1
|
Gao H, Chen Z, Yao Y, He Y, Hu X. Common biological processes and mutual crosstalk mechanisms between cardiovascular disease and cancer. Front Oncol 2024; 14:1453090. [PMID: 39634266 PMCID: PMC11614734 DOI: 10.3389/fonc.2024.1453090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Cancer and cardiovascular disease (CVD) are leading causes of mortality and thus represent major health challenges worldwide. Clinical data suggest that cancer patients have an increased likelihood of developing cardiovascular disease, while epidemiologic studies have shown that patients with cardiovascular disease are also more likely to develop cancer. These observations underscore the increasing importance of studies exploring the mechanisms underlying the interaction between the two diseases. We review their common physiological processes and potential pathophysiological links. We explore the effects of chronic inflammation, oxidative stress, and disorders of fatty acid metabolism in CVD and cancer, and also provide insights into how cancer and its treatments affect heart health, as well as present recent advances in reverse cardio-oncology using a new classification approach.
Collapse
Affiliation(s)
- Hanwei Gao
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Zhongyu Chen
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- CJUH-JLU-China iGEM Team, Jilin University, Changchun, Jilin, China
| | - Yutong Yao
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- CJUH-JLU-China iGEM Team, Jilin University, Changchun, Jilin, China
| | - Yuquan He
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- CJUH-JLU-China iGEM Team, Jilin University, Changchun, Jilin, China
| | - Xin Hu
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- CJUH-JLU-China iGEM Team, Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Li J, Hua Y, Liu Y, Qu X, Zhang J, Ishida M, Yoshida N, Tabata A, Miyoshi H, Shiba M, Higo S, Sougawa N, Takeda M, Kawamura T, Matsuura R, Okuzaki D, Toyofuku T, Sawa Y, Liu L, Miyagawa S. Human induced pluripotent stem cell-derived closed-loop cardiac tissue for drug assessment. iScience 2024; 27:108992. [PMID: 38333703 PMCID: PMC10850789 DOI: 10.1016/j.isci.2024.108992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Human iPSC-derived cardiomyocytes (hiPSC-CMs) exhibit functional immaturity, potentially impacting their suitability for assessing drug proarrhythmic potential. We previously devised a traveling wave (TW) system to promote maturation in 3D cardiac tissue. To align with current drug assessment paradigms (CiPA and JiCSA), necessitating a 2D monolayer cardiac tissue, we integrated the TW system with a multi-electrode array. This gave rise to a hiPSC-derived closed-loop cardiac tissue (iCT), enabling spontaneous TW initiation and swift pacing of cardiomyocytes from various cell lines. The TW-paced cardiomyocytes demonstrated heightened sarcomeric and functional maturation, exhibiting enhanced response to isoproterenol. Moreover, these cells showcased diminished sensitivity to verapamil and maintained low arrhythmia rates with ranolazine-two drugs associated with a low risk of torsades de pointes (TdP). Notably, the TW group displayed increased arrhythmia rates with high and intermediate risk TdP drugs (quinidine and pimozide), underscoring the potential utility of this system in drug assessment applications.
Collapse
Affiliation(s)
- Junjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Ying Hua
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yuting Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Xiang Qu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Jingbo Zhang
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Masako Ishida
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Noriko Yoshida
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Akiko Tabata
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hayato Miyoshi
- Fujifilm Corporation, Ashigarakami 258-8577, Kanagawa, Japan
| | - Mikio Shiba
- Cardiovascular Division, Osaka Police Hospital, Tennoji 543-0035, Osaka, Japan
| | - Shuichiro Higo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
- Department of Medical Therapeutics for Heart Failure, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
| | - Nagako Sougawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Department of Physiology, Osaka Dental University, 8-1 Kuzuha Hanazono-cho, Hirakata 573-1121, Osaka, Japan
| | - Maki Takeda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Ryohei Matsuura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Research Center, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Toshihiko Toyofuku
- Department of Immunology and Molecular Medicine, Graduate School of Medicine, Osaka University, Suita 565-0871, Osaka, Japan
| | - Yoshiki Sawa
- Department of Future Medicine, Division of Health Science, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Li Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Luan Y, Zhu X, Jiao Y, Liu H, Huang Z, Pei J, Xu Y, Yang Y, Ren K. Cardiac cell senescence: molecular mechanisms, key proteins and therapeutic targets. Cell Death Discov 2024; 10:78. [PMID: 38355681 PMCID: PMC10866973 DOI: 10.1038/s41420-023-01792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024] Open
Abstract
Cardiac aging, particularly cardiac cell senescence, is a natural process that occurs as we age. Heart function gradually declines in old age, leading to continuous heart failure, even in people without a prior history of heart disease. To address this issue and improve cardiac cell function, it is crucial to investigate the molecular mechanisms underlying cardiac senescence. This review summarizes the main mechanisms and key proteins involved in cardiac cell senescence. This review further discusses the molecular modulators of cellular senescence in aging hearts. Furthermore, the discussion will encompass comprehensive descriptions of the key drugs, modes of action and potential targets for intervention in cardiac senescence. By offering a fresh perspective and comprehensive insights into the molecular mechanisms of cardiac senescence, this review seeks to provide a fresh perspective and important theoretical foundations for the development of drugs targeting this condition.
Collapse
Affiliation(s)
- Yi Luan
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Xiaofan Zhu
- Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yuxue Jiao
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Hui Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Zhen Huang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Jinyan Pei
- Quality Management Department, Henan No.3 Provincial People's Hospital, Zhengzhou, 450052, P. R. China
| | - Yawei Xu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, P. R. China.
| |
Collapse
|
4
|
Li D, Li Y, Ding H, Wang Y, Xie Y, Zhang X. Cellular Senescence in Cardiovascular Diseases: From Pathogenesis to Therapeutic Challenges. J Cardiovasc Dev Dis 2023; 10:439. [PMID: 37887886 PMCID: PMC10607269 DOI: 10.3390/jcdd10100439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
Cellular senescence (CS), classically considered a stable cell cycle withdrawal, is hallmarked by a progressive decrease in cell growth, differentiation, and biological activities. Senescent cells (SNCs) display a complicated senescence-associated secretory phenotype (SASP), encompassing a variety of pro-inflammatory factors that exert influence on the biology of both the cell and surrounding tissue. Among global mortality causes, cardiovascular diseases (CVDs) stand out, significantly impacting the living quality and functional abilities of patients. Recent data suggest the accumulation of SNCs in aged or diseased cardiovascular systems, suggesting their potential role in impairing cardiovascular function. CS operates as a double-edged sword: while it can stimulate the restoration of organs under physiological conditions, it can also participate in organ and tissue dysfunction and pave the way for multiple chronic diseases under pathological states. This review explores the mechanisms that underlie CS and delves into the distinctive features that characterize SNCs. Furthermore, we describe the involvement of SNCs in the progression of CVDs. Finally, the study provides a summary of emerging interventions that either promote or suppress senescence and discusses their therapeutic potential in CVDs.
Collapse
Affiliation(s)
- Dan Li
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou 730030, China; (D.L.); (H.D.); (Y.W.); (Y.X.)
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China;
| | - Hong Ding
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou 730030, China; (D.L.); (H.D.); (Y.W.); (Y.X.)
| | - Yuqin Wang
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou 730030, China; (D.L.); (H.D.); (Y.W.); (Y.X.)
| | - Yafei Xie
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou 730030, China; (D.L.); (H.D.); (Y.W.); (Y.X.)
| | - Xiaowei Zhang
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou 730030, China; (D.L.); (H.D.); (Y.W.); (Y.X.)
| |
Collapse
|
5
|
Bottermann K, Spychala A, Eliacik A, Amin E, Moussavi-Torshizi SE, Klöcker N, Gödecke A, Heinen A. Extracellular flux analysis in intact cardiac tissue slices-A novel tool to investigate cardiac substrate metabolism in mouse myocardium. Acta Physiol (Oxf) 2023; 239:e14004. [PMID: 37227741 DOI: 10.1111/apha.14004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
AIM Cardiac pathologies are accompanied by alterations in substrate metabolism, and extracellular flux analysis is a standard tool to investigate metabolic disturbances, especially in immortalized cell lines. However, preparations of primary cells, such as adult cardiomyocytes require enzymatic dissociation and cultivation affecting metabolism. Therefore, we developed a flux analyzer-based method for the assessment of substrate metabolism in intact vibratome-sliced mouse heart tissue. METHODS Oxygen consumption rates were determined using a Seahorse XFe24-analyzer and "islet capture plates." We demonstrate that tissue slices are suitable for extracellular flux analysis and metabolize both free fatty acids (FFA) and glucose/glutamine. Functional integrity of tissue slices was proven by optical mapping-based assessment of action potentials. In a proof-of-principle approach, the sensitivity of the method was tested by analyzing substrate metabolism in the remote myocardium after myocardial infarction (I/R). RESULTS Here, I/R increased uncoupled OCR compared with sham animals indicating a stimulated metabolic capacity. This increase was caused by a higher glucose/glutamine metabolism, whereas FFA oxidation was unchanged. CONCLUSION In conclusion, we describe a novel method to analyze cardiac substrate metabolism in intact cardiac tissue slices by extracellular flux analysis. The proof-of-principle experiment demonstrated that this approach has a sensitivity allowing the investigation of pathophysiologically relevant disturbances in cardiac substrate metabolism.
Collapse
Affiliation(s)
- Katharina Bottermann
- Institute for Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Andre Spychala
- Institute for Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Asena Eliacik
- Institute for Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Ehsan Amin
- Institute of Neural und Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - S Erfan Moussavi-Torshizi
- Institute of Neural und Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Nikolaj Klöcker
- Institute of Neural und Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Axel Gödecke
- Institute for Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Andre Heinen
- Institute for Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Zhou Y, Huang S, Li C, Qiao Y, Liu Q, Chen T, Wang J, Liu Y. Glucagon-Like Peptide-1 (GLP-1) Rescue Diabetic Cardiac Dysfuntions in Human iPSC-Derived Cardiomyocytes. Adv Biol (Weinh) 2023; 7:e2200130. [PMID: 36373695 DOI: 10.1002/adbi.202200130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/29/2022] [Indexed: 11/16/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) can improve cardiac function and cardiovascular outcomes in diabetic cardiomyopathy; however, the beneficial effect of GLP-1 on human diabetic cardiomyocytes (DCMs) and its mechanism have not been fully elucidated. Here, the DCMs model by human-induced pluripotent stem cells-derived cardiomyocytes is developed. Two subtypes of GLP-1, GLP-17-36 and GLP-19-36 , are evaluated for their efficacy on the DCMs model. Diabetogenic condition is sufficient to induce most characteristics of diabetic cardiomyopathy in vitro, such as cardiac hypertrophy, lipid accumulation, impaired calcium transients, and abnormal electrophysiological properties. GLP-17-36 and GLP-19-36 can restore cardiomyocyte hypertrophic phenotype, impaired calcium transient frequency, abnormal action potential amplitude, depolarization, and repolarization velocity. Interestingly, RNA-seq reveals different pathways altered by GLP-17-36 and GLP-19-36 , respectively. Differentially expressed gene analysis reveals that possible targets of GLP-17-36 involve the regulation of mitotic nuclear division and extracellular matrix-receptor interaction, while possible targets of GLP-19-36 involve kinetochore assembly, and the complement and coagulation cascades. This study demonstrates the therapeutic effects of GLP-1 on human DCMs and provides a novel platform to unveil the cellular mechanisms of diabetic cardiomyopathy, shedding light on discovering better targets for novel therapeutic interventions.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Avenue, Nanjing, 211166, China
| | - Shuting Huang
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Avenue, Nanjing, 211166, China
| | - Chengwu Li
- HELP Therapeutics, 568 Longmian Avenue, Nanjing, 211166, China
| | - Yue Qiao
- Department of Endocrinology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 210031, China
| | - Qing Liu
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Avenue, Nanjing, 211166, China
| | - Taotao Chen
- HELP Therapeutics, 568 Longmian Avenue, Nanjing, 211166, China
| | - Jiaxian Wang
- HELP Therapeutics, 568 Longmian Avenue, Nanjing, 211166, China
| | - Yu Liu
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Avenue, Nanjing, 211166, China
| |
Collapse
|
7
|
Chen X, Li X, Wu X, Ding Y, Li Y, Zhou G, Wei Y, Chen S, Lu X, Xu J, Liu S, Li J, Cai L. Integrin beta-like 1 mediates fibroblast-cardiomyocyte crosstalk to promote cardiac fibrosis and hypertrophy. Cardiovasc Res 2023; 119:1928-1941. [PMID: 37395147 DOI: 10.1093/cvr/cvad104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 07/04/2023] Open
Abstract
AIMS Crosstalk between fibroblasts and cardiomyocytes (CMs) plays a critical role in cardiac remodelling during heart failure (HF); however, the underlying molecular mechanisms remain obscure. Recently, a secretory protein, Integrin beta-like 1 (ITGBL1) was revealed to have detrimental effects on several diseases, such as tumours, pulmonary fibrosis, and hepatic fibrosis; whereas the effect of ITGBL1 on HF is unclear. The purpose of this study was to evaluate its contribution to volume overload-induced remodelling. METHODS AND RESULTS In this study, we identified ITGBL1 was highly expressed in varied heart diseases and validated in our TAC mice model, especially in fibroblasts. To investigate the role of ITGBL1 in in vitro cell experiments, neonatal rat fibroblasts (NRCFs) and cardiomyocytes (NRCMs) were performed for further study. We found that in comparison to NRCMs, NRCFs expressed high levels of ITGBL1. Meanwhile, ITGBL1 was upregulated in NRCFs, but not in NRCMs following angiotensin-II (AngII) or phenylephrine stimulation. Furthermore, ITGBL1 overexpression promoted NRCFs activation, whereas knockdown of ITGBL1 alleviated NRCFs activation under AngII treatment. Moreover, NRCFs-secreted ITGBL1 could induce NRCMs hypertrophy. Mechanically, ITGBL1-NME/NM23 nucleoside diphosphate kinase 1 (NME1)-TGF-β-Smad2/3 and Wnt signalling pathways were identified to mediate NRCFs activation and NRCMs hypertrophy, respectively. Finally, the knockdown of ITGBL1 in mice subjected to transverse aortic constriction (TAC) surgery recapitulated the in vitro findings, demonstrating blunted cardiac fibrosis, hypertrophy, and improved cardiac function. CONCLUSIONS ITGBL1 is an important functional mediator between fibroblast-cardiomyocyte crosstalk and could be an effective target for cardiac remodelling in HF patients.
Collapse
Affiliation(s)
- XiaoQiang Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - XinTao Li
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - XiaoYu Wu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Ding
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Li
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - GenQing Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Wei
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - SongWen Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - XiaoFeng Lu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - ShaoWen Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Li
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - LiDong Cai
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Tsuru H, Yoshihara C, Suginobe H, Matsumoto M, Ishii Y, Narita J, Ishii R, Wang R, Ueyama A, Ueda K, Hirose M, Hashimoto K, Nagano H, Tanaka R, Okajima T, Ozono K, Ishida H. Pathogenic Roles of Cardiac Fibroblasts in Pediatric Dilated Cardiomyopathy. J Am Heart Assoc 2023; 12:e029676. [PMID: 37345811 PMCID: PMC10356057 DOI: 10.1161/jaha.123.029676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023]
Abstract
Background Dilated cardiomyopathy (DCM) is a major cause of heart failure in children. Despite intensive genetic analyses, pathogenic gene variants have not been identified in most patients with DCM, which suggests that cardiomyocytes are not solely responsible for DCM. Cardiac fibroblasts (CFs) are the most abundant cell type in the heart. They have several roles in maintaining cardiac function; however, the pathological role of CFs in DCM remains unknown. Methods and Results Four primary cultured CF cell lines were established from pediatric patients with DCM and compared with 3 CF lines from healthy controls. There were no significant differences in cellular proliferation, adhesion, migration, apoptosis, or myofibroblast activation between DCM CFs compared with healthy CFs. Atomic force microscopy revealed that cellular stiffness, fluidity, and viscosity were not significantly changed in DCM CFs. However, when DCM CFs were cocultured with healthy cardiomyocytes, they deteriorated the contractile and diastolic functions of cardiomyocytes. RNA sequencing revealed markedly different comprehensive gene expression profiles in DCM CFs compared with healthy CFs. Several humoral factors and the extracellular matrix were significantly upregulated or downregulated in DCM CFs. The pathway analysis revealed that extracellular matrix receptor interactions, focal adhesion signaling, Hippo signaling, and transforming growth factor-β signaling pathways were significantly affected in DCM CFs. In contrast, single-cell RNA sequencing revealed that there was no specific subpopulation in the DCM CFs that contributed to the alterations in gene expression. Conclusions Although cellular physiological behavior was not altered in DCM CFs, they deteriorated the contractile and diastolic functions of healthy cardiomyocytes through humoral factors and direct cell-cell contact.
Collapse
Affiliation(s)
- Hirofumi Tsuru
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
- Department of PediatricsNiigata University School of MedicineNiigataJapan
| | - Chika Yoshihara
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Hidehiro Suginobe
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Mizuki Matsumoto
- Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan
| | - Yoichiro Ishii
- Department of Pediatric CardiologyOsaka Medical Center for Maternal and Child HealthOsakaJapan
| | - Jun Narita
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Ryo Ishii
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Renjie Wang
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Atsuko Ueyama
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Kazutoshi Ueda
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Masaki Hirose
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Kazuhisa Hashimoto
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Hiroki Nagano
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Ryosuke Tanaka
- Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan
| | - Takaharu Okajima
- Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan
| | - Keiichi Ozono
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Hidekazu Ishida
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
9
|
Suda M, Paul KH, Minamino T, Miller JD, Lerman A, Ellison-Hughes GM, Tchkonia T, Kirkland JL. Senescent Cells: A Therapeutic Target in Cardiovascular Diseases. Cells 2023; 12:1296. [PMID: 37174697 PMCID: PMC10177324 DOI: 10.3390/cells12091296] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Senescent cell accumulation has been observed in age-associated diseases including cardiovascular diseases. Senescent cells lack proliferative capacity and secrete senescence-associated secretory phenotype (SASP) factors that may cause or worsen many cardiovascular diseases. Therapies targeting senescent cells, especially senolytic drugs that selectively induce senescent cell removal, have been shown to delay, prevent, alleviate, or treat multiple age-associated diseases in preclinical models. Some senolytic clinical trials have already been completed or are underway for a number of diseases and geriatric syndromes. Understanding how cellular senescence affects the various cell types in the cardiovascular system, such as endothelial cells, vascular smooth muscle cells, fibroblasts, immune cells, progenitor cells, and cardiomyocytes, is important to facilitate translation of senotherapeutics into clinical interventions. This review highlights: (1) the characteristics of senescent cells and their involvement in cardiovascular diseases, focusing on the aforementioned cardiovascular cell types, (2) evidence about senolytic drugs and other senotherapeutics, and (3) the future path and clinical potential of senotherapeutics for cardiovascular diseases.
Collapse
Affiliation(s)
- Masayoshi Suda
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Karl H. Paul
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Jordan D. Miller
- Division of Cardiovascular Surgery, Mayo Clinic College of Medicine, 200 First St., S.W., Rochester, MN 55905, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Georgina M. Ellison-Hughes
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
- Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - James L. Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| |
Collapse
|
10
|
Ahmad S, Tan M, Hamid S. DNA repair mechanisms: Exploring potentials of nutraceutical. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
11
|
Cardiac fibroblasts and mechanosensation in heart development, health and disease. Nat Rev Cardiol 2022; 20:309-324. [PMID: 36376437 DOI: 10.1038/s41569-022-00799-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
Abstract
The term 'mechanosensation' describes the capacity of cells to translate mechanical stimuli into the coordinated regulation of intracellular signals, cellular function, gene expression and epigenetic programming. This capacity is related not only to the sensitivity of the cells to tissue motion, but also to the decryption of tissue geometric arrangement and mechanical properties. The cardiac stroma, composed of fibroblasts, has been historically considered a mechanically passive component of the heart. However, the latest research suggests that the mechanical functions of these cells are an active and necessary component of the developmental biology programme of the heart that is involved in myocardial growth and homeostasis, and a crucial determinant of cardiac repair and disease. In this Review, we discuss the general concept of cell mechanosensation and force generation as potent regulators in heart development and pathology, and describe the integration of mechanical and biohumoral pathways predisposing the heart to fibrosis and failure. Next, we address the use of 3D culture systems to integrate tissue mechanics to mimic cardiac remodelling. Finally, we highlight the potential of mechanotherapeutic strategies, including pharmacological treatment and device-mediated left ventricular unloading, to reverse remodelling in the failing heart.
Collapse
|
12
|
Chen T, Song S, Jiang H, Lian H, Hu S. Single Cell Sequencing Reveals Mechanisms of Persistent Truncus Arteriosus Formation after PDGFRα and PDGFRβ Double Knockout in Cardiac Neural Crest Cells. Genes (Basel) 2022; 13:genes13101708. [PMID: 36292593 PMCID: PMC9601305 DOI: 10.3390/genes13101708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Persistent truncus arteriosus (PTA) is an uncommon and complex congenital cardiac malformation accounting for about 1.2% of all congenital heart diseases (CHDs), which is caused by a deficiency in the embryonic heart outflow tract’s (OFT) septation and remodeling. PDGFRα and PDGFRβ double knockout (DKO) in cardiac neural crest cells (CNCCs) has been reported to cause PTA, but the underlying mechanisms remain unclear. Here, we constructed a PTA mouse model with PDGFRα and PDGFRβ double knockout in Pax3+ CNCCs and described the condensation failure into OFT septum of CNCC-derived cells due to disturbance of cell polarity in the DKO group. In addition, we further explored the mechanism with single-cell RNA sequencing. We found that two main cell differentiation trajectories into vascular smooth muscle cells (VSMCs) from cardiomyocytes (CMs) and mesenchymal cells (MSs), respectively, were interrupted in the DKO group. The process of CM differentiation into VSMC stagnated in a transitional CM I-like state, which contributed to the failure of OFT remodeling and muscular septum formation. On the other hand, a Penk+ transitional MS II cluster closely related to cell condensation into the OFT septum disappeared, which led to the OFT’s septation absence directly. In conclusion, the disturbance of CNCC-derived cells caused by PDGFRα and PDGFRβ knockout can lead to the OFT septation disorder and the occurrence of PTA.
Collapse
Affiliation(s)
- Tianyun Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100006, China
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100006, China
| | - Haobin Jiang
- Division of Thoracic Surgery, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou 310027, China
| | - Hong Lian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100006, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100006, China
- Correspondence:
| |
Collapse
|
13
|
Fakhri S, Moradi SZ, Nouri Z, Cao H, Wang H, Khan H, Xiao J. Modulation of integrin receptor by polyphenols: Downstream Nrf2-Keap1/ARE and associated cross-talk mediators in cardiovascular diseases. Crit Rev Food Sci Nutr 2022; 64:1592-1616. [PMID: 36073725 DOI: 10.1080/10408398.2022.2118226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As a group of heterodimeric and transmembrane glycoproteins, integrin receptors are widely expressed in various cell types overall the body. During cardiovascular dysfunction, integrin receptors apply inhibitory effects on the antioxidative pathways, including nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch like ECH Associated Protein 1 (Keap1)/antioxidant response element (ARE) and interconnected mediators. As such, dysregulation in integrin signaling pathways influences several aspects of cardiovascular diseases (CVDs) such as heart failure, arrhythmia, angina, hypertension, hyperlipidemia, platelet aggregation and coagulation. So, modulation of integrin pathway could trigger the downstream antioxidant pathways toward cardioprotection. Regarding the involvement of multiple aforementioned mediators in the pathogenesis of CVDs, as well as the side effects of conventional drugs, seeking for novel alternative drugs is of great importance. Accordingly, the plant kingdom could pave the road in the treatment of CVDs. Of natural entities, polyphenols are multi-target and accessible phytochemicals with promising potency and low levels of toxicity. The present study aims at providing the cardioprotective roles of integrin receptors and downstream antioxidant pathways in heart failure, arrhythmia, angina, hypertension, hyperlipidemia, platelet aggregation and coagulation. The potential role of polyphenols has been also revealed in targeting the aforementioned dysregulated signaling mediators in those CVDs.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeinab Nouri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hui Cao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Woudenberg T, Kruyt ND, Quax PHA, Nossent AY. Change of Heart: the Epitranscriptome of Small Non-coding RNAs in Heart Failure. Curr Heart Fail Rep 2022; 19:255-266. [PMID: 35876969 PMCID: PMC9534797 DOI: 10.1007/s11897-022-00561-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
Purpose of Review Small non-coding RNAs regulate gene expression and are highly implicated in heart failure. Recently, an additional level of post-transcriptional regulation has been identified, referred to as the epitranscriptome, which encompasses the body of post-transcriptional modifications that are placed on RNA molecules. In this review, we summarize the current knowledge on the small non-coding RNA epitranscriptome in heart failure. Recent Findings With the rise of new methods to study RNA modifications, epitranscriptome research has begun to take flight. Over the past 3 years, the number of publications on the epitranscriptome in heart failure has significantly increased, and we expect many more highly relevant publications to come out over the next few years. Summary Currently, at least six modifications on small non-coding RNAs have been investigated in heart failure-relevant studies, namely N6-adenosine, N5-cytosine and N7-guanosine methylation, 2’-O-ribose-methylation, adenosine-to-inosine editing, and isomiRs. Their potential role in heart failure is discussed.
Collapse
Affiliation(s)
- Tamar Woudenberg
- Department of Surgery, Leiden University Medical Center, D6-P, PO Box 9600, 2300 RC, Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Nyika D Kruyt
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, D6-P, PO Box 9600, 2300 RC, Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - A Yaël Nossent
- Department of Surgery, Leiden University Medical Center, D6-P, PO Box 9600, 2300 RC, Leiden, the Netherlands. .,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
15
|
van Ingen E, van den Homberg DAL, van der Bent ML, Mei H, Papac-Milicevic N, Kremer V, Boon RA, Quax PHA, Wojta J, Nossent AY. C/D box snoRNA SNORD113-6/AF357425 plays a dual role in integrin signalling and arterial fibroblast function via pre-mRNA processing and 2'O-ribose methylation. Hum Mol Genet 2022; 31:1051-1066. [PMID: 34673944 PMCID: PMC8976432 DOI: 10.1093/hmg/ddab304] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/03/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022] Open
Abstract
We have previously shown that C/D box small nucleolar RNAs (snoRNAs) transcribed from the DLK1-DIO3 locus on human chromosome 14 (14q32) are associated with cardiovascular disease. DLK1-DIO3 snoRNAs are 'orphan snoRNAs' that have no known targets. We aimed to identify RNA targets and elucidate the mechanism-of-action of human SNORD113-6 (AF357425 in mice). As AF357425-knockout cells were non-viable, we induced overexpression or inhibition of AF357425 in primary murine fibroblasts and performed RNA-Seq. We identified several pre-mRNAs with conserved AF357425/SNORD113-6 D'-seed binding sites in the last exon/3' untranslated region (3'UTR), which directed pre-mRNA processing and splice-variant-specific protein expression. We also pulled down the snoRNA-associated methyltransferase fibrillarin from AF357425-High versus AF357425-Low fibroblast lysates, followed by RNA isolation, ribosomal RNA depletion and RNA-Seq. Identifying mostly mRNAs, we subjected these to PANTHER pathway analysis and observed enrichment for genes in the integrin pathway. We confirmed 2'O-ribose methylation in six integrin pathway mRNAs (MAP2K1, ITGB3, ITGA7, PARVB, NTN4 and FLNB). Methylation and mRNA expressions were decreased while mRNA degradation was increased under AF357425/SNORD113-6 inhibition in both murine and human primary fibroblasts, but effects on protein expression were more ambiguous. Integrin signalling is crucial for cell-cell and cell-matrix interactions, and correspondingly, we observed altered human primary arterial fibroblast function upon SNORD113-6 inhibition.
Collapse
Affiliation(s)
- Eva van Ingen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Daphne A L van den Homberg
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - M Leontien van der Bent
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Veerle Kremer
- Department of Physiology, Amsterdam Cardiovascular Sciences, Vrije Universiteit, Amsterdam UMC location VUMC, Amsterdam, The Netherlands
| | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, Vrije Universiteit, Amsterdam UMC location VUMC, Amsterdam, The Netherlands
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Johann Wojta
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - A Yaël Nossent
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Han X, Guo X, Chang J, Zhang J, Chen L, Wang H, Du F, Zeng X, Guo C. Integrinβ3 mediates the protective effects of soluble receptor for advanced glycation end-products during myocardial ischemia/reperfusion through AKT/STAT3 signaling pathway. Apoptosis 2022; 27:354-367. [PMID: 35359221 DOI: 10.1007/s10495-022-01724-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2022] [Indexed: 11/02/2022]
Abstract
Soluble receptor for advanced glycation end-product (sRAGE) was reported to protect myocardial ischemia/reperfusion (I/R) injuries via directly interacting with cardiomyocytes besides competing with RAGE for AGEs. However, the specific molecule for the interaction between sRAGE and cardiomyocytes are not clearly defined. Integrins which were reported to interact with RAGE on leukocytes were also expressed on myocardial cells, therefore it was supposed that sRAGE might interact with integrins on cardiomyocytes to protect hearts from ischemia/reperfusion injuries. The results showed that sRAGE increased the expression of integrinβ3 but not integrinβ1, β2, β4 or β5 in cardiomyocytes during I/R injuries. Meanwhile, the suppressive effects of sRAGE on cardiac function, cardiac infraction size and apoptosis in mice were cancelled by inhibition of integrinβ3 with cilengitide (CLG, 75 mg/kg). The results from cultured cardiomyocytes also proved that sRAGE attenuated myocardial apoptosis and autophagy through interacting with integrinβ3 to activate Akt and STAT3 pathway during oxygen and glucose deprivation/reperfusion (OGD/R) treatment. Furthermore, the phosphorylation of STAT3 was significantly downregulated by the inhibition of Akt (LY294002, 10 μM) in OGD/R and sRAGE treated cardiomyocytes, which suggested that STAT3 pathway was induced by Akt in I/R and sRAGE treated cardiomyocytes. The present study contributes to the understanding of myocardial I/R pathogenesis and provided a novel integrinβ3-dependent therapy strategy for sRAGE ameliorating I/R injuries.
Collapse
Affiliation(s)
- Xuejie Han
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Xinying Guo
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Jing Chang
- Department of Pathology, Beijing Youan Hospital, Capital Medical University, No. 8 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, People's Republic of China
| | - Jie Zhang
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Lu Chen
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Hongxia Wang
- Department of Physiology and Pathophysiology, Capital Medical University, No. 10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, People's Republic of China
| | - Fenghe Du
- Department of Geriatrics, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China
| | - Xiangjun Zeng
- Department of Physiology and Pathophysiology, Capital Medical University, No. 10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, People's Republic of China.
| | - Caixia Guo
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing, 100730, People's Republic of China.
| |
Collapse
|
17
|
Rodríguez JMM, Fonfara S, Hetzel U, Kipar A. Feline hypertrophic cardiomyopathy: reduced microvascular density and involvement of CD34+ interstitial cells. Vet Pathol 2021; 59:269-283. [PMID: 34955067 PMCID: PMC8928422 DOI: 10.1177/03009858211062631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The sequence of pathological events in feline hypertrophic cardiomyopathy (fHCM) is still largely unknown, although we know that fHCM is characterized by interstitial remodeling in a macrophage-driven pro-inflammatory environment and that myocardial ischemia might contribute to its progression. This study aimed to gain further insights into the structural changes associated with interstitial remodeling in fHCM with special focus on the myocardial microvasculature and the phenotype of the interstitial cells. Twenty-eight hearts (16 hearts with fHCM and 12 without cardiac disease) were evaluated in the current study, with immunohistochemistry, RNA-in situ hybridization, and transmission electron microscopy. Morphometrical evaluations revealed a statistically significant lower microvascular density in fHCM. This was associated with structural alterations in capillaries that go along with a widening of the interstitium due to the accumulation of edema fluid, collagen fibers, and mononuclear cells that also proliferated locally. The interstitial cells were mainly of fibroblastic or vascular phenotype, with a substantial contribution of predominantly resident macrophages. A large proportion expressed CD34 mRNA, which suggests a progenitor cell potential. Our results indicate that microvascular alterations are key events in the pathogenesis of fHCM and that myocardial interstitial cell populations with CD34+ phenotype play a role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Josep M Monné Rodríguez
- The Veterinary Cardiac Pathophysiology Consortium.,University of Zurich, Zurich, Switzerland.,University of Bern, Bern, Switzerland
| | - Sonja Fonfara
- The Veterinary Cardiac Pathophysiology Consortium.,University of Guelph, Guelph, Ontario, Canada
| | - Udo Hetzel
- The Veterinary Cardiac Pathophysiology Consortium.,University of Zurich, Zurich, Switzerland
| | - Anja Kipar
- The Veterinary Cardiac Pathophysiology Consortium.,University of Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Herman AB, Occean JR, Sen P. Epigenetic dysregulation in cardiovascular aging and disease. THE JOURNAL OF CARDIOVASCULAR AGING 2021; 1. [PMID: 34790973 PMCID: PMC8594871 DOI: 10.20517/jca.2021.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality and morbidity for all sexes, racial and ethnic groups. Age, and its associated physiological and pathological consequences, exacerbate CVD incidence and progression, while modulation of biological age with interventions track with cardiovascular health. Despite the strong link between aging and CVD, surprisingly few studies have directly investigated heart failure and vascular dysfunction in aged models and subjects. Nevertheless, strong correlations have been found between heart disease, atherosclerosis, hypertension, fibrosis, and regeneration efficiency with senescent cell burden and its proinflammatory sequelae. In agreement, senotherapeutics have had success in reducing the detrimental effects in experimental models of cardiovascular aging and disease. Aside from senotherapeutics, cellular reprogramming strategies targeting epigenetic enzymes remain an unexplored yet viable option for reversing or delaying CVD. Epigenetic alterations comprising local and global changes in DNA and histone modifications, transcription factor binding, disorganization of the nuclear lamina, and misfolding of the genome are hallmarks of aging. Limited studies in the aging cardiovascular system of murine models or human patient samples have identified strong correlations between the epigenome, age, and senescence. Here, we compile the findings in published studies linking epigenetic changes to CVD and identify clear themes of epigenetic deregulation during aging. Pending direct investigation of these general mechanisms in aged tissues, this review predicts that future work will establish epigenetic rejuvenation as a potent method to delay CVD.
Collapse
Affiliation(s)
- Allison B Herman
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - James R Occean
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
19
|
Zhang Y, Zhu Z, Wang T, Dong Y, Fan Y, Sun D. TGF-β1-containing exosomes from cardiac microvascular endothelial cells mediate cardiac fibroblast activation under high glucose conditions. Biochem Cell Biol 2021; 99:693-699. [PMID: 34726968 DOI: 10.1139/bcb-2020-0624] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cardiac fibroblast (CF)-mediated extracellular matrix (ECM) remodeling is the key pathological basis for the occurrence and development of diabetic cardiomyopathy (DCM); its specific regulatory mechanisms have been widely studied but remain unclear. Exosomes are a type of stable signal transmission medium, and exosome-mediated cell-cell interactions play an important role in DCM. Endothelial cells form an important barrier between circulation and cardiomyocytes, in addition to being an important endocrine organ of the heart and an initial target for hyperglycemia, a key aspect in the development of DCM. We previously showed that exosomes derived from cardiac microvascular endothelial cells (CMECs) under high glucose conditions can be taken up by cardiomyocytes and regulate autophagy, apoptosis, and glucose metabolism. Consequently, in the present study, we focused on how exosomes mediate the interaction between CMECs and CFs. Surprisingly, exosomes derived from CMECs under high glucose were rich in TGF-β1 mRNA, which significantly promoted the activation of CFs. Additionally, exosomes derived from CMECs under high glucose conditions aggravated perivascular and interstitial fibrosis in mice treated with streptozotocin. Herein, we demonstrated for the first time the capacity of exosomes, released by CMECs under high glucose, to mediate fibroblast activation through TGF-β1 mRNA, which may be potentially beneficial in the development of exosome-targeted therapies to control DCM.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhengru Zhu
- Department of Otolaryngology Head and Neck Surgery, First Hospital of Lanzhou University, Lanzhou, China
| | - Tingting Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuan Dong
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanhong Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
20
|
Schussler O, Chachques JC, Alifano M, Lecarpentier Y. Key Roles of RGD-Recognizing Integrins During Cardiac Development, on Cardiac Cells, and After Myocardial Infarction. J Cardiovasc Transl Res 2021; 15:179-203. [PMID: 34342855 DOI: 10.1007/s12265-021-10154-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Cardiac cells interact with the extracellular matrix (ECM) proteins through integrin mechanoreceptors that control many cellular events such as cell survival, apoptosis, differentiation, migration, and proliferation. Integrins play a crucial role in cardiac development as well as in cardiac fibrosis and hypertrophy. Integrins recognize oligopeptides present on ECM proteins and are involved in three main types of interaction, namely with collagen, laminin, and the oligopeptide RGD (Arg-Gly-Asp) present on vitronectin and fibronectin proteins. To date, the specific role of integrins recognizing the RGD has not been addressed. In this review, we examine their role during cardiac development, their role on cardiac cells, and their upregulation during pathological processes such as heart fibrosis and hypertrophy. We also examine their role in regenerative and angiogenic processes after myocardial infarction (MI) in the peri-infarct area. Specific targeting of these integrins may be a way of controlling some of these pathological events and thereby improving medical outcomes.
Collapse
Affiliation(s)
- Olivier Schussler
- Thoracic Surgery Department, Cochin Hospital, APHP Centre, University of Paris, Paris, France.
| | - Juan C Chachques
- Department of Cardiac Surgery Pompidou Hospital, Laboratory of Biosurgical Research, Carpentier Foundation, University Paris Descartes, 75015, Paris, France
| | - Marco Alifano
- Thoracic Surgery Department, Cochin Hospital, APHP Centre, University of Paris, Paris, France.,INSERM U1138 Team "Cancer, Immune Control, and Escape", Cordeliers Research Center, University of Paris, Paris, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| |
Collapse
|
21
|
Salvatore T, Pafundi PC, Galiero R, Albanese G, Di Martino A, Caturano A, Vetrano E, Rinaldi L, Sasso FC. The Diabetic Cardiomyopathy: The Contributing Pathophysiological Mechanisms. Front Med (Lausanne) 2021; 8:695792. [PMID: 34277669 PMCID: PMC8279779 DOI: 10.3389/fmed.2021.695792] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Individuals with diabetes mellitus (DM) disclose a higher incidence and a poorer prognosis of heart failure (HF) than non-diabetic people, even in the absence of other HF risk factors. The adverse impact of diabetes on HF likely reflects an underlying “diabetic cardiomyopathy” (DM–CMP), which may by exacerbated by left ventricular hypertrophy and coronary artery disease (CAD). The pathogenesis of DM-CMP has been a hot topic of research since its first description and is still under active investigation, as a complex interplay among multiple mechanisms may play a role at systemic, myocardial, and cellular/molecular levels. Among these, metabolic abnormalities such as lipotoxicity and glucotoxicity, mitochondrial damage and dysfunction, oxidative stress, abnormal calcium signaling, inflammation, epigenetic factors, and others. These disturbances predispose the diabetic heart to extracellular remodeling and hypertrophy, thus leading to left ventricular diastolic and systolic dysfunction. This Review aims to outline the major pathophysiological changes and the underlying mechanisms leading to myocardial remodeling and cardiac functional derangement in DM-CMP.
Collapse
Affiliation(s)
- Teresa Salvatore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Pia Clara Pafundi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Gaetana Albanese
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Anna Di Martino
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
22
|
Chen MS, Lee RT, Garbern JC. Senescence mechanisms and targets in the heart. Cardiovasc Res 2021; 118:1173-1187. [PMID: 33963378 DOI: 10.1093/cvr/cvab161] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/27/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Cellular senescence is a state of irreversible cell cycle arrest associated with ageing. Senescence of different cardiac cell types can direct the pathophysiology of cardiovascular diseases such as atherosclerosis, myocardial infarction, and cardiac fibrosis. While age-related telomere shortening represents a major cause of replicative senescence, the senescent state can also be induced by oxidative stress, metabolic dysfunction, and epigenetic regulation, among other stressors. It is critical that we understand the molecular pathways that lead to cellular senescence and the consequences of cellular senescence in order to develop new therapeutic approaches to treat cardiovascular disease. In this review, we discuss molecular mechanisms of cellular senescence, explore how cellular senescence of different cardiac cell types (including cardiomyocytes, cardiac endothelial cells, cardiac fibroblasts, vascular smooth muscle cells, valve interstitial cells) can lead to cardiovascular disease, and highlight potential therapeutic approaches that target molecular mechanisms of cellular senescence to prevent or treat cardiovascular disease.
Collapse
Affiliation(s)
- Maggie S Chen
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA 02138
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA 02138.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115
| | - Jessica C Garbern
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA 02138.,Department of Cardiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115
| |
Collapse
|
23
|
Lui C, Chin AF, Park S, Yeung E, Kwon C, Tomaselli G, Chen Y, Hibino N. Mechanical stimulation enhances development of scaffold-free, 3D-printed, engineered heart tissue grafts. J Tissue Eng Regen Med 2021; 15:503-512. [PMID: 33749089 DOI: 10.1002/term.3188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/10/2021] [Indexed: 12/26/2022]
Abstract
Current efforts to engineer a clinically relevant tissue graft from human-induced pluripotent stem cells (hiPSCs) have relied on the addition or utilization of external scaffolding material. However, any imbalance in the interactions between embedded cells and their surroundings may hinder the success of the resulting tissue graft. Therefore, the goal of our study was to create scaffold-free, 3D-printed cardiac tissue grafts from hiPSC-derived cardiomyocytes (CMs), and to evaluate whether or not mechanical stimulation would result in improved graft maturation. To explore this, we used a 3D bioprinter to produce scaffold-free cardiac tissue grafts from hiPSC-derived CM cell spheroids. Static mechanical stretching of these grafts significantly increased sarcomere length compared to unstimulated free-floating tissues, as determined by immunofluorescent image analysis. Stretched tissue was found to have decreased elastic modulus, increased maximal contractile force, and increased alignment of formed extracellular matrix, as expected in a functionally maturing tissue graft. Additionally, stretched tissues had upregulated expression of cardiac-specific gene transcripts, consistent with increased cardiac-like cellular identity. Finally, analysis of extracellular matrix organization in stretched grafts suggests improved remodeling by embedded cardiac fibroblasts. Taken together, our results suggest that mechanical stretching stimulates hiPSC-derived CMs in a 3D-printed, scaffold-free tissue graft to develop mature cardiac material structuring and cellular fates. Our work highlights the critical role of mechanical conditioning as an important engineering strategy toward developing clinically applicable, scaffold-free human cardiac tissue grafts.
Collapse
Affiliation(s)
- Cecillia Lui
- Division of Cardiac Surgery, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Alexander F Chin
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Seungman Park
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Enoch Yeung
- Division of Cardiac Surgery, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Chulan Kwon
- Division of Cardiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gordon Tomaselli
- Division of Cardiology, Johns Hopkins University, Baltimore, Maryland, USA.,Division of Cardiology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Narutoshi Hibino
- Division of Cardiac Surgery, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Meagher PB, Lee XA, Lee J, Visram A, Friedberg MK, Connelly KA. Cardiac Fibrosis: Key Role of Integrins in Cardiac Homeostasis and Remodeling. Cells 2021; 10:cells10040770. [PMID: 33807373 PMCID: PMC8066890 DOI: 10.3390/cells10040770] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiac fibrosis is a common finding that is associated with the progression of heart failure (HF) and impacts all chambers of the heart. Despite intense research, the treatment of HF has primarily focused upon strategies to prevent cardiomyocyte remodeling, and there are no targeted antifibrotic strategies available to reverse cardiac fibrosis. Cardiac fibrosis is defined as an accumulation of extracellular matrix (ECM) proteins which stiffen the myocardium resulting in the deterioration cardiac function. This occurs in response to a wide range of mechanical and biochemical signals. Integrins are transmembrane cell adhesion receptors, that integrate signaling between cardiac fibroblasts and cardiomyocytes with the ECM by the communication of mechanical stress signals. Integrins play an important role in the development of pathological ECM deposition. This review will discuss the role of integrins in mechano-transduced cardiac fibrosis in response to disease throughout the myocardium. This review will also demonstrate the important role of integrins as both initiators of the fibrotic response, and modulators of fibrosis through their effect on cardiac fibroblast physiology across the various heart chambers.
Collapse
Affiliation(s)
- Patrick B. Meagher
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Xavier Alexander Lee
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Joseph Lee
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Aylin Visram
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Mark K. Friedberg
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Labatt Family Heart Center and Department of Paediatrics, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Kim A. Connelly
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: ; Tel.: +141-686-45201
| |
Collapse
|
25
|
Patel NJ, Nassal DM, Gratz D, Hund TJ. Emerging therapeutic targets for cardiac arrhythmias: role of STAT3 in regulating cardiac fibroblast function. Expert Opin Ther Targets 2020; 25:63-73. [PMID: 33170045 DOI: 10.1080/14728222.2021.1849145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction : Cardiac fibrosis contributes to the development of cardiovascular disease (CVD) and arrhythmia. Cardiac fibroblasts (CFs) are collagen-producing cells that regulate extracellular matrix (ECM) homeostasis. A complex signaling network has been defined linking environmental stress to changes in CF function and fibrosis. Signal Transducer and Activator of Transcription 3 (STAT3) has emerged as a critical integrator of pro-fibrotic signals in CFs downstream of several established signaling networks. Areas covered : This article provides an overview of STAT3 function in CFs and its involvement in coordinating a vast web of intracellular pro-fibrotic signaling molecules and transcription factors. We highlight recent work elucidating a critical role for the fibroblast cytoskeleton in maintaining spatial and temporal control of STAT3-related signaling . Finally, we discuss potential opportunities and obstacles for therapeutic targeting of STAT3 to modulate cardiac fibrosis and arrhythmias. Relevant publications on the topic were identified through Pubmed. Expert opinion : Therapeutic targeting of STAT3 for CVD and arrhythmias presents unique challenges and opportunities. Thus, it is critical to consider the multimodal and dynamic nature of STAT3 signaling. Going forward, it will be beneficial to consider ways to maintain balanced STAT3 function, rather than large-scale perturbations in STAT3 function.
Collapse
Affiliation(s)
- Nehal J Patel
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University , Columbus, OH, USA
| | - Drew M Nassal
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University , Columbus, OH, USA
| | - Daniel Gratz
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University , Columbus, OH, USA
| | - Thomas J Hund
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University , Columbus, OH, USA.,Department of Internal Medicine, The Ohio State University Wexner Medical Center , Columbus, OH, USA
| |
Collapse
|
26
|
Effects of fibrillin mutations on the behavior of heart muscle cells in Marfan syndrome. Sci Rep 2020; 10:16756. [PMID: 33028885 PMCID: PMC7542175 DOI: 10.1038/s41598-020-73802-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/21/2020] [Indexed: 12/29/2022] Open
Abstract
Marfan syndrome (MFS) is a systemic disorder of connective tissue caused by pathogenic variants in the fibrillin-1 (FBN1) gene. Myocardial dysfunction has been demonstrated in MFS patients and mouse models, but little is known about the intrinsic effect on the cardiomyocytes (CMs). In this study, both induced pluripotent stem cells derived from a MFS-patient and the line with the corrected FBN1 mutation were differentiated to CMs. Several functional analyses are performed on this model to study MFS related cardiomyopathy. Atomic force microscopy revealed that MFS CMs are stiffer compared to corrected CMs. The contraction amplitude of MFS CMs is decreased compared to corrected CMs. Under normal culture conditions, MFS CMs show a lower beat-to-beat variability compared to corrected CMs using multi electrode array. Isoproterenol-induced stress or cyclic strain demonstrates lack of support from the matrix in MFS CMs. This study reports the first cardiac cell culture model for MFS, revealing abnormalities in the behavior of MFS CMs that are related to matrix defects. Based on these results, we postulate that impaired support from the extracellular environment plays a key role in the improper functioning of CMs in MFS.
Collapse
|
27
|
Landry NM, Dixon IMC. Fibroblast mechanosensing, SKI and Hippo signaling and the cardiac fibroblast phenotype: Looking beyond TGF-β. Cell Signal 2020; 76:109802. [PMID: 33017619 DOI: 10.1016/j.cellsig.2020.109802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022]
Abstract
Cardiac fibroblast activation to hyper-synthetic myofibroblasts following a pathological stimulus or in response to a substrate with increased stiffness may be a key tipping point for the evolution of cardiac fibrosis. Cardiac fibrosis per se is associated with progressive loss of heart pump function and is a primary contributor to heart failure. While TGF-β is a common cytokine stimulus associated with fibroblast activation, a druggable target to quell this driver of fibrosis has remained an elusive therapeutic goal due to its ubiquitous use by different cell types and also in the signaling complexity associated with SMADs and other effector pathways. More recently, mechanical stimulus of fibroblastic cells has been revealed as a major point of activation; this includes cardiac fibroblasts. Further, the complexity of TGF-β signaling has been offset by the discovery of members of the SKI family of proteins and their inherent anti-fibrotic properties. In this respect, SKI is a protein that may bind a number of TGF-β associated proteins including SMADs, as well as signaling proteins from other pathways, including Hippo. As SKI is also known to directly deactivate cardiac myofibroblasts to fibroblasts, this mode of action is a putative candidate for further study into the amelioration of cardiac fibrosis. Herein we provide a synthesis of this topic and highlight novel candidate pathways to explore in the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Natalie M Landry
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Ian M C Dixon
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
28
|
Hopkins AA, Murphy R, Irnaten M, Wallace DM, Quill B, O'Brien C. The role of lamina cribrosa tissue stiffness and fibrosis as fundamental biomechanical drivers of pathological glaucoma cupping. Am J Physiol Cell Physiol 2020; 319:C611-C623. [PMID: 32667866 DOI: 10.1152/ajpcell.00054.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The primary biomechanical driver of pathological glaucomatous cupping remains unknown. Finite element modeling indicates that stress and strain play key roles. In this article, primarily a review, we utilize known biomechanical data and currently unpublished results from our lab to propose a three-stage, tissue stiffness-based model to explain glaucomatous cupping occurring at variable levels of translaminar pressure (TLP). In stage 1, a short-term increase in TLP gradient induces a transient increase in lamina cribrosa (LC) strain. Beyond a critical level of strain, the tissue stiffness rises steeply provoking cellular responses via integrin-mediated mechanotransduction. This early mechanoprotective cellular contraction reduces strain, which reduces tissue stiffness by return of the posteriorly deflected LC to baseline. In stage 2 a prolonged period of TLP increase elicits extracellular matrix (ECM) production leading to fibrosis, increasing baseline tissue stiffness and strain and diminishing the contractile ability/ability to return to the baseline LC position. This is supported by our three-dimensional collagen contraction assays, which show significantly reduced capacity to contract in glaucoma compared with normal LC cells. Second, 15% cyclic strain in LC cells over 24 h elicits a typical increase in ECM profibrotic genes in normal LC cells but a highly blunted response in glaucoma LC cells. Stage 3 is characterized by persistent fibrosis causing further stiffening and inducing a feed-forward ECM production cycle. Repeated cycles of increased strain and stiffness with profibrotic ECM deposition prevent optic nerve head (ONH) recoil from the new deflected position. This incremental maladaptive modeling leads to pathological ONH cupping.
Collapse
Affiliation(s)
- Alan A Hopkins
- Clinical Research Centre, Catherine McAuley Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Rory Murphy
- Clinical Research Centre, Catherine McAuley Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Mustapha Irnaten
- Clinical Research Centre, Catherine McAuley Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Deborah M Wallace
- Clinical Research Centre, Catherine McAuley Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Barry Quill
- Clinical Research Centre, Catherine McAuley Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Colm O'Brien
- Clinical Research Centre, Catherine McAuley Centre, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
29
|
Pupkaite J, Sedlakova V, Eren Cimenci C, Bak M, McLaughlin S, Ruel M, Alarcon EI, Suuronen EJ. Delivering More of an Injectable Human Recombinant Collagen III Hydrogel Does Not Improve Its Therapeutic Efficacy for Treating Myocardial Infarction. ACS Biomater Sci Eng 2020; 6:4256-4265. [PMID: 33463355 DOI: 10.1021/acsbiomaterials.0c00418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Injectable hydrogels are a promising method to enhance repair in the heart after myocardial infarction (MI). However, few studies have compared different strategies for the application of biomaterial treatments. In this study, we use a clinically relevant mouse MI model to assess the therapeutic efficacy of different treatment protocols for intramyocardial injection of a recombinant human collagen III (rHCIII) thermoresponsive hydrogel. Comparing a single hydrogel injection at an early time point (3 h) versus injections at multiple time points (3 h, 1 week, and 2 weeks) post-MI revealed that the single injection group led to superior cardiac function, reduced scar size and inflammation, and increased vascularization. Omitting the 3 h time point and delivering the hydrogel at 1 and 2 weeks post-MI led to poorer cardiac function. The positive effects of the single time point injection (3 h) on scar size and vascular density were lost when the hydrogel's collagen concentration was increased from 1% to 2%, and it did not confer any additional functional improvement. This study shows that early treatment with a rHCIII hydrogel can improve cardiac function post-MI but that injecting more rHCIII (by increased concentration or more over time) can reduce its efficacy, thus highlighting the importance of investigating optimal treatment strategies of biomaterial therapy for MI.
Collapse
Affiliation(s)
- Justina Pupkaite
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, K1Y 4W7 Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Ontario, Canada.,Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping 582 25, Sweden
| | - Veronika Sedlakova
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, K1Y 4W7 Ontario, Canada
| | - Cagla Eren Cimenci
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, K1Y 4W7 Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Ontario, Canada
| | - Madison Bak
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, K1Y 4W7 Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Ontario, Canada
| | - Sarah McLaughlin
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, K1Y 4W7 Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Ontario, Canada
| | - Marc Ruel
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, K1Y 4W7 Ontario, Canada
| | - Emilio I Alarcon
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, K1Y 4W7 Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Ontario, Canada
| | - Erik J Suuronen
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, K1Y 4W7 Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Ontario, Canada
| |
Collapse
|
30
|
Watson SA, Terracciano CM, Perbellini F. Myocardial Slices: an Intermediate Complexity Platform for Translational Cardiovascular Research. Cardiovasc Drugs Ther 2020; 33:239-244. [PMID: 30671746 PMCID: PMC6509068 DOI: 10.1007/s10557-019-06853-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Myocardial slices, also known as “cardiac tissue slices” or “organotypic heart slices,” are ultrathin (100–400 μm) slices of living adult ventricular myocardium prepared using a high-precision vibratome. They are a model of intermediate complexity as they retain the native multicellularity, architecture, and physiology of the heart, while their thinness ensures adequate oxygen and metabolic substrate diffusion in vitro. Myocardial slices can be produced from a variety of animal models and human biopsies, thus providing a representative human in vitro platform for translational cardiovascular research. In this review, we compare myocardial slices to other in vitro models and highlight some of the unique advantages provided by this platform. Additionally, we discuss the work performed in our laboratory to optimize myocardial slice preparation methodology, which resulted in highly viable myocardial slices from both large and small mammalian hearts with only 2–3% cardiomyocyte damage and preserved structure and function. Applications of myocardial slices span both basic and translational cardiovascular science. Our laboratory has utilized myocardial slices for the investigation of cardiac multicellularity, visualizing 3D collagen distribution and micro/macrovascular networks using tissue clearing protocols and investigating the effects of novel conductive biomaterials on cardiac physiology. Myocardial slices have been widely used for pharmacological testing. Finally, the current challenges and future directions for the technology are discussed.
Collapse
Affiliation(s)
- Samuel A Watson
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | | |
Collapse
|
31
|
Tang X, Li PH, Chen HZ. Cardiomyocyte Senescence and Cellular Communications Within Myocardial Microenvironments. Front Endocrinol (Lausanne) 2020; 11:280. [PMID: 32508749 PMCID: PMC7253644 DOI: 10.3389/fendo.2020.00280] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/15/2020] [Indexed: 01/10/2023] Open
Abstract
Cardiovascular diseases have become the leading cause of human death. Aging is an independent risk factor for cardiovascular diseases. Cardiac aging is associated with maladaptation of cellular metabolism, dysfunction (or senescence) of cardiomyocytes, a decrease in angiogenesis, and an increase in tissue scarring (fibrosis). These events eventually lead to cardiac remodeling and failure. Senescent cardiomyocytes show the hallmarks of DNA damage, endoplasmic reticulum stress, mitochondria dysfunction, contractile dysfunction, hypertrophic growth, and senescence-associated secreting phenotype (SASP). Metabolism within cardiomyocytes is essential not only to fuel the pump function of the heart but also to maintain the functional homeostasis and participate in the senescence of cardiomyocytes. The senescence of cardiomyocyte is also regulated by the non-myocytes (endothelial cells, fibroblasts, and immune cells) in the local microenvironment. On the other hand, the senescent cardiomyocytes alter their phenotypes and subsequently affect the non-myocytes in the local microenvironment and contribute to cardiac aging and pathological remodeling. In this review, we first summarized the hallmarks of the senescence of cardiomyocytes. Then, we discussed the metabolic switch within senescent cardiomyocytes and provided a discussion of the cellular communications between dysfunctional cardiomyocytes and non-myocytes in the local microenvironment. We also addressed the functions of metabolic regulators within non-myocytes in modulating myocardial microenvironment. Finally, we pointed out some interesting and important questions that are needed to be addressed by further studies.
Collapse
Affiliation(s)
- Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xiaoqiang Tang ;
| | - Pei-Heng Li
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Hou-Zao Chen ;
| |
Collapse
|
32
|
Dukinfield M, Maniati E, Reynolds LE, Aubdool A, Baliga RS, D'Amico G, Maiques O, Wang J, Bedi KC, Margulies KB, Sanz‐Moreno V, Hobbs A, Hodivala‐Dilke K. Repurposing an anti-cancer agent for the treatment of hypertrophic heart disease. J Pathol 2019; 249:523-535. [PMID: 31424556 PMCID: PMC6900130 DOI: 10.1002/path.5340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
Abstract
Coronary microvascular dysfunction combined with maladaptive cardiomyocyte morphology and energetics is a major contributor to heart failure advancement. Thus, dually enhancing cardiac angiogenesis and targeting cardiomyocyte function to slow, or reverse, the development of heart failure is a logical step towards improved therapy. We present evidence for the potential to repurpose a former anti-cancer Arg-Gly-Asp (RGD)-mimetic pentapeptide, cilengitide, here used at low doses. Cilengitide targets αvβ3 integrin and this protein is upregulated in human dilated and ischaemic cardiomyopathies. Treatment of mice after abdominal aortic constriction (AAC) surgery with low-dose cilengitide (ldCil) enhances coronary angiogenesis and directly affects cardiomyocyte hypertrophy with an associated reduction in disease severity. At a molecular level, ldCil treatment has a direct effect on cardiac endothelial cell transcriptomic profiles, with a significant enhancement of pro-angiogenic signalling pathways, corroborating the enhanced angiogenic phenotype after ldCil treatment. Moreover, ldCil treatment of Angiotensin II-stimulated AngII-stimulated cardiomyocytes significantly restores transcriptomic profiles similar to those found in normal human heart. The significance of this finding is enhanced by transcriptional similarities between AngII-treated cardiomyocytes and failing human hearts. Taken together, our data provide evidence supporting a possible new strategy for improved heart failure treatment using low-dose RGD-mimetics with relevance to human disease. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Matthew Dukinfield
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Eleni Maniati
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Louise E Reynolds
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Aisah Aubdool
- William Harvey Research Institute, Queen Mary University of London, Charterhouse SquareLondonUK
| | - Reshma S Baliga
- William Harvey Research Institute, Queen Mary University of London, Charterhouse SquareLondonUK
| | - Gabriela D'Amico
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Jun Wang
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Kenneth C Bedi
- Perelman School of MedicineUniversity of Pennsylvania, Translational Research CenterPhiladelphiaPAUSA
| | - Kenneth B Margulies
- Perelman School of MedicineUniversity of Pennsylvania, Translational Research CenterPhiladelphiaPAUSA
| | - Victoria Sanz‐Moreno
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Adrian Hobbs
- William Harvey Research Institute, Queen Mary University of London, Charterhouse SquareLondonUK
| | - Kairbaan Hodivala‐Dilke
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| |
Collapse
|
33
|
Li Z, Liu T, Yang J, Lin J, Xin SX. Characterization of adhesion properties of the cardiomyocyte integrins and extracellular matrix proteins using atomic force microscopy. J Mol Recognit 2019; 33:e2823. [PMID: 31709699 DOI: 10.1002/jmr.2823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/08/2019] [Accepted: 10/19/2019] [Indexed: 11/10/2022]
Abstract
Integrins are transmembrane adhesion receptors that play important roles in the cardiovascular system by interacting with the extracellular matrix (ECM). However, direct quantitative measurements of the adhesion properties of the integrins on cardiomyocyte (CM) and their ECM ligands are lacking. In this study, we used atomic force microscopy (AFM) to quantify the adhesion force (peak force and mean force) and binding probability between CM integrins and three main heart tissue ECM proteins, ie, collagen (CN), fibronectin (FN), and laminin (LN). Functionalizing the AFM probes with ECM proteins, we found that the peak force (mean force) was 61.69 ± 5.5 pN (76.54 ± 4.0 pN), 39.26 ± 4.4 pN (59.84 ± 3.6 pN), and 108.31 ± 4.2 pN (129.63 ± 6.0 pN), respectively, for the bond of CN-integrin, FN-integrin, and LN-integrin. The binding specificity between CM integrins and ECM proteins was verified by using monoclonal antibodies, where α10 - and α11 -integrin bind to CN, α3 - and α5 -integrin bind to FN, and α3 - and α7 -integrin bind to LN. Furthermore, adhesion properties of CM integrins under physiologically high concentrations of extracellular Ca2+ and Mg2+ were tested. Additional Ca2+ reduced the adhesion mean force to 68.81 ± 4.0 pN, 49.84 ± 3.3 pN, and 119.21 ± 5.8 pN and binding probability to 0.31, 0.34, 0.40 for CN, FN, and LN, respectively, whereas Mg2+ caused very minor changes to adhesion properties of CM integrins. Thus, adhesion properties between adult murine CM integrins and its main ECM proteins were characterized, paving the way for an improved understanding of CM mechanobiology.
Collapse
Affiliation(s)
- Zecheng Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Tianqi Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Junxian Yang
- Institute of Biomechanics, School of Biosciences and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jiangguo Lin
- Institute of Biomechanics, School of Biosciences and Bioengineering, South China University of Technology, Guangzhou, China
| | - Sherman Xuegang Xin
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
34
|
Liu B, Wang Y, Zhang Y, Yan B. Mechanisms of Protective Effects of SGLT2 Inhibitors in Cardiovascular Disease and Renal Dysfunction. Curr Top Med Chem 2019; 19:1818-1849. [PMID: 31456521 DOI: 10.2174/1568026619666190828161409] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/09/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus is one of the most common forms of the disease worldwide. Hyperglycemia and insulin resistance play key roles in type 2 diabetes mellitus. Renal glucose reabsorption is an essential feature in glycaemic control. Kidneys filter 160 g of glucose daily in healthy subjects under euglycaemic conditions. The expanding epidemic of diabetes leads to a prevalence of diabetes-related cardiovascular disorders, in particular, heart failure and renal dysfunction. Cellular glucose uptake is a fundamental process for homeostasis, growth, and metabolism. In humans, three families of glucose transporters have been identified, including the glucose facilitators GLUTs, the sodium-glucose cotransporter SGLTs, and the recently identified SWEETs. Structures of the major isoforms of all three families were studied. Sodium-glucose cotransporter (SGLT2) provides most of the capacity for renal glucose reabsorption in the early proximal tubule. A number of cardiovascular outcome trials in patients with type 2 diabetes have been studied with SGLT2 inhibitors reducing cardiovascular morbidity and mortality. The current review article summarises these aspects and discusses possible mechanisms with SGLT2 inhibitors in protecting heart failure and renal dysfunction in diabetic patients. Through glucosuria, SGLT2 inhibitors reduce body weight and body fat, and shift substrate utilisation from carbohydrates to lipids and, possibly, ketone bodies. These pleiotropic effects of SGLT2 inhibitors are likely to have contributed to the results of the EMPA-REG OUTCOME trial in which the SGLT2 inhibitor, empagliflozin, slowed down the progression of chronic kidney disease and reduced major adverse cardiovascular events in high-risk individuals with type 2 diabetes. This review discusses the role of SGLT2 in the physiology and pathophysiology of renal glucose reabsorption and outlines the unexpected logic of inhibiting SGLT2 in the diabetic kidney.
Collapse
Affiliation(s)
- Ban Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuliang Wang
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Yangyang Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Tongji University School of Medicine, Shanghai, China.,Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Biao Yan
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Pourakbari R, Khodadadi M, Aghebati-Maleki A, Aghebati-Maleki L, Yousefi M. The potential of exosomes in the therapy of the cartilage and bone complications; emphasis on osteoarthritis. Life Sci 2019; 236:116861. [PMID: 31513815 DOI: 10.1016/j.lfs.2019.116861] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/04/2019] [Accepted: 09/08/2019] [Indexed: 12/13/2022]
Abstract
Osteoarthritis is a prevalent worldwide joint disease, which demonstrates a remarkable adverse effect on the patients' life modality. Medicinal agents, exclusively nonsteroidal anti-inflammatory drugs (NSAIDs), have been routinely applied in the clinic. But, their effects are restricted to pain control with insignificant effects on cartilage renovation, which would finally lead to cartilage destruction. In the field of regenerative medicine, many researchers have tried to use stem cells to repair tissues and other human organs. However, in recent years, with the discovery of extracellular microvesicles, especially exosomes, researchers have been able to offer more exciting alternatives on the subject. Exosomes and microvesicles are derived from different types of bone cells such as mesenchymal stem cells, osteoblasts, and osteoclasts. They are also recognized to play substantial roles in bone remodeling processes including osteogenesis, osteoclastogenesis, and angiogenesis. Specifically, exosomes derived from a mesenchymal stem cell have shown a great potential for the desired purpose. Exosomal products include miRNA, DNA, proteins, and other factors. At present, if it is possible to extract exosomes from various stem cells effectively and load certain products or drugs into them, they can be used in diseases, such as rheumatoid arthritis, osteoarthritis, bone fractures, and other diseases. Of course, to achieve proper clinical use, advances have to be made to establish a promising regenerative ability for microvesicles for treatment purposes in the orthopedic disorders. In this review, we describe the exosomes biogenesis and bone cell derived exosomes in the regenerate process of bone and cartilage remodeling.
Collapse
Affiliation(s)
- Ramin Pourakbari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Meysam Khodadadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
36
|
Leitolis A, Robert AW, Pereira IT, Correa A, Stimamiglio MA. Cardiomyogenesis Modeling Using Pluripotent Stem Cells: The Role of Microenvironmental Signaling. Front Cell Dev Biol 2019; 7:164. [PMID: 31448277 PMCID: PMC6695570 DOI: 10.3389/fcell.2019.00164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
Pluripotent stem cells (PSC) can be used as a model to study cardiomyogenic differentiation. In vitro modeling can reproduce cardiac development through modulation of some key signaling pathways. Therefore, many studies make use of this strategy to better understand cardiomyogenesis complexity and to determine possible ways to modulate cell fate. However, challenges remain regarding efficiency of differentiation protocols, cardiomyocyte (CM) maturation and therapeutic applications. Considering that the extracellular milieu is crucial for cellular behavior control, cardiac niche studies, such as those identifying secreted molecules from adult or neonatal tissues, allow the identification of extracellular factors that may contribute to CM differentiation and maturation. This review will focus on cardiomyogenesis modeling using PSC and the elements involved in cardiac microenvironmental signaling (the secretome - extracellular vesicles, extracellular matrix and soluble factors) that may contribute to CM specification and maturation.
Collapse
Affiliation(s)
- Amanda Leitolis
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| | - Anny W Robert
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| | - Isabela T Pereira
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| | - Alejandro Correa
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| | - Marco A Stimamiglio
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| |
Collapse
|
37
|
Saucerman JJ, Tan PM, Buchholz KS, McCulloch AD, Omens JH. Mechanical regulation of gene expression in cardiac myocytes and fibroblasts. Nat Rev Cardiol 2019; 16:361-378. [PMID: 30683889 PMCID: PMC6525041 DOI: 10.1038/s41569-019-0155-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intact heart undergoes complex and multiscale remodelling processes in response to altered mechanical cues. Remodelling of the myocardium is regulated by a combination of myocyte and non-myocyte responses to mechanosensitive pathways, which can alter gene expression and therefore function in these cells. Cellular mechanotransduction and its downstream effects on gene expression are initially compensatory mechanisms during adaptations to the altered mechanical environment, but under prolonged and abnormal loading conditions, they can become maladaptive, leading to impaired function and cardiac pathologies. In this Review, we summarize mechanoregulated pathways in cardiac myocytes and fibroblasts that lead to altered gene expression and cell remodelling under physiological and pathophysiological conditions. Developments in systems modelling of the networks that regulate gene expression in response to mechanical stimuli should improve integrative understanding of their roles in vivo and help to discover new combinations of drugs and device therapies targeting mechanosignalling in heart disease.
Collapse
Affiliation(s)
- Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Philip M Tan
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kyle S Buchholz
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrew D McCulloch
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Jeffrey H Omens
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
38
|
Horton WJ, Jensen M, Sebastian A, Praul CA, Albert I, Bartell PA. Transcriptome Analyses of Heart and Liver Reveal Novel Pathways for Regulating Songbird Migration. Sci Rep 2019; 9:6058. [PMID: 30988315 PMCID: PMC6465361 DOI: 10.1038/s41598-019-41252-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/25/2019] [Indexed: 12/21/2022] Open
Abstract
Many birds undertake long biannual voyages during the night. During these times of the year birds drastically reduce their amount of sleep, yet curiously perform as well on tests of physical and cognitive performance than during non-migrating times of the year. This inherent physiological protection disappears when birds are forced to stay awake at other times of the year; thus these protective changes are only associated with the nocturnal migratory state. The goal of the current study was to identify the physiological mechanisms that confer protection against the consequences of sleep loss while simultaneously allowing for the increased physical performance required for migration. We performed RNA-seq analyses of heart and liver collected from birds at different times of day under different migratory states and analyzed these data using differential expression, pathway analysis and WGCNA. We identified changes in gene expression networks implicating multiple systems and pathways. These pathways regulate many aspects of metabolism, immune function, wound repair, and protection of multiple organ systems. Consequently, the circannual program controlling the appearance of the migratory phenotype involves the complex regulation of diverse gene networks associated with the physical demands of migration.
Collapse
Affiliation(s)
- William J Horton
- Department of Animal Science, Pennsylvania State University, University Park, PA, 16802, USA
| | - Matthew Jensen
- Bioinformatics and Genomics Program, Pennsylvania State University, University Park, PA, 16802, USA
| | - Aswathy Sebastian
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Craig A Praul
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Istvan Albert
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Paul A Bartell
- Department of Animal Science, Pennsylvania State University, University Park, PA, 16802, USA. .,Center for Brain, Behavior & Cognition, Pennsylvania State University, University Park, PA, 16802, USA. .,Intercollege Graduate Degree Program in Ecology, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
39
|
Hu S, Ogle BM, Cheng K. Body builder: from synthetic cells to engineered tissues. Curr Opin Cell Biol 2018; 54:37-42. [PMID: 29704858 PMCID: PMC6202268 DOI: 10.1016/j.ceb.2018.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/12/2018] [Accepted: 04/15/2018] [Indexed: 12/26/2022]
Abstract
It is estimated that 18 Americans die every day waiting for an organ donation. And even if a patient receives the organ that s/he needs, there is still >10% chance that the new organ will not work. The field of tissue engineering and regenerative medicine aims to actively use a patient's own cells, plus biomaterials and factors, to grow specific tissues for replacement or to restore normal functions of that organ, which would eliminate the need for donors and the risk of alloimmune rejection. In this review, we summarized recent advances in fabricating synthetic cells, with a specific focus on their application to cardiac regenerative medicine and tissue engineering. At the end, we pointed to challenges and future directions for the field.
Collapse
Affiliation(s)
- Shiqi Hu
- Department of Molecular Biomedical Sciences, Comparative Medicine Institute, NC State University, Raleigh, NC 27607, USA; Joint Department of Biomedical Engineering and Comparative Medicine Institute, UNC-Chapel Hill & NC State University, Raleigh, NC 27607, USA
| | - Brenda M Ogle
- Department of Biomedical Engineering, Stem Cell Institute, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, Comparative Medicine Institute, NC State University, Raleigh, NC 27607, USA; Joint Department of Biomedical Engineering and Comparative Medicine Institute, UNC-Chapel Hill & NC State University, Raleigh, NC 27607, USA.
| |
Collapse
|
40
|
Jing H, He X, Zheng J. Exosomes and regenerative medicine: state of the art and perspectives. Transl Res 2018; 196:1-16. [PMID: 29432720 DOI: 10.1016/j.trsl.2018.01.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 12/19/2022]
Abstract
Exosomes have attracted the attention of the scientific community in recent years due to their widespread distribution, their possible functions as biomarkers of disease, and their great potential to be applied as therapeutic agents. Exosomes carry proteins and nucleic acids that can facilitate their uptake by distant target cells through endocytosis, such that exosomes could be targeted to a specific cell or cells to enhance or interfere with specific biological processes. This review will mainly focus on their roles in tissue repair and regenerative processes. Exosomal engineering and their potential applications in tissue regeneration are also reviewed here as an outlook for future research.
Collapse
Affiliation(s)
- Hui Jing
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomin He
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jinghao Zheng
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
41
|
Sebastião MJ, Pereira R, Serra M, Gomes-Alves P, Alves PM. Unveiling Human Cardiac Fibroblast Membrane Proteome. Proteomics 2018; 18:e1700446. [PMID: 29696784 DOI: 10.1002/pmic.201700446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/09/2018] [Indexed: 11/11/2022]
Abstract
Cardiac fibroblasts (CFs) are one of the main cell populations in the heart and play important roles in tissue homeostasis and myocardial fibrosis. The study of these cells has been hampered by the lack of reliable membrane markers: none of the antigens currently used for characterization and isolation of CFs is unique for this cell type. This issue has also raised doubts regarding a distinct identity of cardiac fibroblasts when compared to other myocardium cell populations with similar morphologies. In this work, we report a comprehensive description and functional analysis of human CFs (hCFs) membraneenriched fraction proteome by advanced mass spectrometry-based proteomic tools. A total number of 1478 proteins were identified, including 774 membrane proteins (52%). We also report the identification of a subset of 30 membrane proteins that in this workflow were only identified in hCFs by comparison with the membrane-enriched proteome lists of human cardiac stem cells, human mesenchymal stem cells, and human dermal fibroblasts. The data reported in this work are a valuable source of information for further studies aiming at defining a membrane molecular signature of human cardiac fibroblasts (hCFs), and a step forward in research regarding membrane proteins with key roles in hCF function in homeostasis and disease.
Collapse
Affiliation(s)
- Maria João Sebastião
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
| | - Rute Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
| | - Margarida Serra
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
| | - Patrícia Gomes-Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
| | - Paula Marques Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
| |
Collapse
|
42
|
Meagher P, Adam M, Civitarese R, Bugyei-Twum A, Connelly KA. Heart Failure With Preserved Ejection Fraction in Diabetes: Mechanisms and Management. Can J Cardiol 2018; 34:632-643. [PMID: 29731023 DOI: 10.1016/j.cjca.2018.02.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 02/25/2018] [Accepted: 02/25/2018] [Indexed: 12/20/2022] Open
Abstract
Diabetes mellitus (DM) is a major cause of heart failure in the Western world, either secondary to coronary artery disease or from a distinct entity known as "diabetic cardiomyopathy." Furthermore, heart failure with preserved ejection fraction (HFpEF) is emerging as a significant clinical problem for patients with DM. Current clinical data suggest that between 30% and 40% of patients with HFpEF suffer from DM. The typical structural phenotype of the HFpEF heart consists of endothelial dysfunction, increased interstitial and perivascular fibrosis, cardiomyocyte stiffness, and hypertrophy along with advanced glycation end products deposition. There is a myriad of mechanisms that result in the phenotypical HFpEF heart including impaired cardiac metabolism and substrate utilization, altered insulin signalling leading to protein kinase C activation, advanced glycated end products deposition, prosclerotic cytokine activation (eg, transforming growth factor-β activation), along with impaired nitric oxide production from the endothelium. Moreover, recent investigations have focused on the role of endothelial-myocyte interactions. Despite intense research, current therapeutic strategies have had little effect on improving morbidity and mortality in patients with DM and HFpEF. Possible explanations for this include a limited understanding of the role that direct cell-cell communication or indirect cell-cell paracrine signalling plays in the pathogenesis of DM and HFpEF. Additionally, integrins remain another important mediator of signals from the extracellular matrix to cells within the failing heart and might play a significant role in cell-cell cross-talk. In this review we discuss the characteristics and mechanisms of DM and HFpEF to stimulate potential future research for patients with this common, and morbid condition.
Collapse
Affiliation(s)
- Patrick Meagher
- Keenan Research Centre for Biomedical Science, St Michael's Hospital; Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Mohamed Adam
- Keenan Research Centre for Biomedical Science, St Michael's Hospital; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Robert Civitarese
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Antoinette Bugyei-Twum
- Keenan Research Centre for Biomedical Science, St Michael's Hospital; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science, St Michael's Hospital; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science, St Michael's Hospital; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Cardiology, St Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
43
|
Molecular imaging of cardiac remodelling after myocardial infarction. Basic Res Cardiol 2018; 113:10. [PMID: 29344827 PMCID: PMC5772148 DOI: 10.1007/s00395-018-0668-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/17/2017] [Accepted: 01/08/2018] [Indexed: 02/06/2023]
Abstract
Myocardial infarction and subsequent heart failure is a major health burden associated with significant mortality and morbidity in western societies. The ability of cardiac tissue to recover after myocardial infarction is affected by numerous complex cellular and molecular pathways. Unbalance or failure of these pathways can lead to adverse remodelling of the heart and poor prognosis. Current clinical cardiac imaging modalities assess anatomy, perfusion, function, and viability of the myocardium, yet do not offer any insight into the specific molecular pathways involved in the repair process. Novel imaging techniques allow visualisation of these molecular processes and may have significant diagnostic and prognostic values, which could aid clinical management. Single photon-emission tomography, positron-emission tomography, and magnetic resonance imaging are used to visualise various aspects of these molecular processes. Imaging probes are usually attached to radioisotopes or paramagnetic nanoparticles to specifically target biological processes such as: apoptosis, necrosis, inflammation, angiogenesis, and scar formation. Although the results from preclinical studies are promising, translating this work to a clinical environment in a valuable and cost-effective way is extremely challenging. Extensive evaluation evidence of diagnostic and prognostic values in multi-centre clinical trials is still required.
Collapse
|
44
|
Ahadian S, Civitarese R, Bannerman D, Mohammadi MH, Lu R, Wang E, Davenport-Huyer L, Lai B, Zhang B, Zhao Y, Mandla S, Korolj A, Radisic M. Organ-On-A-Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies. Adv Healthc Mater 2018; 7. [PMID: 29034591 DOI: 10.1002/adhm.201700506] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/15/2017] [Indexed: 12/11/2022]
Abstract
Significant advances in biomaterials, stem cell biology, and microscale technologies have enabled the fabrication of biologically relevant tissues and organs. Such tissues and organs, referred to as organ-on-a-chip (OOC) platforms, have emerged as a powerful tool in tissue analysis and disease modeling for biological and pharmacological applications. A variety of biomaterials are used in tissue fabrication providing multiple biological, structural, and mechanical cues in the regulation of cell behavior and tissue morphogenesis. Cells derived from humans enable the fabrication of personalized OOC platforms. Microscale technologies are specifically helpful in providing physiological microenvironments for tissues and organs. In this review, biomaterials, cells, and microscale technologies are described as essential components to construct OOC platforms. The latest developments in OOC platforms (e.g., liver, skeletal muscle, cardiac, cancer, lung, skin, bone, and brain) are then discussed as functional tools in simulating human physiology and metabolism. Future perspectives and major challenges in the development of OOC platforms toward accelerating clinical studies of drug discovery are finally highlighted.
Collapse
Affiliation(s)
- Samad Ahadian
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Robert Civitarese
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Dawn Bannerman
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Mohammad Hossein Mohammadi
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Rick Lu
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Erika Wang
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Locke Davenport-Huyer
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Ben Lai
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Boyang Zhang
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Yimu Zhao
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Serena Mandla
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Anastasia Korolj
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| |
Collapse
|
45
|
Watson SA, Scigliano M, Bardi I, Ascione R, Terracciano CM, Perbellini F. Preparation of viable adult ventricular myocardial slices from large and small mammals. Nat Protoc 2017; 12:2623-2639. [PMID: 29189769 DOI: 10.1038/nprot.2017.139] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This protocol describes the preparation of highly viable adult ventricular myocardial slices from the hearts of small and large mammals, including rodents, pigs, dogs and humans. Adult ventricular myocardial slices are 100- to 400-μm-thick slices of living myocardium that retain the native multicellularity, architecture and physiology of the heart. This protocol provides a list of the equipment and reagents required alongside a detailed description of the methodology for heart explantation, tissue preparation, slicing with a vibratome and handling of myocardial slices. Supplementary videos are included to visually demonstrate these steps. A number of critical steps are addressed that must be followed in order to prepare highly viable myocardial slices. These include identification of myocardial fiber direction and fiber alignment within the tissue block, careful temperature control, use of an excitation-contraction uncoupler, optimal vibratome settings and correct handling of myocardial slices. Many aspects of cardiac structure and function can be studied using myocardial slices in vitro. Typical results obtained with hearts from a small mammal (rat) and a large mammal (human) with heart failure are shown, demonstrating myocardial slice viability, maximum contractility, Ca2+ handling and structure. This protocol can be completed in ∼4 h.
Collapse
Affiliation(s)
- Samuel A Watson
- Division of Cardiovascular Sciences, Myocardial Function, National Heart and Lung Institute, Imperial College London, London, UK
| | - Martina Scigliano
- Division of Cardiovascular Sciences, Myocardial Function, National Heart and Lung Institute, Imperial College London, London, UK
| | - Ifigeneia Bardi
- Division of Cardiovascular Sciences, Myocardial Function, National Heart and Lung Institute, Imperial College London, London, UK
| | - Raimondo Ascione
- Translational Biomedical Research Centre, University of Bristol, Bristol, UK
| | - Cesare M Terracciano
- Division of Cardiovascular Sciences, Myocardial Function, National Heart and Lung Institute, Imperial College London, London, UK
| | - Filippo Perbellini
- Division of Cardiovascular Sciences, Myocardial Function, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
46
|
Liu S, Jiang Z, Qiao L, Guo B, Xiao W, Zhang X, Chang L, Li Y. Integrin β-3 is required for the attachment, retention and therapeutic benefits of human cardiospheres in myocardial infarction. J Cell Mol Med 2017; 22:382-389. [PMID: 29024385 PMCID: PMC5742734 DOI: 10.1111/jcmm.13325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/27/2017] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular diseases remain the leading causes of death worldwide. Stem cell therapy offers a promising option to regenerate injured myocardium. Among the various types of stem cells, cardiosphere cells represent a mixture of intrinsic heart stem cells and supporting cells. The safety and efficacy of cardiosphere cells have been demonstrated in recent clinical trials. Cell–matrix interaction plays an important role in mediating the engraftment of injected stem cells. Here, we studied the role of integrin β‐3 in cardiosphere‐mediated cell therapy in a mouse model of myocardial infarction. Our results indicated that inhibiting integrin β‐3 reduced attachment, retention and therapeutic benefits of human cardiospheres in mice with acute myocardial infarction. This suggests integrin β‐3 plays an important role in cardiosphere‐mediated heart regeneration.
Collapse
Affiliation(s)
- Suyun Liu
- The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhian Jiang
- The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li Qiao
- The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bingyan Guo
- The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenliang Xiao
- The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoguang Zhang
- The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liang Chang
- The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yongjun Li
- The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
47
|
Abstract
Engineering functional cardiac tissues remains an ongoing significant challenge due to the complexity of the native environment. However, our growing understanding of key parameters of the in vivo cardiac microenvironment and our ability to replicate those parameters in vitro are resulting in the development of increasingly sophisticated models of engineered cardiac tissues (ECT). This review examines some of the most relevant parameters that may be applied in culture leading to higher fidelity cardiac tissue models. These include the biochemical composition of culture media and cardiac lineage specification, co-culture conditions, electrical and mechanical stimulation, and the application of hydrogels, various biomaterials, and scaffolds. The review will also summarize some of the recent functional human tissue models that have been developed for in vivo and in vitro applications. Ultimately, the creation of sophisticated ECT that replicate native structure and function will be instrumental in advancing cell-based therapeutics and in providing advanced models for drug discovery and testing.
Collapse
|
48
|
Cardioprotective Effects of Exosomes and Their Potential Therapeutic Use. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 998:163-177. [PMID: 28936739 DOI: 10.1007/978-981-10-4397-0_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exosomes are membrane-contained vesicles released by various types of cells both in animals and human. They contain microRNAs and proteins and can travel to target cells, affecting their functions. There are specific factors on the surface of every exosomes, making sure that they will be taken up by certain type of cells. With these features, exosomes have been recognized to be one of the fundamental "messengers" for cell-cell communication. Recently, increased interest has been raised in exosomes since they were discovered to play an unneglectable role in preserving cardiac function and cardiomyocyte repair during stress. The widely explored stem cell therapy for cardiomyopathy uncovered the contribution of exosomes. Here we summarized cardioprotective effects of exosomes and their potential therapeutic use.
Collapse
|