1
|
Xu Z, Yang J, Hu Y, Wan Q, Wang X, Lu C, Liu Y. Qifu yixin prescription ameliorates cardiac fibrosis by activating soluble guanylate cyclase (sGC) in heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2024; 340:119229. [PMID: 39653101 DOI: 10.1016/j.jep.2024.119229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qifu yixin prescription (QYP), an effective traditional Chinese medicine formula, has been utilized in the clinical treatment of cardiovascular diseases for over two decades and has been granted a national invention patent in China. It has demonstrated the ability to improve clinical symptoms in patients with heart failure. However, its precise effects and underlying molecular mechanisms remain unclear. AIM OF THE STUDY To evaluate the efficacy of QYP in treating HF and the underlying mechanisms. MATERIALS AND METHODS The heart failure (HF) model in mice was established using transverse aortic constriction (TAC), while neonatal rat cardiac fibroblasts (CFs) were utilized for in vitro experiments. The bioactive compounds in QYP were identified through high-performance liquid chromatography (HPLC). Cardiac hypertrophy, function, and fibrosis were assessed using morphological observations, echocardiography, and histomorphometric analyses. To investigate the underlying mechanisms by which QYP alleviates HF, transcriptomic analysis was conducted, and network pharmacology was employed to explore its potential mechanisms of action. Mechanistically, the expression levels of sGC, PKG, ERK, and p-ERK were analyzed using western blotting, immunohistochemistry, and immunofluorescence. Molecular docking was conducted to assess the binding affinity of the compounds of QYP to sGC. Additionally, the effects of QYP on CFs were investigated through cell-based assays. RESULTS We identified 33 bioactive compounds in QYP. Histomorphometric and transcriptomic analyses indicated that QYP alleviates cardiac fibrosis in HF. Network pharmacological analysis suggested that the sGC/cGMP/PKG and MAPK pathways are key mechanisms underlying the effects of QYP on cardiac fibrosis. The findings confirmed that QYP activates sGC, leading to the inhibition of ERK phosphorylation. Molecular docking revealed that the compounds of QYP exhibit strong binding affinity to sGC. Additionally, cell-based experiments demonstrated that QYP effectively suppresses CFs activation by stimulating sGC. CONCLUSIONS These results indicate QYP improves cardiac fibrosis in HF by activating sGC to inhibit ERK phosphorylation. We propose that QYP is a potential treatment for HF with anti-fibrotic properties.
Collapse
Affiliation(s)
- Zhaohui Xu
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jiahui Yang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yinqin Hu
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qiqi Wan
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xinting Wang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Cheng Lu
- Department of Cardiology, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China.
| | - Yongming Liu
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Cardiology, Anhui Hospital of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Hefei Anhui, 230011, China.
| |
Collapse
|
2
|
Utkina-Sosunova I, Chiorazzi A, de Planell-Saguer M, Li H, Meregalli C, Pozzi E, Carozzi VA, Canta A, Monza L, Alberti P, Fumagalli G, Karan C, Moayedi Y, Przedborski S, Cavaletti G, Lotti F. Molsidomine provides neuroprotection against vincristine-induced peripheral neurotoxicity through soluble guanylyl cyclase activation. Sci Rep 2024; 14:19341. [PMID: 39164364 PMCID: PMC11336221 DOI: 10.1038/s41598-024-70294-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Peripheral neurotoxicity is a dose-limiting adverse reaction of primary frontline chemotherapeutic agents, including vincristine. Neuropathy can be so disabling that patients drop out of potentially curative therapy, negatively impacting cancer prognosis. The hallmark of vincristine neurotoxicity is axonopathy, yet its underpinning mechanisms remain uncertain. We developed a comprehensive drug discovery platform to identify neuroprotective agents against vincristine-induced neurotoxicity. Among the hits identified, SIN-1-an active metabolite of molsidomine-prevents vincristine-induced axonopathy in both motor and sensory neurons without compromising vincristine anticancer efficacy. Mechanistically, we found that SIN-1's neuroprotective effect is mediated by activating soluble guanylyl cyclase. We modeled vincristine-induced peripheral neurotoxicity in rats to determine molsidomine therapeutic potential in vivo. Vincristine administration induced severe nerve damage and mechanical hypersensitivity that were attenuated by concomitant treatment with molsidomine. This study provides evidence of the neuroprotective properties of molsidomine and warrants further investigations of this drug as a therapy for vincristine-induced peripheral neurotoxicity.
Collapse
Affiliation(s)
- Irina Utkina-Sosunova
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Columbia University, New York, NY, 10032, USA
| | - Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Mariangels de Planell-Saguer
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Columbia University, New York, NY, 10032, USA
| | - Hai Li
- Department of Systems Biology, Columbia University, New York, USA
- Sulzberger Columbia Genome Center, High Throughput Screening Facility, Columbia University Medical Center, New York, USA
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Eleonora Pozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Valentina Alda Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Annalisa Canta
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Monza
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Giulia Fumagalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Charles Karan
- Department of Systems Biology, Columbia University, New York, USA
- Sulzberger Columbia Genome Center, High Throughput Screening Facility, Columbia University Medical Center, New York, USA
| | - Yalda Moayedi
- Department of Neurology, Columbia University, New York, NY, 10032, USA
- Department of Otolaryngology-Head & Neck Surgery, Columbia University, New York, NY, USA
| | - Serge Przedborski
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Columbia University, New York, NY, 10032, USA
- Department of Neuroscience, Columbia University Medical Center, New York, USA
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Francesco Lotti
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA.
- Department of Pathology & Cell Biology, Columbia University, New York, NY, 10032, USA.
- Department of Neurology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Chen T, Kong B, Shuai W, Gong Y, Zhang J, Huang H. Vericiguat alleviates ventricular remodeling and arrhythmias in mouse models of myocardial infarction via CaMKII signaling. Life Sci 2023; 334:122184. [PMID: 37866806 DOI: 10.1016/j.lfs.2023.122184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
AIMS Maladaptive ventricular remodeling is a major cause of ventricular arrhythmias following myocardial infarction (MI) and adversely impacts the quality of life of affected patients. Vericiguat is a new soluble guanylate cyclase (sGC) activator with cardioprotective properties. However, its effects on MI-induced ventricular remodeling and arrhythmias are not fully comprehended; hence, our research evaluated the effect of vericiguat on mice post-MI. MATERIALS AND METHODS Mice were divided into four treatment groups: Sham, Sham+Veri, MI, and MI + Veri. For the MI groups and MI + Veri groups, the left anterior descending (LAD) coronary artery was occluded to induce MI. Conversely, the Sham group underwent mock surgery. Vericiguat was administered orally daily for 28 days to the Sham+Veri and MI + Veri groups. Additionally, H9c2 cells were cultured for further mechanistic studies. Assessment methods included echocardiography, pathological analysis, electrophysiological analysis, and Western blotting. KEY FINDINGS Vericiguat reduced cardiac dysfunction and infarct size after MI. It also mitigated MI-induced left ventricular fibrosis and cardiomyocyte apoptosis. Vericiguat normalized the expression of ion channel proteins (Kv4.3, Kv4.2, Kv2.1, Kv1.5, Kv7.1, KCNH2, Cav1.2) and the gap junction protein connexin 43, reducing the susceptibility to ventricular arrhythmia. Vericiguat significantly inhibited MI-induced calcium/calmodulin-dependent protein kinase II (CaMKII) pathway activation in mice. SIGNIFICANCE Vericiguat alleviated MI-induced left ventricular adverse remodeling and arrhythmias through modulation of the CamkII signaling pathway.
Collapse
Affiliation(s)
- Tao Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, PR China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, PR China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, PR China
| | - Yang Gong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, PR China
| | - Jingjing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, PR China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, PR China.
| |
Collapse
|
4
|
Tah S, Valderrama M, Afzal M, Iqbal J, Farooq A, Lak MA, Gostomczyk K, Jami E, Kumar M, Sundaram A, Sharifa M, Arain M. Heart Failure With Preserved Ejection Fraction: An Evolving Understanding. Cureus 2023; 15:e46152. [PMID: 37900404 PMCID: PMC10613100 DOI: 10.7759/cureus.46152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is a clinical syndrome in which patients have signs and symptoms of HF due to high left ventricular (LV) filling pressure despite normal or near normal LV ejection fraction. It is more common than HF with reduced ejection fraction (HFrEF), and its diagnosis and treatment are more challenging than HFrEF. Although hypertension is the primary risk factor, coronary artery disease and other comorbidities, such as atrial fibrillation (AF), diabetes, chronic kidney disease (CKD), and obesity, also play an essential role in its formation. This review summarizes current knowledge about HFpEF, its pathophysiology, clinical presentation, diagnostic challenges, current treatments, and promising novel treatments. It is essential to continue to be updated on the latest treatments for HFpEF so that patients always receive the most therapeutic treatments. The use of GnRH agonists in the management of HFpEF, infusion of Apo a-I nanoparticle, low-level transcutaneous vagal stimulation (LLTS), and estrogen only in post-menopausal women are promising strategies to prevent diastolic dysfunction and HFpEF; however, there is still no proven curative treatment for HFpEF yet.
Collapse
Affiliation(s)
- Sunanda Tah
- Surgery, Beckley Appalachian Regional Healthcare (ARH) Hospital, Beckley, USA
- Surgery, Saint James School of Medicine, Arnos Vale, VCT
| | | | - Maham Afzal
- Medicine, Fatima Jinnah Medical University, Lahore, PAK
| | | | - Aisha Farooq
- Internal Medicine, Dr. Ruth Pfau Hospital, Karachi, PAK
| | | | - Karol Gostomczyk
- Medicine, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, POL
| | - Elhama Jami
- Internal Medicine, Herat Regional Hospital, Herat, AFG
| | | | | | | | - Mustafa Arain
- Internal Medicine, Civil Hospital Karachi, Karachi, PAK
| |
Collapse
|
5
|
Sharma A, Choi J, Sim L, Dey A, Mohan M, Kantharidis P, Dietz L, Sandner P, de Haan JB. Ameliorating diabetes-associated atherosclerosis and diabetic nephropathy through modulation of soluble guanylate cyclase. Front Cardiovasc Med 2023; 10:1220095. [PMID: 37502180 PMCID: PMC10368983 DOI: 10.3389/fcvm.2023.1220095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Diabetes mellitus (DM) is an independent risk factor for micro- and macrovascular complications such as nephropathy and atherosclerosis respectively, which are the major causes of premature morbidity and mortality in Type 1 and Type 2 diabetic patients. Endothelial dysfunction is the critical first step of vascular disease and is characterized by reduced bioavailability of the essential endothelial vasodilator, nitric oxide (NO), coupled with an elevation in inflammation and oxidative stress. A novel pathway to bolster NO activity is to upregulate soluble guanylate cyclase (sGC), an enzyme responsible for mediating the protective actions of NO. Two classes of sGC modulators exist, activators and stimulators, with differing sensitivity to oxidative stress. In this study, we investigated the therapeutic effects of the sGC stimulator BAY 41-2272 (Bay 41) and the sGC activator BAY 60-2770 (Bay 60) on endpoints of atherosclerosis and renal disease as well as inflammation and oxidative stress in diabetic Apolipoprotein E knockout (ApoE-/-) mice. We hypothesized that under oxidative conditions known to accompany diabetes, sGC activation might be more efficacious than sGC stimulation in limiting diabetic vascular complications. We demonstrate that Bay 60 not only significantly decreased nitrotyrosine staining (P < 0.01) and F4/80 positive cells by 75% (P < 0.05), but it also significantly reduced total plaque area (P < 0.05) and improved endothelial function (P < 0.01). Our data suggest an important anti-atherogenic role for Bay 60 accompanied by reduced oxidative stress and inflammation under diabetic settings. Treatment with the stimulator Bay 41, on the other hand, had minimal effects or caused no changes with respect to cardiovascular or renal pathology. In the kidneys, treatment with Bay 60 significantly lessened urinary albuminuria, mesangial expansion and nitrotyrosine staining under diabetic conditions. In summary, our head-to-head comparator is the first preclinical study to show that a sGC activator is more efficacious than a sGC stimulator for the treatment of diabetes-associated vascular and renal complications.
Collapse
Affiliation(s)
- Arpeeta Sharma
- Cardiovascular Inflammation and Redox Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Diabetes, Monash University, Central Clinical School, Melbourne, VIC, Australia
| | - Judy Choi
- Cardiovascular Inflammation and Redox Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Lachlan Sim
- Cardiovascular Inflammation and Redox Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Abhiroop Dey
- Cardiovascular Inflammation and Redox Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Muthukumar Mohan
- Department of Diabetes, Monash University, Central Clinical School, Melbourne, VIC, Australia
| | - Phillip Kantharidis
- Department of Diabetes, Monash University, Central Clinical School, Melbourne, VIC, Australia
| | - Lisa Dietz
- Pharmaceuticals Research and Development, Bayer AG, Wuppertal, Germany
| | - Peter Sandner
- Pharmaceuticals Research and Development, Bayer AG, Wuppertal, Germany
- Institute of Pharmacology, Hannover Medical School, Hanover, Germany
| | - Judy B. de Haan
- Cardiovascular Inflammation and Redox Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
- Department Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Department Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, VIC, Australia
- Faculty of Science, Engineering and Technology, Swinburne University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Peh ZH, Dihoum A, Hutton D, Arthur JSC, Rena G, Khan F, Lang CC, Mordi IR. Inflammation as a therapeutic target in heart failure with preserved ejection fraction. Front Cardiovasc Med 2023; 10:1125687. [PMID: 37456816 PMCID: PMC10339321 DOI: 10.3389/fcvm.2023.1125687] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for around half of all cases of heart failure and may become the dominant type of heart failure in the near future. Unlike HF with reduced ejection fraction there are few evidence-based treatment strategies available. There is a significant unmet need for new strategies to improve clinical outcomes in HFpEF patients. Inflammation is widely thought to play a key role in HFpEF pathophysiology and may represent a viable treatment target. In this review focusing predominantly on clinical studies, we will summarise the role of inflammation in HFpEF and discuss potential therapeutic strategies targeting inflammation.
Collapse
Affiliation(s)
- Zhen Hui Peh
- School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom
| | - Adel Dihoum
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Dana Hutton
- School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom
| | - J. Simon C. Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Graham Rena
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Faisel Khan
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Chim C. Lang
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Ify R. Mordi
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
7
|
Leancă SA, Afrăsânie I, Crișu D, Matei IT, Duca ȘT, Costache AD, Onofrei V, Tudorancea I, Mitu O, Bădescu MC, Șerban LI, Costache II. Cardiac Reverse Remodeling in Ischemic Heart Disease with Novel Therapies for Heart Failure with Reduced Ejection Fraction. Life (Basel) 2023; 13:1000. [PMID: 37109529 PMCID: PMC10143569 DOI: 10.3390/life13041000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Despite the improvements in the treatment of coronary artery disease (CAD) and acute myocardial infarction (MI) over the past 20 years, ischemic heart disease (IHD) continues to be the most common cause of heart failure (HF). In clinical trials, over 70% of patients diagnosed with HF had IHD as the underlying cause. Furthermore, IHD predicts a worse outcome for patients with HF, leading to a substantial increase in late morbidity, mortality, and healthcare costs. In recent years, new pharmacological therapies have emerged for the treatment of HF, such as sodium-glucose cotransporter-2 inhibitors, angiotensin receptor-neprilysin inhibitors, selective cardiac myosin activators, and oral soluble guanylate cyclase stimulators, demonstrating clear or potential benefits in patients with HF with reduced ejection fraction. Interventional strategies such as cardiac resynchronization therapy, cardiac contractility modulation, or baroreflex activation therapy might provide additional therapeutic benefits by improving symptoms and promoting reverse remodeling. Furthermore, cardiac regenerative therapies such as stem cell transplantation could become a new therapeutic resource in the management of HF. By analyzing the existing data from the literature, this review aims to evaluate the impact of new HF therapies in patients with IHD in order to gain further insight into the best form of therapeutic management for this large proportion of HF patients.
Collapse
Affiliation(s)
- Sabina Andreea Leancă
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Irina Afrăsânie
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Daniela Crișu
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Iulian Theodor Matei
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ștefania Teodora Duca
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Alexandru Dan Costache
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Cardiovascular Rehabilitation, Clinical Rehabilitation Hospital, 700661 Iași, Romania
| | - Viviana Onofrei
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ionuţ Tudorancea
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ovidiu Mitu
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Minerva Codruța Bădescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Lăcrămioara Ionela Șerban
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Irina Iuliana Costache
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| |
Collapse
|
8
|
Wan J, Zhang Z, Tian S, Huang S, Jin H, Liu X, Zhang W. Single cell study of cellular diversity and mutual communication in chronic heart failure and drug repositioning. Genomics 2022; 114:110322. [PMID: 35219850 DOI: 10.1016/j.ygeno.2022.110322] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/05/2022] [Accepted: 02/19/2022] [Indexed: 01/14/2023]
Abstract
Non-cardiomyocytes (non-CMs) play an important role in the process of cardiac remodeling of chronic heart failure. The mechanism of non-CMs transit and interact with each other remains largely unknown. Here, we try to characterize the cellular landscape of non-CMs in mice with chronic heart failure by using single-cell RNA sequencing (scRNA-seq) and provide potential therapeutic hunts. Cellular and molecular analysis revealed that the most affected cellular types are mainly fibroblasts and endothelial cells. Specially, Fib_0 cluster, the most abundant cluster in fibroblasts, was the only increased one, enriched for collagen synthesis genes such as Adamts4 and Crem, which might be responsible for the fibrosis in cardiac remodeling. End_0 cluster in endothelial cells was also the most abundant and only increased one, which has an effect of blood vessel morphogenesis. Cell communication further confirmed that fibroblasts and endothelial cells are the driving hubs in chronic heart failure. Furthermore, using fibroblasts and endothelial cells as the entry point of CMap technology, histone deacetylation (HDAC) inhibitors and HSP inhibitors were identified as potential anti-heart failure new drugs, which should be evaluated in the future. The combined application of scRNA-seq and CMap might be an effective way to achieve drug repositioning.
Collapse
Affiliation(s)
- Jingjing Wan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Zhen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Saisai Tian
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Si Huang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Huizi Jin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Liu
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Weidong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; School of Pharmacy, Second Military Medical University, Shanghai, China.
| |
Collapse
|
9
|
Weber RE, Schulze KM, Colburn TD, Horn AG, Hageman KS, Ade CJ, Hall SE, Sandner P, Musch TI, Poole DC. Capillary hemodynamics and contracting skeletal muscle oxygen pressures in male rats with heart failure: Impact of soluble guanylyl cyclase activator. Nitric Oxide 2022; 119:1-8. [PMID: 34871799 PMCID: PMC9469501 DOI: 10.1016/j.niox.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/21/2021] [Accepted: 12/02/2021] [Indexed: 11/26/2022]
Abstract
In heart failure with reduced ejection fraction (HFrEF), nitric oxide-soluble guanylyl cyclase (sGC) pathway dysfunction impairs skeletal muscle arteriolar vasodilation and thus capillary hemodynamics, contributing to impaired oxygen uptake (V̇O2) kinetics. Targeting this pathway with sGC activators offers a new treatment approach to HFrEF. We tested the hypotheses that sGC activator administration would increase the O2 delivery (Q̇O2)-to-V̇O2 ratio in the skeletal muscle interstitial space (PO2is) of HFrEF rats during twitch contractions due, in part, to increases in red blood cell (RBC) flux (fRBC), velocity (VRBC), and capillary hematocrit (Hctcap). HFrEF was induced in male Sprague-Dawley rats via myocardial infarction. After 3 weeks, rats were treated with 0.3 mg/kg of the sGC activator BAY 60-2770 (HFrEF + BAY; n = 11) or solvent (HFrEF; n = 9) via gavage b.i.d for 5 days prior to phosphorescence quenching (PO2is, in contracting muscle) and intravital microscopy (resting) measurements in the spinotrapezius muscle. Intravital microscopy revealed higher fRBC (70 ± 9 vs 25 ± 8 RBC/s), VRBC (490 ± 43 vs 226 ± 35 μm/s), Hctcap (16 ± 1 vs 10 ± 1%) and a greater number of capillaries supporting flow (91 ± 3 vs 82 ± 3%) in HFrEF + BAY vs HFrEF (all P < 0.05). Additionally, PO2is was especially higher during 12-34s of contractions in HFrEF + BAY vs HFrEF (P < 0.05). Our findings suggest that sGC activators improved resting Q̇O2 via increased fRBC, VRBC, and Hctcap allowing for better Q̇O2-to-V̇O2 matching during the rest-contraction transient, supporting sGC activators as a potential therapeutic to target skeletal muscle vasomotor dysfunction in HFrEF.
Collapse
Affiliation(s)
- Ramona E Weber
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA.
| | - Kiana M Schulze
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Trenton D Colburn
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Andrew G Horn
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - K Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Carl J Ade
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Stephanie E Hall
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Peter Sandner
- Bayer AG, Cardiology Research, Wuppertal, Germany and Hannover Medical School, Department of Pharmacology, Hannover, Germany
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
10
|
Kraler S, Blaser MC, Aikawa E, Camici GG, Lüscher TF. Calcific aortic valve disease: from molecular and cellular mechanisms to medical therapy. Eur Heart J 2021; 43:683-697. [PMID: 34849696 DOI: 10.1093/eurheartj/ehab757] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/12/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a highly prevalent condition that comprises a disease continuum, ranging from microscopic changes to profound fibro-calcific leaflet remodelling, culminating in aortic stenosis, heart failure, and ultimately premature death. Traditional risk factors, such as hypercholesterolaemia and (systolic) hypertension, are shared among atherosclerotic cardiovascular disease and CAVD, yet the molecular and cellular mechanisms differ markedly. Statin-induced low-density lipoprotein cholesterol lowering, a remedy highly effective for secondary prevention of atherosclerotic cardiovascular disease, consistently failed to impact CAVD progression or to improve patient outcomes. However, recently completed phase II trials provide hope that pharmaceutical tactics directed at other targets implicated in CAVD pathogenesis offer an avenue to alter the course of the disease non-invasively. Herein, we delineate key players of CAVD pathobiology, outline mechanisms that entail compromised endothelial barrier function, and promote lipid homing, immune-cell infiltration, and deranged phospho-calcium metabolism that collectively perpetuate a pro-inflammatory/pro-osteogenic milieu in which valvular interstitial cells increasingly adopt myofibro-/osteoblast-like properties, thereby fostering fibro-calcific leaflet remodelling and eventually resulting in left ventricular outflow obstruction. We provide a glimpse into the most promising targets on the horizon, including lipoprotein(a), mineral-binding matrix Gla protein, soluble guanylate cyclase, dipeptidyl peptidase-4 as well as candidates involved in regulating phospho-calcium metabolism and valvular angiotensin II synthesis and ultimately discuss their potential for a future therapy of this insidious disease.
Collapse
Affiliation(s)
- Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,University Heart Center, Department of Cardiology, University Hospital, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Mark C Blaser
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA.,Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Ave Louis Pasteur, NRB7, Boston, MA 02115, USA
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,University Heart Center, Department of Cardiology, University Hospital, Rämistrasse 100, 8091 Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,Heart Division, Royal Brompton & Harefield Hospitals, Sydney Street, London SW3 6NP, UK.,National Heart and Lung Institute, Imperial College, Guy Scadding Building, Dovehouse Street, London SW3 6LY, UK
| |
Collapse
|
11
|
Cordwin DJ, Berei TJ, Pogue KT. The Role of sGC Stimulators and Activators in Heart Failure With Reduced Ejection Fraction. J Cardiovasc Pharmacol Ther 2021; 26:593-600. [PMID: 34487435 DOI: 10.1177/10742484211042706] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past decade, soluble guanylate cyclase (sGC) activators and stimulators have been developed and studied to improve outcomes in patients with heart failure with reduced ejection fraction (HFrEF). The sGC enzyme plays an important role in the nitric oxide (NO)-sGC-cyclic guanosine monophosphate (cGMP) pathway, that has been largely untargeted by current guideline directed medical therapy (GDMT) for HFrEF. Disruption of the NO-sCG-cGMP pathway can be widely observed in patients with HFrEF leading to endothelial dysfunction. The disruption is caused by an oxidized state resulting in low bioavailability of NO and cGMP. The increase in reactive oxygen species can also result in an oxidized, and subsequently heme free, sGC enzyme that NO is unable to activate, furthering the endothelial dysfunction. The novel sGC stimulators enhance the sensitivity of sGC to NO, and independently stimulate sGC, while the sGC activators target the oxidized and heme free sGC to stimulate cGMP production. This review will discuss the pathophysiologic basis for sGC stimulator and activator use in HFrEF, review the pre-clinical and clinical data, and propose a place in the HFrEF armamentarium for this novel pharmacotherapeutic class.
Collapse
Affiliation(s)
- David J Cordwin
- Department of Clinical Pharmacy, 15514University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Theodore J Berei
- Department of Pharmacy, 5228University of Wisconsin Hospitals and Clinics, Madison, WI, USA
| | - Kristen T Pogue
- Department of Clinical Pharmacy, 15514University of Michigan College of Pharmacy, Ann Arbor, MI, USA.,Department of Pharmacy, 15514University of Michigan Health, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Inserte J, Barrabés JA, Aluja D, Otaegui I, Bañeras J, Castellote L, Sánchez A, Rodríguez-Palomares JF, Pineda V, Miró-Casas E, Milà L, Lidón RM, Sambola A, Valente F, Rafecas A, Ruiz-Meana M, Rodríguez-Sinovas A, Benito B, Buera I, Delgado-Tomás S, Beneítez D, Ferreira-González I. Implications of Iron Deficiency in STEMI Patients and in a Murine Model of Myocardial Infarction. JACC Basic Transl Sci 2021; 6:567-580. [PMID: 34368505 PMCID: PMC8326269 DOI: 10.1016/j.jacbts.2021.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 11/26/2022]
Abstract
In patients with STEMI treated with primary percutaneous coronary intervention, iron deficiency is associated with larger infarcts, more extensive microvascular obstruction, and a higher frequency of adverse left ventricular remodeling. An iron-deficient diet reduces the tolerance to ischemia/reperfusion in mice at least in part by interfering with the cardioprotective pathway eNOS/soluble guanylate cyclase/protein kinase G. An iron-deficient diet reduces eNOS activity by increasing oxidative/nitrosative stress and its proteasome-dependent degradation. Not only iron excess but also iron deficiency may have deleterious effects in the context of acute myocardial ischemia.
In patients with a first anterior ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention, iron deficiency (ID) was associated with larger infarcts, more extensive microvascular obstruction, and higher frequency of adverse left ventricular remodeling as assessed by cardiac magnetic resonance imaging. In mice, an ID diet reduced the activity of the endothelial nitric oxide synthase/soluble guanylate cyclase/protein kinase G pathway in association with oxidative/nitrosative stress and increased infarct size after transient coronary occlusion. Iron supplementation or administration of an sGC activator before ischemia prevented the effects of the ID diet in mice. Not only iron excess, but also ID, may have deleterious effects in the setting of ischemia and reperfusion.
Collapse
Key Words
- CK-MB, creatine kinase-myocardial band
- CMR, cardiac magnetic resonance
- HSP90, heat-shock protein 90
- ID, iron deficiency
- LV, left ventricular
- MVO, microvascular obstruction
- PKG, protein kinase G
- STEMI, ST-segment elevation acute myocardial infarction
- STIR, short tau inversion recovery
- VASP, vasodilator-stimulated phosphoprotein
- acute myocardial infarction
- eNOS, endothelial nitric oxide synthase
- endothelial nitric oxide synthase
- iNOS, inducible nitric oxide synthase
- iron deficiency
- myocardial reperfusion
- sGC, soluble guanylyl cyclase
- soluble guanylate cyclase
Collapse
Affiliation(s)
- Javier Inserte
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - José A Barrabés
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - David Aluja
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Imanol Otaegui
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jordi Bañeras
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Laura Castellote
- Department of Biochemistry, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Ana Sánchez
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - José F Rodríguez-Palomares
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Víctor Pineda
- Institut de Diagnòstic per la Imatge, Barcelona, Spain
| | - Elisabet Miró-Casas
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Laia Milà
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Rosa-Maria Lidón
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Antonia Sambola
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Filipa Valente
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Agnès Rafecas
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Marisol Ruiz-Meana
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Antonio Rodríguez-Sinovas
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Begoña Benito
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Irene Buera
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Sara Delgado-Tomás
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - David Beneítez
- Department of Hematology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut d'Oncologia (VHIO), Barcelona, Spain
| | - Ignacio Ferreira-González
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
13
|
Garvin AM, Khokhar BS, Czubryt MP, Hale TM. RAS inhibition in resident fibroblast biology. Cell Signal 2020; 80:109903. [PMID: 33370581 DOI: 10.1016/j.cellsig.2020.109903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Angiotensin II (Ang II) is a primary mediator of profibrotic signaling in the heart and more specifically, the cardiac fibroblast. Ang II-mediated cardiomyocyte hypertrophy in combination with cardiac fibroblast proliferation, activation, and extracellular matrix production compromise cardiac function and increase mortality in humans. Profibrotic actions of Ang II are mediated by increasing production of fibrogenic mediators (e.g. transforming growth factor beta, scleraxis, osteopontin, and periostin), recruitment of immune cells, and via increased reactive oxygen species generation. Drugs that inhibit Ang II production or action, collectively referred to as renin angiotensin system (RAS) inhibitors, are first line therapeutics for heart failure. Moreover, transient RAS inhibition has been found to persistently alter hypertensive cardiac fibroblast responses to injury providing a useful tool to identify novel therapeutic targets. This review summarizes the profibrotic actions of Ang II and the known impact of RAS inhibition on cardiac fibroblast phenotype and cardiac remodeling.
Collapse
Affiliation(s)
- Alexandra M Garvin
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Bilal S Khokhar
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Michael P Czubryt
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA.
| |
Collapse
|
14
|
Rüdebusch J, Benkner A, Nath N, Fleuch L, Kaderali L, Grube K, Klingel K, Eckstein G, Meitinger T, Fielitz J, Felix SB. Stimulation of soluble guanylyl cyclase (sGC) by riociguat attenuates heart failure and pathological cardiac remodelling. Br J Pharmacol 2020; 179:2430-2442. [PMID: 33247945 DOI: 10.1111/bph.15333] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/16/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Heart failure is associated with an impaired NO-soluble guanylyl cyclase (sGC)-cGMP pathway and its augmentation is thought to be beneficial for its therapy. We hypothesized that stimulation of sGC by the sGC stimulator riociguat prevents pathological cardiac remodelling and heart failure in response to chronic pressure overload. EXPERIMENTAL APPROACH Transverse aortic constriction or sham surgery was performed in C57BL/6N mice. After 3 weeks of transverse aortic constriction when heart failure was established, animals receive either riociguat or its vehicle for 5 additional weeks. Cardiac function was evaluated weekly by echocardiography. Eight weeks after surgery, histological analyses were performed to evaluate remodelling and the transcriptome of the left ventricles (LVs) was analysed by RNA sequencing. Cell culture experiments were used for mechanistically studies. KEY RESULTS Transverse aortic constriction resulted in a continuous decrease of LV ejection fraction and an increase in LV mass until week 3. Five weeks of riociguat treatment resulted in an improved LV ejection fraction and a decrease in the ratio of left ventricular mass to total body weight (LVM/BW), myocardial fibrosis and myocyte cross-sectional area. RNA sequencing revealed that riociguat reduced the expression of myocardial stress and remodelling genes (e.g. Nppa, Nppb, Myh7 and collagen) and attenuated the activation of biological pathways associated with cardiac hypertrophy and heart failure. Riociguat reversed pathological stress response in cultivated myocytes and fibroblasts. CONCLUSION AND IMPLICATIONS Stimulation of the sGC reverses transverse aortic constriction-induced heart failure and remodelling, which is associated with improved myocardial gene expression.
Collapse
Affiliation(s)
- Julia Rüdebusch
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Alexander Benkner
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Neetika Nath
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Lina Fleuch
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Lars Kaderali
- DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany.,Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Karina Grube
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology, University Hospital Tübingen, Tübingen, Germany
| | - Gertrud Eckstein
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jens Fielitz
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Stephan B Felix
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| |
Collapse
|
15
|
Abstract
Heart failure (HF) is a common consequence of several cardiovascular diseases and is understood as a vicious cycle of cardiac and hemodynamic decline. The current inventory of treatments either alleviates the pathophysiological features (eg, cardiac dysfunction, neurohumoral activation, and ventricular remodeling) and/or targets any underlying pathologies (eg, hypertension and myocardial infarction). Yet, since these do not provide a cure, the morbidity and mortality associated with HF remains high. Therefore, the disease constitutes an unmet medical need, and novel therapies are desperately needed. Cyclic guanosine-3',5'-monophosphate (cGMP), synthesized by nitric oxide (NO)- and natriuretic peptide (NP)-responsive guanylyl cyclase (GC) enzymes, exerts numerous protective effects on cardiac contractility, hypertrophy, fibrosis, and apoptosis. Impaired cGMP signaling, which can occur after GC deactivation and the upregulation of cyclic nucleotide-hydrolyzing phosphodiesterases (PDEs), promotes cardiac dysfunction. In this study, we review the role that NO/cGMP and NP/cGMP signaling plays in HF. After considering disease etiology, the physiological effects of cGMP in the heart are discussed. We then assess the evidence from preclinical models and patients that compromised cGMP signaling contributes to the HF phenotype. Finally, the potential of pharmacologically harnessing cardioprotective cGMP to rectify the present paucity of effective HF treatments is examined.
Collapse
|
16
|
Li X, Zhang W, Cao Q, Wang Z, Zhao M, Xu L, Zhuang Q. Mitochondrial dysfunction in fibrotic diseases. Cell Death Discov 2020; 6:80. [PMID: 32963808 PMCID: PMC7474731 DOI: 10.1038/s41420-020-00316-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/13/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022] Open
Abstract
Although fibrosis is a common pathological feature of most end-stage organ diseases, its pathogenesis remains unclear. There is growing evidence that mitochondrial dysfunction contributes to the development and progression of fibrosis. The heart, liver, kidney and lung are highly oxygen-consuming organs that are sensitive to mitochondrial dysfunction. Moreover, the fibrotic process of skin and islet is closely related to mitochondrial dysfunction as well. This review summarized emerging mechanisms related to mitochondrial dysfunction in different fibrotic organs and tissues above. First, it highlighted the important elucidation of mitochondria morphological changes, mitochondrial membrane potential and structural damage, mitochondrial DNA (mtDNA) damage and reactive oxidative species (ROS) production, etc. Second, it introduced the abnormality of mitophagy and mitochondrial transfer also contributed to the fibrotic process. Therefore, with gaining the increasing knowledge of mitochondrial structure, function, and origin, we could kindle a new era for the diagnostic and therapeutic strategies of many fibrotic diseases based on mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xinyu Li
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, 410013 Changsha, Hunan China
- Xiangya School of Medicine, Central South University, 410013 Changsha, Hunan China
| | - Wei Zhang
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, 410013 Changsha, Hunan China
- Xiangya School of Medicine, Central South University, 410013 Changsha, Hunan China
| | - Qingtai Cao
- Hunan Normal University School of Medicine, 410013 Changsha, Hunan China
| | - Zeyu Wang
- Xiangya School of Medicine, Central South University, 410013 Changsha, Hunan China
| | - Mingyi Zhao
- Pediatric Department of the 3rd Xiangya Hospital, Central South University, 410013 Changsha, Hunan China
| | - Linyong Xu
- School of Life Science, Central South University, 410013 Changsha, Hunan China
| | - Quan Zhuang
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, 410013 Changsha, Hunan China
- Research Center of National Health Ministry on Transplantation Medicine, 410013 Changsha, Hunan China
| |
Collapse
|
17
|
Bauersachs J, Nitschmann S. Vericiguat – neue Therapieoption für Patienten mit Herzinsuffizienz. Internist (Berl) 2020; 61:989-991. [DOI: 10.1007/s00108-020-00828-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Li X, Wei C, Zhang Z, Jin Q, Xiao X. MiR-134-5p Regulates Myocardial Apoptosis and Angiogenesis by Directly Targeting KDM2A After Myocardial Infarction. Int Heart J 2020; 61:815-821. [DOI: 10.1536/ihj.19-468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Xue Li
- Department of Heart Disease, Affiliated Hospital to Changchun University of Chinese Medicine
| | - Caiwen Wei
- Department of Cardiology, Chongming Branch Xinhua Hospital affiliated to Medical College of Shanghai Jiaotong University
| | - Zhaozhi Zhang
- Department of Heart Disease, Affiliated Hospital to Changchun University of Chinese Medicine
| | - Qu Jin
- Department of Heart Disease, Affiliated Hospital to Changchun University of Chinese Medicine
| | - Xue Xiao
- Department of Heart Disease, Affiliated Hospital to Changchun University of Chinese Medicine
| |
Collapse
|
19
|
Riehle C, Bauersachs J. Small animal models of heart failure. Cardiovasc Res 2020; 115:1838-1849. [PMID: 31243437 PMCID: PMC6803815 DOI: 10.1093/cvr/cvz161] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022] Open
Abstract
Heart disease is a major cause of death worldwide with increasing prevalence, which urges the development of new therapeutic strategies. Over the last few decades, numerous small animal models have been generated to mimic various pathomechanisms contributing to heart failure (HF). Despite some limitations, these animal models have greatly advanced our understanding of the pathogenesis of the different aetiologies of HF and paved the way to understanding the underlying mechanisms and development of successful treatments. These models utilize surgical techniques, genetic modifications, and pharmacological approaches. The present review discusses the strengths and limitations of commonly used small animal HF models, which continue to provide crucial insight and facilitate the development of new treatment strategies for patients with HF.
Collapse
Affiliation(s)
- Christian Riehle
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
| |
Collapse
|
20
|
Xiao S, Li Q, Hu L, Yu Z, Yang J, Chang Q, Chen Z, Hu G. Soluble Guanylate Cyclase Stimulators and Activators: Where are We and Where to Go? Mini Rev Med Chem 2019; 19:1544-1557. [PMID: 31362687 DOI: 10.2174/1389557519666190730110600] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/05/2019] [Accepted: 04/20/2019] [Indexed: 02/04/2023]
Abstract
Soluble Guanylate Cyclase (sGC) is the intracellular receptor of Nitric Oxide (NO). The activation of sGC results in the conversion of Guanosine Triphosphate (GTP) to the secondary messenger cyclic Guanosine Monophosphate (cGMP). cGMP modulates a series of downstream cascades through activating a variety of effectors, such as Phosphodiesterase (PDE), Protein Kinase G (PKG) and Cyclic Nucleotide-Gated Ion Channels (CNG). NO-sGC-cGMP pathway plays significant roles in various physiological processes, including platelet aggregation, smooth muscle relaxation and neurotransmitter delivery. With the approval of an sGC stimulator Riociguat for the treatment of Pulmonary Arterial Hypertension (PAH), the enthusiasm in the discovery of sGC modulators continues for broad clinical applications. Notably, through activating the NO-sGC-cGMP pathway, sGC stimulator and activator potentiate for the treatment of various diseases, such as PAH, Heart Failure (HF), Diabetic Nephropathy (DN), Systemic Sclerosis (SS), fibrosis as well as other diseases including Sickle Cell Disease (SCD) and Central Nervous System (CNS) disease. Here, we review the preclinical and clinical studies of sGC stimulator and activator in recent years and prospect for the development of sGC modulators in the near future.
Collapse
Affiliation(s)
- Sijia Xiao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Liqing Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Zutao Yu
- Department of Chemistry, Graduate School of Science Kyoto University Kitashirakawa- Oiwakecho, Sakyo-Ku, kyoto, Japan
| | - Jie Yang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Qi Chang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| |
Collapse
|
21
|
Kalinovic S, Oelze M, Kröller-Schön S, Steven S, Vujacic-Mirski K, Kvandová M, Schmal I, Al Zuabi A, Münzel T, Daiber A. Comparison of Mitochondrial Superoxide Detection Ex Vivo/In Vivo by mitoSOX HPLC Method with Classical Assays in Three Different Animal Models of Oxidative Stress. Antioxidants (Basel) 2019; 8:E514. [PMID: 31661873 PMCID: PMC6912540 DOI: 10.3390/antiox8110514] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Reactive oxygen and nitrogen species (RONS such as H2O2, nitric oxide) are generated within the organism. Whereas physiological formation rates confer redox regulation of essential cellular functions and provide the basis for adaptive stress responses, their excessive formation contributes to impaired cellular function or even cell death, organ dysfunction and severe disease phenotypes of the entire organism. Therefore, quantification of RONS formation and knowledge of their tissue/cell/compartment-specific distribution is of great biological and clinical importance. METHODS Here, we used a high-performance/pressure liquid chromatography (HPLC) assay to quantify the superoxide-specific oxidation product of the mitochondria-targeted fluorescence dye triphenylphosphonium-linked hydroethidium (mitoSOX) in biochemical systems and three animal models with established oxidative stress. Type 1 diabetes (single injection of streptozotocin), hypertension (infusion of angiotensin-II for 7 days) and nitrate tolerance (infusion of nitroglycerin for 4 days) was induced in male Wistar rats. RESULTS The usefulness of mitoSOX/HPLC for quantification of mitochondrial superoxide was confirmed by xanthine oxidase activity as well as isolated stimulated rat heart mitochondria in the presence or absence of superoxide scavengers. Vascular function was assessed by isometric tension methodology and was impaired in the rat models of oxidative stress. Vascular dysfunction correlated with increased mitoSOX oxidation but also classical RONS detection assays as well as typical markers of oxidative stress. CONCLUSION mitoSOX/HPLC represents a valid method for detection of mitochondrial superoxide formation in tissues of different animal disease models and correlates well with functional parameters and other markers of oxidative stress.
Collapse
Affiliation(s)
- Sanela Kalinovic
- Center for Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany.
| | - Matthias Oelze
- Center for Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany.
| | - Swenja Kröller-Schön
- Center for Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany.
| | - Sebastian Steven
- Center for Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany.
| | - Ksenija Vujacic-Mirski
- Center for Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany.
| | - Miroslava Kvandová
- Center for Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany.
| | - Isabella Schmal
- Center for Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany.
| | - Ahmad Al Zuabi
- Center for Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany.
| | - Thomas Münzel
- Center for Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany.
- Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Andreas Daiber
- Center for Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany.
- Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
22
|
Golshiri K, Ataei Ataabadi E, Portilla Fernandez EC, Jan Danser AH, Roks AJM. The importance of the nitric oxide-cGMP pathway in age-related cardiovascular disease: Focus on phosphodiesterase-1 and soluble guanylate cyclase. Basic Clin Pharmacol Toxicol 2019; 127:67-80. [PMID: 31495057 DOI: 10.1111/bcpt.13319] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022]
Abstract
Among ageing-related illnesses, cardiovascular disease (CVD) remains the leading cause of morbidity and mortality causing one-third of all deaths worldwide. Ageing evokes a number of functional, pharmacological and morphological changes in the vasculature, accompanied by a progressive failure of protective and homeostatic mechanisms, resulting in target organ damage. Impaired vasomotor, proliferation, migration, antithrombotic and anti-inflammatory function in both the endothelial and vascular smooth muscle cells are parts of the vascular ageing phenotype. The endothelium regulates these functions by the release of a wide variety of active molecules including endothelium-derived relaxing factors such as nitric oxide, prostacyclin (PGI2 ) and endothelium-derived hyperpolarization (EDH). During ageing, a functional decay of the nitric oxide pathway takes place. Nitric oxide signals to VSMC and other important cell types for vascular homeostasis through the second messenger cyclic guanosine monophosphate (cGMP). Maintenance of proper cGMP levels is an important goal in sustainment of proper vascular function during ageing. For this purpose, different components can be targeted in this signalling system, and among them, phosphodiesterase-1 (PDE1) and soluble guanylate cyclase (sGC) are crucial. This review focuses on the role of PDE1 and sGC in conditions that are relevant for vascular ageing.
Collapse
Affiliation(s)
- Keivan Golshiri
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ehsan Ataei Ataabadi
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eliana C Portilla Fernandez
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Anton J M Roks
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
23
|
Abstract
Inflammation plays a central role in the development of heart failure, especially in heart failure with preserved ejection fraction (HFpEF). Furthermore, the inflammatory response enables the induction of regenerative processes following acute myocardial injury. Recent studies in humans and animals have greatly advanced our understanding of the underlying mechanisms behind these adaptations. Importantly, inflammation can have both beneficial and detrimental effects, dependent on its extent, localization, and duration. Therefore, modulation of cardiac inflammation has been suggested as an attractive target for the treatment of heart failure, which has been investigated in numerous clinical trials. This review discusses key inflammatory mechanisms contributing to the pathogenesis of heart failure and their potential impact as therapeutic targets.
Collapse
Affiliation(s)
- C Riehle
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - J Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
24
|
Li J, Xu X, Zhou X, Dai J, Ma L, Chen C, Li X, Mao W. Cardiovascular events associated with nicorandil administration prior to primary percutaneous coronary intervention in patients with acute ST-segment elevated myocardial infarction: a systematic review and meta-analysis. Expert Opin Drug Saf 2019; 18:537-547. [PMID: 31117845 DOI: 10.1080/14740338.2019.1617848] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiaying Li
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaoming Xu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xinbin Zhou
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jin Dai
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lan Ma
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chen Chen
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xinyao Li
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wei Mao
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
Michels da Silva D, Langer H, Graf T. Inflammatory and Molecular Pathways in Heart Failure-Ischemia, HFpEF and Transthyretin Cardiac Amyloidosis. Int J Mol Sci 2019; 20:ijms20092322. [PMID: 31083399 PMCID: PMC6540104 DOI: 10.3390/ijms20092322] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
Elevated pro-inflammatory biomarkers and cytokines are associated with morbidity and mortality in heart failure (HF). Preclinical and clinical studies have shown multiple inflammatory mechanisms causing cardiac remodeling, dysfunction and chronic failure. Therapeutics in trials targeting the immune response in heart failure and its effects did not result in evident benefits regarding clinical endpoints and mortality. This review elaborates pathways of immune cytokines in pathogenesis and worsening of heart failure in clinical and cellular settings. Besides the well-known mechanisms of immune activation and inflammation in atherosclerosis causing ischemic cardiomyopathy or myocarditis, attention is focused on other mechanisms leading to heart failure such as transthyretin (TTR) amyloidosis or heart failure with preserved ejection fraction. The knowledge of the pathogenesis in heart failure and amyloidosis on a molecular and cellular level might help to highlight new disease defining biomarkers and to lead the way to new therapeutic targets.
Collapse
Affiliation(s)
- Diana Michels da Silva
- Department of Cardiology, Angiology and Intensive Care, Medicine Medical Clinic II, University Heart Center Lübeck, 23562 Lübeck, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany.
| | - Harald Langer
- Department of Cardiology, Angiology and Intensive Care, Medicine Medical Clinic II, University Heart Center Lübeck, 23562 Lübeck, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany.
| | - Tobias Graf
- Department of Cardiology, Angiology and Intensive Care, Medicine Medical Clinic II, University Heart Center Lübeck, 23562 Lübeck, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany.
| |
Collapse
|
26
|
Sawabe T, Chiba T, Kobayashi A, Nagasaka K, Aihara K, Takaya A. A novel soluble guanylate cyclase activator with reduced risk of hypotension by short-acting vasodilation. Pharmacol Res Perspect 2019; 7:e00463. [PMID: 30873284 PMCID: PMC6399102 DOI: 10.1002/prp2.463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/30/2018] [Accepted: 12/18/2018] [Indexed: 02/04/2023] Open
Abstract
Cinaciguat, a soluble guanylate cyclase (sGC) activator, was under clinical development for use in acute decompensated heart failure (ADHF), but was discontinued due to occurrence of hypotension. We hypothesized that short-term activation of sGC in ADHF patients would exert a vasodilative effect without hypotension irrespective of disease state, using a novel short-acting sGC activator, TY-55002. The objective of this study was to investigate the vasodilation and hemodynamic effects of TY-55002 in comparison with those of cinaciguat. TY-55002 and cinaciguat activated both normal and heme-oxidized sGC in a dose-dependent manner and caused rapid relaxation of phenylephrine-contracted rat aorta. However, TY-55002 had a milder effect than cinaciguat in enhancing the dose-activity response between normal and oxidized sGC. Therefore, we suggest that the pharmacological effect of TY-55002 is less subject than cinaciguat to oxidative stress associated with complications such as cardiovascular disease or diabetes. In normal dogs, the effects of intravenous TY-55002 or cinaciguat on blood pressure were evaluated in conjunction with the plasma concentrations of the compounds, and pharmacokinetic (PK)-pharmacodynamic (PD) analyses were carried out. The plasma-to-effect-site transfer rate constant (Ke0) for TY-55002 was three times greater than for cinaciguat. On the other hand, there was a small difference in blood half-life (T1/2) between the compounds. It is possible that the rapid fall in blood pressure after the initial administration of TY-55002 and the quick recovery after cessation were due to the pharmacodynamic property of the compound. In heart failure-model dogs, TY-55002 and cinaciguat improved the condition to the same degree, and the short-term action of TY-55002 was replicated. In conclusion, TY-55002 is a novel short-acting sGC activator, which offers the possibility of easy dose management without excessive hypotension. It therefore holds potential to serve as an innovative drug in the pharmacotherapy of ADHF.
Collapse
Affiliation(s)
- Toshihiro Sawabe
- R&D DepartmentTOA EIYO LTD.Fukushima Research LaboratoriesFukushimaJapan
| | - Toshiki Chiba
- R&D DepartmentTOA EIYO LTD.Fukushima Research LaboratoriesFukushimaJapan
| | - Akihiro Kobayashi
- R&D DepartmentTOA EIYO LTD.Fukushima Research LaboratoriesFukushimaJapan
| | - Kosuke Nagasaka
- R&D DepartmentTOA EIYO LTD.Fukushima Research LaboratoriesFukushimaJapan
| | - Kazuyuki Aihara
- R&D DepartmentTOA EIYO LTD.Fukushima Research LaboratoriesFukushimaJapan
| | - Akiyuki Takaya
- R&D DepartmentTOA EIYO LTD.Tokyo Research LaboratoriesSaitamaJapan
| |
Collapse
|
27
|
Ruppert M, Korkmaz-Icöz S, Li S, Brlecic P, Németh BT, Oláh A, Horváth EM, Veres G, Pleger S, Grabe N, Merkely B, Karck M, Radovits T, Szabó G. Comparison of the Reverse-Remodeling Effect of Pharmacological Soluble Guanylate Cyclase Activation With Pressure Unloading in Pathological Myocardial Left Ventricular Hypertrophy. Front Physiol 2019; 9:1869. [PMID: 30670980 PMCID: PMC6331535 DOI: 10.3389/fphys.2018.01869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022] Open
Abstract
Background: Pressure unloading induces the regression of left ventricular myocardial hypertrophy (LVH). Recent findings indicate that pharmacological activation of the soluble guanylate cyclase (sGC) – cyclic guanosine monophosphate (cGMP) pathway may also exert reverse-remodeling properties in the myocardium. Therefore, we aimed to investigate the effects of the sGC activator cinaciguat in a rat model of LVH and compare it to the “gold standard” pressure unloading therapy. Methods: Abdominal aortic banding was performed for 6 or 12 weeks. Sham operated animals served as controls. Pressure unloading was induced by removing the aortic constriction after week 6. The animals were treated from week 7 to 12, with 10 mg/kg/day cinaciguat or with placebo p.o., respectively. Cardiac function and morphology were assessed by left ventricular pressure-volume analysis and echocardiography. Additionally, key markers of myocardial hypertrophy, fibrosis, nitro-oxidative stress, apoptosis and cGMP signaling were analyzed. Results: Pressure unloading effectively reversed LVH, decreased collagen accumulation and provided protection against oxidative stress and apoptosis. Regression of LVH was also associated with a full recovery of cardiac function. In contrast, chronic activation of the sGC enzyme by cinaciguat at sustained pressure overload only slightly influenced pre-established hypertrophy. However, it led to increased PKG activity and had a significant impact on interstitial fibrosis, nitro-oxidative stress and apoptosis. Amelioration of the pathological structural alterations prevented the deterioration of LV systolic function (contractility and ejection fraction) and improved myocardial stiffness. Conclusion: Our results indicate that both cinaciguat treatment and pressure unloading evoked anti-remodeling effects and improved LV function, however in a differing manners.
Collapse
Affiliation(s)
- Mihály Ruppert
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Budapest, Hungary.,Laboratory of Experimental Cardiac Surgery, Department of Cardiac Surgery, Heidelberg University, Heidelberg, Germany
| | - Sevil Korkmaz-Icöz
- Laboratory of Experimental Cardiac Surgery, Department of Cardiac Surgery, Heidelberg University, Heidelberg, Germany
| | - Shiliang Li
- Laboratory of Experimental Cardiac Surgery, Department of Cardiac Surgery, Heidelberg University, Heidelberg, Germany
| | - Paige Brlecic
- Laboratory of Experimental Cardiac Surgery, Department of Cardiac Surgery, Heidelberg University, Heidelberg, Germany
| | - Balázs Tamás Németh
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Attila Oláh
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Eszter M Horváth
- Laboratory of Oxidative Stress, Department of Physiology, Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Gábor Veres
- Laboratory of Experimental Cardiac Surgery, Department of Cardiac Surgery, Heidelberg University, Heidelberg, Germany
| | - Sven Pleger
- Laboratory for Molecular and Translational Cardiology, Department of Cardiology, Angiology and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany
| | - Niels Grabe
- Research Group on Epidermal Systems Biology, Hamamatsu Tissue Imaging and Analysis Center, Bioquant, Heidelberg University, Heidelberg, Germany.,National Center for Tumor Diseases, Medical Oncology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Béla Merkely
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Matthias Karck
- Laboratory of Experimental Cardiac Surgery, Department of Cardiac Surgery, Heidelberg University, Heidelberg, Germany
| | - Tamás Radovits
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Gábor Szabó
- Laboratory of Experimental Cardiac Surgery, Department of Cardiac Surgery, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
28
|
Schantl AE, Ivarsson ME, Leroux JC. Investigational Pharmacological Treatments for Vascular Calcification. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800094] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Antonia E. Schantl
- Institute of Pharmaceutical Sciences; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | | | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| |
Collapse
|
29
|
Donda K, Zambrano R, Moon Y, Percival J, Vaidya R, Dapaah-Siakwan F, Luo S, Duncan MR, Bao Y, Wang L, Qin L, Benny M, Young K, Wu S. Riociguat prevents hyperoxia-induced lung injury and pulmonary hypertension in neonatal rats without effects on long bone growth. PLoS One 2018; 13:e0199927. [PMID: 29990355 PMCID: PMC6038999 DOI: 10.1371/journal.pone.0199927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/15/2018] [Indexed: 02/07/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains the most common and serious chronic lung disease of premature infants. Severe BPD complicated with pulmonary hypertension (PH) increases the mortality of these infants. Riociguat is an allosteric soluble guanylate cyclase stimulator and is approved by the FDA for treating PH in adults. However, it has not been approved for use in neonates due to concern for adverse effects on long bone growth. To address this concern we investigated if administration of riociguat is beneficial in preventing hyperoxia-induced lung injury and PH without side effects on long bone growth in newborn rats. Newborn rats were randomized to normoxia (21% O2) or hyperoxia (85% O2) exposure groups within 24 hours of birth, and received riociguat or placebo by once daily intraperitoneal injections during continuous normoxia or hyperoxia exposure for 9 days. In the hyperoxia control group, radial alveolar count, mean linear intercept and vascular density were significantly decreased, the pathological hallmarks of BPD, and these were accompanied by an increased inflammatory response. There was also significantly elevated vascular muscularization of peripheral pulmonary vessels, right ventricular systolic pressure and right ventricular hypertrophy indicating PH. However, administration of riociguat significantly decreased lung inflammation, improved alveolar and vascular development, and decreased PH during hyperoxia by inducing cGMP production. Additionally, riociguat did not affect long bone growth or structure. These data indicate that riociguat is beneficial in preventing hyperoxia-induced lung injury and PH without affecting long bone growth and structure and hence, suggests riociguat may be a potential novel agent for preventing BPD and PH in neonates.
Collapse
Affiliation(s)
- Keyur Donda
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Ronald Zambrano
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Younghye Moon
- Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Justin Percival
- Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Ruben Vaidya
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Fredrick Dapaah-Siakwan
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Shihua Luo
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Matthew R. Duncan
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Yong Bao
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Luqing Wang
- Department of Orthopedic Surgery, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ling Qin
- Department of Orthopedic Surgery, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Merline Benny
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Karen Young
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Shu Wu
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
30
|
cGMP at the centre of attention: emerging strategies for activating the cardioprotective PKG pathway. Basic Res Cardiol 2018; 113:24. [PMID: 29766323 PMCID: PMC5954070 DOI: 10.1007/s00395-018-0679-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022]
Abstract
The nitric oxide (NO)-protein kinase G (PKG) pathway has been known for some time to be an important target for cardioprotection against ischaemia/reperfusion injury and heart failure. While many approaches for reducing infarct size in patients have failed in the past, the advent of novel drugs that modulate cGMP and its downstream targets shows very promising results in recent preclinical and clinical studies. Here, we review main aspects of the NO-PKG pathway in light of recent drug development and summarise potential cardioprotective strategies in which cGMP is the main player.
Collapse
|
31
|
Singh P, Vijayakumar S, Kalogeroupoulos A, Butler J. Multiple Avenues of Modulating the Nitric Oxide Pathway in Heart Failure Clinical Trials. Curr Heart Fail Rep 2018; 15:44-52. [DOI: 10.1007/s11897-018-0383-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Fang QQ, Wang XF, Zhao WY, Ding SL, Shi BH, Xia Y, Yang H, Wu LH, Li CY, Tan WQ. Angiotensin-converting enzyme inhibitor reduces scar formation by inhibiting both canonical and noncanonical TGF-β1 pathways. Sci Rep 2018; 8:3332. [PMID: 29463869 PMCID: PMC5820264 DOI: 10.1038/s41598-018-21600-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 02/07/2018] [Indexed: 12/26/2022] Open
Abstract
Angiotensin-converting enzyme inhibitors (ACEIs) can improve the fibrotic processes in many internal organs. Recent studies have shown a relationship between ACEI with cutaneous scar formation, although it has not been confirmed, and the underlying mechanism is unclear. In this study, we cultured mouse NIH 3T3 fibroblasts with different concentrations of ACEI. We measured cell proliferation with a Cell Counting Kit-8 and collagen expression with a Sirius Red Collagen Detection Kit. Flow cytometry and western blotting were used to detect transforming growth factor β1 (TGF-β1) signaling. We also confirmed the potential antifibrotic activity of ACEI in a rat scar model. ACEI reduced fibroblast proliferation, suppressed collagen and TGF-β1 expression, and downregulated the phosphorylation of SMAD2/3 and TAK1, both in vitro and in vivo. A microscopic examination showed that rat scars treated with ramipril or losartan were not only narrower than in the controls, but also displayed enhanced re-epithelialization and neovascularization, and the formation of organized granulation tissue. These data indicate that ACEI inhibits scar formation by suppressing both TGF-β1/SMAD2/3 and TGF-β1/TAK1 pathways, and may have clinical utility in the future.
Collapse
Affiliation(s)
- Qing-Qing Fang
- Department of Plastic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Department of Plastic Surgery, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu, Zhejiang Province, PR China.,Department of Plastic Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Xiao-Feng Wang
- Department of Plastic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Department of Plastic Surgery, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu, Zhejiang Province, PR China.,Department of Plastic Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Wan-Yi Zhao
- Department of Plastic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Department of Plastic Surgery, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu, Zhejiang Province, PR China.,Department of Plastic Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Shi-Li Ding
- Department of Hand Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Bang-Hui Shi
- Department of Plastic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Department of Plastic Surgery, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu, Zhejiang Province, PR China.,Department of Plastic Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Ying Xia
- Department of Plastic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Department of Plastic Surgery, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu, Zhejiang Province, PR China.,Department of Plastic Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Hu Yang
- Department of Hand Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Li-Hong Wu
- Department of Plastic Surgery, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu, Zhejiang Province, PR China
| | - Cai-Yun Li
- Department of Plastic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China. .,Department of Plastic Surgery, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu, Zhejiang Province, PR China. .,Department of Plastic Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
33
|
Crassous PA, Shu P, Huang C, Gordan R, Brouckaert P, Lampe PD, Xie LH, Beuve A. Newly Identified NO-Sensor Guanylyl Cyclase/Connexin 43 Association Is Involved in Cardiac Electrical Function. J Am Heart Assoc 2017; 6:e006397. [PMID: 29269353 PMCID: PMC5778997 DOI: 10.1161/jaha.117.006397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/05/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Guanylyl cyclase, a heme-containing α1β1 heterodimer (GC1), produces cGMP in response to Nitric oxide (NO) stimulation. The NO-GC1-cGMP pathway negatively regulates cardiomyocyte contractility and protects against cardiac hypertrophy-related remodeling. We recently reported that the β1 subunit of GC1 is detected at the intercalated disc with connexin 43 (Cx43). Cx43 forms gap junctions (GJs) at the intercalated disc that are responsible for electrical propagation. We sought to determine whether there is a functional association between GC1 and Cx43 and its role in cardiac homeostasis. METHODS AND RESULTS GC1 and Cx43 immunostaining at the intercalated disc and coimmunoprecipitation from membrane fraction indicate that GC1 and Cx43 are associated. Mice lacking the α subunit of GC1 (GCα1 knockout mice) displayed a significant decrease in GJ function (dye-spread assay) and Cx43 membrane lateralization. In a cardiac-hypertrophic model, angiotensin II treatment disrupted the GC1-Cx43 association and induced significant Cx43 membrane lateralization, which was exacerbated in GCα1 knockout mice. Cx43 lateralization correlated with decreased Cx43-containing GJs at the intercalated disc, predictors of electrical dysfunction. Accordingly, an ECG revealed that angiotensin II-treated GCα1 knockout mice had impaired ventricular electrical propagation. The phosphorylation level of Cx43 at serine 365, a protein-kinase A upregulated site involved in trafficking/assembly of GJs, was decreased in these models. CONCLUSIONS GC1 modulates ventricular Cx43 location, hence GJ function, and partially protects from electrical dysfunction in an angiotensin II hypertrophy model. Disruption of the NO-cGMP pathway is associated with cardiac electrical disturbance and abnormal Cx43 phosphorylation. This previously unknown NO/Cx43 signaling could be a protective mechanism against stress-induced arrhythmia.
Collapse
Affiliation(s)
- Pierre-Antoine Crassous
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ
| | - Ping Shu
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ
| | - Can Huang
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ
| | - Richard Gordan
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School-Rutgers, Newark, NJ
| | - Peter Brouckaert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Paul D Lampe
- Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School-Rutgers, Newark, NJ
| | - Annie Beuve
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ
| |
Collapse
|
34
|
Breitenstein S, Roessig L, Sandner P, Lewis KS. Novel sGC Stimulators and sGC Activators for the Treatment of Heart Failure. Handb Exp Pharmacol 2017; 243:225-247. [PMID: 27900610 DOI: 10.1007/164_2016_100] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The burden of heart failure (HF) increases worldwide with an aging population, and there is a high unmet medical need in both, heart failure with reduced ejection fraction (HFrEF) and with preserved ejection fraction (HFpEF). The nitric oxide (NO) pathway is a key regulator in the cardiovascular system and modulates vascular tone and myocardial performance. Disruption of the NO-cyclic guanosine monophosphate (cGMP) signaling axis and impaired cGMP formation by endothelial dysfunction could lead to vasotone dysregulation, vascular and ventricular stiffening, fibrosis, and hypertrophy resulting in a decline of heart as well as kidney function. Therefore, the NO-cGMP pathway is a treatment target in heart failure. Exogenous NO donors such as nitrates have long been used for treatment of cardiovascular diseases but turned out to be limited by increased oxidative stress and tolerance. More recently, novel classes of drugs were discovered which enhance cGMP production by targeting the NO receptor soluble guanylate cyclase (sGC). These compounds, the so-called sGC stimulators and sGC activators, are able to increase the enzymatic activity of sGC to generate cGMP independently of NO and have been developed to target this important signaling cascade in the cardiovascular system.This review will focus on the role of sGC in cardiovascular (CV) physiology and disease and the pharmacological potential of sGC stimulators and sGC activators therein. Preclinical data will be reviewed and summarized, and available clinical data with riociguat and vericiguat, novel direct sGC stimulators, will be presented. Vericiguat is currently being studied in a Phase III clinical program for the treatment of heart failure with reduced ejection fraction (HFrEF).
Collapse
|
35
|
Neuroprotective potential of high-dose biotin. Med Hypotheses 2017; 109:145-149. [PMID: 29150274 DOI: 10.1016/j.mehy.2017.10.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/28/2017] [Accepted: 10/13/2017] [Indexed: 01/28/2023]
Abstract
A recent controlled trial has established that high-dose biotin supplementation - 100 mg, three times daily - has a stabilizing effect on progression of multiple sclerosis (MS). Although this effect has been attributed to an optimization of biotin's essential cofactor role in the brain, a case can be made that direct stimulation of soluble guanylate cyclase (sGC) by pharmacological concentrations of biotin plays a key role in this regard. The utility of high-dose biotin in MS might reflect an anti-inflammatory effect of cGMP on the cerebral microvasculature, as well on oligodendrocyte differentiation and on Schwann cell production of neurotrophic factors thought to have potential for managing MS. But biotin's ability to boost cGMP synthesis in the brain may have broader neuroprotective potential. In many types of neurons and neural cells, cGMP exerts neurotrophic-mimetic effects - entailing activation of the PI3K-Akt and Ras-ERK pathways - that promote neuron survival and plasticity. Hippocampal long term potentiation requires nitric oxide synthesis, which in turn promotes an activating phosphorylation of CREB via a pathway involving cGMP and protein kinase G (PKG). In Alzheimer's disease (AD), amyloid beta suppresses this mechanism by inhibiting sGC activity; agents which exert a countervailing effect by boosting cGMP levels tend to restore effective long-term potentiation in rodent models of AD. Moreover, NO/cGMP suppresses amyloid beta production within the brain by inhibiting expression of amyloid precursor protein and BACE1. In conjunction with cGMP's ability to oppose neuron apoptosis, these effects suggest that high-dose biotin might have potential for the prevention and management of AD. cGMP also promotes neurogenesis, and may lessen stroke risk by impeding atherogenesis and hypertrophic remodeling in the cerebral vasculature. The neuroprotective potential of high-dose biotin likely could be boosted by concurrent administration of brain-permeable phosphodiesterase-5 inhibitors.
Collapse
|
36
|
Polsinelli VB, Shah SJ. Advances in the pharmacotherapy of chronic heart failure with preserved ejection fraction: an ideal opportunity for precision medicine. Expert Opin Pharmacother 2017; 18:399-409. [PMID: 28129699 DOI: 10.1080/14656566.2017.1288717] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Heart failure with preserved ejection fraction (HFpEF), which comprises approximately 50% of all heart failure patients, is a challenging and complex clinical syndrome that is often thought to lack effective treatments. Areas covered: Despite the common mantra that HFpEF has no effective treatments, closer inspection of HFpEF clinical trials reveals that several of the drugs tested are associated with benefits in exercise capacity and quality of life, and reduction in heart failure hospitalization. Here we review major randomized controlled trials in HFpEF, focusing on renin-angiotensin-aldosterone system antagonists, organic nitrates, digoxin, beta-blockers, and phosphodiesterase-5 inhibitors. In addition, we review several classes of drugs currently in development for HFpEF such as neprilysin inhibitors, inorganic nitrates (nitrites), and soluble guanylate cyclase stimulators. Expert opinion: HFpEF should not be viewed as lacking effective treatments. While there have been no breakthrough clinical trials showing a reduction in mortality, several existing medications are likely to benefit specific subgroups of HFpEF patients. HFpEF is now well known to be a heterogeneous syndrome; thus, the clinical management of HFpEF patients and future HFpEF clinical trials will both likely require a nuanced, phenotype-specific approach instead of a one-size-fits-all tactic. Drug development for HFpEF therefore represents an exciting opportunity for personalized medicine.
Collapse
Affiliation(s)
- Vincenzo B Polsinelli
- a Division of Cardiology, Department of Medicine , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Sanjiv J Shah
- a Division of Cardiology, Department of Medicine , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| |
Collapse
|
37
|
Mancini M, Scavone A, Sartorio CL, Baccaro R, Kleinert C, Pernazza A, Buia V, Leopizzi M, d'Amati G, Camici PG. Effect of different drug classes on reverse remodeling of intramural coronary arterioles in the spontaneously hypertensive rat. Microcirculation 2017; 24. [DOI: 10.1111/micc.12298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/19/2016] [Indexed: 02/01/2023]
Affiliation(s)
| | - Angela Scavone
- Vita Salute University and Scientific Institute San Raffaele; Milan Italy
| | | | - Rocco Baccaro
- Vita Salute University and Scientific Institute San Raffaele; Milan Italy
| | - Christina Kleinert
- Vita Salute University and Scientific Institute San Raffaele; Milan Italy
| | - Angelina Pernazza
- Department of Radiology; Oncology and Pathology; “Sapienza” University; Rome Italy
| | - Veronica Buia
- Vita Salute University and Scientific Institute San Raffaele; Milan Italy
| | - Martina Leopizzi
- Department of Radiology; Oncology and Pathology; “Sapienza” University; Rome Italy
| | - Giulia d'Amati
- Department of Radiology; Oncology and Pathology; “Sapienza” University; Rome Italy
| | - Paolo G. Camici
- Vita Salute University and Scientific Institute San Raffaele; Milan Italy
| |
Collapse
|
38
|
Fraccarollo D, Galuppo P, Bauersachs J. Modeling Cardiac Fibrosis in Mice: (Myo)Fibroblast Phenotype After Ischemia. Methods Mol Biol 2017; 1627:123-137. [PMID: 28836199 DOI: 10.1007/978-1-4939-7113-8_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cardiac (myo)fibroblasts play a key role in the regulation of wound healing and pathogenic remodeling after myocardial infarction. Impaired scar formation and alterations of the extracellular matrix network precipitate cardiac dysfunction leading to increased morbidity and mortality. Therapeutic approaches addressing (myo)fibroblast phenotype appear to be useful in preventing progressive structural, electrical, and functional impairment and heart failure.Permanent ligation of the left anterior descending coronary artery has proven to be a valuable experimental model to investigate the arrays of pathways/mechanisms involved in cardiac repair and extracellular matrix remodeling in ischemic heart failure. Here we describe the surgical procedure to occlude the left coronary artery in mice. Moreover, we present an accurate method to isolate (myo)fibroblasts from ischemic myocardium, with maintenance of the functional phenotype, using the specific marker for mouse cardiac fibroblasts mEF-SK4. The protocol can be completed within a few hours, and the isolated fibroblasts/myofibroblasts are suitable for downstream molecular biology applications, like gene expression profiling and cell culture.
Collapse
Affiliation(s)
- Daniela Fraccarollo
- Department of Cardiology and Angiology, Medical School Hannover, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
| | - Paolo Galuppo
- Department of Cardiology and Angiology, Medical School Hannover, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Medical School Hannover, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
| |
Collapse
|
39
|
Németh BT, Mátyás C, Oláh A, Lux Á, Hidi L, Ruppert M, Kellermayer D, Kökény G, Szabó G, Merkely B, Radovits T. Cinaciguat prevents the development of pathologic hypertrophy in a rat model of left ventricular pressure overload. Sci Rep 2016; 6:37166. [PMID: 27853261 PMCID: PMC5112572 DOI: 10.1038/srep37166] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/25/2016] [Indexed: 01/19/2023] Open
Abstract
Pathologic myocardial hypertrophy develops when the heart is chronically pressure-overloaded. Elevated intracellular cGMP-levels have been reported to prevent the development of pathologic myocardial hypertrophy, therefore we investigated the effects of chronic activation of the cGMP producing enzyme, soluble guanylate cyclase by Cinaciguat in a rat model of pressure overload-induced cardiac hypertrophy. Abdominal aortic banding (AAB) was used to evoke pressure overload-induced cardiac hypertrophy in male Wistar rats. Sham operated animals served as controls. Experimental and control groups were treated with 10 mg/kg/day Cinaciguat (Cin) or placebo (Co) p.o. for six weeks, respectively. Pathologic myocardial hypertrophy was present in the AABCo group following 6 weeks of pressure overload of the heart, evidenced by increased relative heart weight, average cardiomyocyte diameter, collagen content and apoptosis. Cinaciguat did not significantly alter blood pressure, but effectively attenuated all features of pathologic myocardial hypertrophy, and normalized functional changes, such as the increase in contractility following AAB. Our results demonstrate that chronic enhancement of cGMP signalling by pharmacological activation of sGC might be a novel therapeutic approach in the prevention of pathologic myocardial hypertrophy.
Collapse
Affiliation(s)
- Balázs Tamás Németh
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., 1122 Budapest, Hungary
| | - Csaba Mátyás
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., 1122 Budapest, Hungary
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., 1122 Budapest, Hungary
| | - Árpád Lux
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., 1122 Budapest, Hungary
| | - László Hidi
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., 1122 Budapest, Hungary
| | - Mihály Ruppert
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., 1122 Budapest, Hungary
| | - Dalma Kellermayer
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., 1122 Budapest, Hungary
| | - Gábor Kökény
- Institute of Pathophysiology, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary
| | - Gábor Szabó
- Department of Cardiac Surgery, University of Heidelberg, Im Neuenheimer Feld 110., 69210 Heidelberg, Germany
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., 1122 Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., 1122 Budapest, Hungary
| |
Collapse
|
40
|
Curcumin protects cardiac myocyte against hypoxia-induced apoptosis through upregulating miR-7a/b expression. Biomed Pharmacother 2016; 81:258-264. [DOI: 10.1016/j.biopha.2016.04.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 11/23/2022] Open
|
41
|
Pradhan K, Sydykov A, Tian X, Mamazhakypov A, Neupane B, Luitel H, Weissmann N, Seeger W, Grimminger F, Kretschmer A, Stasch JP, Ghofrani HA, Schermuly RT. Soluble guanylate cyclase stimulator riociguat and phosphodiesterase 5 inhibitor sildenafil ameliorate pulmonary hypertension due to left heart disease in mice. Int J Cardiol 2016; 216:85-91. [PMID: 27140341 DOI: 10.1016/j.ijcard.2016.04.098] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/11/2016] [Indexed: 01/27/2023]
Abstract
BACKGROUND Presence of pulmonary hypertension (PH) and right ventricular dysfunction worsens prognosis in patients with chronic heart failure (CHF). Preclinical and clinical studies suggest a role for the impaired nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP) signaling pathway in both PH and CHF. Hence, we examined the effects of the NO-sGC-cGMP pathway modulation by the PDE5 inhibitor sildenafil or sGC stimulator riociguat on pulmonary hemodynamics and heart function in a murine model of secondary PH induced by transverse aortic constriction. METHODS C57Bl/6N mice were subjected to transverse aortic constriction (TAC) for 6weeks to induce left heart failure and secondary PH and were subsequently treated with either sildenafil (100mg/kg/day) or riociguat (10mg/kg/day) or placebo for 2weeks. RESULTS Six weeks after surgery, TAC induced significant left ventricular hypertrophy and dysfunction associated with development of PH. Treatment with riociguat and sildenafil neither reduced left ventricular hypertrophy nor improved its function. However, both sildenafil and riociguat ameliorated PH, reduced pulmonary vascular remodeling and improved right ventricular function. CONCLUSIONS Thus, modulation of the NO-sGC-cGMP pathway by the PDE5 inhibitor sildenafil or sGC stimulator riociguat exerts direct beneficial effects on pulmonary hemodynamics and right ventricular function in the experimental model of secondary PH due to left heart disease and these drugs may offer a new therapeutic option for therapy of this condition.
Collapse
Affiliation(s)
- Kabita Pradhan
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Lung Center, Justus Liebig University Giessen, Giessen, Germany
| | - Akylbek Sydykov
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Lung Center, Justus Liebig University Giessen, Giessen, Germany
| | - Xia Tian
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Lung Center, Justus Liebig University Giessen, Giessen, Germany
| | - Argen Mamazhakypov
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Lung Center, Justus Liebig University Giessen, Giessen, Germany
| | - Balram Neupane
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Lung Center, Justus Liebig University Giessen, Giessen, Germany
| | - Himal Luitel
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Lung Center, Justus Liebig University Giessen, Giessen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Lung Center, Justus Liebig University Giessen, Giessen, Germany
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Lung Center, Justus Liebig University Giessen, Giessen, Germany; Max-Planck-Institute for Heart and Lung Research, Parkstraße 1, 61231 Bad Nauheim, Germany
| | - Friedrich Grimminger
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Lung Center, Justus Liebig University Giessen, Giessen, Germany
| | - Axel Kretschmer
- Bayer HealthCare, Aprather Weg 18a, 42096, Wuppertal, Germany
| | | | - Hossein Ardeschir Ghofrani
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Lung Center, Justus Liebig University Giessen, Giessen, Germany
| | - Ralph Theo Schermuly
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Lung Center, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
42
|
Werner F, Kojonazarov B, Gaßner B, Abeßer M, Schuh K, Völker K, Baba HA, Dahal BK, Schermuly RT, Kuhn M. Endothelial actions of atrial natriuretic peptide prevent pulmonary hypertension in mice. Basic Res Cardiol 2016; 111:22. [PMID: 26909880 PMCID: PMC4766231 DOI: 10.1007/s00395-016-0541-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 02/16/2016] [Indexed: 11/30/2022]
Abstract
The cardiac hormone atrial natriuretic peptide (ANP) regulates systemic and pulmonary arterial blood pressure by activation of its cyclic GMP-producing guanylyl cyclase-A (GC-A) receptor. In the lung, these hypotensive effects were mainly attributed to smooth muscle-mediated vasodilatation. It is unknown whether pulmonary endothelial cells participate in the homeostatic actions of ANP. Therefore, we analyzed GC-A/cGMP signalling in lung endothelial cells and the cause and functional impact of lung endothelial GC-A dysfunction. Western blot and cGMP determinations showed that cultured human and murine pulmonary endothelial cells exhibit prominent GC-A expression and activity which were markedly blunted by hypoxia, a condition known to trigger pulmonary hypertension (PH). To elucidate the consequences of impaired endothelial ANP signalling, we studied mice with genetic endothelial cell-restricted ablation of the GC-A receptor (EC GC-A KO). Notably, EC GC-A KO mice exhibit PH already under resting, normoxic conditions, with enhanced muscularization of small arteries and perivascular infiltration of inflammatory cells. These alterations were aggravated on exposure of mice to chronic hypoxia. Lung endothelial GC-A dysfunction was associated with enhanced expression of angiotensin converting enzyme (ACE) and increased pulmonary levels of Angiotensin II. Angiotensin II/AT1-blockade with losartan reversed pulmonary vascular remodelling and perivascular inflammation of EC GC-A KO mice, and prevented their increment by chronic hypoxia. This experimental study indicates that endothelial effects of ANP are critical to prevent pulmonary vascular remodelling and PH. Chronic endothelial ANP/GC-A dysfunction, e.g. provoked by hypoxia, is associated with activation of the ACE-angiotensin pathway in the lung and PH.
Collapse
Affiliation(s)
- Franziska Werner
- Physiologisches Institut der Universität Würzburg, Röntgenring 9, 97070, Würzburg, Germany
| | - Baktybek Kojonazarov
- Department of Internal Medicine, University of Gießen and Marburg Lung Center (UGMLC), Justus-Liebig University Gießen, Giessen, Germany.,German Center for Lung Research, Heidelberg, Germany
| | - Birgit Gaßner
- Physiologisches Institut der Universität Würzburg, Röntgenring 9, 97070, Würzburg, Germany
| | - Marco Abeßer
- Physiologisches Institut der Universität Würzburg, Röntgenring 9, 97070, Würzburg, Germany
| | - Kai Schuh
- Physiologisches Institut der Universität Würzburg, Röntgenring 9, 97070, Würzburg, Germany
| | - Katharina Völker
- Physiologisches Institut der Universität Würzburg, Röntgenring 9, 97070, Würzburg, Germany
| | - Hideo A Baba
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Bhola K Dahal
- Department of Internal Medicine, University of Gießen and Marburg Lung Center (UGMLC), Justus-Liebig University Gießen, Giessen, Germany.,German Center for Lung Research, Heidelberg, Germany
| | - Ralph T Schermuly
- Department of Internal Medicine, University of Gießen and Marburg Lung Center (UGMLC), Justus-Liebig University Gießen, Giessen, Germany.,German Center for Lung Research, Heidelberg, Germany
| | - Michaela Kuhn
- Physiologisches Institut der Universität Würzburg, Röntgenring 9, 97070, Würzburg, Germany.
| |
Collapse
|
43
|
Fibroblast activation protein alpha expression identifies activated fibroblasts after myocardial infarction. J Mol Cell Cardiol 2015; 87:194-203. [DOI: 10.1016/j.yjmcc.2015.08.016] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/03/2015] [Accepted: 08/20/2015] [Indexed: 11/18/2022]
|
44
|
Abstract
Heart failure (HF) can rightfully be called the epidemic of the 21(st) century. Historically, the only available medical treatment options for HF have been diuretics and digoxin, but the capacity of these agents to alter outcomes has been brought into question by the scrutiny of modern clinical trials. In the past 4 decades, neurohormonal blockers have been introduced into clinical practice, leading to marked reductions in morbidity and mortality in chronic HF with reduced left ventricular ejection fraction (LVEF). Despite these major advances in pharmacotherapy, our understanding of the underlying disease mechanisms of HF from epidemiological, clinical, pathophysiological, molecular, and genetic standpoints remains incomplete. This knowledge gap is particularly evident with respect to acute decompensated HF and HF with normal (preserved) LVEF. For these clinical phenotypes, no drug has been shown to reduce long-term clinical event rates substantially. Ongoing developments in the pharmacotherapy of HF are likely to challenge our current best-practice algorithms. Novel agents for HF therapy include dual-acting neurohormonal modulators, contractility-enhancing agents, vasoactive and anti-inflammatory peptides, and myocardial protectants. These novel compounds have the potential to enhance our armamentarium of HF therapeutics.
Collapse
Affiliation(s)
- Thomas G von Lueder
- Department of Cardiology, Oslo University Hospital Ullevål, 0407 Oslo, Norway
| | - Henry Krum
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Alfred Hospital, Melbourne, VIC 3004, Australia
| |
Collapse
|
45
|
Fraccarollo D, Galuppo P, Neuser J, Bauersachs J, Widder JD. Pentaerythritol Tetranitrate Targeting Myocardial Reactive Oxygen Species Production Improves Left Ventricular Remodeling and Function in Rats With Ischemic Heart Failure. Hypertension 2015; 66:978-87. [PMID: 26351025 DOI: 10.1161/hypertensionaha.115.05931] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/27/2015] [Indexed: 11/16/2022]
Abstract
Reduced nitric oxide bioavailability contributes to progression of cardiac dysfunction and remodeling in ischemic heart failure. Clinical use of organic nitrates as nitric oxide donors is limited by development of nitrate tolerance and reactive oxygen species formation. We investigated the effects of long-term therapy with pentaerythritol tetranitrate (PETN), an organic nitrate devoid of tolerance, in rats with congestive heart failure after extensive myocardial infarction. Seven days after coronary artery ligation, rats were randomly allocated to treatment with PETN (80 mg/kg BID) or placebo for 9 weeks. Long-term PETN therapy prevented the progressive left ventricular dilatation and improved left ventricular contractile function and relaxation in rats with congestive heart failure. Mitochondrial superoxide anion production was markedly increased in the failing left ventricular myocardium and nearly normalized by PETN treatment. Gene set enrichment analysis revealed that PETN beneficially modulated the dysregulation of mitochondrial genes involved in energy metabolism, paralleled by prevention of uncoupling protein-3, thioredoxin-2, and superoxide dismutase-2 downregulation. Moreover, PETN provided a remarkable protective effect against reactive fibrosis in chronically failing hearts. Mechanistically, induction of heme oxygenase-1 by PETN prevented mitochondrial superoxide generation, NOX4 upregulation, and ensuing formation of extracellular matrix proteins in fibroblasts from failing hearts. In summary, PETN targeting reactive oxygen species generation prevented the changes of mitochondrial antioxidant enzymes and progressive fibrotic remodeling, leading to amelioration of cardiac functional performance. Therefore, PETN might be a promising therapeutic option in the treatment of ischemic heart diseases involving oxidative stress and impairment in nitric oxide bioactivity.
Collapse
Affiliation(s)
- Daniela Fraccarollo
- From the Klinik für Kardiologie und Angiologie, Medizinische Hochschule Hannover, Hanover, Germany
| | - Paolo Galuppo
- From the Klinik für Kardiologie und Angiologie, Medizinische Hochschule Hannover, Hanover, Germany
| | - Jonas Neuser
- From the Klinik für Kardiologie und Angiologie, Medizinische Hochschule Hannover, Hanover, Germany
| | - Johann Bauersachs
- From the Klinik für Kardiologie und Angiologie, Medizinische Hochschule Hannover, Hanover, Germany
| | - Julian D Widder
- From the Klinik für Kardiologie und Angiologie, Medizinische Hochschule Hannover, Hanover, Germany.
| |
Collapse
|
46
|
Andreadou I, Iliodromitis EK, Szabo C, Papapetropoulos A. Hydrogen sulfide and PKG in ischemia-reperfusion injury: sources, signaling, accelerators and brakes. Basic Res Cardiol 2015; 110:510. [PMID: 26318600 PMCID: PMC4667708 DOI: 10.1007/s00395-015-0510-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/12/2015] [Accepted: 08/26/2015] [Indexed: 12/14/2022]
Abstract
Over the past decade, hydrogen sulfide has emerged as an important cardioprotective molecule with potential for clinical applications. Although several pathways have been proposed to mediate the beneficial effects of H2S, the NO/cGMP axis has attracted significant attention. Recent evidence has suggested that cGMP-dependent protein kinase can lie both downstream and upstream of H2S. The current literature on this topic is reviewed and data from recent studies are integrated to propose a unifying model.
Collapse
Affiliation(s)
| | - Efstathios K. Iliodromitis
- Faculty of Medicine, Second Department of Cardiology, Attikon University Hospital, University of Athens, Athens, Greece
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Andreas Papapetropoulos
- Faculty of Pharmacy, University of Athens, Athens, Greece
- Faculty of Medicine, First Department of Critical Care and Pulmonary Services, Evangelismos Hospital, University of Athens, Athens, Greece
| |
Collapse
|
47
|
Kaur P, Muthuraman A, Kaur M. The implications of angiotensin-converting enzymes and their modulators in neurodegenerative disorders: current and future perspectives. ACS Chem Neurosci 2015; 6:508-21. [PMID: 25680080 DOI: 10.1021/cn500363g] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Angiotensin converting enzyme (ACE) is a dipeptidyl peptidase transmembrane bound enzyme. Generally, ACE inhibitors are used for the cardiovascular disorders. ACE inhibitors are primary agents for the management of hypertension, so these cannot be avoided for further use. The present Review focuses on the implications of angiotensin converting enzyme inhibitors in neurodegenerative disorders such as dementia, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, stroke, and diabetic neuropathy. ACE inhibitors such as ramipril, captopril, perindopril, quinapril, lisinopril, enalapril, and trandolapril have been documented to ameliorate the above neurodegenerative disorders. Neurodegeneration occurs not only by angiotensin II, but also by other endogenous factors, such as the formation of free radicals, amyloid beta, immune reactions, and activation of calcium dependent enzymes. ACE inhibitors interact with the above cellular mechanisms. Thus, these may act as a promising factor for future medicine for neurological disorders beyond the cardiovascular actions. Central acting ACE inhibitors can be useful in the future for the management of neuropathic pain due to following actions: (i) ACE-2 converts angiotensinogen to angiotensin(1-7) (hepatapeptide) which produces neuroprotective action; (ii) ACE inhibitors downregulate kinin B1 receptors in the peripheral nervous system which is responsible for neuropathic pain. However, more extensive research is required in the field of neuropathic pain for the utilization of ACE inhibitors in human.
Collapse
Affiliation(s)
- Parneet Kaur
- Department of Pharmacology and Toxicology, Neurodegenerative Research Division, Akal College of Pharmacy & Technical Education, Mastuana Sahib, Sangrur-148001, Punjab, India
| | - Arunachalam Muthuraman
- Department of Pharmacology and Toxicology, Neurodegenerative Research Division, Akal College of Pharmacy & Technical Education, Mastuana Sahib, Sangrur-148001, Punjab, India
| | - Manjinder Kaur
- Department of Pharmacology and Toxicology, Neurodegenerative Research Division, Akal College of Pharmacy & Technical Education, Mastuana Sahib, Sangrur-148001, Punjab, India
| |
Collapse
|
48
|
Vogel B, Shinagawa H, Hofmann U, Ertl G, Frantz S. Acute DNase1 treatment improves left ventricular remodeling after myocardial infarction by disruption of free chromatin. Basic Res Cardiol 2015; 110:15. [PMID: 25702039 DOI: 10.1007/s00395-015-0472-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 02/03/2015] [Accepted: 02/17/2015] [Indexed: 12/21/2022]
Abstract
Myocardial infarction (MI) leads to necrosis and uncontrolled release of cellular content. Binucleated and polyploid cardiomyocytes contain high amounts of chromatin, a DNA polymer of histones which are cytotoxic. We hypothesized that chromatin from necrotic cells accumulates in the non-perfused, ischemic infarct region, causing local high concentrations of cytotoxic histones, thereby potentiating damage to the heart after MI. The endonuclease DNase1 is capable of dispersing extracellular chromatin through linker DNA digestion which could lead to a decrease in local histone concentrations and cytotoxicity. It was confirmed that after permanent coronary artery ligation in mice, extracellular histones accumulated within the infarcted myocardium. In vitro, histones caused myocyte cytotoxicity. For protection against histone-mediated cytotoxicity after MI in vivo, DNase1 was administered within the first 6 h after induction. Indeed, DNase1 accumulation in the infarcted region of the heart was observed, as well as effective disruption of extracellular cytotoxic chromatin and subsequent reduction of high local histone concentrations. Functionally, acute DNase1 treatment resulted in significantly improved left ventricular remodeling in mice as measured by serial echocardiography, while mortality, infarct size and inflammatory parameters were unaffected. Notably, improved cardiomyocyte survival within the infarct region was observed and might account for the protective effects in acutely DNase1-treated animals. Disruption of extracellular cytotoxic chromatin within the infarcted heart by acute DNase1 treatment is a promising approach to protect myocytes from histone-induced cell death and subsequent left ventricular dysfunction after MI.
Collapse
Affiliation(s)
- Benjamin Vogel
- Comprehensive Heart Failure Center (CHCF), Universitätsklinikum Würzburg, Zinklesweg 10, 97078, Würzburg, Germany,
| | | | | | | | | |
Collapse
|
49
|
Vasorelaxing effects of the soluble guanylyl cyclase activator BAY 60-2770 in nitrate-tolerant monkey and canine coronary arteries. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:381-5. [DOI: 10.1007/s00210-014-1083-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/26/2014] [Indexed: 12/26/2022]
|