that closely related to cardiac function including neurotransmitters, calcium homeostasis, energy supply, and oxidative status were assessed. Our results demonstrated that 28-day exposure of the thick-shell mussel to these pollutants resulted in evident heart tissue lesions (indicated by hemocyte infiltration and myocardial fibrosis) and disruptions of cardiac performance (characterized by bradyrhythmia and arrhythmia). In addition to obstructing neurotransmitters and calcium homeostasis, exposure to pollutants also led to constrained energy supply and induced oxidative stress in mussel hearts. These findings indicate that although do differ somehow in their effects, these four pollutants may exert cardiotoxic impacts on mussels, which could pose severe threats to this important species and therefore deserves more attention.
Collapse
Affiliation(s)
- Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
8
|
Cheng X, Wang K, Zhao Y, Wang K. Research progress on post-translational modification of proteins and cardiovascular diseases. Cell Death Discov 2023; 9:275. [PMID: 37507372 PMCID: PMC10382489 DOI: 10.1038/s41420-023-01560-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Cardiovascular diseases (CVDs) such as atherosclerosis, myocardial remodeling, myocardial ischemia-reperfusion (I/R) injury, heart failure, and oxidative stress are among the greatest threats to human health worldwide. Cardiovascular pathogenesis has been studied for decades, and the influence of epigenetic changes on CVDs has been extensively studied. Post-translational modifications (PTMs), including phosphorylation, glycosylation, methylation, acetylation, ubiquitination, ubiquitin-like and nitrification, play important roles in the normal functioning of the cardiovascular system. Over the past decade, with the application of high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), an increasing number novel acylation modifications have been discovered, including propionylation, crotonylation, butyrylation, succinylation, lactylation, and isonicotinylation. Each change in protein conformation has the potential to alter protein function and lead to CVDs, and this process is usually reversible. This article summarizes the mechanisms underlying several common PTMs involved in the occurrence and development of CVDs.
Collapse
Affiliation(s)
- XueLi Cheng
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan, 250014, Shandong, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266073, Shandong, China
| | - Kai Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266073, Shandong, China
| | - Yan Zhao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266073, Shandong, China
| | - Kun Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan, 250014, Shandong, China.
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266073, Shandong, China.
| |
Collapse
|
9
|
Bazgir F, Nau J, Nakhaei-Rad S, Amin E, Wolf MJ, Saucerman JJ, Lorenz K, Ahmadian MR. The Microenvironment of the Pathogenesis of Cardiac Hypertrophy. Cells 2023; 12:1780. [PMID: 37443814 PMCID: PMC10341218 DOI: 10.3390/cells12131780] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Pathological cardiac hypertrophy is a key risk factor for the development of heart failure and predisposes individuals to cardiac arrhythmia and sudden death. While physiological cardiac hypertrophy is adaptive, hypertrophy resulting from conditions comprising hypertension, aortic stenosis, or genetic mutations, such as hypertrophic cardiomyopathy, is maladaptive. Here, we highlight the essential role and reciprocal interactions involving both cardiomyocytes and non-myocardial cells in response to pathological conditions. Prolonged cardiovascular stress causes cardiomyocytes and non-myocardial cells to enter an activated state releasing numerous pro-hypertrophic, pro-fibrotic, and pro-inflammatory mediators such as vasoactive hormones, growth factors, and cytokines, i.e., commencing signaling events that collectively cause cardiac hypertrophy. Fibrotic remodeling is mediated by cardiac fibroblasts as the central players, but also endothelial cells and resident and infiltrating immune cells enhance these processes. Many of these hypertrophic mediators are now being integrated into computational models that provide system-level insights and will help to translate our knowledge into new pharmacological targets. This perspective article summarizes the last decades' advances in cardiac hypertrophy research and discusses the herein-involved complex myocardial microenvironment and signaling components.
Collapse
Affiliation(s)
- Farhad Bazgir
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| | - Julia Nau
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| | - Saeideh Nakhaei-Rad
- Stem Cell Biology, and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Ehsan Amin
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Matthew J. Wolf
- Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA;
| | - Jeffry J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA;
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Leibniz Institute for Analytical Sciences, 97078 Würzburg, Germany;
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| |
Collapse
|
10
|
Xu X, Zhang B, Wang Y, Shi S, Lv J, Fu Z, Gao X, Li Y, Wu H, Song Q. Renal fibrosis in type 2 cardiorenal syndrome: An update on mechanisms and therapeutic opportunities. Biomed Pharmacother 2023; 164:114901. [PMID: 37224755 DOI: 10.1016/j.biopha.2023.114901] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
Cardiorenal syndrome (CRS) is a state of coexisting heart failure and renal insufficiency in which acute or chronic dysfunction of the heart or kidney lead to acute or chronic dysfunction of the other organ.It was found that renal fibrosis is an important pathological process in the progression of type 2 CRS to end-stage renal disease, and progressive renal impairment accelerates the deterioration of cardiac function and significantly increases the hospitalization and mortality rates of patients. Previous studies have found that Hemodynamic Aiteration, RAAS Overactivation, SNS Dysfunction, Endothelial Dysfunction and Imbalance of natriuretic peptide system contribute to the development of renal disease in the decompensated phase of heart failure, but the exact mechanisms is not clear. Therefore, in this review, we focus on the molecular pathways involved in the development of renal fibrosis due to heart failure and identify the canonical and non-canonical TGF-β signaling pathways and hypoxia-sensing pathways, oxidative stress, endoplasmic reticulum stress, pro-inflammatory cytokines and chemokines as important triggers and regulators of fibrosis development, and summarize the therapeutic approaches for the above signaling pathways, including SB-525334 Sfrp1, DKK1, IMC, rosarostat, 4-PBA, etc. In addition, some potential natural drugs for this disease are also summarized, including SQD4S2, Wogonin, Astragaloside, etc.
Collapse
Affiliation(s)
- Xia Xu
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bingxuan Zhang
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yajiao Wang
- College of Traditional Chinese Medicine, China Academy of Chinese Medical Science, Beijing, China
| | - Shuqing Shi
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayu Lv
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenyue Fu
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xiya Gao
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Yumeng Li
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Huaqin Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qingqiao Song
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
11
|
Zhang XJ, Li L, Wang AL, Guo HX, Zhao HP, Chi RF, Xu HY, Yang LG, Li B, Qin FZ, Wang JP. GSK2795039 prevents RIP1-RIP3-MLKL-mediated cardiomyocyte necroptosis in doxorubicin-induced heart failure through inhibition of NADPH oxidase-derived oxidative stress. Toxicol Appl Pharmacol 2023; 463:116412. [PMID: 36764612 DOI: 10.1016/j.taap.2023.116412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Doxorubicin (DOX), which is widely used for the treatment of cancer, induces cardiomyopathy associated with NADPH oxidase-derived reactive oxygen species. GSK2795039 is a novel small molecular NADPH oxidase 2 (Nox2) inhibitor. In this study, we investigated whether GSK2795039 prevents receptor-interacting protein kinase 1 (RIP1)-RIP3-mixed lineage kinase domain-like protein (MLKL)-mediated cardiomyocyte necroptosis in DOX-induced heart failure through NADPH oxidase inhibition. Eight-week old mice were randomly divided into 4 groups: control, GSK2795039, DOX and DOX plus GSK2795039. H9C2 cardiomyocytes were treated with DOX and GSK2795039. In DOX-treated mice, the survival rate was reduced, left ventricular (LV) end-systolic dimension was increased and LV fractional shortening was decreased, and these alterations were attenuated by the GSK2795039 treatment. GSK2795039 inhibited not only myocardial NADPH oxidase subunit gp91phox (Nox2) protein, but also p22phox, p47phox and p67phox proteins and prevented oxidative stress 8-hydroxy-2'-deoxyguanosine levels in DOX-treated mice. RIP3 protein and phosphorylated RIP1 (p-RIP1), p-RIP3 and p-MLKL proteins, reflective of their respective kinase activities, markers of necroptosis, were markedly increased in DOX-treated mice, and the increases were prevented by GSK2795039. GSK2795039 prevented the increases in serum lactate dehydrogenase and myocardial fibrosis in DOX-treated mice. Similarly, in DOX-treated cardiomyocytes, GSK2795039 improved cell viability, attenuated apoptosis and necrosis and prevented the increases in p-RIP1, p-RIP3 and p-MLKL expression. In conclusion, GSK2795039 prevents RIP1-RIP3-MLKL-mediated cardiomyocyte necroptosis through inhibition of NADPH oxidase-derived oxidative stress, leading to the improvement of myocardial remodeling and function in DOX-induced heart failure. These findings suggest that GSK2795039 may have implications for the treatment of DOX-induced cardiomyopathy.
Collapse
Affiliation(s)
- Xiao-Juan Zhang
- The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Cardiovascular Hospital, Taiyuan 030024, Shanxi, PR China
| | - Lu Li
- Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Ai-Ling Wang
- The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Hong-Xia Guo
- The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Hui-Ping Zhao
- The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Rui-Fang Chi
- The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Hui-Yu Xu
- Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Cardiovascular Hospital, Taiyuan 030024, Shanxi, PR China
| | - Li-Guo Yang
- The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Bao Li
- The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan 030001, Shanxi, PR China.
| | - Fu-Zhong Qin
- The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan 030001, Shanxi, PR China.
| | - Jia-Pu Wang
- Shanxi Province Cardiovascular Hospital, Taiyuan 030024, Shanxi, PR China
| |
Collapse
|
12
|
Barndt RJ, Liu Q, Tang Y, Haugh MP, Cui J, Chan SY, Wu H. Metabolic Maturation Exaggerates Abnormal Calcium Handling in a Lamp2 Knockout Human Pluripotent Stem Cell-Derived Cardiomyocyte Model of Danon Disease. Biomolecules 2022; 13:69. [PMID: 36671453 PMCID: PMC9855424 DOI: 10.3390/biom13010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
Danon disease (DD) is caused by mutations of the gene encoding lysosomal-associated membrane protein type 2 (LAMP2), which lead to impaired autophagy, glycogen accumulation, and cardiac hypertrophy. However, it is not well understood why a large portion of DD patients develop arrhythmia and sudden cardiac death. In the current study, we generated LAMP2 knockout (KO) human iPSC-derived cardiomyocytes (CM), which mimic the LAMP2 dysfunction in DD heart. Morphologic analysis demonstrated the sarcomere disarrangement in LAMP2 KO CMs. In functional studies, LAMP2 KO CMs showed near-normal calcium handling at base level. However, treatment of pro-maturation medium (MM) exaggerated the disease phenotype in the KO cells as they exhibited impaired calcium recycling and increased irregular beating events, which recapitulates the pro-arrhythmia phenotypes of DD patients. Further mechanistic study confirmed that MM treatment significantly enhanced the autophagic stress in the LAMP2 KO CMs, which was accompanied by an increase of both cellular and mitochondrial reactive oxygen species (ROS) levels. Excess ROS accumulation in LAMP2 KO CMs resulted in the over-activation of calcium/calmodulin dependent protein kinase IIδ (CaMKIIδ) and arrhythmogenesis, which was partially rescued by the treatment of ROS scavenger. In summary, our study has revealed ROS induced CaMKIIδ overactivation as a key mechanism that promotes cardiac arrhythmia in DD patients.
Collapse
Affiliation(s)
- Robert J. Barndt
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Qing Liu
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA
| | - Ying Tang
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Michael P. Haugh
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15213, USA
| | - Jeffery Cui
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Stephen Y. Chan
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Haodi Wu
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15213, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
13
|
da Silva ML, de Sousa Neto IV, de Lima ACGB, Barin F, de Toledo Nóbrega O, de Cássia Marqueti R, Cipriano GFB, Durigan JLQ, Ferreira EA, Bottaro M, Arena R, Cahalin LP, Neder JA, Junior GC. Effects of Home-Based Electrical Stimulation on Plasma Cytokines Profile, Redox Biomarkers, and Metalloproteinases in the Heart Failure with Reduced Ejection Fraction: A Randomized Trial. J Cardiovasc Dev Dis 2022; 9:jcdd9120463. [PMID: 36547460 PMCID: PMC9785395 DOI: 10.3390/jcdd9120463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/01/2022] [Accepted: 10/20/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Low-frequency electrical stimulation (LFES) is an adjuvant method for heart failure (HF) patients with restrictions to start an exercise. However, the impact on molecular changes in circulating is unknown. We investigated the effects of 10 weeks of home-based LFES on plasma cytokines profile, redox biomarkers, metalloproteinases (MMPs) activity, and exercise performance in HF patients. Methods: Twenty-four HF patients (52.45 ± 9.15 years) with reduced ejection fraction (HFrEF) (EF < 40%), were randomly assigned to a home-based LFES or sham protocol. Plasma cytokines profile was assessed through interleukins, interferon-gamma, and tumor necrosis factor levels. Oxidative stress was evaluated through ferric reducing antioxidant power, thiobarbituric acid-reactive substances, and inducible nitric oxide synthase. The MMPs activity were analyzed by zymography. Cardiorespiratory capacity and muscle strength were evaluated by cardiopulmonary test and isokinetic. Results: LFES was able to increase the active-MMP2 activity post compared to pre-training (0.057 to 0.163, p = 0.0001), while it decreased the active-MMP9 (0.135 to 0.093, p = 0.02). However, it did not elicit changes in cytokines, redox biomarkers, or exercise performance (p > 0.05). Conclusion: LFES protocol is a promising intervention to modulate MMPs activity in HFrEF patients, although with limited functional effects. These preliminary responses may help the muscle to adapt to future mechanical demands dynamically.
Collapse
Affiliation(s)
- Marianne Lucena da Silva
- Rehabilitation Sciences and Health Sciences and Technologies Ph.D. Program, University of Brasilia (UnB), Campus Universitário, s/n, Centro Metropolitano, Brasilia 72220-275, DF, Brazil
- Health Sciences Academic Unit, Federal University of Jataí, Jataí 75801-615, GO, Brazil
| | - Ivo Vieira de Sousa Neto
- Rehabilitation Sciences and Health Sciences and Technologies Ph.D. Program, University of Brasilia (UnB), Campus Universitário, s/n, Centro Metropolitano, Brasilia 72220-275, DF, Brazil
| | - Alexandra C. G. B. de Lima
- Rehabilitation Sciences and Health Sciences and Technologies Ph.D. Program, University of Brasilia (UnB), Campus Universitário, s/n, Centro Metropolitano, Brasilia 72220-275, DF, Brazil
| | - Fabrício Barin
- Rehabilitation Sciences and Health Sciences and Technologies Ph.D. Program, University of Brasilia (UnB), Campus Universitário, s/n, Centro Metropolitano, Brasilia 72220-275, DF, Brazil
| | - Otávio de Toledo Nóbrega
- Department of Medicine, University of Brasilia (UnB), Campus Universitário Darcy Ribeiro, Asa Norte, Brasilia 70910-900, DF, Brazil
| | - Rita de Cássia Marqueti
- Rehabilitation Sciences and Health Sciences and Technologies Ph.D. Program, University of Brasilia (UnB), Campus Universitário, s/n, Centro Metropolitano, Brasilia 72220-275, DF, Brazil
| | - Graziella F. B. Cipriano
- Rehabilitation Sciences and Health Sciences and Technologies Ph.D. Program, University of Brasilia (UnB), Campus Universitário, s/n, Centro Metropolitano, Brasilia 72220-275, DF, Brazil
| | - João Luiz Quagliotti Durigan
- Rehabilitation Sciences and Health Sciences and Technologies Ph.D. Program, University of Brasilia (UnB), Campus Universitário, s/n, Centro Metropolitano, Brasilia 72220-275, DF, Brazil
| | - Eduardo Antônio Ferreira
- Department of Pharmacy, University of Brasilia (UnB), Campus Universitário, s/n, Centro Metropolitano, Brasilia 72220-275, DF, Brazil
| | - Martim Bottaro
- Department of Physical Education, University of Brasilia (UnB), Campus Universitário Darcy Ribeiro, Asa Norte, Brasilia 70910-900, DF, Brazil
| | - Ross Arena
- Department of Physical Therapy, University of Illinois, 1919 W Taylor St., Chicago, IL 60612, USA
| | - Larry P. Cahalin
- Department of Physical Therapy, Leonard M. Miller School of Medicine, University of Miami, 5915 Ponce de Leon Blvd., 5th Floor, Coral Gables, FL 33101, USA
| | - José Alberto Neder
- Department of Medicine, School of Medicine at the Queen’s University, Queen’s University & Kingston General Hospital, Etherington Hall, Rooms 3032-3043, 94 Stuart Street, Kingston, ON K7L 3N6, Canada
| | - Gerson Cipriano Junior
- Rehabilitation Sciences and Health Sciences and Technologies Ph.D. Program, University of Brasilia (UnB), Campus Universitário, s/n, Centro Metropolitano, Brasilia 72220-275, DF, Brazil
- Correspondence:
| |
Collapse
|
14
|
Kidney Injuries and Evolution of Chronic Kidney Diseases Due to Neonatal Hyperoxia Exposure Based on Animal Studies. Int J Mol Sci 2022; 23:ijms23158492. [PMID: 35955627 PMCID: PMC9369080 DOI: 10.3390/ijms23158492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Preterm birth interrupts the development and maturation of the kidneys during the critical growth period. The kidneys can also exhibit structural defects and functional impairment due to hyperoxia, as demonstrated by various animal studies. Furthermore, hyperoxia during nephrogenesis impairs renal tubular development and induces glomerular and tubular injuries, which manifest as renal corpuscle enlargement, renal tubular necrosis, interstitial inflammation, and kidney fibrosis. Preterm birth along with hyperoxia exposure induces a pathological predisposition to chronic kidney disease. Hyperoxia-induced kidney injuries are influenced by several molecular factors, including hypoxia-inducible factor-1α and interleukin-6/Smad2/transforming growth factor-β, and Wnt/β-catenin signaling pathways; these are key to cell proliferation, tissue inflammation, and cell membrane repair. Hyperoxia-induced oxidative stress is characterized by the attenuation or the induction of multiple molecular factors associated with kidney damage. This review focuses on the molecular pathways involved in the pathogenesis of hyperoxia-induced kidney injuries to establish a framework for potential interventions.
Collapse
|
15
|
Chao HH, Wang L, Ma HH, Zhao AH, Xiao HW, Zhang XF. Identification of apoptotic pathways in zearalenone-treated mouse sertoli cells. J Toxicol Sci 2022; 47:257-268. [PMID: 35650142 DOI: 10.2131/jts.47.257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Zearalenone (ZEN), one of the most prevalent non-steroidal oestrogenic mycotoxins, is primarily produced by Fusarium fungi. Due to its toxicity as an oestrogenic compound and wide distribution in feed and foods, the reproductive toxicology of ZEN exposure is of public concern. The aim of the present study was to investigate the effect of ZEN on Sertoli cells to identify apoptotic pathways induced by this compound. We found that ZEN reduced the viability and caused apoptosis in Sertoli cells in vitro. Notably, we observed that such effects were associated with a significant increase in reactive oxygen species (ROS) and the number of cells that showed positive staining for γH2AX and RAD51, enzymes essential for repairing DNA damage. There was a parallel decrease in the expression of occludin and connexin 43, proteins that are present in the testis-blood barrier and gap junctions of Sertoli cells, respectively. Overall, the present study confirms that ZEN exposure can have serious deleterious effects on mammalian Sertoli cells and offers novel insight about its molecular targets in these cells.
Collapse
Affiliation(s)
- Hu-He Chao
- College of Veterinary medicine, Qingdao Agricultural University, China.,Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, China
| | - Lei Wang
- College of Veterinary medicine, Qingdao Agricultural University, China
| | - Hao-Hai Ma
- College of Veterinary medicine, Qingdao Agricultural University, China
| | | | - Hong-Wei Xiao
- Institute of Animal Husbandry and Veterinary Research, Hubei Academy of Agricultural Sciences, China
| | - Xi-Feng Zhang
- College of Veterinary medicine, Qingdao Agricultural University, China
| |
Collapse
|
16
|
Fei J, Demillard LJ, Ren J. Reactive oxygen species in cardiovascular diseases: an update. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cardiovascular diseases are among the leading causes of death worldwide, imposing major health threats. Reactive oxygen species (ROS) are one of the most important products from the process of redox reactions. In the onset and progression of cardiovascular diseases, ROS are believed to heavily influence homeostasis of lipids, proteins, DNA, mitochondria, and energy metabolism. As ROS production increases, the heart is damaged, leading to further production of ROS. The vicious cycle continues on as additional ROS are generated. For example, recent evidence indicated that connexin 43 (Cx43) deficiency and pyruvate kinase M2 (PKM2) activation led to a loss of protection in cardiomyocytes. In this context, a better understanding of the mechanisms behind ROS production is vital in determining effective treatment and management strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Juanjuan Fei
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Laurie J. Demillard
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
17
|
Shi HT, Huang ZH, Xu TZ, Sun AJ, Ge JB. New diagnostic and therapeutic strategies for myocardial infarction via nanomaterials. EBioMedicine 2022; 78:103968. [PMID: 35367772 PMCID: PMC8983382 DOI: 10.1016/j.ebiom.2022.103968] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
Myocardial infarction is lethal to patients because of insufficient blood perfusion to vital organs. Several attempts have been made to improve its prognosis, among which nanomaterial research offers an opportunity to address this problem at the molecular level and has the potential to improve disease prevention, diagnosis, and treatment significantly. Up to now, nanomaterial-based technology has played a crucial role in broad novel diagnostic and therapeutic strategies for cardiac repair. This review summarizes various nanomaterial applications in myocardial infarction from multiple aspects, including high precision detection, pro-angiogenesis, regulating immune homeostasis, and miRNA and stem cell delivery vehicles. We also propose promising research hotspots that have not been reported much yet, such as conjugating pro-angiogenetic elements with nanoparticles to construct drug carriers, developing nanodrugs targeting other immune cells except for macrophages in the infarcted myocardium or the remote region. Though most of those strategies are preclinical and lack clinical trials, there is tremendous potential for their further applications in the future.
Collapse
Affiliation(s)
- Hong-Tao Shi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China; Institute of Biomedical Science, Fudan University, Shanghai, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
| | - Zi-Hang Huang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China; Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Tian-Zhao Xu
- School of Life Science, Shanghai University, Shanghai, China
| | - Ai-Jun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China; Institute of Biomedical Science, Fudan University, Shanghai, China.
| | - Jun-Bo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China; Institute of Biomedical Science, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Costa BM, Mengal V, Brasil GA, Peluso AA, Treebak JT, Endlich PW, de Almeida SA, de Abreu GR. Ellagic Acid Prevents Myocardial Infarction-induced Left Ventricular Diastolic Dysfunction in Ovariectomized Rats. J Nutr Biochem 2022; 105:108990. [PMID: 35331902 DOI: 10.1016/j.jnutbio.2022.108990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 11/18/2021] [Accepted: 02/22/2022] [Indexed: 12/07/2022]
Abstract
Estrogen deficiency is associated with increased oxidative stress, which can contribute to left ventricular diastolic dysfunction (LVDD). We hypothesized that oral treatment with ellagic acid (EA), a potent and natural antioxidant compound, can improve MI-induced LVDD in ovariectomized rats, by reducing the formation of reactive oxygen species (ROS). Ovariectomized rats MI-induced LVDD followed by treatment with vehicle (DD) or EA (DD+EA) for 4 weeks. Non-LVDD-induced rats treated with vehicle (S) or EA (S+EA) were used as controls. Left ventricular systolic pressure: LVSP; left ventricular end-diastolic pressure: LVEDP; maximum rate of pressure rise: +dP/dt and fall: -dP/dt) were evaluated in all animals after treatment. Left ventricle superoxide anion formation was quantified in situ by fluorescence. Phospho-CAMKII, SOD2, catalase and gp91-phox abundances were evaluated by Western blot analyses. SOD and catalase activities were measured by spectrophotometry. The results showed that the LVEDP was significantly increased in both DD and DD+EA groups compared to S and S+EA. However, LVEDP in the DD+EA group was significantly decreased compared to DD, indicating an EA-mediated effect. In the DD group, superoxide production and gp91-phox protein abundance were increased while SOD2 abundance was decreased when compared to the S and S+EA groups. An increase in SOD activity was also observed in the DD+EA group. EA treatment reduced CaMKII phosphorylation in the DD+EA group compared to the DD. We concluded that EA treatment attenuated diastolic dysfunction in our experimental model, via reduction of ROS and CaMKII activity, indicating EA as a promising natural therapeutic option for cardiac dysfunction.
Collapse
Affiliation(s)
- Bruno Maia Costa
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Vinícius Mengal
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, ES, Brazil
| | | | - Antônio Augusto Peluso
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Patrick Wander Endlich
- Faculdade de Medicina do Mucuri, Multicentric Post-Graduate Program in Physiological Sciences, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni, MG, Brazil
| | - Simone Alves de Almeida
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, ES, Brazil.
| | - Gláucia Rodrigues de Abreu
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, ES, Brazil
| |
Collapse
|
19
|
Dhalla NS, Elimban V, Bartekova M, Adameova A. Involvement of Oxidative Stress in the Development of Subcellular Defects and Heart Disease. Biomedicines 2022; 10:biomedicines10020393. [PMID: 35203602 PMCID: PMC8962363 DOI: 10.3390/biomedicines10020393] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
It is now well known that oxidative stress promotes lipid peroxidation, protein oxidation, activation of proteases, fragmentation of DNA and alteration in gene expression for producing myocardial cell damage, whereas its actions for the induction of fibrosis, necrosis and apoptosis are considered to result in the loss of cardiomyocytes in different types of heart disease. The present article is focused on the discussion concerning the generation and implications of oxidative stress from various sources such as defective mitochondrial electron transport and enzymatic reactions mainly due to the activation of NADPH oxidase, nitric oxide synthase and monoamine oxidase in diseased myocardium. Oxidative stress has been reported to promote excessive entry of Ca2+ due to increased permeability of the sarcolemmal membrane as well as depressions of Na+-K+ ATPase and Na+-Ca2+ exchange systems, which are considered to increase the intracellular of Ca2+. In addition, marked changes in the ryanodine receptors and Ca2+-pump ATPase have been shown to cause Ca2+-release and depress Ca2+ accumulation in the sarcoplasmic reticulum as a consequence of oxidative stress. Such alterations in sarcolemma and sarcoplasmic reticulum are considered to cause Ca2+-handling abnormalities, which are associated with mitochondrial Ca2+-overload and loss of myofibrillar Ca2+-sensitivity due to oxidative stress. Information regarding the direct effects of different oxyradicals and oxidants on subcellular organelles has also been outlined to show the mechanisms by which oxidative stress may induce Ca2+-handling abnormalities. These observations support the view that oxidative stress plays an important role in the genesis of subcellular defects and cardiac dysfunction in heart disease.
Collapse
Affiliation(s)
- Naranjan S. Dhalla
- St. Boniface Hospital Albrechtsen Research Centre, Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada;
- Correspondence: ; Tel.: +1-204-235-3417; Fax: +1-204-237-0347
| | - Vijayan Elimban
- St. Boniface Hospital Albrechtsen Research Centre, Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada;
| | - Monika Bartekova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Dubravska cesta 9, 84104 Bratislava, Slovakia; (M.B.); (A.A.)
| | - Adriana Adameova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Dubravska cesta 9, 84104 Bratislava, Slovakia; (M.B.); (A.A.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojarov 10, 83232 Bratislava, Slovakia
| |
Collapse
|
20
|
Beà A, Valero JG, Irazoki A, Lana C, López-Lluch G, Portero-Otín M, Pérez-Galán P, Inserte J, Ruiz-Meana M, Zorzano A, Llovera M, Sanchis D. Cardiac fibroblasts display endurance to ischemia, high ROS control and elevated respiration regulated by the JAK2/STAT pathway. FEBS J 2021; 289:2540-2561. [PMID: 34796659 DOI: 10.1111/febs.16283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 12/30/2022]
Abstract
Cardiovascular diseases are the leading cause of death globally and more than four out of five cases are due to ischemic events. Cardiac fibroblasts (CF) contribute to normal heart development and function, and produce the post-ischemic scar. Here, we characterize the biochemical and functional aspects related to CF endurance to ischemia-like conditions. Expression data mining showed that cultured human CF (HCF) express more BCL2 than pulmonary and dermal fibroblasts. In addition, gene set enrichment analysis showed overrepresentation of genes involved in the response to hypoxia and oxidative stress, respiration and Janus kinase (JAK)/Signal transducer and Activator of Transcription (STAT) signaling pathways in HCF. BCL2 sustained survival and proliferation of cultured rat CF, which also had higher respiration capacity and reactive oxygen species (ROS) production than pulmonary and dermal fibroblasts. This was associated with higher expression of the electron transport chain (ETC) and antioxidant enzymes. CF had high phosphorylation of JAK2 and its effectors STAT3 and STAT5, and their inhibition reduced viability and respiration, impaired ROS control and reduced the expression of BCL2, ETC complexes and antioxidant enzymes. Together, our results identify molecular and biochemical mechanisms conferring survival advantage to experimental ischemia in CF and show their control by the JAK2/STAT signaling pathway. The presented data point to potential targets for the regulation of cardiac fibrosis and also open the possibility of a general mechanism by which somatic cells required to acutely respond to ischemia are constitutively adapted to survive it.
Collapse
Affiliation(s)
- Aida Beà
- Cell Signaling & Apoptosis Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, Spain
| | - Juan García Valero
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Barcelona, Spain
| | - Andrea Irazoki
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universitat de Barcelona, Spain
| | - Carlos Lana
- Cell Signaling & Apoptosis Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, Spain
| | - Guillermo López-Lluch
- Andalusian Center of Developmental Biology, Pablo de Olavide University, Sevilla, Spain.,Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Sevilla, Spain
| | - Manuel Portero-Otín
- Department of Experimental Medicine, IRBLleida, University of Lleida, Lleida, Spain
| | - Patricia Pérez-Galán
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Barcelona, Spain
| | - Javier Inserte
- Laboratory of Experimental Cardiology, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, Spain.,Centro de Investigación Biomédica en Red-CV (CIBER-CV), Barcelona, Spain
| | - Marisol Ruiz-Meana
- Laboratory of Experimental Cardiology, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, Spain.,Centro de Investigación Biomédica en Red-CV (CIBER-CV), Barcelona, Spain
| | - Antonio Zorzano
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universitat de Barcelona, Spain
| | - Marta Llovera
- Cell Signaling & Apoptosis Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, Spain
| | - Daniel Sanchis
- Cell Signaling & Apoptosis Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, Spain
| |
Collapse
|
21
|
Guttzeit S, Backs J. Post-translational modifications talk and crosstalk to class IIa histone deacetylases. J Mol Cell Cardiol 2021; 162:53-61. [PMID: 34416247 DOI: 10.1016/j.yjmcc.2021.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/08/2021] [Accepted: 08/12/2021] [Indexed: 12/30/2022]
Abstract
Epigenetic modifications, such as histone or DNA modifications are key regulators of gene transcription and changes are often associated with maladaptive processes underlying cardiovascular disease. Epigenetic regulators therefore likely play a crucial role in cardiomyocyte homeostasis and facilitate the cellular adaption to various internal and external stimuli, responding to different intercellular and extracellular cues. Class IIa histone deacetylases are a class of epigenetic regulators that possess a myriad of post-transcriptional modification sites that modulate their activity in response to oxidative stress, altered catecholamine signalling or changes in the cellular metabolism. This review summaries the known reversible, post-translational modifications (PTMs) of class IIa histone deacetylases (HDACs) that ultimately drive transcriptional changes in homeostasis and disease. We also highlight the idea of a crosstalk of various PTMs on class IIa HDACs potentially leading to compensatory or synergistic effects on the class IIa HDAC-regulated cell behavior.
Collapse
Affiliation(s)
- Sebastian Guttzeit
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
22
|
Weissman D, Maack C. Redox signaling in heart failure and therapeutic implications. Free Radic Biol Med 2021; 171:345-364. [PMID: 34019933 DOI: 10.1016/j.freeradbiomed.2021.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/17/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022]
Abstract
Heart failure is a growing health burden worldwide characterized by alterations in excitation-contraction coupling, cardiac energetic deficit and oxidative stress. While current treatments are mostly limited to antagonization of neuroendocrine activation, more recent data suggest that also targeting metabolism may provide substantial prognostic benefit. However, although in a broad spectrum of preclinical models, oxidative stress plays a causal role for the development and progression of heart failure, no treatment that targets reactive oxygen species (ROS) directly has entered the clinical arena yet. In the heart, ROS derive from various sources, such as NADPH oxidases, xanthine oxidase, uncoupled nitric oxide synthase and mitochondria. While mitochondria are the primary source of ROS in the heart, communication between different ROS sources may be relevant for physiological signalling events as well as pathologically elevated ROS that deteriorate excitation-contraction coupling, induce hypertrophy and/or trigger cell death. Here, we review the sources of ROS in the heart, the modes of pathological activation of ROS formation as well as therapeutic approaches that may target ROS specifically in mitochondria.
Collapse
Affiliation(s)
- David Weissman
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany; Department of Internal Medicine 1, University Clinic Würzburg, Würzburg, Germany.
| |
Collapse
|
23
|
Mendez DA, Ortiz RM. Thyroid hormones and the potential for regulating glucose metabolism in cardiomyocytes during insulin resistance and T2DM. Physiol Rep 2021; 9:e14858. [PMID: 34405550 PMCID: PMC8371345 DOI: 10.14814/phy2.14858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/30/2022] Open
Abstract
In order for the heart to maintain its continuous mechanical work and provide the systolic movement to uphold coronary blood flow, substantial synthesis of adenosine triphosphate (ATP) is required. Under normal conditions cardiac tissue utilizes roughly 70% fatty acids (FA), and 30% glucose for the production of ATP; however, during impaired metabolic conditions like insulin resistance and diabetes glucose metabolism is dysregulated and FA account for 99% of energy production. One of the major consequences of a shift in FA metabolism in cardiac tissue is an increase in reactive oxygen species (ROS) and lipotoxicity, which ultimately lead to mitochondrial dysfunction. Thyroid hormones (TH) have direct effects on cardiac function and glucose metabolism during impaired metabolic conditions suggesting that TH may improve glucose metabolism in an insulin resistant condition. None-classical TH signaling in the heart has shown to phosphorylate protein kinase B (Akt) and increase activity of phosphoinositide-3-kinase (PI3K), which are critical mediators in the insulin-stimulated glucose uptake pathway. Studies on peripheral tissues such as skeletal muscle and adipocytes have demonstrated TH treatment improved glucose intolerance in a diabetic model and increased insulin-regulated glucose transporter (GLUT4) mRNA levels. GLUT4 is a downstream target of thyroid response element (TRE), which demonstrates that THs regulate glucose via GLUT4. Elevated 3,5,3'-triiodothyronine (T3) increased glucose oxidation rate and decreased the glycolytic intermediate, fructose 6-phosphate (F6P) in cardiomyocytes, in addition to increasing mitochondrial biogenesis and pyruvate transport across the mitochondrial membrane. These findings along with a few other studies on T3 treatment in cardiac tissue suggest TH may improve glucose metabolism in an insulin resistant model and ameliorate the effects of diabetes and metabolic syndrome. This review highlights the potential benefits of exogenous TH on ameliorating metabolic dysfunction in the heart.
Collapse
Affiliation(s)
- Dora A. Mendez
- Department of Molecular & Cell BiologySchool of Natural SciencesUniversity of CaliforniaMercedCAUSA
| | - Rudy M. Ortiz
- Department of Molecular & Cell BiologySchool of Natural SciencesUniversity of CaliforniaMercedCAUSA
| |
Collapse
|
24
|
Limbu S, Prosser BL, Lederer WJ, Ward CW, Jafri MS. X-ROS Signaling Depends on Length-Dependent Calcium Buffering by Troponin. Cells 2021; 10:cells10051189. [PMID: 34068012 PMCID: PMC8152234 DOI: 10.3390/cells10051189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/03/2022] Open
Abstract
The stretching of a cardiomyocyte leads to the increased production of reactive oxygen species that increases ryanodine receptor open probability through a process termed X-ROS signaling. The stretching of the myocyte also increases the calcium affinity of myofilament Troponin C, which increases its calcium buffering capacity. Here, an integrative experimental and modeling study is pursued to explain the interplay of length-dependent changes in calcium buffering by troponin and stretch-activated X-ROS calcium signaling. Using this combination, we show that the troponin C-dependent increase in myoplasmic calcium buffering during myocyte stretching largely offsets the X-ROS-dependent increase in calcium release from the sarcoplasmic reticulum. The combination of modeling and experiment are further informed by the elimination of length-dependent changes to troponin C calcium binding in the presence of blebbistatin. Here, the model suggests that it is the X-ROS signaling-dependent Ca2+ release increase that serves to maintain free myoplasmic calcium concentrations during a change in myocyte length. Together, our experimental and modeling approaches have further defined the relative contributions of X-ROS signaling and the length-dependent calcium buffering by troponin in shaping the myoplasmic calcium transient.
Collapse
Affiliation(s)
- Sarita Limbu
- School of Systems Biology and The Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA;
| | - Benjamin L. Prosser
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA;
| | - William J. Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA;
| | - Christopher W. Ward
- Center for Biomedical Engineering and Technology and Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 20201, USA;
| | - Mohsin S. Jafri
- School of Systems Biology and The Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA;
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA;
- Correspondence: ; Tel.: +1-703-993-8420
| |
Collapse
|
25
|
Tan Z, Wu L, Fang Y, Chen P, Wan R, Shen Y, Hu J, Jiang Z, Hong K. Systemic Bioinformatic Analyses of Nuclear-Encoded Mitochondrial Genes in Hypertrophic Cardiomyopathy. Front Genet 2021; 12:670787. [PMID: 34054926 PMCID: PMC8150003 DOI: 10.3389/fgene.2021.670787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an autosomal dominant disease and mitochondria plays a key role in the progression in HCM. Here, we analyzed the expression pattern of nuclear-encoded mitochondrial genes (NMGenes) in HCM and found that the expression of NMGenes was significantly changed. A total of 316 differentially expressed NMGenes (DE-NMGenes) were identified. Pathway enrichment analyses showed that energy metabolism-related pathways such as "pyruvate metabolism" and "fatty acid degradation" were dysregulated, which highlighted the importance of energy metabolism in HCM. Next, we constructed a protein-protein interaction network based on 316 DE-NMGenes and identified thirteen hubs. Then, a total of 17 TFs (transcription factors) were predicted to potentially regulate the expression of 316 DE-NMGenes according to iRegulon, among which 8 TFs were already found involved in pathological hypertrophy. The remaining TFs (like GATA1, GATA5, and NFYA) were good candidates for further experimental verification. Finally, a mouse model of transverse aortic constriction (TAC) was established to validate the genes and results showed that DDIT4, TKT, CLIC1, DDOST, and SNCA were all upregulated in TAC mice. The present study represents the first effort to evaluate the global expression pattern of NMGenes in HCM and provides innovative insight into the molecular mechanism of HCM.
Collapse
Affiliation(s)
- Zhaochong Tan
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Limeng Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan Fang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pingshan Chen
- Department of Science and Technology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rong Wan
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yang Shen
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianping Hu
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenhong Jiang
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kui Hong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
26
|
Jie X, Yang H, Wang K, Zhu ZF, Wang JP, Yang LG, Yang ZJ, Zhang XJ, Wang AL, Li L, Chi RF, Qin FZ, Li B, Fan B. Apocynin prevents reduced myocardial nerve growth factor, contributing to amelioration of myocardial apoptosis and failure. Clin Exp Pharmacol Physiol 2021; 48:704-716. [PMID: 33650189 DOI: 10.1111/1440-1681.13465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
Reduced nerve growth factor (NGF) is associated with cardiac sympathetic nerve denervation in heart failure (HF) which is characterized by increased oxidative stress. Apocynin is considered an antioxidant agent which inhibits NADPH oxidase activity and improves reactive oxygen species scavenging. However, it is unclear whether apocynin prevents reduced myocardial NGF, leading to improvement of cardiac function in HF. In this study, we tested the hypothesis that apocynin prevents reduced myocardial NGF, contributing to amelioration of myocardial apoptosis and failure. Rabbits with myocardial infarction (MI) or sham operation were randomly assigned to receive apocynin or placebo for 4 weeks. MI rabbits exhibited left ventricular (LV) dysfunction, and elevation in oxidative stress, as evidenced by a decreased reduced-to-oxidized glutathione ratio and an increased 4-hydroxynonenal expression, and reduction in NGF and NGF receptor tyrosine kinase A (TrKA) expression in the remote non-infarcted myocardium. Apocynin treatment ameliorated LV dysfunction, reduced oxidative stress, prevented decreases in NGF and TrKA expression and reduced cardiomyocyte apoptosis after MI. In cultured H9C2 cardiomyocytes, hypoxia or hydrogen peroxide decreased NGF expression, and apocynin normalized hypoxia-induced reduction of NGF. Recombinant NGF attenuated hypoxia-induced apoptosis. Apocynin prevented hypoxia-induced apoptosis, and the suppressive effect of apocynin on apoptosis was abolished by NGF receptor TrKA inhibitor K252a. We concluded that apocynin prevented reduced myocardial NGF, leading to attenuation of cardiomyocyte apoptosis and LV remodelling and dysfunction in HF after MI. These findings suggest that strategies to prevent NGF reduction by inhibition of oxidative stress may be of value in amelioration of LV dysfunction in HF.
Collapse
Affiliation(s)
- Xi Jie
- The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Medical University, Taiyuan, China
| | - Hong Yang
- The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Medical University, Taiyuan, China
| | - Ke Wang
- The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Medical University, Taiyuan, China
| | - Zong-Feng Zhu
- The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Medical University, Taiyuan, China
| | - Jia-Pu Wang
- Shanxi Province Cardiovascular Hospital, Taiyuan, China
| | - Li-Guo Yang
- The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Medical University, Taiyuan, China
| | - Zi-Jian Yang
- Shanxi Province Cardiovascular Hospital, Taiyuan, China
| | - Xiao-Juan Zhang
- Shanxi Medical University, Taiyuan, China
- Shanxi Province Cardiovascular Hospital, Taiyuan, China
| | - Ai-Ling Wang
- The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Medical University, Taiyuan, China
| | - Lu Li
- The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Medical University, Taiyuan, China
| | - Rui-Fang Chi
- The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Medical University, Taiyuan, China
| | - Fu-Zhong Qin
- The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Medical University, Taiyuan, China
| | - Bao Li
- The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Medical University, Taiyuan, China
| | - Bianai Fan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School Affiliate, Boston, MA, USA
| |
Collapse
|
27
|
Wu X, Huang L, Liu J. Relationship between oxidative stress and nuclear factor-erythroid-2-related factor 2 signaling in diabetic cardiomyopathy (Review). Exp Ther Med 2021; 22:678. [PMID: 33986843 PMCID: PMC8111863 DOI: 10.3892/etm.2021.10110] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is the leading cause of death worldwide, and oxidative stress was discovered to serve an important role in the pathophysiology of the condition. An imbalance between free radicals and antioxidant defenses is known to be associated with cellular dysfunction, leading to the development of various types of cardiac disease. Nuclear factor-erythroid-2-related factor 2 (NRF2) is a transcription factor that controls the basal and inducible expression levels of various antioxidant genes and other cytoprotective phase II detoxifying enzymes, which are ubiquitously expressed in the cardiac system. Kelch-like ECH-associated protein 1 (Keap1) serves as the main intracellular regulator of NRF2. Emerging evidence has revealed that NRF2 is a critical regulator of cardiac homeostasis via the suppression of oxidative stress. The activation of NRF2 was discovered to enhance specific endogenous antioxidant defense factors, one of which is antioxidant response element (ARE), which was subsequently illustrated to detoxify and counteract oxidative stress-associated DCM. The NRF2 signaling pathway is closely associated with the development of various types of cardiac disease, including ischemic heart disease, heart failure, myocardial infarction, atrial fibrillation and myocarditis. Therefore, it is hypothesized that drugs targeting this pathway may be developed to inhibit the activation of NRF2 signaling, thereby preventing the occurrence of DCM and effectively treating the disease.
Collapse
Affiliation(s)
- Xia Wu
- Department of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Leitao Huang
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210031, P.R. China
| | - Jichun Liu
- Department of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
28
|
Hegyi B, Pölönen RP, Hellgren KT, Ko CY, Ginsburg KS, Bossuyt J, Mercola M, Bers DM. Cardiomyocyte Na + and Ca 2+ mishandling drives vicious cycle involving CaMKII, ROS, and ryanodine receptors. Basic Res Cardiol 2021; 116:58. [PMID: 34648073 PMCID: PMC8516771 DOI: 10.1007/s00395-021-00900-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
Cardiomyocyte Na+ and Ca2+ mishandling, upregulated Ca2+/calmodulin-dependent kinase II (CaMKII), and increased reactive oxygen species (ROS) are characteristics of various heart diseases, including heart failure (HF), long QT (LQT) syndrome, and catecholaminergic polymorphic ventricular tachycardia (CPVT). These changes may form a vicious cycle of positive feedback to promote cardiac dysfunction and arrhythmias. In HF rabbit cardiomyocytes investigated in this study, the inhibition of CaMKII, late Na+ current (INaL), and leaky ryanodine receptors (RyRs) all attenuated the prolongation and increased short-term variability (STV) of action potential duration (APD), but in age-matched controls these inhibitors had no or minimal effects. In control cardiomyocytes, we enhanced RyR leak (by low [caffeine] plus isoproterenol mimicking CPVT) which markedly increased STV and delayed afterdepolarizations (DADs). These proarrhythmic changes were significantly attenuated by both CaMKII inhibition and mitochondrial ROS scavenging, with a slight synergy with INaL inhibition. Inducing LQT by elevating INaL (by Anemone toxin II, ATX-II) caused markedly prolonged APD, increased STV, and early afterdepolarizations (EADs). Those proarrhythmic ATX-II effects were largely attenuated by mitochondrial ROS scavenging, and partially reduced by inhibition of CaMKII and pathological leaky RyRs using dantrolene. In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) bearing LQT3 mutation SCN5A N406K, dantrolene significantly attenuated cell arrhythmias and APD prolongation. Targeting critical components of the Na+-Ca2+-CaMKII-ROS-INaL arrhythmogenic vicious cycle may exhibit important on-target and also trans-target effects (e.g., INaL and RyR inhibition can alter INaL-mediated LQT3 effects). Incorporating this vicious cycle into therapeutic strategies provides novel integrated insight for treating cardiac arrhythmias and diseases.
Collapse
Affiliation(s)
- Bence Hegyi
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Risto-Pekka Pölönen
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA ,grid.168010.e0000000419368956Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305 USA
| | - Kim T. Hellgren
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Christopher Y. Ko
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Kenneth S. Ginsburg
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Julie Bossuyt
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Mark Mercola
- grid.168010.e0000000419368956Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305 USA
| | - Donald M. Bers
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| |
Collapse
|
29
|
Gerber L, Clow KA, Mark FC, Gamperl AK. Improved mitochondrial function in salmon (Salmo salar) following high temperature acclimation suggests that there are cracks in the proverbial 'ceiling'. Sci Rep 2020; 10:21636. [PMID: 33303856 PMCID: PMC7729908 DOI: 10.1038/s41598-020-78519-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/22/2020] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial function can provide key insights into how fish will respond to climate change, due to its important role in heart performance, energy metabolism and oxidative stress. However, whether warm acclimation can maintain or improve the energetic status of the fish heart when exposed to short-term heat stress is not well understood. We acclimated Atlantic salmon, a highly aerobic eurythermal species, to 12 and 20 °C, then measured cardiac mitochondrial functionality and integrity at 20 °C and at 24, 26 and 28 °C (this species' critical thermal maximum ± 2 °C). Acclimation to 20 °C vs. 12 °C enhanced many aspects of mitochondrial respiratory capacity and efficiency up to 24 °C, and preserved outer mitochondrial membrane integrity up to 26 °C. Further, reactive oxygen species (ROS) production was dramatically decreased at all temperatures. These data suggest that salmon acclimated to 'normal' maximum summer temperatures are capable of surviving all but the most extreme ocean heat waves, and that there is no 'tradeoff' in heart mitochondrial function when Atlantic salmon are acclimated to high temperatures (i.e., increased oxidative phosphorylation does not result in heightened ROS production). This study suggests that fish species may show quite different acclimatory responses when exposed to prolonged high temperatures, and thus, susceptibility to climate warming.
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada.
| | - Kathy A Clow
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | - Felix C Mark
- Section Integrative Ecophysiology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Anthony K Gamperl
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| |
Collapse
|
30
|
O'Rourke B, Ashok D, Liu T. Mitochondrial Ca 2+ in heart failure: Not enough or too much? J Mol Cell Cardiol 2020; 151:126-134. [PMID: 33290770 DOI: 10.1016/j.yjmcc.2020.11.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/18/2020] [Accepted: 11/28/2020] [Indexed: 01/04/2023]
Abstract
Ca2+ serves as a ubiquitous second messenger mediating a variety of cellular processes including electrical excitation, contraction, gene expression, secretion, cell death and others. The identification of the molecular components of the mitochondrial Ca2+ influx and efflux pathways has created a resurgent interest in the regulation of mitochondrial Ca2+ balance and its physiological and pathophysiological roles. While the pace of discovery has quickened with the availability of new cellular and animal models, many fundamental questions remain to be answered regarding the regulation and functional impact of mitochondrial Ca2+ in health and disease. This review highlights several experimental observations pertaining to key aspects of mitochondrial Ca2+ homeostasis that remain enigmatic, particularly whether mitochondrial Ca2+ signaling is depressed or excessive in heart failure, which will determine the optimal approach to therapeutic intervention.
Collapse
Affiliation(s)
- Brian O'Rourke
- The Johns Hopkins University, Division of Cardiology, Department of Medicine, Baltimore, MD 21205, USA.
| | - Deepthi Ashok
- The Johns Hopkins University, Division of Cardiology, Department of Medicine, Baltimore, MD 21205, USA
| | - Ting Liu
- The Johns Hopkins University, Division of Cardiology, Department of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
31
|
Cheng D, Chen L, Tu W, Wang H, Wang Q, Meng L, Li Z, Yu Q. Protective effects of valsartan administration on doxorubicin‑induced myocardial injury in rats and the role of oxidative stress and NOX2/NOX4 signaling. Mol Med Rep 2020; 22:4151-4162. [PMID: 33000246 PMCID: PMC7533445 DOI: 10.3892/mmr.2020.11521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 07/14/2020] [Indexed: 11/22/2022] Open
Abstract
Clinical application of doxorubicin (DOX) is hampered by its potential cardiotoxicity, however angiotensin receptor blockers could attenuate DOX‑induced cardiomyopathy. The present study tested the hypothesis that simultaneous administration of valsartan (Val) with DOX could prevent DOX‑induced myocardial injury by modulating myocardial NAD(P)H oxidase (NOX) expression in rats. Eight‑week‑old male Sprague‑Dawley rats were randomly divided into control (CON), DOX, and DOX+Val groups. After 10 weeks, surviving rats underwent echocardiography examination, myocardial mRNA and protein expression detection of NOX1, NOX2 and NOX4. H9C2 cells were used to perform in vitro experiments, reactive oxygen species (ROS) production and apoptosis were observed under the conditions of down‑ or upregulation of NOX2 and NOX4 in DOX‑ and DOX+Val‑treated H9C2 cells. Cardiac function was significantly improved, pathological lesion and collagen volume fraction were significantly reduced in the DOX+Val group compared with the DOX group (all P<0.05). Myocardial protein and mRNA expression of NOX2 and NOX4 was significantly downregulated in DOX+Val group compared with in the DOX group (all P<0.05). In vitro, ROS production and apoptosis in DOX‑treated H9C2 cells was significantly reduced by NOX2‑small interfering (si)RNA and NOX4‑siRNA, and significantly increased by overexpressing NOX2 and NOX4. To conclude, Val applied simultaneously with DOX could prevent DOX‑induced myocardial injury and reduce oxidative stress by downregulating the myocardial expression of NOX2 and NOX4 in rats.
Collapse
Affiliation(s)
- Dong Cheng
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Libo Chen
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Wencheng Tu
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Haoren Wang
- Central Laboratory, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Qinfu Wang
- Life Engineering College, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Lili Meng
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Zhu Li
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Qin Yu
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| |
Collapse
|
32
|
Wen MS, Wang CY, Yeh JK, Chen CC, Tsai ML, Ho MY, Hung KC, Hsieh IC. The role of Asprosin in patients with dilated cardiomyopathy. BMC Cardiovasc Disord 2020; 20:402. [PMID: 32894050 PMCID: PMC7487662 DOI: 10.1186/s12872-020-01680-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/23/2020] [Indexed: 12/25/2022] Open
Abstract
Background Asprosin is a novel fasting glucogenic adipokine discovered in 2016. Asprosin induces rapid glucose releases from the liver. However, its molecular mechanisms and function are still unclear. Adaptation of energy substrates from fatty acid to glucose is recently considered a novel therapeutic target in heart failure treatment. We hypothesized that the asprosin is able to modulate cardiac mitochondrial functions and has important prognostic implications in dilated cardiomyopathy (DCM) patients. Methods We prospectively enrolled 50 patients (86% male, mean age 55 ± 13 years) with DCM and followed their 5-year major adverse cardiovascular events from 2012 to 2017. Comparing with healthy individuals, DCM patients had higher asprosin levels (191.2 versus 79.7 ng/mL, P < 0.01). Results During the 5-year follow-up in the study cohort, 16 (32.0%) patients experienced adverse cardiovascular events. Patients with lower asprosin levels (< 210 ng/mL) were associated with increased risks of adverse clinical outcomes with a hazard ratio of 7.94 (95% CI 1.88–33.50, P = 0.005) when compared patients with higher asprosin levels (≥ 210 ng/mL). Using cardiomyoblasts as a cellular model, we showed that asprosin prevented hypoxia-induced cell death and enhanced mitochondrial respiration and proton leak under hypoxia. Conclusions In patients with DCM, elevated plasma asprosin levels are associated with less adverse cardiovascular events in five years. The underlying protective mechanisms of asprosin may be linked to its functions relating to enhanced mitochondrial respiration under hypoxia.
Collapse
Affiliation(s)
- Ming-Shien Wen
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, 5 Fu-Hsing Street, Taoyuan, 333, Taiwan.
| | - Chao-Yung Wang
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, 5 Fu-Hsing Street, Taoyuan, 333, Taiwan. .,Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, 350, Taiwan.
| | - Jih-Kai Yeh
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, 5 Fu-Hsing Street, Taoyuan, 333, Taiwan
| | - Chun-Chi Chen
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, 5 Fu-Hsing Street, Taoyuan, 333, Taiwan
| | - Ming-Lung Tsai
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, 5 Fu-Hsing Street, Taoyuan, 333, Taiwan
| | - Ming-Yun Ho
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, 5 Fu-Hsing Street, Taoyuan, 333, Taiwan
| | - Kuo-Chun Hung
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, 5 Fu-Hsing Street, Taoyuan, 333, Taiwan
| | - I-Chang Hsieh
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, 5 Fu-Hsing Street, Taoyuan, 333, Taiwan
| |
Collapse
|
33
|
Roles of Reactive Oxygen Species in Cardiac Differentiation, Reprogramming, and Regenerative Therapies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2102841. [PMID: 32908625 PMCID: PMC7475763 DOI: 10.1155/2020/2102841] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS) have been implicated in mechanisms of heart development and regenerative therapies such as the use of pluripotent stem cells. The roles of ROS mediating cell fate are dependent on the intensity of stimuli, cellular context, and metabolic status. ROS mainly act through several targets (such as kinases and transcription factors) and have diverse roles in different stages of cardiac differentiation, proliferation, and maturation. Therefore, further detailed investigation and characterization of redox signaling will help the understanding of the molecular mechanisms of ROS during different cellular processes and enable the design of targeted strategies to foster cardiac regeneration and functional recovery. In this review, we focus on the roles of ROS in cardiac differentiation as well as transdifferentiation (direct reprogramming). The potential mechanisms are discussed in regard to ROS generation pathways and regulation of downstream targets. Further methodological optimization is required for translational research in order to robustly enhance the generation efficiency of cardiac myocytes through metabolic modulations. Additionally, we highlight the deleterious effect of the host's ROS on graft (donor) cells in a paracrine manner during stem cell-based implantation. This knowledge is important for the development of antioxidant strategies to enhance cell survival and engraftment of tissue engineering-based technologies. Thus, proper timing and level of ROS generation after a myocardial injury need to be tailored to ensure the maximal efficacy of regenerative therapies and avoid undesired damage.
Collapse
|
34
|
Kaempferol Prevents Against Ang II-induced Cardiac Remodeling Through Attenuating Ang II-induced Inflammation and Oxidative Stress. J Cardiovasc Pharmacol 2020; 74:326-335. [PMID: 31356553 PMCID: PMC6791499 DOI: 10.1097/fjc.0000000000000713] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heart failure characterized by cardiac remodeling is a global problem. Angiotensin II (Ang II) induces cardiac inflammation and oxidative stress, which also is implicated in the pathophysiology of adverse collagen accumulation-induced remodeling. Kaempferol (KPF), a kind of flavonoid compounds, is capable of anti-inflammatory and antioxidant activities. However, the target of KPF still remains blurred. In this study, we investigated the effect of KPF on Ang II-induced collagen accumulation and explored the underlying mechanisms. Our results suggested that KPF prevented Ang II-induced cardiac fibrosis and dysfunction, in mice challenged with subcutaneous injection of Ang II. In culture cells, KPF significantly reduced Ang II-induced collagen accumulation. Furthermore, KPF remarkably decreased inflammation and oxidative stress in Ang II-stimulated cardiac fibroblasts by modulating NF-κB/mitogen-activated protein kinase and AMPK/Nrf2 pathways.
Collapse
|
35
|
Administration of apo A-I (Milano) nanoparticles reverses pathological remodelling, cardiac dysfunction, and heart failure in a murine model of HFpEF associated with hypertension. Sci Rep 2020; 10:8382. [PMID: 32433476 PMCID: PMC7239951 DOI: 10.1038/s41598-020-65255-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/02/2020] [Indexed: 01/01/2023] Open
Abstract
Therapeutic interventions with proven efficacy in heart failure with reduced ejection fraction (HFrEF) have been unsuccessful in heart failure with preserved ejection fraction (HFpEF). The modifiable risk factor with the greatest impact on the development of HFpEF is hypertension. The objectives of this study were to establish a murine model of HFpEF associated with hypertension and to evaluate the effect of apo A-IMilano nanoparticles (MDCO-216) on established HFpEF in this model. Subcutaneous infusion of angiotensin II in combination with 1% NaCl in the drinking water was started at the age of 12 weeks in male C57BL/6 N mice and continued for the entire duration of the experiment. Treatment with MDCO-216 partially reversed established cardiac hypertrophy, cardiomyocyte hypertrophy, capillary rarefaction, and perivascular fibrosis in this model. Pressure-volume loop analysis was consistent with HFpEF in hypertension mice as evidenced by the preserved ejection fraction and a significant reduction of cardiac output (7.78 ± 0.56 ml/min versus 10.5 ± 0.7 ml/min; p < 0.01) and of the peak filling rate (p < 0.05). MDCO-216 completely reversed cardiac dysfunction and abolished heart failure as evidenced by the normal lung weight and normal biomarkers of heart failure. In conclusion, apo A-IMilano nanoparticles constitute an effective treatment for established hypertension-associated HFpEF.
Collapse
|
36
|
Savira F, Wang BH, Edgley AJ, Jucker BM, Willette RN, Krum H, Kelly DJ, Kompa AR. Inhibition of apoptosis signal-regulating kinase 1 ameliorates left ventricular dysfunction by reducing hypertrophy and fibrosis in a rat model of cardiorenal syndrome. Int J Cardiol 2020; 310:128-136. [PMID: 32305147 DOI: 10.1016/j.ijcard.2020.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/02/2020] [Accepted: 04/03/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Cardiorenal syndrome (CRS) is a major health burden worldwide in need of novel therapies, as current treatments remain suboptimal. The present study assessed the therapeutic potential of apoptosis signal-regulating kinase 1 (ASK1) inhibition in a rat model of CRS. METHODS Adult male Sprague-Dawley rats underwent surgery for myocardial infarction (MI) (week 0) followed by 5/6 subtotal nephrectomy (STNx) at week 4 to induce to induce a combined model of heart and kidney dysfunction. At week 6, MI + STNx animals were randomized to receive either 0.5% carboxymethyl cellulose (Vehicle, n = 15, Sham = 10) or G226 (15 mg/kg daily, n = 11). Cardiac and renal function was assessed by echocardiography and glomerular filtration rate (GFR) respectively, prior to treatment at week 6 and endpoint (week 14). Haemodynamic measurements were determined at endpoint prior to tissue analysis. RESULTS G226 treatment attenuated the absolute change in left ventricular (LV) fractional shortening and posterior wall thickness compared to Vehicle. G226 also attenuated the reduction in preload recruitable stroke work. Increased myocyte cross sectional area, cardiac interstitial fibrosis, immunoreactivity of cardiac collagen-I and III and cardiac TIMP-2 activation, were significantly reduced following G226 treatment. Although we did not observe improvement in GFR, G226 significantly reduced renal interstitial fibrosis, diminished renal collagen-I and -IV, kidney injury molecule-1 immunoreactivity as well as macrophage infiltration and SMAD2 phosphorylation. CONCLUSION Inhibition of ASK1 ameliorated LV dysfunction and diminished cardiac hypertrophy and cardiorenal fibrosis in a rat model of CRS. This suggests that ASK1 is a critical pathway with therapeutic potential in the CRS setting.
Collapse
Affiliation(s)
- Feby Savira
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Research Institute, Melbourne, Australia; Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Bing H Wang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Research Institute, Melbourne, Australia; Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| | - Amanda J Edgley
- Department of Medicine, University of Melbourne, St Vincent's Hospital, Fitzroy, Australia
| | - Beat M Jucker
- Heart Failure Discovery Performance Unit, GlaxoSmithKline, King of Prussia, PA, USA
| | - Robert N Willette
- Heart Failure Discovery Performance Unit, GlaxoSmithKline, King of Prussia, PA, USA
| | - Henry Krum
- Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Darren J Kelly
- Department of Medicine, University of Melbourne, St Vincent's Hospital, Fitzroy, Australia
| | - Andrew R Kompa
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Research Institute, Melbourne, Australia; Department of Medicine, University of Melbourne, St Vincent's Hospital, Fitzroy, Australia.
| |
Collapse
|
37
|
Zhou XL, Wu X, Zhu RR, Xu H, Li YY, Xu QR, Liu S, Lai SQ, Xu X, Wan L, Wu QC, Liu JC. Notch1-Nrf2 signaling crosstalk provides myocardial protection by reducing ROS formation. Biochem Cell Biol 2020; 98:106-111. [PMID: 32069075 DOI: 10.1139/bcb-2018-0398] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Both the Notch1 and Keap1-Nrf2 signaling pathways have cardioprotective effects, but the role of Notch1-Nrf2 crosstalk in myocardial ischemia-reperfusion injury is unclear. In this study, we established hypoxia-reoxygenation in neonate rat myocardial cells and employed γ-secretase inhibitor and curcumin to inhibit and activate the Notch1 and Keap1-Nrf2 signaling pathways, respectively. We found that the combined action of the Notch1 and Keap1-Nrf2 signaling pathways significantly increased cardiomyocyte viability, inhibited cardiomyocyte apoptosis, reduced the formation of reactive oxygen species, and increased antioxidant activities. In conclusion, these findings suggest that Notch1-Nrf2 crosstalk exerts myocardial protection by reducing the formation of reactive oxygen species.
Collapse
Affiliation(s)
- Xue-Liang Zhou
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xia Wu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Rong-Rong Zhu
- Department of Obstetrics and Gynecology, Jiangxi Province hospital of integrated traditional Chinese and Western medicine, Nanchang, China
| | - Hua Xu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Yun-Yun Li
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Qi-Rong Xu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Sheng Liu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Song-Qing Lai
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xinping Xu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Li Wan
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Qi-Cai Wu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Ji-Chun Liu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
38
|
Parisi V, Conte M, Petraglia L, Grieco FV, Bruzzese D, Caruso A, Grimaldi MG, Campana P, Gargiulo P, Paolillo S, Attena E, Russo V, Galasso G, Rapacciuolo A, Perrone Filardi P, Leosco D. Echocardiographic Epicardial Adipose Tissue Thickness for Risk Stratification of Patients With Heart Failure. Front Physiol 2020; 11:43. [PMID: 32116756 PMCID: PMC7013047 DOI: 10.3389/fphys.2020.00043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/20/2020] [Indexed: 11/29/2022] Open
Abstract
Background and Aims Epicardial adipose tissue (EAT) has been shown to be involved in the pathogenesis and progression of heart failure (HF). In this study we aimed to explore the predictive value of echocardiographic EAT thickness on prognosis of a selected population of HF patients. Methods The patient population included n. 69 consecutive patients with systolic HF referred to implantable cardioverter defibrillator (ICD) implantation for primary or secondary prevention. At the time of enrolment, echocardiographic EAT thickness was assessed in all patients along with demographic and clinical data. The study had a median follow-up time of 49.8 months. We assessed the prognostic predictive value of EAT thickness on a composite clinical and arrhythmic outcome including HF related deaths, new hospital admissions for HF worsening, and atrial and life threatening ventricular arrhythmic events. Clinical and arrhythmic outcomes were also evaluated separately. Results At univariate analysis, EAT thickness significantly predicted all the three outcomes considered. Of interest, at multivariate analysis, after adjusting for known risk factor, EAT remained significantly associated to the composite [HR 1.18 (1.09–1.28); p < 0.001], arrhythmic [HR 1.14 (1.03–1.25); p = 0.008], and clinical [HR 1.14 (1.03–1.27); p = 0.010] outcomes. Conclusion Echocardiographic assessment of EAT can predict outcome of HF patients and it is significantly associated with both arrhythmic and clinical events. These preliminary findings pave the way for future and larger studies aimed to definitively recognize the prognostic value of this novel risk marker in HF.
Collapse
Affiliation(s)
- Valentina Parisi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Maddalena Conte
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Laura Petraglia
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Dario Bruzzese
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Aurelio Caruso
- Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni, Italy
| | | | - Pasquale Campana
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Paola Gargiulo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Stefania Paolillo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Emilio Attena
- Department of Cardiology, San Giuliano Hospital, Giugliano in Campania, Italy
| | - Vincenzo Russo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Gennaro Galasso
- Department of Cardiology, San Giovanni di Dio e Ruggi d'Aragona Hospital, Salerno, Italy
| | - Antonio Rapacciuolo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Dario Leosco
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
39
|
Abstract
The microcirculation maintains tissue homeostasis through local regulation of blood flow and oxygen delivery. Perturbations in microvascular function are characteristic of several diseases and may be early indicators of pathological changes in the cardiovascular system and in parenchymal tissue function. These changes are often mediated by various reactive oxygen species and linked to disruptions in pathways such as vasodilation or angiogenesis. This overview compiles recent advances relating to redox regulation of the microcirculation by adopting both cellular and functional perspectives. Findings from a variety of vascular beds and models are integrated to describe common effects of different reactive species on microvascular function. Gaps in understanding and areas for further research are outlined. © 2020 American Physiological Society. Compr Physiol 10:229-260, 2020.
Collapse
Affiliation(s)
- Andrew O Kadlec
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David D Gutterman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Medicine-Division of Cardiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
40
|
Discovery of coumarin-derived imino sulfonates as a novel class of potential cardioprotective agents. Eur J Med Chem 2019; 184:111779. [DOI: 10.1016/j.ejmech.2019.111779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/24/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022]
|
41
|
Wang K, Zhu Z, Chi R, Li Q, Yang Z, Jie X, Hu X, Han X, Wang J, Li B, Qin F, Fan B. The NADPH oxidase inhibitor apocynin improves cardiac sympathetic nerve terminal innervation and function in heart failure. Exp Physiol 2019; 104:1638-1649. [PMID: 31475749 DOI: 10.1113/ep087552] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 08/29/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Ke Wang
- The Second Hospital of Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Shanxi Province Cardiovascular Hospital Taiyuan 030024 Shanxi P. R. China
- Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
| | - Zong‐Feng Zhu
- The Second Hospital of Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Shanxi Province Cardiovascular Hospital Taiyuan 030024 Shanxi P. R. China
- Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
| | - Rui‐Fang Chi
- The Second Hospital of Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
| | - Qing Li
- Shanxi Province Cardiovascular Hospital Taiyuan 030024 Shanxi P. R. China
| | - Zi‐Jian Yang
- Shanxi Province Cardiovascular Hospital Taiyuan 030024 Shanxi P. R. China
| | - Xi Jie
- The Second Hospital of Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
| | - Xin‐Ling Hu
- Shanxi Province Cardiovascular Hospital Taiyuan 030024 Shanxi P. R. China
| | - Xue‐Bin Han
- Shanxi Province Cardiovascular Hospital Taiyuan 030024 Shanxi P. R. China
| | - Jia‐Pu Wang
- Shanxi Province Cardiovascular Hospital Taiyuan 030024 Shanxi P. R. China
| | - Bao Li
- The Second Hospital of Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
| | - Fu‐Zhong Qin
- The Second Hospital of Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Shanxi Province Cardiovascular Hospital Taiyuan 030024 Shanxi P. R. China
- Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
| | - Bianai Fan
- Schepens Eye Research Institute Massachusetts Eye and Ear Harvard Medical School Affiliate Boston MA 02114 USA
| |
Collapse
|
42
|
Solesio ME, Mitaishvili E, Lymperopoulos A. Adrenal βarrestin1 targeting for tobacco-associated cardiac dysfunction treatment: Aldosterone production as the mechanistic link. Pharmacol Res Perspect 2019; 7:e00497. [PMID: 31236278 PMCID: PMC6581946 DOI: 10.1002/prp2.497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 12/13/2022] Open
Abstract
Tobacco kills 6 million people annually and its global health costs are continuously rising. The main addictive component of every tobacco product is nicotine. Among the mechanisms by which nicotine, and its major metabolite, cotinine, contribute to heart disease is the renin-angiotensin-aldosterone system (RAAS) activation. This increases aldosterone production from the adrenals and circulating aldosterone levels. Aldosterone is a mineralocorticoid hormone with various direct harmful effects on the myocardium, including increased reactive oxygen species (ROS) generation, which contributes significantly to cardiac mitochondrial dysfunction and cardiac aging. Aldosterone is produced in the adrenocortical zona glomerulosa (AZG) cells in response to angiotensin II (AngII), activating its type 1 receptor (AT1R). The AT1R is a G protein-coupled receptor (GPCR) that leads to aldosterone biosynthesis and secretion, via signaling from both Gq/11 proteins and the GPCR adapter protein βarrestin1, in AZG cells. Adrenal βarrestin1 is essential for AngII-dependent adrenal aldosterone production, which aggravates heart disease. Since adrenal βarrestin1 is essential for raising circulating aldosterone in the body and tobacco compounds are also known to elevate aldosterone levels in smokers, accelerating heart disease progression, our central hypothesis is that nicotine and cotinine increase aldosterone levels to induce cardiac injury by stimulating adrenal βarrestin1. In the present review, we provide an overview of the current literature of the physiology and pharmacology of adrenal aldosterone production regulation, of the effects of tobacco on this process and, finally, of the effects of tobacco and aldosterone on cardiac structure and function, with a particular focus on cardiac mitochondrial function. We conclude our literature account with a brief experimental outline, as well as with some therapeutic perspectives of our pharmacological hypothesis, that is that adrenal βarrestin1 is a novel molecular target for preventing tobacco-induced hyperaldosteronism, thereby also ameliorating tobacco-related heart disease development.
Collapse
Affiliation(s)
- Maria E Solesio
- Department of Basic SciencesNew York UniversityNew YorkNew York
| | | | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical SciencesNova Southeastern University College of PharmacyFort Lauderdale, Florida
| |
Collapse
|
43
|
Duni A, Liakopoulos V, Roumeliotis S, Peschos D, Dounousi E. Oxidative Stress in the Pathogenesis and Evolution of Chronic Kidney Disease: Untangling Ariadne's Thread. Int J Mol Sci 2019; 20:ijms20153711. [PMID: 31362427 PMCID: PMC6695865 DOI: 10.3390/ijms20153711] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Amplification of oxidative stress is present since the early stages of chronic kidney disease (CKD), holding a key position in the pathogenesis of renal failure. Induction of renal pro-oxidant enzymes with excess generation of reactive oxygen species (ROS) and accumulation of dityrosine-containing protein products produced during oxidative stress (advanced oxidation protein products—AOPPs) have been directly linked to podocyte damage, proteinuria, and the development of focal segmental glomerulosclerosis (FSGS) as well as tubulointerstitial fibrosis. Vascular oxidative stress is considered to play a critical role in CKD progression, and ROS are potential mediators of the impaired myogenic responses of afferent renal arterioles in CKD and impaired renal autoregulation. Both oxidative stress and inflammation are CKD hallmarks. Oxidative stress promotes inflammation via formation of proinflammatory oxidized lipids or AOPPs, whereas activation of nuclear factor κB transcription factor in the pro-oxidant milieu promotes the expression of proinflammatory cytokines and recruitment of proinflammatory cells. Accumulating evidence implicates oxidative stress in various clinical models of CKD, including diabetic nephropathy, IgA nephropathy, polycystic kidney disease as well as the cardiorenal syndrome. The scope of this review is to tackle the issue of oxidative stress in CKD in a holistic manner so as to provide a future framework for potential interventions.
Collapse
Affiliation(s)
- Anila Duni
- Department of Nephrology, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Vassilios Liakopoulos
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stefanos Roumeliotis
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Dimitrios Peschos
- Laboratory of Physiology, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Evangelia Dounousi
- Department of Nephrology, Medical School, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
44
|
Paracrine Mechanisms of Redox Signalling for Postmitotic Cell and Tissue Regeneration. Trends Cell Biol 2019; 29:514-530. [DOI: 10.1016/j.tcb.2019.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 01/08/2023]
|
45
|
Du JX, Wu JZ, Li Z, Zhang C, Shi MT, Zhao J, Jin MW, Liu H. Pentamethylquercetin protects against cardiac remodeling via activation of Sestrin2. Biochem Biophys Res Commun 2019; 512:412-420. [PMID: 30898320 DOI: 10.1016/j.bbrc.2019.03.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 01/17/2023]
Abstract
Oxidative stress is widely involved in pathophysiological processes of cardiac remodeling. Molecules associated with antioxidant functions may be ideal targets for reversing cardiac remodeling. Sestrin2 is the important component of endogenous antioxidant defense, while there is little information on the pathophysiological roles of it in cardiac remodeling. The aim of this study was to investigate whether Sestrin2 is closely involved in cardiac remodeling, and whether the protective effect of pentamethylquercetin (PMQ) on cardiac remodeling is related to upregulation of the Sestrin2 endogenous antioxidant system. We generated a transverse aorta constriction (TAC)-induced pressure-overload cardiac-remodeling model in mice, and also established an isoproterenol (ISO)-induced neonatal rat cardiomyocyte (NRCM) hypertrophy model. The data showed Sestrin2 expression was downregulated significantly, and Nrf2 and HO-1 expression was also reduced in myocardial tissue or NRCM of model group, whereas keap1 expression was upregulated. PMQ significantly ameliorated cardiac remodeling and rectified the abnormal expression of Sestrin2/Nrf2/keap1. Sestrin2 small interfering RNA (SiRNA) reduced the protective effect of PMQ on NRCMs, as well as abolished its regulating effect on the Nrf2/keap1 pathway. In conclusion, Sestrin2 may be an important target in the anti-myocardial remodeling of PMQ.
Collapse
Affiliation(s)
- Jing-Xia Du
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pharmacy, Medical College, Henan University of Science and Technology, Luoyang, China
| | - Jian-Zhao Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cai Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng-Ting Shi
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Zhao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man-Wen Jin
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, China
| | - Hui Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, China.
| |
Collapse
|
46
|
Moreira JB, Wohlwend M, Fenk S, Åmellem I, Flatberg A, Kraljevic J, Marinovic J, Ljubkovic M, Bjørkøy G, Wisløff U. Exercise Reveals Proline Dehydrogenase as a Potential Target in Heart Failure. Prog Cardiovasc Dis 2019; 62:193-202. [DOI: 10.1016/j.pcad.2019.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 01/08/2023]
|
47
|
McKirnan MD, Ichikawa Y, Zhang Z, Zemljic-Harpf AE, Fan S, Barupal DK, Patel HH, Hammond HK, Roth DM. Metabolomic analysis of serum and myocardium in compensated heart failure after myocardial infarction. Life Sci 2019; 221:212-223. [PMID: 30731143 DOI: 10.1016/j.lfs.2019.01.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/18/2019] [Accepted: 01/25/2019] [Indexed: 01/06/2023]
Abstract
AIMS To determine the metabolic adaptations to compensated heart failure using a reproducible model of myocardial infarction and an unbiased metabolic screen. To address the limitations in sample availability and model variability observed in preclinical and clinical metabolic investigations of heart failure. MAIN METHODS Metabolomic analysis was performed on serum and myocardial tissue from rabbits after myocardial infarction (MI) was induced by cryo-injury of the left ventricular free wall. Rabbits followed for 12 weeks after MI exhibited left ventricular dilation and depressed systolic function as determined by echocardiography. Serum and tissue from the viable left ventricular free wall, interventricular septum and right ventricle were analyzed using a gas chromatography time of flight mass spectrometry-based untargeted metabolomics assay for primary metabolites. KEY FINDINGS Unique results included: a two- three-fold increase in taurine levels in all three ventricular regions of MI rabbits and similarly, the three regions had increased inosine levels compared to sham controls. Reduced myocardial levels of myo-inositol in the myocardium of MI animals point to altered phospholipid metabolism and membrane receptor function in heart failure. Metabolite profiles also provide evidence for responses to oxidative stress and an impairment in TCA cycle energy production in the failing heart. SIGNIFICANCE Our results revealed metabolic changes during compensated cardiac dysfunction and suggest potential targets for altering the progression of heart failure.
Collapse
Affiliation(s)
- M Dan McKirnan
- Department of Anesthesiology, University of California, the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA, United States of America; Department of Medicine, University of California, the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA, United States of America
| | - Yasuhiro Ichikawa
- Department of Anesthesiology, University of California, the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA, United States of America
| | - Zheng Zhang
- Department of Anesthesiology, University of California, the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA, United States of America
| | - Alice E Zemljic-Harpf
- Department of Anesthesiology, University of California, the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA, United States of America
| | - Sili Fan
- UC Davis Genome Center, University of California, Davis, CA, United States of America
| | - Dinesh Kumar Barupal
- UC Davis Genome Center, University of California, Davis, CA, United States of America
| | - Hemal H Patel
- Department of Anesthesiology, University of California, the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA, United States of America
| | - H Kirk Hammond
- Department of Medicine, University of California, the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA, United States of America
| | - David M Roth
- Department of Anesthesiology, University of California, the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA, United States of America.
| |
Collapse
|
48
|
Sárközy M, Kovács ZZA, Kovács MG, Gáspár R, Szűcs G, Dux L. Mechanisms and Modulation of Oxidative/Nitrative Stress in Type 4 Cardio-Renal Syndrome and Renal Sarcopenia. Front Physiol 2018; 9:1648. [PMID: 30534079 PMCID: PMC6275322 DOI: 10.3389/fphys.2018.01648] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is a public health problem and a recognized risk factor for cardiovascular diseases (CVD). CKD could amplify the progression of chronic heart failure leading to the development of type 4 cardio-renal syndrome (T4CRS). The severity and persistence of heart failure are strongly associated with mortality risk in T4CRS. CKD is also a catabolic state leading to renal sarcopenia which is characterized by the loss of skeletal muscle strength and physical function. Renal sarcopenia also promotes the development of CVD and increases the mortality in CKD patients. In turn, heart failure developed in T4CRS could result in chronic muscle hypoperfusion and metabolic disturbances leading to or aggravating the renal sarcopenia. The interplay of multiple factors (e.g., comorbidities, over-activated renin-angiotensin-aldosterone system [RAAS], sympathetic nervous system [SNS], oxidative/nitrative stress, inflammation, etc.) may result in the progression of T4CRS and renal sarcopenia. Among these factors, oxidative/nitrative stress plays a crucial role in the complex pathomechanism and interrelationship between T4CRS and renal sarcopenia. In the heart and skeletal muscle, mitochondria, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, uncoupled nitric oxide synthase (NOS) and xanthine oxidase are major ROS sources producing superoxide anion (O2·−) and/or hydrogen peroxide (H2O2). O2·− reacts with nitric oxide (NO) forming peroxynitrite (ONOO−) which is a highly reactive nitrogen species (RNS). High levels of ROS/RNS cause lipid peroxidation, DNA damage, interacts with both DNA repair enzymes and transcription factors, leads to the oxidation/nitration of key proteins involved in contractility, calcium handling, metabolism, antioxidant defense mechanisms, etc. It also activates the inflammatory response, stress signals inducing cardiac hypertrophy, fibrosis, or cell death via different mechanisms (e.g., apoptosis, necrosis) and dysregulates autophagy. Therefore, the thorough understanding of the mechanisms which lead to perturbations in oxidative/nitrative metabolism and its relationship with pro-inflammatory, hypertrophic, fibrotic, cell death and other pathways would help to develop strategies to counteract systemic and tissue oxidative/nitrative stress in T4CRS and renal sarcopenia. In this review, we also focus on the effects of some well-known and novel pharmaceuticals, nutraceuticals, and physical exercise on cardiac and skeletal muscle oxidative/nitrative stress in T4CRS and renal sarcopenia.
Collapse
Affiliation(s)
- Márta Sárközy
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsuzsanna Z A Kovács
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Mónika G Kovács
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Renáta Gáspár
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gergő Szűcs
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Dux
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
49
|
Improved heart failure by Rhein lysinate is associated with p38MAPK pathway. Exp Ther Med 2018; 16:2046-2051. [PMID: 30186438 DOI: 10.3892/etm.2018.6423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 03/26/2018] [Indexed: 01/07/2023] Open
Abstract
The present study aimed to explore the role of Rhein lysinate (RHL) in neonatal rat ventricular myocytes (NRVMs) and congestive heart failure induced by co-arctation of the abdominal aorta. Male Sprague-Dawley rats were divided into 3 groups randomly: co-arctation of abdominal aorta group (A group, n=10), sham operation group (SH group, n=10) and RHL treatment rats (A+RHL group, n=10). To establish an in vitro oxidative stressed cardiomyocyte model, NRVMs were treated with 10 µM H2O2 for 24 h. MTT assay indicated that H2O2 treatment reduced primary cardiomyocyte viability in a time- and dose- dependent manner, whereas RHL abolished the detrimental effects of H2O2, indicating a protective role of RHL. Further study demonstrated that H2O2-induced reactive oxygen species (ROS) production was reversed by RHL. Then, TUNEL staining was carried out and the results revealed that H2O2 markedly enhanced primary cardiomyocyte apoptosis. Conversely, RHL incubation decreased H2O2-induced cell apoptosis, indicating the protective role of RHL in primary cardiomyocytes. Furthermore, abnormal p38 activation was identified in the failed heart. Notably, treatment with RHL reduced p38 activation. In addition, RHL significantly enhanced the expression of anti-apoptotic protein, B cell lymphoma (Bcl)-2, however markedly reduced the protein level of Bcl-2 associated X, apoptosis regulator in primary cardiomyocytes, indicating its anti-apoptotic role in the cardiac setting. Overall, RHL protects heart failure primarily by reducing ROS production and cardiomyocyte apoptosis via suppressing p38 mitogen activated protein kinase activation.
Collapse
|
50
|
Muthuramu I, Amin R, Aboumsallem JP, Mishra M, Robinson EL, De Geest B. Hepatocyte-Specific SR-BI Gene Transfer Corrects Cardiac Dysfunction in
Scarb1
-Deficient Mice and Improves Pressure Overload-Induced Cardiomyopathy. Arterioscler Thromb Vasc Biol 2018; 38:2028-2040. [DOI: 10.1161/atvbaha.118.310946] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objective—
We investigated the hypothesis that HDL (high-density lipoprotein) dysfunction in
Scarb1
−/−
mice negatively affects cardiac function both in the absence and in the presence of pressure overload. Second, we evaluated whether normalization of HDL metabolism in
Scarb1
−/−
mice by hepatocyte-specific SR-BI (scavenger receptor class B, type I) expression after E1E3E4-deleted adenoviral AdSR-BI (E1E3E4-deleted adenoviral vector expressing SR-BI protein in hepatocytes) transfer abrogates the effects of total body SR-BI deficiency on cardiac structure and function.
Approach and Results—
Transverse aortic constriction (TAC) or sham operation was performed at the age of 14 weeks, 2 weeks after saline injection or after gene transfer with AdSR-BI or with the control vector Adnull. Mortality rate in
Scarb1
−/−
TAC mice was significantly increased compared with wild-type TAC mice during 8 weeks of follow-up (hazard ratio, 2.02; 95% CI, 1.14–3.61). Hepatocyte-specific SR-BI gene transfer performed 2 weeks before induction of pressure overload by TAC potently reduced mortality in
Scarb1
−/−
mice (hazard ratio, 0.329; 95% CI, 0.180–0.600). Hepatocyte-specific SR-BI expression abrogated increased cardiac hypertrophy and lung congestion and counteracted increased myocardial apoptosis and interstitial and perivascular fibrosis in
Scarb1
−/−
TAC mice.
Scarb1
−/−
sham mice were, notwithstanding the absence of detectable structural heart disease, characterized by systolic and diastolic dysfunction and hypotension, which were completely counteracted by AdSR-BI transfer. Furthermore, AdSR-BI transfer abrogated increased end-diastolic pressure and diastolic dysfunction in
Scarb1
−/−
TAC mice. Increased oxidative stress and reduced antioxidant defense systems in
Scarb1
−/−
mice were rescued by AdSR-BI transfer.
Conclusions—
The detrimental effects of SR-BI deficiency on cardiac structure and function are nullified by hepatocyte-specific SR-BI transfer, which restores HDL metabolism.
Collapse
Affiliation(s)
- Ilayaraja Muthuramu
- From the Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences (I.M., R.A., J.P.A., M.M., B.D.G.)
| | - Ruhul Amin
- From the Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences (I.M., R.A., J.P.A., M.M., B.D.G.)
| | - Joseph Pierre Aboumsallem
- From the Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences (I.M., R.A., J.P.A., M.M., B.D.G.)
| | - Mudit Mishra
- From the Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences (I.M., R.A., J.P.A., M.M., B.D.G.)
| | - Emma Louise Robinson
- Experimental Cardiology, Department of Cardiovascular Sciences (E.L.R.), Catholic University of Leuven, Belgium
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands (E.L.R.)
| | - Bart De Geest
- From the Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences (I.M., R.A., J.P.A., M.M., B.D.G.)
| |
Collapse
|