1
|
Scalco A, Lee EN, Johnson MA, Sorensen ML, Hilton TN, Omonaka RK, Zeimantz S, Aicher SA, Woodward WR, Habecker BA. Hypertension-induced heart failure disrupts cardiac sympathetic innervation. Am J Physiol Heart Circ Physiol 2024; 327:H1544-H1558. [PMID: 39485300 DOI: 10.1152/ajpheart.00380.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/03/2024]
Abstract
About 26 million people worldwide live with heart failure (HF), and hypertension is the primary cause in 25% of these cases. Autonomic dysfunction and sympathetic hyperactivity accompany cardiovascular diseases, including HF. However, changes in cardiac sympathetic innervation in HF are not well understood. We hypothesized that cardiac sympathetic innervation is disrupted in hypertension-induced HF. Male and female C57BL6/J mice were infused with angiotensin II (ANG II) for 4 wk to generate hypertension leading to HF; controls were infused with saline. ANG II-treated mice displayed HF phenotype, including reduced cardiac function, hypertrophy, and fibrosis. ANG II-treated mice also had significantly reduced sympathetic nerve density in the left ventricle, intraventricular septum, and right ventricle. In the left ventricle, the subepicardium remained normally innervated, whereas the subendocardium was almost devoid of sympathetic nerves. Loss of sympathetic fibers led to loss of norepinephrine content in the left ventricle. Several potential triggers for axon degeneration were tested and ruled out. ANG II-treated mice had increased premature ventricular contractions after isoproterenol and caffeine injection. Although HF can induce a cholinergic phenotype and neuronal hypertrophy in stellate ganglia, ANG II treatment did not induce a cholinergic phenotype or activation of trophic factors in this study. Cardiac neurons in the left stellate ganglion were significantly smaller in ANG II-treated mice, whereas neurons in the right stellate were unchanged. Our findings show that ANG II-induced HF disrupts sympathetic innervation, particularly in the left ventricle. Further investigations are imperative to unveil the mechanisms of denervation in HF and to develop neuromodulatory therapies for patients with autonomic imbalance.NEW & NOTEWORTHY Angiotensin II (ANG II)-induced hypertension leads to a heart failure phenotype and cardiac sympathetic denervation with the endocardial region of the left ventricle being the most affected. Denervation is accompanied by loss of norepinephrine content in the left ventricle and increased premature ventricular contractions (PVCs) after isoproterenol and caffeine injection. ANG II treatment also causes morphological changes in cardiac-projecting left stellate ganglion neurons.
Collapse
Affiliation(s)
- Arianna Scalco
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Ethan N Lee
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
- Department of Biology, Pomona College, Claremont, California, United States
| | - Morgan A Johnson
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Michelle L Sorensen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Thomas N Hilton
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Riley K Omonaka
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
- Department of Biology, Linfield University, McMinnville, Oregon, United States
| | - Shae Zeimantz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Sue A Aicher
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - William R Woodward
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Beth A Habecker
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
2
|
Kong Y, Zhang Q, Wang S, Li R, Fu C, Wei Q. Mitochondrial metabolism regulated macrophage phenotype in myocardial infarction. Biomed Pharmacother 2024; 180:117494. [PMID: 39321509 DOI: 10.1016/j.biopha.2024.117494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide, with myocardial infarction (MI) being the primary contributor to mortality and disability associated with CVD. Reperfusion therapies are widely recognized as effective strategies for treating MI. However, while intended to restore blood flow, the reperfusion processes paradoxically initiate a series of pathophysiological events that worsen myocardial injury, resulting in ischemia-reperfusion (I/R) injury. Therefore, there is a pressing need for new treatment strategies to reduce the size of MI and enhance cardiac function post-infarction. Macrophages are crucial for maintaining homeostasis and mitigating undesirable remodeling following MI. Extensive research has established a strong link between cellular metabolism and macrophage function. In the context of MI, macrophages undergo adaptive metabolic reprogramming to mount an immune response. Moreover, mitochondrial metabolism in macrophages is evident, leading to significant changes in their metabolism. Therefore, we need to delve deeper into summarizing and understanding the relationship and role between mitochondrial metabolism and macrophage phenotype, and summarize existing treatment methods. In this review, we explore the role of mitochondria in shaping the macrophage phenotype and function. Additionally, we summarize current therapeutic strategies aimed at modulating mitochondrial metabolism of macrophages, which may offer new insights treating of MI.
Collapse
Affiliation(s)
- Youli Kong
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Qing Zhang
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Shiqi Wang
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Ran Li
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Chenying Fu
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Quan Wei
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China.
| |
Collapse
|
3
|
Frisk C, Ekström M, Eriksson MJ, Corbascio M, Hage C, Persson H, Linde C, Persson B. Characteristics of gene expression in epicardial adipose tissue and subcutaneous adipose tissue in patients at risk for heart failure undergoing coronary artery bypass grafting. BMC Genomics 2024; 25:938. [PMID: 39375631 PMCID: PMC11457432 DOI: 10.1186/s12864-024-10851-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Epicardial adipose tissue (EAT) surrounds the heart and is hypothesised to play a role in the development of heart failure (HF). In this study, we first investigated the differences in gene expression between epicardial adipose tissue (EAT) and subcutaneous adipose tissue (SAT) in patients undergoing elective coronary artery bypass graft (CABG) surgery (n = 21; 95% male). Secondly, we examined the association between EAT and SAT in patients at risk for HF stage A (n = 12) and in pre-HF patients, who show signs but not symptoms of HF, stage B (n = 9). RESULTS The study confirmed a distinct separation between EAT and SAT. In EAT 17 clusters of genes were present, of which several novel gene modules are associated with characteristics of HF. Notably, seven gene modules showed significant correlation to measures of HF, such as end diastolic left ventricular posterior wall thickness, e'mean, deceleration time and BMI. One module was particularly distinct in EAT when compared to SAT, featuring key genes such as FLT4, SEMA3A, and PTX3, which are implicated in angiogenesis, inflammation regulation, and tissue repair, suggesting a unique role in EAT linked to left ventricular dysfunction. Genetic expression was compared in EAT across all pre-HF and normal phenotypes, revealing small genetic changes in the form of 18 differentially expressed genes in ACC/AHA Stage A vs. Stage B. CONCLUSIONS The roles of subcutaneous and epicardial fat are clearly different. We highlight the gene expression difference in search of potential modifiers of HF progress. The true implications of our findings should be corroborated in other studies since HF ACC/AHA stage B patients are common and carry a considerable risk for progression to symptomatic HF.
Collapse
Affiliation(s)
- Christoffer Frisk
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, Uppsala, S-751 24, Sweden
| | - Mattias Ekström
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, S-182 88, Sweden
- Department of Cardiology, Danderyd Hospital, Stockholm, S-182 88, Sweden
| | - Maria J Eriksson
- Department of Clinical Physiology, Karolinska University Hospital, Stockholm, S-171 76, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, S-171 77, Sweden
| | - Matthias Corbascio
- Department of Clinical Physiology, Karolinska University Hospital, Stockholm, S-171 76, Sweden
- Department of Thoracic Surgery, Karolinska University Hospital, Stockholm, S-171 76, Sweden
| | - Camilla Hage
- Department of Medicine, Karolinska Institutet, Stockholm, S-171 77, Sweden
- Karolinska University Hospital, Heart and Vascular Theme, Stockholm, S-171 76, Sweden
| | - Hans Persson
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, S-182 88, Sweden
- Department of Cardiology, Danderyd Hospital, Stockholm, S-182 88, Sweden
| | - Cecilia Linde
- Department of Medicine, Karolinska Institutet, Stockholm, S-171 77, Sweden
- Karolinska University Hospital, Heart and Vascular Theme, Stockholm, S-171 76, Sweden
| | - Bengt Persson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, Uppsala, S-751 24, Sweden.
| |
Collapse
|
4
|
Yang R, Yang F, Wei Y, Huang B, Cao T, Tan H, Liu D, Zou Q, Wen J, Wen L, Lu X, Yu C, Cai H, Xie X, Jiang S, Yao S, Liang Y. Hypoxia-induced Semaphorin 3A promotes the development of endometriosis through regulating macrophage polarization. Int Immunopharmacol 2024; 138:112559. [PMID: 38955028 DOI: 10.1016/j.intimp.2024.112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Semaphorin 3A (Sema3A) is a member of neural guidance factor family well-known for inducing the collapse of nerve cell growth cone and regulating nerve redistribution. It also has been characterized as an immunoregulatory and tumor promoting factor. Our previous study showed that Sema3A was involved in the regulation of sympathetic innervation and neuropathic pain of endometriosis. Nevertheless, the role of Sema3A in the development of endometriosis and its potential upstreaming factor are still not clear. METHODS Histology experiments were carried to detect the expression of Sema3A, hypoxia -inducible factor 1α (HIF-1α) and the distribution of macrophages. Cell experiments were used to explore the effect of Sema3A on the proliferation and migration of endometrial stromal cells (ESCs) and to confirm the regulatory action of HIF-1α on Sema3A. In vivo experiments were carried out to explore the role of Sema3A on the development of endometriosis. RESULTS Sema3A was highly expressed in endometriotic lesions and could enhanced the proliferation and migration abilities of ESCs. Aberrant macrophage distribution was found in endometriotic lesions. Sema3A also promoted the differentiation of monocytes into anti-inflammatory macrophages, so indirectly mediating the proliferation and migration of ESCs. Hypoxic microenvironment induced Sema3A mRNA and protein expression in ESCs via HIF-1α. Administration of Sema3A promoted the development of endometriosis in a mouse model. CONCLUSIONS Sema3A, which is regulated by HIF-1α, is a promoting factor for the development of endometriosis. Targeting Sema3A may be a potential treatment strategy to control endometriotic lesions.
Collapse
Affiliation(s)
- Ruyu Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Fan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Yajing Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Biqi Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Tiefeng Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Hao Tan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Duo Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Qiuyu Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Jinjuan Wen
- Department of Obstetrics and Gynecology, Jieyang People's Hospital (Jieyang Affiliated Hospital, Sun Yat-sen University), Jieyang 522081, Guangdong, China
| | - Lei Wen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Xi Lu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Changyang Yu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Heng Cai
- Department of Obstetrics and Gynecology, Jieyang People's Hospital (Jieyang Affiliated Hospital, Sun Yat-sen University), Jieyang 522081, Guangdong, China
| | - Xiaofei Xie
- Department of Obstetrics and Gynecology, Jieyang People's Hospital (Jieyang Affiliated Hospital, Sun Yat-sen University), Jieyang 522081, Guangdong, China
| | - Shaoru Jiang
- Department of Obstetrics and Gynecology, Jieyang People's Hospital (Jieyang Affiliated Hospital, Sun Yat-sen University), Jieyang 522081, Guangdong, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China.
| | - Yanchun Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China; Department of Obstetrics and Gynecology, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning 530022, Guangxi, China.
| |
Collapse
|
5
|
Boiteux C, Leboube S, Hayek A, Brun C, Bessiere F, Mewton N, Bidaux G, Crola Da Silva C, Chevalier P, Bochaton T. SEMA3A as a biomarker of primary ventricular fibrillation complicating STEMI. Heart Rhythm 2024:S1547-5271(24)03263-6. [PMID: 39187142 DOI: 10.1016/j.hrthm.2024.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Affiliation(s)
- Clément Boiteux
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Groupement Hospitalier Est, Bron, France; Service de Rythmologie, Hôpital Cardiologique Louis Pradel, Hospices Civils de Lyon et Université Claude Bernard Lyon 1, Bron, France.
| | - Simon Leboube
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Groupement Hospitalier Est, Bron, France; Service d'explorations fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France
| | - Ahmad Hayek
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Groupement Hospitalier Est, Bron, France
| | - Camille Brun
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Groupement Hospitalier Est, Bron, France
| | - Francis Bessiere
- Service de Rythmologie, Hôpital Cardiologique Louis Pradel, Hospices Civils de Lyon et Université Claude Bernard Lyon 1, Bron, France; LabTAU, INSERM U1032, Lyon, France
| | - Nathan Mewton
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Groupement Hospitalier Est, Bron, France; Centre d'investigation clinique de Lyon, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France
| | - Gabriel Bidaux
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Groupement Hospitalier Est, Bron, France
| | - Claire Crola Da Silva
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Groupement Hospitalier Est, Bron, France
| | - Philippe Chevalier
- Service de Rythmologie, Hôpital Cardiologique Louis Pradel, Hospices Civils de Lyon et Université Claude Bernard Lyon 1, Bron, France
| | - Thomas Bochaton
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Groupement Hospitalier Est, Bron, France; Unité de Soins Intensifs Cardiologiques, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France
| |
Collapse
|
6
|
Yang Y, Guan W, Sheng XM, Gu HJ. Role of Semaphorin 3A in common psychiatric illnesses such as schizophrenia, depression, and anxiety. Biochem Pharmacol 2024; 226:116358. [PMID: 38857830 DOI: 10.1016/j.bcp.2024.116358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
With societal development and an ageing population, psychiatric disorders have become a common cause of severe and long-term disability and socioeconomic burdens worldwide. Semaphorin 3A (Sema-3A) is a secreted glycoprotein belonging to the semaphorin family. Sema-3A is well known as an axon guidance factor in the neuronal system and a potent immunoregulator at all stages of the immune response. It is reported to have various biological functions and is involved in many human diseases, including autoimmune diseases, angiocardiopathy, osteoporosis, and tumorigenesis. The signals of sema-3A involved in the pathogenesis of these conditions, are transduced through its cognate receptors and diverse downstream signalling pathways. An increasing number of studies show that sema-3A plays important roles in synaptic and dendritic development, which are closely associated with the pathophysiological mechanisms of psychiatric disorders, including schizophrenia, depression, and autism, suggesting the involvement of sema-3A in the pathogenesis of mental diseases. This indicates that mutations in sema-3A and alterations in its receptors and signalling may compromise neurodevelopment and predispose patients to these disorders. However, the role of sema-3A in psychiatric disorders, particularly in regulating neurodevelopment, remains elusive. In this review, we summarise the recent progress in understanding sema-3A in the pathogenesis of mental diseases and highlight sema-3A as a potential target for the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacy, Affiliated Tumor Hospital of Nantong University/Nantong Tumor Hospital, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, China
| | - Xiao-Ming Sheng
- Department of Trauma Center, Affiliated Hospital of Nantong University, China
| | - Hai-Juan Gu
- Department of Pharmacy, Affiliated Tumor Hospital of Nantong University/Nantong Tumor Hospital, China.
| |
Collapse
|
7
|
Eberhard D, Balkenhol S, Köster A, Follert P, Upschulte E, Ostermann P, Kirschner P, Uhlemeyer C, Charnay I, Preuss C, Trenkamp S, Belgardt BF, Dickscheid T, Esposito I, Roden M, Lammert E. Semaphorin-3A regulates liver sinusoidal endothelial cell porosity and promotes hepatic steatosis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:734-753. [PMID: 39196233 PMCID: PMC11358038 DOI: 10.1038/s44161-024-00487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/07/2024] [Indexed: 08/29/2024]
Abstract
Prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease, increases worldwide and associates with type 2 diabetes and other cardiometabolic diseases. Here we demonstrate that Sema3a is elevated in liver sinusoidal endothelial cells of animal models for obesity, type 2 diabetes and MASLD. In primary human liver sinusoidal endothelial cells, saturated fatty acids induce expression of SEMA3A, and loss of a single allele is sufficient to reduce hepatic fat content in diet-induced obese mice. We show that semaphorin-3A regulates the number of fenestrae through a signaling cascade that involves neuropilin-1 and phosphorylation of cofilin-1 by LIM domain kinase 1. Finally, inducible vascular deletion of Sema3a in adult diet-induced obese mice reduces hepatic fat content and elevates very low-density lipoprotein secretion. Thus, we identified a molecular pathway linking hyperlipidemia to microvascular defenestration and early development of MASLD.
Collapse
Affiliation(s)
- Daniel Eberhard
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, Düsseldorf, Germany
| | - Sydney Balkenhol
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, Düsseldorf, Germany
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Andrea Köster
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, Düsseldorf, Germany
| | - Paula Follert
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, Düsseldorf, Germany
| | - Eric Upschulte
- Cécile & Oskar Vogt Institute of Brain Research, Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Helmholtz AI, Research Center Jülich, Jülich, Germany
| | - Philipp Ostermann
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, Düsseldorf, Germany
| | - Philip Kirschner
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, Düsseldorf, Germany
| | - Celina Uhlemeyer
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Iannis Charnay
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, Düsseldorf, Germany
| | - Christina Preuss
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Sandra Trenkamp
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Bengt-Frederik Belgardt
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Timo Dickscheid
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Helmholtz AI, Research Center Jülich, Jülich, Germany
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Computer Science, Düsseldorf, Germany
| | - Irene Esposito
- Institute of Pathology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Eckhard Lammert
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, Düsseldorf, Germany.
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
8
|
Hou J, Zheng L, Li X, Sun Y. CircZNF609 sponges miR-135b to up-regulate SEMA3A expression to alleviate ox-LDL-induced atherosclerosis. Mol Cell Biochem 2024:10.1007/s11010-024-05031-y. [PMID: 38819599 DOI: 10.1007/s11010-024-05031-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/04/2024] [Indexed: 06/01/2024]
Abstract
The initiation and progression of atherosclerotic plaque caused by abnormal lipid metabolism is one of the main causes of atherosclerosis (AS). Lipid droplet accumulation has become a novel research pointcut for AS treatment in recent years. In AS patients, miR-135b level was up-regulated relative to the normal cases, which showed negative correlations with the levels of Semaphorin 3A (SEMA3A) and circZNF609, separately. The U937-derived macrophages were cultured with ox-LDL to establish AS models in vitro. After that, the lipid accumulation, inflammation, mitochondrial dysfunction and cell death were evaluated by ORO, ELISA, RT-qPCR, western blot, JC-1 and FCM assays respectively. Transfection of the circZNF609 expression vector notably declined lipid accumulation, attenuated inflammation, reduced mitochondrial dysfunction and inhibited cell death in ox-LDL-stimulated cells. The direct binding of miR-135b to circZNF609 in vitro was confirmed using RIP assay, and SEMA3A expression was up-regulated by circZNF609 overexpression. After manipulating the endogenous expressions of circZNF609, miR-135b and SEMA3A, the above damages in ox-LDL-stimulated cells were rescued by inhibition of miR-135b expression and overexpression of circZNF609 or SEMA3A. Besides, the AS mice model was built to demonstrate the excessive lipid accumulation, increasing inflammation and cell death in AS pathogenesis according to the results of HE staining, ELISA and IHC assays, while these damages were reversed after overexpression of circZNF609 or SEMA3A. In AS models, overexpressed circZNF609 prevents the AS progression through depleting miR-135b expression and subsequent up-regulation of SEMA3A expression to overwhelm lipid accumulation, mitochondrial dysfunction and cell death.
Collapse
Affiliation(s)
- Jian Hou
- Department of Cardiology, The Second Affiliated Hospital of Shandong First Medical University, No. 366, Taishan Street, Tai'an, 271021, Shandong, People's Republic of China
| | - Lingling Zheng
- Shengli Oilfield Central Hospital, No. 31, Jinan Road, Dongying District, Dongying, 257000, Shandong, People's Republic of China
| | - Xiangyun Li
- Outpatient Department, Feicheng People's Hospital, Tai'an, 271600, Shandong, People's Republic of China
| | - Yao Sun
- Department of General Practice, Zibo Central Hospital, No.54, Gongqingtuan Road, Zhangdian District, Zibo, 255036, Shandong, People's Republic of China.
| |
Collapse
|
9
|
Luo JM, Lin HB, Weng YQ, Lin YH, Lai LY, Li J, Li FX, Xu SY, Zhang HF, Zhao W. Inhibition of PARP1 improves cardiac function after myocardial infarction via up-regulated NLRC5. Chem Biol Interact 2024; 395:111010. [PMID: 38679114 DOI: 10.1016/j.cbi.2024.111010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/30/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
The incidence and mortality rate of myocardial infarction are increasing per year in China. The polarization of macrophages towards the classically activated macrophages (M1) phenotype is of utmost importance in the progression of inflammatory stress subsequent to myocardial infarction. Poly (ADP-ribose) polymerase 1(PARP1) is the ubiquitous and best characterized member of the PARP family, which has been reported to support macrophage polarization towards the pro-inflammatory phenotype. Yet, the role of PARP1 in myocardial ischemic injury remains to be elucidated. Here, we demonstrated that a myocardial infarction mouse model induced cardiac damage characterized by cardiac dysfunction and increased PARP1 expression in cardiac macrophages. Inhibition of PARP1 by the PJ34 inhibitors could effectively alleviate M1 macrophage polarization, reduce infarction size, decrease inflammation and rescue the cardiac function post-MI in mice. Mechanistically, the suppression of PARP1 increase NLRC5 gene expression, and thus inhibits the NF-κB pathway, thereby decreasing the production of inflammatory cytokines such as IL-1β and TNF-α. Inhibition of NLRC5 promote infection by effectively abolishing the influence of this mechanism discussed above. Interestingly, inhibition of NLRC5 promotes cardiac macrophage polarization toward an M1 phenotype but without having major effects on M2 macrophages. Our results demonstrate that inhibition of PARP1 increased NLRC5 gene expression, thereby suppressing M1 polarization, improving cardiac function, decreasing infarct area and attenuating inflammatory injury. The aforementioned findings provide new insights into the proinflammatory mechanisms that drive macrophage polarization following myocardial infarction, thereby introducing novel potential targets for future therapeutic interventions in individuals affected by myocardial infarction.
Collapse
Affiliation(s)
- Jia-Ming Luo
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Hong-Bin Lin
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Ya-Qian Weng
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Ying-Hui Lin
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China; Department of Anesthesiology, The First Affiliated Hospital of Shantou University Medical College, Guangdong Province, China
| | - Lu-Ying Lai
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Ji Li
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Feng-Xian Li
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Shi-Yuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Hong-Fei Zhang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China.
| | - Wei Zhao
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China.
| |
Collapse
|
10
|
Shen J, Gong L, Sun Y, Lin J, Hu W, Wei J, Miao X, Gao T, Suo J, Xu J, Chai Y, Bao B, Qian Y, Zheng X. Semaphorin3C identified as mediator of neuroinflammation and microglia polarization after spinal cord injury. iScience 2024; 27:109649. [PMID: 38638567 PMCID: PMC11025009 DOI: 10.1016/j.isci.2024.109649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/01/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
Excessive neuroinflammation after spinal cord injury (SCI) is a major hurdle during nerve repair. Although proinflammatory macrophage/microglia-mediated neuroinflammation plays important roles, the underlying mechanism that triggers neuroinflammation and aggravating factors remain unclear. The present study identified a proinflammatory role of semaphorin3C (SEMA3C) in immunoregulation after SCI. SEMA3C expression level peaked 7 days post-injury (dpi) and decreased by 14 dpi. In vivo and in vitro studies revealed that macrophages/microglia expressed SEMA3C in the local microenvironment, which induced neuroinflammation and conversion of proinflammatory macrophage/microglia. Mechanistic experiments revealed that RAGE/NF-κB was downstream target of SEMA3C. Inhibiting SEMA3C-mediated RAGE signaling considerably suppressed proinflammatory cytokine production, reversed polarization of macrophages/microglia shortly after SCI. In addition, inhibition of SEMA3C-mediated RAGE signaling suggested that the SEMA3C/RAGE axis is a feasible target to preserve axons from neuroinflammation. Taken together, our study provides the first experimental evidence of an immunoregulatory role for SEMA3C in SCI via an autocrine mechanism.
Collapse
Affiliation(s)
- Junjie Shen
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Liangzhi Gong
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Yi Sun
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Junqing Lin
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Wencheng Hu
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Jiabao Wei
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Xin Miao
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Tao Gao
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Jinlong Suo
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Bingbo Bao
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Yun Qian
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Xianyou Zheng
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| |
Collapse
|
11
|
Zhang X, Yang Z, Zhang D, Bai M. The role of Semaphorin 3A in oral diseases. Oral Dis 2024; 30:1887-1896. [PMID: 37771213 DOI: 10.1111/odi.14748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023]
Abstract
Semaphorin 3A (SEMA3A), also referred to as H-Sema III, is a molecule with significant biological importance in regulating physiological and pathological processes. However, its role in oral diseases, particularly its association with inflammatory immunity and alveolar bone remodeling defects, remains poorly understood. This comprehensive review article aims to elucidate the recent advances in understanding SEMA3A in the oral system, encompassing nerve formation, periodontitis, pulpitis, apical periodontitis, and oral squamous cell carcinoma. Notably, we explore its novel function in inflammatory immunomodulation and alveolar bone formation during oral infectious diseases. By doing so, this review enhances our comprehension of SEMA3A's role in oral biology and opens up possibilities for modulatory approaches and potential treatments in oral diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhenqi Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Demao Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Lai YJ, Chang SH, Tung YC, Chang GJ, Almeida CD, Chen WJ, Yeh YH, Tsai FC. Naringin activates semaphorin 3A to ameliorate TGF-β-induced endothelial-to-mesenchymal transition related to atrial fibrillation. J Cell Physiol 2024; 239:e31248. [PMID: 38501506 DOI: 10.1002/jcp.31248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
The loss of semaphorin 3A (Sema3A), which is related to endothelial-to-mesenchymal transition (EndMT) in atrial fibrosis, is implicated in the pathogenesis of atrial fibrillation (AF). To explore the mechanisms by which EndMT affects atrial fibrosis and assess the potential of a Sema3A activator (naringin) to prevent atrial fibrosis by targeting transforming growth factor-beta (TGF-β)-induced EndMT, we used human atria, isolated human atrial endocardial endothelial cells (AEECs), and used transgenic mice expressing TGF-β specifically in cardiac tissues (TGF-β transgenic mice). We evaluated an EndMT marker (Twist), a proliferation marker (proliferating cell nuclear antigen; PCNA), and an endothelial cell (EC) marker (CD31) through triple immunohistochemistry and confirmed that both EndMT and EC proliferation contribute to atrial endocardial fibrosis during AF in TGF-β transgenic mice and AF patient tissue sections. Additionally, we investigated the impact of naringin on EndMT and EC proliferation in AEECs and atrial fibroblasts. Naringin exhibited an antiproliferative effect, to which AEECs were more responsive. Subsequently, we downregulated Sema3A in AEECs using small interfering RNA to clarify a correlation between the reduction in Sema3A and the elevation of EndMT markers. Naringin treatment induced the expression of Sema3A and a concurrent decrease in EndMT markers. Furthermore, naringin administration ameliorated AF and endocardial fibrosis in TGF-β transgenic mice by stimulating Sema3A expression, inhibiting EndMT markers, reducing atrial fibrosis, and lowering AF vulnerability. This suggests therapeutic potential for naringin in AF treatment.
Collapse
Affiliation(s)
- Ying-Ju Lai
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chia-Yi, Puzi, Taiwan
| | - Shang-Hung Chang
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Ying-Chang Tung
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Gwo-Jyh Chang
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Celina De Almeida
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Wei-Jan Chen
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Yung-Hsin Yeh
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Feng-Chun Tsai
- Department of Surgery, Division of Cardiovascular Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
13
|
Martínez-Ramos S, Rafael-Vidal C, Malvar-Fernández B, Pérez N, Mouriño C, Pérez SG, Maceiras Pan FJ, Conde C, Pego-Reigosa JM, García S. Semaphorin3B promotes an anti-inflammatory and pro-resolving phenotype in macrophages from rheumatoid arthritis patients in a MerTK-dependent manner. Front Immunol 2024; 14:1268144. [PMID: 38283352 PMCID: PMC10811190 DOI: 10.3389/fimmu.2023.1268144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Previous works from our group show that Semaphorin3B (Sema3B) is reduced in RA and plays a protective role in a mouse arthritis model. In turn, MerTK plays a protective function in murine arthritis models, is expressed by synovial tissue macrophages and is linked to remission in patients with RA. In this study, we examined the role of Sema3B in the phenotypic characteristics of RA macrophages and the implication of MerTK. Peripheral blood monocytes from RA patients were differentiated into IFN-γ (RA MØIFN-γ) or M-CSF (RA MØM-CSF) macrophages and stimulated with LPS, Sema3B or their combination. Alternatively, RA fibroblast like synoviocytes (FLS) were stimulated with RA MØIFN-γ and RA MØM-CSF supernatants. Gene expression was determined by qPCR and protein expression and activation by flow cytometry, ELISA and western blot. Sema3B down-regulated the expression of pro-inflammatory mediators, in both RA MØIFN-γ and RA MØM-CSF. We observed a similar reduction in RA FLS stimulated with the supernatant of Sema3B-treated RA MØIFN-γ and RA MØM-CSF. Sema3B also modulated cell surface markers in macrophages towards an anti-inflammatory phenotype. Besides, MerTK expression and activation was up-regulated by Sema3B, just as GAS6 expression, Resolvin D1 secretion and the phagocytic activity of macrophages. Importantly, the inhibition of MerTK and neuropilins 1 and 2 abrogated the anti-inflammatory effect of Sema3B. Our data demonstrate that Sema3B modulates the macrophage characteristics in RA, inducing a skewing towards an anti-inflammatory/pro-resolving phenotype in a MerTK-dependant manner. Therefore, here we identify a new mechanism supporting the protective role of Sema3B in RA pathogenesis.
Collapse
Affiliation(s)
- Sara Martínez-Ramos
- Rheumatology and Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain
| | - Carlos Rafael-Vidal
- Rheumatology and Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain
| | - Beatriz Malvar-Fernández
- Rheumatology and Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain
| | - Nair Pérez
- Rheumatology and Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain
| | - Coral Mouriño
- Rheumatology and Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain
| | - Sara García Pérez
- Rheumatology and Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain
| | - Francisco J. Maceiras Pan
- Rheumatology and Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain
| | - Carmen Conde
- Laboratorio de Reumatologia Experimental y Observacional y Servicio de Reumatologia, Instituto de Investigacion Sanitaria de Santiago (IDIS), Hospital Clinico Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
| | - Jose María Pego-Reigosa
- Rheumatology and Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain
| | - Samuel García
- Rheumatology and Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain
| |
Collapse
|
14
|
Sun Y, Dong J, Chai X, Wang J, Li B, Yang J. Semaphorin‑3A alleviates cardiac hypertrophy by regulating autophagy. Exp Ther Med 2024; 27:38. [PMID: 38125367 PMCID: PMC10731408 DOI: 10.3892/etm.2023.12326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/13/2023] [Indexed: 12/23/2023] Open
Abstract
Cardiac hypertrophy, characterized by cardiomyocyte enlargement, is an adaptive response of the heart to certain hypertrophic stimuli; however, prolonged hypertrophy results in cardiac dysfunction and can ultimately cause heart failure. The present study evaluated the role of semaphorin-3A (Sema3A), a neurochemical inhibitor, in cardiac hypertrophy, utilizing an isoproterenol (ISO) induced H9c2 cell model. Cells were stained with rhodamine-phalloidin to assess the cell surface area and reverse transcription-quantitative PCR was performed to quantify mRNA expression levels of Sema3A, brain natriuretic factor (BNF) and β-myosin heavy chain (β-MHC). The protein expression levels of the autophagy-related proteins light chain 3 (LC3), p62 and Beclin-1, and the Akt/mTOR signaling pathway associated proteins Akt, phosphorylated (p)-Akt, mTOR, p-mTOR, 4E-binding protein 1 (4EBP1) and p-4EBP1 were semi-quantified using western blotting. Rapamycin, a canonical autophagy inducer, was administered to H9c2 cells to elucidate the regulatory mechanism of Sema3A. The results indicated significantly increased cell surface area and elevated BNF and β-MHC mRNA expression levels, increased LC3II/I ratio and Beclin-1 protein expression levels and significantly decreased p62 protein expression levels after treatment of H9c2 cardiomyocytes with ISO for 24 h. Sema3A overexpression improved ISO-induced hypertrophy in H9c2 cells, indicated by decreased cell surface area and reduced BNF and β-MHC mRNA expression levels. Moreover, Sema3A overexpression inhibited ISO-induced autophagy in H9c2 cells, indicated by decreased LC3II/I ratio and Beclin-1 protein expression levels and increased p62 protein expression levels. The autophagy activator rapamycin partially inhibited the protective effect of Sema3A on ISO-induced hypertrophy. Sema3A overexpression suppressed the decrease of the protein expression levels of p-Akt, mTOR and their downstream target 4EBP1, which is induced by ISO. Collectively, these results suggested Sema3A prevented ISO-induced cardiac hypertrophy by inhibiting autophagy via the Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yu Sun
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Second Clinical Medical School, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Cardiology, Shanxi Province Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Jin Dong
- Department of Cardiology, Shanxi Province Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Xiaohong Chai
- Department of Cardiology, Shanxi Province Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Jingping Wang
- Department of Cardiology, Shanxi Province Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Bao Li
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jinjing Yang
- Department of Cardiology, Shanxi Province Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| |
Collapse
|
15
|
Qiu Q, Yu X, Chen Q, He X. Sema3A inactivates the ERK/JNK signalling pathways to alleviate inflammation and oxidative stress in lipopolysaccharide-stimulated rat endothelial cells and lung tissues. Autoimmunity 2023; 56:2200908. [PMID: 37128697 DOI: 10.1080/08916934.2023.2200908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Semaphorin 3A (Sema3A) is a secretory member of the semaphorin family of immune response regulators. This research focuses on its effects on inflammation and oxidative stress in acute respiratory distress syndrome (ARDS). By analysing the GEO dataset GSE57011, we obtained Sema3A as the most downregulated gene in ARDS samples. Lipopolysaccharide (LPS) was used to stimulate rat pulmonary microvascular endothelial cells (PMVECs) and rats to induce ARDS-like symptoms in vitro and in vivo, respectively. LPS induced severe damage in rat lung tissues, in which reduced immunohistochemical staining of Sema3A was detected. Sema3A overexpression reduced apoptosis and angiogenesis of LPS-induced PMVECs and alleviated lung injury and pulmonary edoema of rats. Moreover, ELISA results showed that Sema3A overexpression downregulated the levels of inflammatory cytokines and oxidative stress markers both in PMVECs and the rat lung. Activation of ERK/JNK signalling aggravated LPS-induced damage on PMVECs; however, the aggravation was partly blocked by Sema3A, which suppressed phosphorylation of ERK/JNK. Overall, this study demonstrates that Sema3A inactivates the ERK/JNK signalling to ameliorate inflammation and oxidative stress in LPS-induced ARDS models. Sema3A might therefore represent a candidate option for ARDS treatment.
Collapse
Affiliation(s)
- Qianwen Qiu
- Department of Medical Ultrasonics, Lishui People's Hospital, Lishui, Zhejiang, P.R. China
| | - Xiufeng Yu
- Department of Emergency Medicine, Lishui People's Hospital, Lishui, Zhejiang, P.R. China
| | - Qingli Chen
- Department of Emergency Medicine, Lishui People's Hospital, Lishui, Zhejiang, P.R. China
| | - Xuwei He
- Department of Emergency Medicine, Lishui People's Hospital, Lishui, Zhejiang, P.R. China
| |
Collapse
|
16
|
Dajani AHJ, Liu MB, Olaopa MA, Cao L, Valenzuela-Ripoll C, Davis TJ, Poston MD, Smith EH, Contreras J, Pennino M, Waldmann CM, Hoover DB, Lee JT, Jay PY, Javaheri A, Slavik R, Qu Z, Ajijola OA. Heterogeneous cardiac sympathetic innervation gradients promote arrhythmogenesis in murine dilated cardiomyopathy. JCI Insight 2023; 8:e157956. [PMID: 37815863 PMCID: PMC10721311 DOI: 10.1172/jci.insight.157956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
Ventricular arrhythmias (VAs) in heart failure are enhanced by sympathoexcitation. However, radiotracer studies of catecholamine uptake in failing human hearts demonstrate a proclivity for VAs in patients with reduced cardiac sympathetic innervation. We hypothesized that this counterintuitive finding is explained by heterogeneous loss of sympathetic nerves in the failing heart. In a murine model of dilated cardiomyopathy (DCM), delayed PET imaging of sympathetic nerve density using the catecholamine analog [11C]meta-Hydroxyephedrine demonstrated global hypoinnervation in ventricular myocardium. Although reduced, sympathetic innervation in 2 distinct DCM models invariably exhibited transmural (epicardial to endocardial) gradients, with the endocardium being devoid of sympathetic nerve fibers versus controls. Further, the severity of transmural innervation gradients was correlated with VAs. Transmural innervation gradients were also identified in human left ventricular free wall samples from DCM versus controls. We investigated mechanisms underlying this relationship by in silico studies in 1D, 2D, and 3D models of failing and normal human hearts, finding that arrhythmogenesis increased as heterogeneity in sympathetic innervation worsened. Specifically, both DCM-induced myocyte electrical remodeling and spatially inhomogeneous innervation gradients synergistically worsened arrhythmogenesis. Thus, heterogeneous innervation gradients in DCM promoted arrhythmogenesis. Restoration of homogeneous sympathetic innervation in the failing heart may reduce VAs.
Collapse
Affiliation(s)
- Al-Hassan J. Dajani
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | - Michael B. Liu
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | - Michael A. Olaopa
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | - Lucian Cao
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | | | - Timothy J. Davis
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | - Megan D. Poston
- Department of Biomedical Sciences, Quillen College of Medicine, and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee, USA
| | - Elizabeth H. Smith
- Department of Biomedical Sciences, Quillen College of Medicine, and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee, USA
| | - Jaime Contreras
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | - Marissa Pennino
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | - Christopher M. Waldmann
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Donald B. Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee, USA
| | - Jason T. Lee
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | | | - Ali Javaheri
- Washington University School of Medicine, St. Louis, Missouri, USA
- John J. Cochran Veterans Hospital, St. Louis, Missouri, USA
| | - Roger Slavik
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Zhilin Qu
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | - Olujimi A. Ajijola
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
17
|
Zuo W, Sun R, Ji Z, Ma G. Macrophage-driven cardiac inflammation and healing: insights from homeostasis and myocardial infarction. Cell Mol Biol Lett 2023; 28:81. [PMID: 37858035 PMCID: PMC10585879 DOI: 10.1186/s11658-023-00491-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Early and prompt reperfusion therapy has markedly improved the survival rates among patients enduring myocardial infarction (MI). Nonetheless, the resulting adverse remodeling and the subsequent onset of heart failure remain formidable clinical management challenges and represent a primary cause of disability in MI patients worldwide. Macrophages play a crucial role in immune system regulation and wield a profound influence over the inflammatory repair process following MI, thereby dictating the degree of myocardial injury and the subsequent pathological remodeling. Despite numerous previous biological studies that established the classical polarization model for macrophages, classifying them as either M1 pro-inflammatory or M2 pro-reparative macrophages, this simplistic categorization falls short of meeting the precision medicine standards, hindering the translational advancement of clinical research. Recently, advances in single-cell sequencing technology have facilitated a more profound exploration of macrophage heterogeneity and plasticity, opening avenues for the development of targeted interventions to address macrophage-related factors in the aftermath of MI. In this review, we provide a summary of macrophage origins, tissue distribution, classification, and surface markers. Furthermore, we delve into the multifaceted roles of macrophages in maintaining cardiac homeostasis and regulating inflammation during the post-MI period.
Collapse
Affiliation(s)
- Wenjie Zuo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing, 210009, China
| | - Renhua Sun
- Department of Cardiology, Yancheng No. 1 People's Hospital, No. 66 South Renmin Road, Yancheng, 224000, China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing, 210009, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing, 210009, China.
| |
Collapse
|
18
|
Sang Y, Tsuji K, Nakanoh H, Fukushima K, Kitamura S, Wada J. Role of Semaphorin 3A in Kidney Development and Diseases. Diagnostics (Basel) 2023; 13:3038. [PMID: 37835781 PMCID: PMC10572269 DOI: 10.3390/diagnostics13193038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Kidney diseases are worldwide public health problems affecting millions of people. However, there are still limited therapeutic options against kidney diseases. Semaphorin 3A (SEMA3A) is a secreted and membrane-associated protein, which regulates diverse functions, including immune regulation, cell survival, migration and angiogenesis, thus involving in the several pathogeneses of diseases, including eyes and neurons, as well as kidneys. SEMA3A is expressed in podocytes and tubular cells in the normal adult kidney, and recent evidence has revealed that excess SEMA3A expression and the subsequent signaling pathway aggravate kidney injury in a variety of kidney diseases, including nephrotic syndrome, diabetic nephropathy, acute kidney injury, and chronic kidney disease. In addition, several reports have demonstrated that the inhibition of SEMA3A ameliorated kidney injury via a reduction in cell apoptosis, fibrosis and inflammation; thus, SEMA3A may be a potential therapeutic target for kidney diseases. In this review article, we summarized the current knowledge regarding the role of SEMA3A in kidney pathophysiology and their potential use in kidney diseases.
Collapse
Affiliation(s)
- Yizhen Sang
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
- Department of Rheumatology and Immunology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Kenji Tsuji
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
| | - Hiroyuki Nakanoh
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
| | - Kazuhiko Fukushima
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shinji Kitamura
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
- Department of Nursing Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
| |
Collapse
|
19
|
Lin L, Wei J, Zhu C, Hao G, Xue J, Zhu Y, Wu R. Sema3A alleviates viral myocarditis by modulating SIRT1 to regulate cardiomyocyte mitophagy. ENVIRONMENTAL TOXICOLOGY 2023; 38:1305-1317. [PMID: 36880403 DOI: 10.1002/tox.23765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/25/2022] [Accepted: 02/20/2023] [Indexed: 05/18/2023]
Abstract
Viral myocarditis (VMC) is a common myocardial inflammatory disease characterized by inflammatory cell infiltration and cardiomyocyte necrosis. Sema3A was reported to reduce cardiac inflammation and improve cardiac function after myocardial infarction, but its role in VMC remains to be explored. Here, a VMC mouse model was established by infection with CVB3, and Sema3A was overexpressed in vivo by intraventricular injection of an adenovirus-mediated Sema3A expression vector (Ad-Sema3A). We found that Sema3A overexpression attenuated CVB3-induced cardiac dysfunction and tissue inflammation. And Sema3A also reduced macrophage accumulation and NLRP3 inflammasome activation in the myocardium of VMC mice. In vitro, LPS was used to stimulate primary splenic macrophages to mimic the macrophage activation state in vivo. Activated macrophages were co-cultured with primary mouse cardiomyocytes to evaluate macrophage infiltration-induced cardiomyocyte damage. Ectopic expression of Sema3A in cardiomyocytes effectively protected cardiomyocytes from activated macrophage-induced inflammation, apoptosis, and ROS accumulation. Mechanistically, cardiomyocyte-expressed Sema3A mitigated macrophage infiltration-caused cardiomyocyte dysfunction by promoting cardiomyocyte mitophagy and hindering NLRP3 inflammasome activation. Furthermore, NAM (a SIRT1 inhibitor) reversed the protective effect of Sema3A against activated macrophage-induced cardiomyocyte dysfunction by suppressing cardiomyocyte mitophagy. In conclusion, Sema3A promoted cardiomyocyte mitophagy and suppressed inflammasome activation by regulating SIRT1, thereby attenuating macrophage infiltration-induced cardiomyocyte injury in VMC.
Collapse
Affiliation(s)
- Lin Lin
- Cardiovascular Hospital of the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jin Wei
- Cardiovascular Hospital of the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Canzhan Zhu
- Cardiovascular Hospital of the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guanghua Hao
- Cardiovascular Hospital of the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiahong Xue
- Cardiovascular Hospital of the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanhe Zhu
- Department of Medicine, School of Public Health, Institute of Endemic Diseases, Xi'an Jiaotong University, Xi'an, China
| | - Ruiyun Wu
- Department of Medicine, School of Public Health, Institute of Endemic Diseases, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
20
|
Luo XY, Fu X, Liu F, Luo JY, Chen AF. Sema3G activates YAP and promotes VSMCs proliferation and migration via Nrp2/PlexinA1. Cell Signal 2023; 105:110613. [PMID: 36720439 DOI: 10.1016/j.cellsig.2023.110613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/05/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND Diabetes exacerbates neointima formation after vascular procedures, manifested by accelerated proliferation and migration of vascular smooth muscle cells (VSMCs). Semaphorin 3G (Sema3G), secreted mainly from endothelial cells (ECs), regulates various cellular functions and vascular pathologies. However, the function and potential mechanism of ECs-derived Sema3G in VSMCs under diabetic condition remain unclear. OBJECTIVE To investigate the role and the mechanism of ECs-derived Sema3G in the regulation of VSMCs proliferation and migration. RESULTS ECs-derived Sema3G promoted human aortic SMCs (HASMCs) cell cycle progression and proliferation. Sema3G upregulated the expression of MMP2 and MMP9, which might explain the increased HASMCs migration by Sema3G. Inhibition of Nrp2/PlexinA1 mitigated the effect of Sema3G on promoting HASMCs proliferation and migration. Mechanistically, Sema3G inhibited LATS1 and activated YAP via Nrp2/PlexinA1. Verteporfin, an FDA-approved YAP pathway inhibitor, counteracted Sema3G-induced cyclin E and cyclin D1 expression. Besides, Sema3G expression was upregulated in ECs of diabetic mouse aortas. Serum Sema3G level was increased in type 2 diabetic patients and mice. Moreover, compared to chow diet-fed mice, high-fat diet (HFD)-fed obese mice showed thicker neointima and higher Sema3G expression in vasculature after femoral injury. CONCLUSIONS Our results indicated that ECs-derived Sema3G under diabetic condition activated YAP and promoted HASMCs proliferation and migration via Nrp2/PlexinA1. Thus, inhibition of Sema3G may hold therapeutic potential against diabetes-associated intimal hyperplasia.
Collapse
Affiliation(s)
- Xue-Yang Luo
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Fu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Liu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Endocrinology & Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Key Laboratory of Diabetes, Shanghai Clinical Medical Center of Diabetes, Shanghai Key Clinical Center of Metabolic Diseases, Shanghai Institute for Diabetes, Shanghai, China
| | - Jiang-Yun Luo
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
21
|
Sema3A Drives Alternative Macrophage Activation in the Resolution of Periodontitis via PI3K/AKT/mTOR Signaling. Inflammation 2023; 46:876-891. [PMID: 36598593 DOI: 10.1007/s10753-022-01777-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023]
Abstract
Macrophages actively participate in immunomodulatory processes throughout periodontal inflammation. Regulation of M1/M2 polarization affects macrophage chemokine and cytokine secretion, resulting in a distinct immunological status that influences prognosis. Semaphorin 3A (Sema3A), a neurite growth factor, exerts anti-inflammatory effects. In this study, we investigated the immunomodulation of Sema3A on macrophage-related immune responses in vivo and in vitro. Topical medications of Sema3A in mice with periodontitis alleviated inflammatory cell infiltration into gingival tissue and reduced areas with positive IL-6 and TNFα expression. We observed that the positive area with the M2 macrophage marker CD206 increased and that of the M1 macrophage marker iNOS decreased in Sema3A-treated mice. It has been postulated that Sema3A alleviates periodontitis by regulating alternative macrophage activation. To understand the mechanism underlying Sema3A modulation of macrophage polarization, an in vitro macrophage research model was established with RAW264.7 cells, and we demonstrated that Sema3A promotes LPS/IFNγ-induced M1 macrophages to polarize into M2 macrophages and activates the PI3K/AKT/mTOR signaling pathways. Inhibition of the PI3K signaling pathway activation might reduce anti-inflammatory activity and boost the expression of the inflammatory cytokines, iNOS, IL-12, TNFα, and IL-6. This study indicated that Sema3A might be a feasible drug to regulate alternative macrophage activation in the inflammatory response and thus alleviate periodontitis.
Collapse
|
22
|
Jiang Z, Qian L, Yang R, Wu Y, Guo Y, Chen T. LncRNA TCF7 contributes to high glucose-induced damage in human podocytes by up-regulating SEMA3A via sponging miR-16-5p. J Diabetes Investig 2022; 14:193-204. [PMID: 36583231 PMCID: PMC9889678 DOI: 10.1111/jdi.13904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 12/31/2022] Open
Abstract
AIMS/INTRODUCTION Long non-coding RNAs (lncRNAs) exert essential functions in the pathogenesis of diabetic nephropathy (DN). LncRNA T-cell factor 7 (TCF7) and semaphorin-3A (SEMA3A) have been found to be involved in the progression of diabetic nephropathy. However, whether the effect of TCF7 on the pathogenesis of diabetic nephropathy is mediated by SEMA3A remains unclear. MATERIALS AND METHODS TCF7, miR-16-5p, and SEMA3A were quantified by a qRT-PCR or immunoblotting method. A CCK-8 assay gauged the cell viability. Measurement of cell apoptosis was done using flow cytometry. RNA immunoprecipitation (RIP), dual-luciferase reporter, and RNA pull-down assays were utilized to assay the targeted interactions among the variables. RESULTS The TCF7 and SEMA3A levels were elevated in serum from patients with diabetic nephropathy. TCF7 silencing or SEMA3A depletion ameliorated high glucose (HG)-induced podocyte injury. Moreover, TCF7 silencing protected against HG-induced podocyte injury by down-regulating SEMA3A. TCF7 targeted miR-16-5p, and miR-16-5p targeted SEMA3A. Furthermore, TCF7 affected the expression of SEMA3A by competing specifically for shared miR-16-5p. CONCLUSIONS These findings suggested that TCF7 silencing attenuated high glucose-induced podocyte damage partially through the miR-16-5p/SEMA3A regulation cascade.
Collapse
Affiliation(s)
- Zhenzhen Jiang
- Department of NephrologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Lijie Qian
- Department of DermatologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Ruifeng Yang
- Department of NephrologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yan Wu
- Department of NephrologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yongping Guo
- Department of NephrologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Tingfang Chen
- Department of NephrologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| |
Collapse
|
23
|
Šamadan L, Papić N, Mijić M, Knežević Štromar I, Gašparov S, Vince A. Do Semaphorins Play a Role in Development of Fibrosis in Patients with Nonalcoholic Fatty Liver Disease? Biomedicines 2022; 10:3014. [PMID: 36551769 PMCID: PMC9775767 DOI: 10.3390/biomedicines10123014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is associated with systemic changes in immune response linked with chronic low-grade inflammation and disease progression. Semaphorins, a large family of biological response modifiers, were recently recognized as one of the key regulators of immune responses, possibly also associated with chronic liver diseases. The aim of this study was to identify semaphorins associated with NAFLD and their relationship with steatosis and fibrosis stages. In this prospective, case-control study, serum semaphorin concentrations (SEMA3A, -3C, -4A, -4D, -5A and -7A) were measured in 95 NAFLD patients and 35 healthy controls. Significantly higher concentrations of SEMA3A, -3C and -4D and lower concentrations of SEAMA5A and -7A were found in NAFLD. While there was no difference according to steatosis grades, SEMA3C and SEMA4D significantly increased and SEMA3A significantly decreased with fibrosis stages and had better accuracy in predicting fibrosis compared to the FIB-4 score. Immunohistochemistry confirmed higher expression of SEMA4D in hepatocytes, endothelial cells and lymphocytes in NAFLD livers. The SEMA5A rs1319222 TT genotype was more frequent in the NAFLD group and was associated with higher liver stiffness measurements. In conclusion, we provide the first evidence of the association of semaphorins with fibrosis in patients with NAFLD.
Collapse
Affiliation(s)
- Lara Šamadan
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Neven Papić
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department for Viral Hepatitis, University Hospital for Infectious Diseases Zagreb, 10000 Zagreb, Croatia
| | - Maja Mijić
- Department of Internal Medicine, Division of Gastroenterology, University Hospital Merkur, 10000 Zagreb, Croatia
| | - Ivana Knežević Štromar
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Slavko Gašparov
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Pathology, University Hospital Merkur, 10000 Zagreb, Croatia
| | - Adriana Vince
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department for Viral Hepatitis, University Hospital for Infectious Diseases Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
24
|
Li Z, Liu X, Zhang X, Zhang W, Gong M, Qin X, Luo J, Fang Y, Liu B, Wei Y. TRIM21 aggravates cardiac injury after myocardial infarction by promoting M1 macrophage polarization. Front Immunol 2022; 13:1053171. [PMID: 36439111 PMCID: PMC9684192 DOI: 10.3389/fimmu.2022.1053171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2024] Open
Abstract
Macrophage polarization followed by myocardial infarction (MI) is essential for wound healing. Tripartite motif-containing protein 21 (TRIM21), a member of E3 ubiquitin ligases, is emerging as a mediator in cardiac injury and heart failure. However, its function in modulating post-MI macrophage polarization remains elusive. Here, we detected that the levels of TRIM21 significantly increased in macrophages of wild-type (WT) mice after MI. In contrast, MI was ameliorated in TRIM21 knockout (TRIM21-/-) mice with improved cardiac remodeling, characterized by a marked decrease in mortality, decreased infarct size, and improved cardiac function compared with WT-MI mice. Notably, TRIM21 deficiency impeded the post-MI apoptosis and DNA damage in the hearts of mice. Consistently, the accumulation of M1 phenotype macrophages in the infarcted tissues was significantly reduced with TRIM21 deletion. Mechanistically, the deletion of TRIM21 orchestrated the process of M1 macrophage polarization at least partly via a PI3K/Akt signaling pathway. Overall, we identify TRIM21 drives the inflammatory response and cardiac remodeling by stimulating M1 macrophage polarization through a PI3K/Akt signaling pathway post-MI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Baoxin Liu
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yidong Wei
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Yin Z, Zhang J, Xu S, Liu J, Xu Y, Yu J, Zhao M, Pan W, Wang M, Wan J. The role of semaphorins in cardiovascular diseases: Potential therapeutic targets and novel biomarkers. FASEB J 2022; 36:e22509. [PMID: 36063107 DOI: 10.1096/fj.202200844r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/24/2022] [Accepted: 08/09/2022] [Indexed: 12/17/2022]
Abstract
Semaphorins (Semas), which belongs to the axonal guidance molecules, include 8 classes and could affect axon growth in the nervous system. Recently, semaphorins were found to regulate other pathophysiological processes, such as immune response, oncogenesis, tumor angiogenesis, and bone homeostasis, through binding with their plexin and neuropilin receptors. In this review, we summarized the detailed role of semaphorins and their receptors in the pathological progression of various cardiovascular diseases (CVDs), highlighting that semaphorins may be potential therapeutic targets and novel biomarkers for CVDs.
Collapse
Affiliation(s)
- Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Junping Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
26
|
Li J, Li R, Tuleta I, Hernandez SC, Humeres C, Hanna A, Chen B, Frangogiannis NG. The role of endogenous Smad7 in regulating macrophage phenotype following myocardial infarction. FASEB J 2022; 36:e22400. [PMID: 35695814 DOI: 10.1096/fj.202101956rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022]
Abstract
Smad7 restrains TGF-β responses, and has been suggested to exert both pro- and anti-inflammatory actions that may involve effects on macrophages. Myocardial infarction triggers a macrophage-driven inflammatory response that not only plays a central role in cardiac repair, but also contributes to adverse remodeling and fibrosis. We hypothesized that macrophage Smad7 expression may regulate inflammation and fibrosis in the infarcted heart through suppression of TGF-β responses, or via TGF-independent actions. In a mouse model of myocardial infarction, infiltration with Smad7+ macrophages peaked 7 days after coronary occlusion. Myeloid cell-specific Smad7 loss in mice had no effects on homeostatic functions and did not affect baseline macrophage gene expression. RNA-seq predicted that Smad7 may promote TREM1-mediated inflammation in infarct macrophages. However, these alterations in the transcriptional profile of macrophages were associated with a modest and transient reduction in infarct myofibroblast infiltration, and did not affect dysfunction, chamber dilation, scar remodeling, collagen deposition, and macrophage recruitment. In vitro, RNA-seq and PCR arrays showed that TGF-β has profound effects on macrophage profile, attenuating pro-inflammatory cytokine/chemokine expression, modulating synthesis of matrix remodeling genes, inducing genes associated with sphingosine-1 phosphate activation and integrin signaling, and inhibiting cholesterol biosynthesis genes. However, Smad7 loss did not significantly affect TGF-β-mediated macrophage responses, modulating synthesis of only a small fraction of TGF-β-induced genes, including Itga5, Olfml3, and Fabp7. Our findings suggest a limited role for macrophage Smad7 in regulation of post-infarction inflammation and repair, and demonstrate that the anti-inflammatory effects of TGF-β in macrophages are not restrained by endogenous Smad7 induction.
Collapse
Affiliation(s)
- Jun Li
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA.,Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Ruoshui Li
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA
| | - Izabela Tuleta
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA
| | - Silvia C Hernandez
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA
| | - Claudio Humeres
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA
| | - Anis Hanna
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA
| | - Bijun Chen
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA
| | - Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA
| |
Collapse
|
27
|
Yoshida Y, Shimizu I, Minamino T. Capillaries as a Therapeutic Target for Heart Failure. J Atheroscler Thromb 2022; 29:971-988. [PMID: 35370224 PMCID: PMC9252615 DOI: 10.5551/jat.rv17064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
Prognosis of heart failure remains poor, and it is urgent to find new therapies for this critical condition. Oxygen and metabolites are delivered through capillaries; therefore, they have critical roles in the maintenance of cardiac function. With aging or age-related disorders, capillary density is reduced in the heart, and the mechanisms involved in these processes were reported to suppress capillarization in this organ. Studies with rodents showed capillary rarefaction has causal roles for promoting pathologies in failing hearts. Drugs used as first-line therapies for heart failure were also shown to enhance the capillary network in the heart. Recently, the approach with senolysis is attracting enthusiasm in aging research. Genetic or pharmacological approaches concluded that the specific depletion of senescent cells, senolysis, led to reverse aging phenotype. Reagents mediating senolysis are described to be senolytics, and these compounds were shown to ameliorate cardiac dysfunction together with enhancement of capillarization in heart failure models. Studies indicate maintenance of the capillary network as critical for inhibition of pathologies in heart failure.
Collapse
Affiliation(s)
- Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Advanced Senotherapeutics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMEDCREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
28
|
Yin J, Shi C, He W, Yan W, Deng J, Zhang B, Yin M, Pei H, Wang H. Specific bio-functional CBD-PR1P peptide binding VEGF to collagen hydrogels promotes the recovery of cerebral ischemia in rats. J Biomed Mater Res A 2022; 110:1579-1589. [PMID: 35603700 DOI: 10.1002/jbm.a.37409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/06/2022]
Abstract
Ischemic stroke was a leading cause of death and long-term disability. It was an effective way to improve cerebral ischemia injury by promoting angiogenesis and neuroprotection. Vascular endothelial growth factor (VEGF) was a potent pro-angiogenic factor, and had neuroprotective effect. A short peptide (PR1P) derived from the extracellular VEGF-binding glycoprotein-Prominin-1 was reported to specifically bind to VEGF. In order to realize sustained release of VEGF, a bio-functional peptide-CBD-PR1P was constructed, which target VEGF to collagen hydrogels to limit the diffusion of VEGF. When the collagen hydrogels loading with CBD-PR1P and VEGF were injected into the cerebral ischemic cortex, increased angiogenesis, decreased apoptosis and enhanced neurons survival were observed in the ischemic area, that promoted the motor functional recovery of cerebral ischemic injury. Thus, this targeting delivery system of VEGF provided a promising therapeutic strategy for cerebral ischemia.
Collapse
Affiliation(s)
- Jia Yin
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Wenli He
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wenjing Yan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jin Deng
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bing Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Mengmeng Yin
- The Second Department of Neurology, Qingdao Central Hospital, Qingdao, Shandong, China
| | - Haitao Pei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Haiping Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
29
|
Zhou HL, Wei MH, Di DS, Zhang RY, Zhang JL, Yuan TT, Liu Q, Zhou TT, Huang Q, Wang Q. Association between SEMA3A signaling pathway genes and BMD/OP risk: An epidemiological and experimental study. Front Endocrinol (Lausanne) 2022; 13:1014431. [PMID: 36425469 PMCID: PMC9679019 DOI: 10.3389/fendo.2022.1014431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE This study aimed to explore the associations of genetic variants in the semaphorin 3A (SEMA3A) signaling pathway genes, including SEMA3A, NRP1, PLXNA1, PLXNA2 and PLXNA3 with osteoporosis (OP) risk and bone mineral density (BMD) in a Chinese Han older adult population. STUDY DESIGN AND METHOD A two-stage design was adopted. Total of 47.8kb regions in the 5 genes were sequenced using targeted next-generation sequencing (NGS) technology in the discovery stage, and the discovered OP-related single nucleotide polymorphisms (SNPs) were further genotyped using improved multiple linkage detection reaction technique in the validation stage. Methods of ALP/TRAP staining, real-time fluorescent quantitative PCR, and cell proliferation and apoptosis assays were performed with MC3T3-E1 and RAW 264.7 cell lines to clarify biological effects of observed functional variants in cell lines responsible for bone mass remodeling. RESULTS Total of 400 postmenopausal women (211 OP cases) were involved in the discovery stage, where 6 common and 4 rare genetic variants were found to be associated with OP risk. In the validation stage among another 859 participants (417 women, 270 OP cases), the PLXNA2 rs2274446 T allele was associated with reduced OP risk and increased femoral neck (FN) BMD compared to the C allele. Moreover, significant associations of NRP1 rs2070296 with FN BMD/OP risk and of NRP1 rs180868035 with lumbar spine and FN BMDs were also observed in the combination dataset analysis. Compared to the osteoblasts/osteoclasts transfected with the wild-type NRP1 rs180868035, those transfected with the mutant-type had reduced mRNA expression of osteoblastic genes (i.e., ALP, RUNX2, SP7 and OCN), while elevated mRNA expression of osteoclastic genes (i.e., TRAP, NFATc1 and CTSK). Furthermore, mutant NRP1 rs180868035 transfection inhibited osteoblast proliferation and osteoclast apoptosis, while promoted osteoclast proliferation and osteoblast apoptosis in corresponding cell lines. CONCLUSION Genetic variants located in NRP1 and PLXNA2 genes were associated with OP risk and BMD. The NRP1 rs180868035 affects bone metabolism by influencing osteoblasts and osteoclasts differentiation, proliferation and apoptosis.
Collapse
Affiliation(s)
- Hao-long Zhou
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mu-hong Wei
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong-sheng Di
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ru-yi Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-li Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting-ting Yuan
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting-ting Zhou
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Huang
- Department of Rehabilitation Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Qin Huang, ; Qi Wang,
| | - Qi Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Qin Huang, ; Qi Wang,
| |
Collapse
|
30
|
Zhang H, Lu Y, Wu B, Xia F. Semaphorin 3A mitigates lipopolysaccharide-induced chondrocyte inflammation, apoptosis and extracellular matrix degradation by binding to Neuropilin-1. Bioengineered 2021; 12:9641-9654. [PMID: 34821196 PMCID: PMC8810004 DOI: 10.1080/21655979.2021.1974806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Semaphorin 3A (SEMA3A) and its receptor neuropilin-1 (NRP-1) are expressed low in chondrocytes under stress, and overexpressing SEMA3A reduces pro-inflammatory cytokine release. This study was aimed at exploring whether SEMA3A participates in lipopolysaccharide (LPS)-induced chondrocyte inflammation, apoptosis and extracellular matrix (ECM) degradation. SEMA3A and NRP-1 expression in LPS-induced ATDC5 cells was determined with RT-qPCR and western blotting. Following stimulation with LPS in the absence or presence of SEMA3A overexpression, the viability of ATDC5 cells was observed through CCK-8 assay. RT-qPCR and western blot were performed to detect the expression of pro-inflammatory cytokines. ATDC5 cell apoptosis was observed through TUNEL, and apoptosis-related proteins were assayed. Expression of ECM-related proteins was measured by RT-qPCR and western blotting. Additionally, the binding of SEMA3A to NRP-1 was verified by co-immunoprecipitation. After interference with NRP-1, cell viability, inflammation and ECM degradation were examined in LPS-induced ATDC5 cells with SEMA3A overexpression. Results revealed that SEMA3A expression in ATDC5 cells decreased following stimulation with LPS. Overexpressing SEMA3A improved cell viability and reduced the inflammatory injury of LPS-stimulated ATDC5 cells. Moreover, SEMA3A overexpression alleviated LPS-induced apoptosis and ECM degradation of ATDC5 chondrocytes. SEMA3A and NRP-1 bound to each other in ATDC5 cells. NRP-1 interference crippled the ameliorative effect of SEMA3A overexpression on LPS-induced chondrocyte inflammation, apoptosis and ECM degradation. To conclude, SEMA3A binds to NRP-1, mitigating LPS-induced chondrocyte inflammation, apoptosis and ECM degradation. This study elucidated the role of SEMA3A in osteoarthritis and illustrated its action mechanism involving NRP-1.
Collapse
Affiliation(s)
- Huiyu Zhang
- Department of Hand Surgery, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Yue Lu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - BingBing Wu
- Department of Hand Surgery, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Fei Xia
- Department of Hand Surgery, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
31
|
Valkov N, Das A, Tucker NR, Li G, Salvador AM, Chaffin MD, Pereira De Oliveira Junior G, Kur I, Gokulnath P, Ziegler O, Yeri A, Lu S, Khamesra A, Xiao C, Rodosthenous R, Srinivasan S, Toxavidis V, Tigges J, Laurent LC, Momma S, Kitchen R, Ellinor P, Ghiran I, Das S. SnRNA sequencing defines signaling by RBC-derived extracellular vesicles in the murine heart. Life Sci Alliance 2021; 4:4/12/e202101048. [PMID: 34663679 PMCID: PMC8548207 DOI: 10.26508/lsa.202101048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/21/2022] Open
Abstract
In a unique model of fluorescent based mapping of EV recipient cells, RBC-EVs were found to signal to cardiac cells and regulate gene expression in a model of ischemic heart failure. Extracellular vesicles (EVs) mediate intercellular signaling by transferring their cargo to recipient cells, but the functional consequences of signaling are not fully appreciated. RBC-derived EVs are abundant in circulation and have been implicated in regulating immune responses. Here, we use a transgenic mouse model for fluorescence-based mapping of RBC-EV recipient cells to assess the role of this intercellular signaling mechanism in heart disease. Using fluorescent-based mapping, we detected an increase in RBC-EV–targeted cardiomyocytes in a murine model of ischemic heart failure. Single cell nuclear RNA sequencing of the heart revealed a complex landscape of cardiac cells targeted by RBC-EVs, with enrichment of genes implicated in cell proliferation and stress signaling pathways compared with non-targeted cells. Correspondingly, cardiomyocytes targeted by RBC-EVs more frequently express cellular markers of DNA synthesis, suggesting the functional significance of EV-mediated signaling. In conclusion, our mouse model for mapping of EV-recipient cells reveals a complex cellular network of RBC-EV–mediated intercellular communication in ischemic heart failure and suggests a functional role for this mode of intercellular signaling.
Collapse
Affiliation(s)
- Nedyalka Valkov
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Avash Das
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Nathan R Tucker
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.,Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA.,Masonic Medical Research Institute, Utica, NY, USA
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Ane M Salvador
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Mark D Chaffin
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
| | | | - Ivan Kur
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Priyanka Gokulnath
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Olivia Ziegler
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Ashish Yeri
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Shulin Lu
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Aushee Khamesra
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Chunyang Xiao
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | - Srimeenakshi Srinivasan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - John Tigges
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Stefan Momma
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Robert Kitchen
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.,Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
| | - Ionita Ghiran
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
32
|
Chen Z, Wu H, Shi R, Fan W, Zhang J, Su W, Wang Y, Li P. miRNAomics analysis reveals the promoting effects of cigarette smoke extract-treated Beas-2B-derived exosomes on macrophage polarization. Biochem Biophys Res Commun 2021; 572:157-163. [PMID: 34365140 DOI: 10.1016/j.bbrc.2021.07.093] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022]
Abstract
Inhalation of cigarette smoke induces airway and parenchyma inflammation that predisposes smokers to multiple lung diseases such as COPD. Macrophage polarization, an important specifying feature of inflammation, is involved in the progression of pulmonary inflammation. Exosomes and their loaded miRNAs provide a medium for cross-talk between alveolar macrophages and lung epithelial cells to maintain lung homeostasis. In this study, we treated Beas-2B with CSE to speculate the effects of Beas-2B-derived exosomes on macrophage polarization and performed exosomal miRNAomics analysis to explore the mechanism. We found that CSE-treated Beas-2B-derived exosomes could not only increase the percentages of CD86+, CD80+ CD163+, and CD206+ cells but also induce the secretion of TNF-α, IL-6, iNOS, IL-10, Arg-1, and TGF-β, indicating both M1 and M2 polarization of RAW264.7 macrophages were promoting. We performed miRNAomics analysis to identify 27 differentially expressed exosomal miRNAs such as miR-29a-3p and miR-1307-5p. Next, we obtained 14942 target genes of these miRNAs such as SCN1A and PLEKHA1 through the prediction of TargetScan and miRanda. We utilized KEGG enrichment analysis for these targets to identify potential pathways such as the PI3K-Akt signaling pathway and the MAPK signaling pathway on the regulation of macrophage polarization. We further found that miR-21-3p or miR-27b-3p may play critical roles in the promotion of CSE-Exo on macrophage polarization by miRNA interference. Collectively, this study provided novel information for diagnostic and therapeutic tactics of cigarette smoke-related lung diseases.
Collapse
Affiliation(s)
- Zhen Chen
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Rui Shi
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Weiyang Fan
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiashuo Zhang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yonggang Wang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Peibo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
33
|
Yang Y, Wang Q, Cai X, Wei Z, Hou J, Fei Y, Li W, Li Y. Activin receptor-like kinase 4 haplodeficiency alleviates the cardiac inflammation and pacing-induced ventricular arrhythmias after myocardial infarction. Aging (Albany NY) 2021; 13:17473-17488. [PMID: 34214050 PMCID: PMC8312420 DOI: 10.18632/aging.203236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/26/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Inflammation process is an important determinant for subsequent changes in cardiac function and remodeling after acute myocardial infarction (MI). Recent studies have implicated that ALK4 haplodeficiency improves cardiac function after MI. However, it remains unknown if the beneficial effects are partly attributed to ALK4 haplodeficiency-induced modulation on inflammatory response in the inflammatory phase of MI. In this research, we aimed to explore the mechanism of ALK4 haplodeficiency in the inflammatory stage of MI. METHODS ALK4, CD16, and CD14 were detected in peripheral blood mononuclear cells (PBMCs) isolated from MI patients and healthy volunteers. ALK4 haplodeficiency (ALK4+/-) mice and wild-type (WT) littermates were randomly divided into the sham group and the MI group. Inflammation cytokines and chemokines were measured. Echocardiography and intracardiac electrophysiological recordings were performed on the 3rd day and the 7th day after MI operation. ALK4 expression and inflammation cytokines were also detected in LPS- or IL-4-stimulated bone marrow-derived macrophages (BMDM) from the ALK4+/- mice and WT littermates. RESULTS ALK4 gene expression in circulating monocytes of MI patients was higher than that in those of healthy volunteers. Cardiac inflammation and vulnerability of ventricular arrhythmia after acute myocardial injury are significantly alleviated in ALK4+/- mice as compared to WT littermates. On the 3rd day post-MI, the level of M1 macrophages were decreased in ALK4+/- mice as compared to WT littermates, while the level of M2 macrophages were increased on the 7th day post-MI. BMDM isolated from ALK4+/- mice displayed reduced secretion of pro-inflammation cytokines after stimulation by LPS in hypoxic condition and increased secretion of anti-inflammation cytokines after stimulation by IL-4. As a result, the haplodeficiency of ALK4 might be responsible for reduced inflammation response in the post-MI stage. CONCLUSIONS ALK4 haplodeficiency reduces cardiac inflammation, improves cardiac function, and finally reduces the vulnerability of ventricular arrhythmia in the inflammatory stage after MI.
Collapse
Affiliation(s)
- Yuli Yang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qian Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xingxing Cai
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhixing Wei
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianwen Hou
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yudong Fei
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yigang Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Kanth SM, Gairhe S, Torabi-Parizi P. The Role of Semaphorins and Their Receptors in Innate Immune Responses and Clinical Diseases of Acute Inflammation. Front Immunol 2021; 12:672441. [PMID: 34012455 PMCID: PMC8126651 DOI: 10.3389/fimmu.2021.672441] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Semaphorins are a group of proteins that have been studied extensively for their critical function in neuronal development. They have been shown to regulate airway development, tumorigenesis, autoimmune diseases, and the adaptive immune response. Notably, emerging literature describes the role of immunoregulatory semaphorins and their receptors, plexins and neuropilins, as modulators of innate immunity and diseases defined by acute injury to the kidneys, abdomen, heart and lungs. In this review we discuss the pathogenic functions of semaphorins in clinical conditions of acute inflammation, including sepsis and acute lung injury, with a focus on regulation of the innate immune response as well as potential future therapeutic targeting.
Collapse
Affiliation(s)
- Shreya M Kanth
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Salina Gairhe
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Parizad Torabi-Parizi
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
35
|
Zhao L, Liu T, Dou ZJ, Wang MT, Hu ZX, Wang B. CB1 receptor antagonist rimonabant protects against chronic intermittent hypoxia-induced renal injury in rats. BMC Nephrol 2021; 22:153. [PMID: 33902473 PMCID: PMC8077827 DOI: 10.1186/s12882-021-02362-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Obstructive sleep apnoea (OSA) induced chronic kidney disease is mainly caused by chronic intermittent hypoxia (CIH). Our study investigate the mechanism underlying CIH-induced renal damage and whether the cannabinoid receptor 1 (CB1R) antagonist rimonabant (Ri) alleviates CIH-induced renal injury. METHODS Male Sprague-Dawley rats were randomly divided into five groups: one normal control (NC) group, two chronic intermittent hypoxia (CIH) groups, and two CIH + Ri groups. Rats in the NC groups were exposed to room air, while the CIH groups were exposed to a CIH environment for 4 weeks (4w CIH group) and 6 weeks (6w CIH group), respectively. Additionally, rats in the CIH + Ri groups were administered 1.5 mg/kg/day Ri for 4 weeks (4w CIH + Ri group) and 6 weeks (6w CIH + Ri group), respectively. Following this, the rats were euthanized and kidneys were excised for downstream analysis. In the renal tissues, the morphological alterations were examined via haematoxylin eosin (HE) staining and periodic acid schiff (PAS) staining, CB1R, Fis1, Mfn1, and p66Shc expression was assessed through western blot and immunohistochemistry, and the mitochondrial ultrastructural changes in kidney sections were assessed by electron microscopy. RESULTS CB1R expression in the 4w and 6w CIH groups was significantly elevated, and further increased with prolonged hypoxia; however, Ri prevented the increase in CIH-induced CB1R expression. Fis1 and p66Shc expression in the CIH groups were increased, but Mfn1 expression decreased. Ri decreased Fis1 and p66Shc expression and increased Mfn1 expression. Renal damage in the 4w or 6w CIH + Ri group was evidently improved compared with that in the 4w or 6w CIH group. CB1R expression was positively correlated with Fis1 and p66Shc and negatively correlated with Mfn1. Meanwhile, electron microscopy showed that the percentage of fragmented mitochondria in the tubular cells in each group was consistent with the trend of CB1R expression. CONCLUSION CIH causes endocannabinoid disorders and induces abnormal mitochondrial dynamics, resulting in renal injury. Treatment with CB1R antagonists reduces CIH-induced renal damage by inhibiting dysregulated renal mitochondrial dynamics.
Collapse
Affiliation(s)
- Li Zhao
- Shanxi Medical University, No. 56, Xijian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Tao Liu
- Shanxi Medical University, No. 56, Xijian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Zhan-Jun Dou
- Shanxi Medical University, No. 56, Xijian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Mei-Ting Wang
- Shanxi Medical University, No. 56, Xijian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Zi-Xuan Hu
- Shanxi Medical University, No. 56, Xijian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Bei Wang
- The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, 030001, Shanxi Province, People's Republic of China.
| |
Collapse
|
36
|
Abstract
Cardiovascular pathologies are often induced by inflammation. The associated changes in the inflammatory response influence vascular endothelial biology; they complicate the extent of ischaemia and reperfusion injury, direct the migration of immune competent cells and activate platelets. The initiation and progression of inflammation is regulated by the classical paradigm through the system of cytokines and chemokines. Therapeutic approaches have previously used this knowledge to control the extent of cardiovascular changes with varying degrees of success. Neuronal guidance proteins (NGPs) have emerged in recent years and have been shown to be significantly involved in the control of tissue inflammation and the mechanisms of immune cell activation. Therefore, proteins of this class might be used in the future as targets to control the extent of inflammation in the cardiovascular system. In this review, we describe the role of NGPs during cardiovascular inflammation and highlight potential therapeutic options that could be explored in the future.
Collapse
|
37
|
Shindo S, Kumagai T, Shirawachi S, Takeda K, Shiba H. Semaphorin3A released from human dental pulp cells inhibits the increase in interleukin-6 and CXC chemokine ligand 10 production induced by tumor necrosis factor-α through suppression of nuclear factor-κB activation. Cell Biol Int 2020; 45:238-244. [PMID: 32926524 DOI: 10.1002/cbin.11466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 01/18/2023]
Abstract
Human dental pulp cells (HDPCs) play an important role in pulpitis. Semaphorin3A (Sema3A), which is an axon guidance molecule, is a member of the secretory semaphorin family. Recently, Sema3A has been reported to be an osteoprotective factor and to be involved in the immune response. However, the role of Sema3A in dental pulp inflammation remains unknown. The aim of this study was to reveal the existence of Sema3A in human dental pulp tissue and the effect of Sema3A which is released from tumor necrosis factor (TNF)-α-stimulated HDPCs on production of proinflammatory cytokines, such as interleukin (IL)-6 and CXC chemokine ligand 10 (CXCL10), from HDPCs stimulated with TNF-α. Sema3A was detected in inflamed pulp as compared to normal pulp. HDPCs expressed Neuropilin-1(Nrp1) which is Sema3A receptor. TNF-α increased the levels of IL-6 and CXCL10 in HDPCs in time-dependent manner. Sema3A inhibited production of these two cytokines from TNF-α-stimulated HDPCs. TNF-α induced soluble Sema3A production from HDPCs. Moreover, antibody-based neutralization of Sema3A further promoted production of IL-6 and CXCL10 from TNF-α-stimulated HDPCs. Sema3A inhibited nuclear factor (NF)-κB P65 phosphorylation and inhibitor κBα degradation in TNF-α-stimulated HDPCs. These results indicated that Sema3A is induced in human dental pulp, and TNF-α acts on HDPCs to produce Sema3A, which partially inhibits the increase in IL-6 and CXCL10 production induced by TNF-α, and that the inhibition leads to suppression of NF-κB activation. Therefore, it is suggested that Sema3A may regulate inflammation in dental pulp and be novel antiinflammatory target molecule for pulpitis.
Collapse
Affiliation(s)
- Satoru Shindo
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoki Kumagai
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Satomi Shirawachi
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Katsuhiro Takeda
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideki Shiba
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
38
|
Vanhaverbeke M, Veltman D, Janssens S, Sinnaeve PR. Peripheral Blood RNAs and Left Ventricular Dysfunction after Myocardial Infarction: Towards Translation into Clinical Practice. J Cardiovasc Transl Res 2020; 14:213-221. [PMID: 32607873 DOI: 10.1007/s12265-020-10048-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022]
Abstract
The treatment and early outcome of patients with acute myocardial infarction (MI) have dramatically improved the past decades, but the incidence of left ventricular (LV) dysfunction post-MI remains high. Peripheral blood RNAs reflect pathophysiological changes during acute MI and the inflammatory process. Therefore, these RNAs are promising new markers to molecularly phenotype patients and improve the early identification of patients at risk of subsequent LV dysfunction. We here discuss the coding and long non-coding RNAs that can be measured in peripheral blood of patients with acute MI and list the advantages and limitations for implementation in clinical practice. Although some studies provide preliminary evidence of their diagnostic and prognostic potential, the use of these makers has not yet been implemented in clinical practice. The added value of RNAs to improve treatment and outcome remains to be determined in larger clinical studies. International consortia are now catalyzing renewed efforts to investigate novel RNAs that may improve post-MI outcome in a precision-medicine approach. Graphical Abstract Peripheral blood RNAs reflect the inflammatory changes in acute MI. A number of studies provide preliminary evidence of their prognostic potential, although the use of these makers has not yet been assessed in clinical practice.
Collapse
MESH Headings
- Animals
- Biomarkers/blood
- Clinical Decision-Making
- Humans
- Inflammation Mediators/blood
- Myocardial Infarction/blood
- Myocardial Infarction/complications
- Myocardial Infarction/genetics
- Myocardial Infarction/physiopathology
- Predictive Value of Tests
- Prognosis
- RNA, Messenger/blood
- RNA, Messenger/genetics
- RNA, Untranslated/blood
- RNA, Untranslated/genetics
- Risk Assessment
- Risk Factors
- Translational Research, Biomedical
- Ventricular Dysfunction, Left/blood
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left
Collapse
Affiliation(s)
- Maarten Vanhaverbeke
- Department of Cardiovascular Medicine, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Denise Veltman
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Stefan Janssens
- Department of Cardiovascular Medicine, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Peter R Sinnaeve
- Department of Cardiovascular Medicine, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
39
|
Vadivel S, Vincent P, Sekaran S, Visaga Ambi S, Muralidar S, Selvaraj V, Palaniappan B, Thirumalai D. Inflammation in myocardial injury- Stem cells as potential immunomodulators for myocardial regeneration and restoration. Life Sci 2020; 250:117582. [PMID: 32222465 DOI: 10.1016/j.lfs.2020.117582] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/14/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022]
Abstract
The ineffective immunosuppressant's and targeted strategies to neutralize inflammatory mediators have worsened the scenario of heart failure and have opened many questions for debate. Stem cell therapy has proven to be a promising approach for treating heart following myocardial infarction (MI). Adult stem cells, induced pluripotent stem cells and embryonic stem cells are possible cell types and have successfully shown to regenerate damaged myocardial tissue in pre-clinical and clinical studies. Current implications of using mesenchymal stem cells (MSCs) owing to their immunomodulatory functions and paracrine effects could serve as an effective alternative treatment option for rejuvenating the heart post MI. The major setback associated with the use of MSCs is reduced cell retention, engraftment and decreased effectiveness. With a few reports on understanding the role of inflammation and its dual effects on the structure and function of heart, this review focuses on these missing insights and further exemplifies the role of MSCs as an alternative therapy in treating the pathological consequences in myocardial infarction (MI).
Collapse
Affiliation(s)
- Sajini Vadivel
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613 401, Tamil Nadu, India
| | - Preethi Vincent
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613 401, Tamil Nadu, India
| | - Saravanan Sekaran
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613 401, Tamil Nadu, India.
| | - Senthil Visaga Ambi
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613 401, Tamil Nadu, India.
| | - Shibi Muralidar
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613 401, Tamil Nadu, India
| | - Vimalraj Selvaraj
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India
| | - Balamurugan Palaniappan
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613 401, Tamil Nadu, India
| | - Diraviyam Thirumalai
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613 401, Tamil Nadu, India
| |
Collapse
|
40
|
Wang Q, Yang Y, Chen K, Li D, Tang B, Peng K, Wang Z, Yang P, Yang D, Yang Y. Dietary Menthol Attenuates Inflammation and Cardiac Remodeling After Myocardial Infarction via the Transient Receptor Potential Melastatin 8. Am J Hypertens 2020; 33:223-233. [PMID: 31648306 DOI: 10.1093/ajh/hpz162] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/25/2019] [Accepted: 10/17/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Transient receptor potential melastatin subtype 8 (TRPM8) is a cold-sensing cation channel, mainly localized in the sensory neurons, which can be activated by menthol, a compound with a naturally cold sensation in mint. However, the effect of TRPM8 activation in inflammation and cardiac remodeling after myocardial infarction (MI) is not well defined. METHODS TRPM8 knockout (KO) mice (TRPM8-/-) and their wild-type littermates, aged 8 weeks, were randomly divided into sham and MI groups and were fed with chow or chow plus menthol. RESULTS Dietary menthol significantly attenuated MI injury, evidenced by decreased survival rates and plasma cardiac troponion I levels, reduced infarct size and cardiomyocytes, declined collagen deposition, and rescued cardiac function and hemodynamics. However, these effects of menthol disappeared when mice were lacking TRPM8. Furthermore, feeding of menthol ameliorated elevated expression of inflammatory cytokines and chemokines, and aggravated inflammation infiltration in the MI mice but not in TRPM8-/- mice. In addition, menthol treatment increased the release of calcitonin gene-related peptide (CGRP), which were absent in TRPM8-/- mice. CONCLUSIONS In conclusion, our results suggest that dietary menthol can protect against inflammation and cardiac remodeling after MI through activation of TRPM8.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| | - Yi Yang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, PR China
| | - Ken Chen
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| | - De Li
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| | - Bing Tang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| | - Ke Peng
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| | - Zhen Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| | - Ping Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| | - Dachun Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| | - Yongjian Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| |
Collapse
|
41
|
Zhang H, Vreeken D, Junaid A, Wang G, Sol WMPJ, de Bruin RG, van Zonneveld AJ, van Gils JM. Endothelial Semaphorin 3F Maintains Endothelial Barrier Function and Inhibits Monocyte Migration. Int J Mol Sci 2020; 21:ijms21041471. [PMID: 32098168 PMCID: PMC7073048 DOI: 10.3390/ijms21041471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
In normal physiology, endothelial cells (ECs) form a vital barrier between the blood and underlying tissue controlling leukocyte diapedesis and vascular inflammation. Emerging data suggest that neuronal guidance cues, typically expressed during development, have roles outside the nervous system in vascular biology and immune responses. In particular, Class III semaphorins have been reported to affect EC migration and angiogenesis. While ECs express high levels of semaphorin 3F (SEMA3F), little is known about its function in mature ECs. Here we show that SEMA3F expression is reduced by inflammatory stimuli and increased by laminar flow. Endothelial cells exposed to laminar flow secrete SEMA3F, which subsequently binds to heparan sulfates on the surface of ECs. However, under pro-inflammatory conditions, reduced levels of SEMA3F make ECs more prone to monocyte diapedesis and display impaired barrier function as measured with an electric cell-substrate impedance sensing system and a microfluidic system. In addition, we demonstrate that SEMA3F can directly inhibit the migration of activated monocytes. Taken together, our data suggest an important homeostatic function for EC-expressed SEMA3F, serving as a mediator of endothelial quiescence.
Collapse
|
42
|
Semaphorin 3F Promotes Transendothelial Migration of Leukocytes in the Inflammatory Response After Survived Cardiac Arrest. Inflammation 2020; 42:1252-1264. [PMID: 30877507 DOI: 10.1007/s10753-019-00985-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Leukocyte transmigration through the blood vessel wall is a fundamental step of the inflammatory response and requires expression of adhesion molecule PECAM-1. Accumulating evidence implicates that semaphorin (Sema) 3F and its receptor neuropilin (NRP) 2 are central regulators in vascular biology. Herein, we assess the role of Sema3F in leukocyte migration in vitro and in vivo. To determine the impact of Sema3F on leukocyte recruitment in vivo, we used the thioglycollate-induced peritonitis model. After the induction of peritonitis, C57BL/6 mice were intraperitoneally (i.p.) injected daily with recombinant Sema3F or solvent for 3 days. Compared with solvent-treated controls, leukocyte count was increased in the peritoneal lavage of Sema3F-treated mice indicating that Sema3F promotes leukocyte extravasation into the peritoneal cavity. In line with this observation, stimulation of human endothelial cells with Sema3F enhanced the passage of peripheral blood mononuclear cells (PBMCs) through the endothelial monolayer in the transwell migration assays. Conversely, silencing of endothelial Sema3F by siRNA transfection dampened diapedesis of PBMCs through the endothelium in vitro. xMechanistically, Sema3F induced upregulation of adhesion molecule PECAM-1 in endothelial cells and in murine heart tissue shown by immunofluorescence and western blotting. The inhibition of PECAM-1 by blocking antibody HEC7 blunted Sema3F-induced leukocyte migration in transwell assays. SiRNA-based NRP2 knockdown reduced PECAM-1 expression and migration of PBMCs in Sema3F-treated endothelial cells, indicating that PECAM-1 expression and leukocyte migration in response to Sema3F depend on endothelial NRP2. To assess the regulation of Sema3F in human inflammatory disease, we collected serum samples of patients from day 0 to day 7 after survived out-of-hospital cardiac arrest (OHCA, n = 41). First, we demonstrated enhanced migration of PBMCs through endothelial cells exposed to the serum of patients after OHCA in comparison to the serum of patients with stable coronary artery disease or healthy volunteers. Remarkably, serum samples of OHCA patients contained significantly higher Sema3F protein levels compared with CAD patients (CAD, n = 37) and healthy volunteers (n = 11), suggesting a role of Sema3F in the pathophysiology of the inflammatory response after OHCA. Subgroup analysis revealed that elevated serum Sema3F levels after ROSC are associated with decreased survival, myocardial dysfunction, and prolonged vasopressor therapy, clinical findings that determine the outcome of post-resuscitation period after OHCA. The present study provides novel evidence that endothelial Sema3F controls leukocyte recruitment through a NRP2/PECAM-1-dependent mechanism. Sema3F serum concentrations are elevated following successful resuscitation suggesting that Sema3F might be involved in the inflammatory response after survived OHCA. Targeting the Sema3F/NRP2/PECAM-1 pathway could provide a novel approach to abolish overwhelming inflammation after resuscitation.
Collapse
|
43
|
Balashanmugam MV, Shivanandappa TB, Nagarethinam S, Vastrad B, Vastrad C. Analysis of Differentially Expressed Genes in Coronary Artery Disease by Integrated Microarray Analysis. Biomolecules 2019; 10:biom10010035. [PMID: 31881747 PMCID: PMC7022900 DOI: 10.3390/biom10010035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/31/2022] Open
Abstract
Coronary artery disease (CAD) is a major cause of end-stage cardiac disease. Although profound efforts have been made to illuminate the pathogenesis, the molecular mechanisms of CAD remain to be analyzed. To identify the candidate genes in the advancement of CAD, microarray dataset GSE23766 was downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) were identified, and pathway and gene ontology (GO) enrichment analyses were performed. The protein-protein interaction network was constructed and the module analysis was performed using the Biological General Repository for Interaction Datasets (BioGRID) and Cytoscape. Additionally, target genes-miRNA regulatory network and target genes-TF regulatory network were constructed and analyzed. There were 894 DEGs between male human CAD samples and female human CAD samples, including 456 up regulated genes and 438 down regulated genes. Pathway enrichment analyses revealed that DEGs (up and down regulated) were mostly enriched in the superpathway of steroid hormone biosynthesis, ABC transporters, oxidative ethanol degradation III and Complement and coagulation cascades. Similarly, geneontology enrichment analyses revealed that DEGs (up and down regulated) were mostly enriched in the forebrain neuron differentiation, filopodium membrane, platelet degranulation and blood microparticle. In the PPI network and modules (up and down regulated), MYC, NPM1, TRPC7, UBC, FN1, HEMK1, IFT74 and VHL were hub genes. In the target genes-miRNA regulatory network and target genes—TF regulatory network (up and down regulated), TAOK1, KHSRP, HSD17B11 and PAH were target genes. In conclusion, the pathway and GO ontology enriched by DEGs may reveal the molecular mechanism of CAD. Its hub and target genes, MYC, NPM1, TRPC7, UBC, FN1, HEMK1, IFT74, VHL, TAOK1, KHSRP, HSD17B11 and PAH were expected to be new targets for CAD. Our finding provided clues for exploring molecular mechanism and developing new prognostics, diagnostic and therapeutic strategies for CAD.
Collapse
Affiliation(s)
- Meenashi Vanathi Balashanmugam
- Department of Biomedical Sciences, College of Pharmacy, Shaqra University, Al Dawadmi 11911, Saudi Arabia; (M.V.B.); (T.B.S.); (S.N.)
| | - Thippeswamy Boreddy Shivanandappa
- Department of Biomedical Sciences, College of Pharmacy, Shaqra University, Al Dawadmi 11911, Saudi Arabia; (M.V.B.); (T.B.S.); (S.N.)
| | - Sivagurunathan Nagarethinam
- Department of Biomedical Sciences, College of Pharmacy, Shaqra University, Al Dawadmi 11911, Saudi Arabia; (M.V.B.); (T.B.S.); (S.N.)
| | - Basavaraj Vastrad
- Department of Pharmaceutics, SET’S College of Pharmacy, Dharwad, Karnataka 580002, India;
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka
- Correspondence: ; Tel.: +91-9480-073398
| |
Collapse
|
44
|
Zhang J, Liu W, Zhang X, Lin S, Yan J, Ye J. Sema3A inhibits axonal regeneration of retinal ganglion cells via ROCK2. Brain Res 2019; 1727:146555. [PMID: 31733191 DOI: 10.1016/j.brainres.2019.146555] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 11/03/2019] [Accepted: 11/12/2019] [Indexed: 01/04/2023]
Abstract
Successful regeneration of injured axons in the adult mammalian central nervous system (CNS) is mainly limited by lesion-induced neuronal apoptosis and the inhibitory environment consisting of numerous extrinsic and intrinsic factors. Semaphorin 3A (Sema3A), a classic axonal guidance cue, contributes to the failure of axonal regeneration and can be neutralized to enhance axonal regeneration. Previous studies have suggested that blockage of rho-associated protein kinase 2 (ROCK2) also exerts a protective effect on the survival and axonal regeneration of retinal ganglion cells (RGC, RGCs) after injury. Yet unresolved question is the interaction between the two factors. We thus evaluated the role of Sema3A and ROCK2 in RGC axonal regeneration. In this study, we first examined the expression of Sema3A and ROCK2 against optic nerve crush in vivo and oxygen-glucose deprivation insult to RGCs in vitro at different time points. Then Sema3A, ROCK2 inhibitor Y-27632, combination of both and phosphate-buffered saline (PBS) only were injected into the vitreous cavity after optic nerve crush at various times in different experiments. In order to assess axonal regeneration, we detected the mRNA levels of small proline-rich protein 1A (Sprr1A) and growth-associated protein 43 (GAP43) by quantitative real time-polymerase chain reaction (RT-qPCR), evaluated visual function by Flash Visual Evoked Potentials (F-VEPs), and checked the protein level of GAP43 by immunofluorescent staining. Our results demonstrated that Sema3A significantly suppressed optic nerve regeneration and this effect can be attenuated via blocking ROCK2. Moreover, Sema3A promoted the phosphorylation of myosin light chain 2 (MLC2) (specific downstream effector of ROCK2 concerning neurite growth). Collectively, Sema3A may negatively regulate axonal regeneration through ROCK2 in RGCs.
Collapse
Affiliation(s)
- Jieqiong Zhang
- Department of Ophthalmology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wenyi Liu
- Department of Ophthalmology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xi Zhang
- Department of Ophthalmology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Sen Lin
- Department of Ophthalmology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jun Yan
- Department 1, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Jian Ye
- Department of Ophthalmology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
45
|
Inflammation and fibrosis in murine models of heart failure. Basic Res Cardiol 2019; 114:19. [PMID: 30887214 DOI: 10.1007/s00395-019-0722-5] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
Abstract
Heart failure is a consequence of various cardiovascular diseases and associated with poor prognosis. Despite progress in the treatment of heart failure in the past decades, prevalence and hospitalisation rates are still increasing. Heart failure is typically associated with cardiac remodelling. Here, inflammation and fibrosis are thought to play crucial roles. During cardiac inflammation, immune cells invade the cardiac tissue and modulate tissue-damaging responses. Cardiac fibrosis, however, is characterised by an increased amount and a disrupted composition of extracellular matrix proteins. As evidence exists that cardiac inflammation and fibrosis are potentially reversible in experimental and clinical set ups, they are interesting targets for innovative heart failure treatments. In this context, animal models are important as they mimic clinical conditions of heart failure patients. The advantages of mice in this respect are short generation times and genetic modifications. As numerous murine models of heart failure exist, the selection of a proper disease model for a distinct research question is demanding. To facilitate this selection, this review aims to provide an overview about the current understanding of the pathogenesis of cardiac inflammation and fibrosis in six frequently used murine models of heart failure. Hence, it compares the models of myocardial infarction with or without reperfusion, transverse aortic constriction, chronic subjection to angiotensin II or deoxycorticosterone acetate, and coxsackievirus B3-induced viral myocarditis in this context. It furthermore provides information about the clinical relevance and the limitations of each model, and, if applicable, about the recent advancements in their methodological proceedings.
Collapse
|
46
|
Cao J, Wei R, Yao S. Matrine has pro-apoptotic effects on liver cancer by triggering mitochondrial fission and activating Mst1-JNK signalling pathways. J Physiol Sci 2019; 69:185-198. [PMID: 30155612 PMCID: PMC10717886 DOI: 10.1007/s12576-018-0634-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/16/2018] [Indexed: 02/08/2023]
Abstract
Mitochondrial homeostasis is closely associated with liver cancer progression via multiple mechanisms and is also a potential tumour-suppressive target in clinical practice. However, the role of mitochondrial fission in liver cancer cell viability has not been adequately investigated. Matrine, a type of alkaloid isolated from Sophoraflavescens, has been widely used to treat various types of cancer. However, the molecular effect of matrine on mitochondrial homeostasis is unclear. Therefore, the aim of the current study was to determine the role of mitochondrial fission in cell apoptosis, viability, migration and proliferation of HepG2 cells in vitro. The effect of matrine on mitochondrial fission and its mechanism were also explored. The results of our study showed that HepG2 cells treated with matrine had reduced viability, an increased apoptotic rate, a blunted migratory response, and impaired proliferation capacity. At the molecular level, matrine treatment activated mitochondrial fission, which promoted mitochondrial dysfunction, caused cellular oxidative stress, disrupted cellular energy metabolism and initiated cell apoptotic pathways. However, blockade of mitochondrial fission abolished the deleterious effects of matrine on HepG2 cells. Further, we demonstrated that the Mst1-JNK signalling axis was required for matrine-modulated mitochondrial fission. Matrine-mediated mitochondrial dysfunction was reversed by inhibiting Mst1-JNK pathways. Together, our results demonstrated that mitochondrial fission could be a potential upstream tumour-suppressive signal for liver cancer by modifying mitochondrial function and cell death. By contrast, matrine exerted an anticancer function in liver cancer by activating mitochondrial fission mediated by Mst1-JNK pathways.
Collapse
Affiliation(s)
- Jian Cao
- School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Runjie Wei
- Peking University China-Japan Friendship School of Clinical Medicine, No. 2 Yinghua East Road, Chaoyang District, Beijing, 100029, China
| | - Shukun Yao
- School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, China.
- Department of Gastroenterology, China-Japan Friendship Hospital, No. 2 Yinghua East Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
47
|
Zeglinski MR, Moghadam AR, Ande SR, Sheikholeslami K, Mokarram P, Sepehri Z, Rokni H, Mohtaram NK, Poorebrahim M, Masoom A, Toback M, Sareen N, Saravanan S, Jassal DS, Hashemi M, Marzban H, Schaafsma D, Singal P, Wigle JT, Czubryt MP, Akbari M, Dixon IM, Ghavami S, Gordon JW, Dhingra S. Myocardial Cell Signaling During the Transition to Heart Failure. Compr Physiol 2018; 9:75-125. [DOI: 10.1002/cphy.c170053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Jung M, Dodsworth M, Thum T. Inflammatory cells and their non-coding RNAs as targets for treating myocardial infarction. Basic Res Cardiol 2018; 114:4. [PMID: 30523422 PMCID: PMC6290728 DOI: 10.1007/s00395-018-0712-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022]
Abstract
Myocardial infarction triggers infiltration of several types of immune cells that coordinate both innate and adaptive immune responses. These play a dual role in post-infarction cardiac remodeling by initiating and resolving inflammatory processes, which needs to occur in a timely and well-orchestrated way to ensure a reestablishment of normalized cardiac functions. Thus, therapeutic modulation of immune responses might have benefits for infarct patients. While such strategies have shown great potential in treating cancer, applications in the post-infarction context have been disappointing. One challenge has been the complexity and plasticity of immune cells and their functions in cardiac regulation and healing. The types appear in patterns that are temporally and spatially distinct, while influencing each other and the surrounding tissue. A comprehensive understanding of the immune cell repertoire and their regulatory functions following infarction is sorely needed. Processes of cardiac remodeling trigger additional genetic changes that may also play critical roles in the aftermath of cardiovascular disease. Some of these changes involve non-coding RNAs that play crucial roles in the regulation of immune cells and may, therefore, be of therapeutic interest. This review summarizes what is currently known about the functions of immune cells and non-coding RNAs during post-infarction wound healing. We address some of the challenges that remain and describe novel therapeutic approaches under development that are based on regulating immune responses through non-coding RNAs in the aftermath of the disease.
Collapse
Affiliation(s)
- Mira Jung
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Michael Dodsworth
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
49
|
Ter Horst EN, Krijnen PAJ, Hakimzadeh N, Robbers LFHJ, Hirsch A, Nijveldt R, Lommerse I, Fontijn RD, Meinster E, Delewi R, van Royen N, Zijlstra F, van Rossum AC, van der Schoot CE, van der Pouw Kraan TCTM, Horrevoets AJ, van der Laan AM, Niessen HWM, Piek JJ. Elevated monocyte-specific type I interferon signalling correlates positively with cardiac healing in myocardial infarct patients but interferon alpha application deteriorates myocardial healing in rats. Basic Res Cardiol 2018; 114:1. [PMID: 30443679 PMCID: PMC6244641 DOI: 10.1007/s00395-018-0709-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023]
Abstract
Monocytes are involved in adverse left ventricular (LV) remodelling following myocardial infarction (MI). To provide therapeutic opportunities we aimed to identify gene transcripts in monocytes that relate to post-MI healing and evaluated intervention with the observed gene activity in a rat MI model. In 51 MI patients treated by primary percutaneous coronary intervention (PCI), the change in LV end-diastolic volume index (EDVi) from baseline to 4-month follow-up was assessed using cardiovascular magnetic resonance imaging (CMR). Circulating monocytes were collected at day 5 (Arterioscler Thromb Vasc Biol 35:1066-1070, 2015; Cell Stem Cell 16:477-487, 2015; Curr Med Chem 13:1877-1893, 2006) after primary PCI for transcriptome analysis. Transcriptional profiling and pathway analysis revealed that patients with a decreased LV EDVi showed an induction of type I interferon (IFN) signalling (type I IFN pathway: P value < 0.001; false discovery rate < 0.001). We subsequently administered 15,000 Units of IFN-α subcutaneously in a rat MI model for three consecutive days following MI. Cardiac function was measured using echocardiography and infarct size/cardiac inflammation using (immuno)-histochemical analysis. We found that IFN-α application deteriorated ventricular dilatation and increased infarct size at day 28 post-MI. Moreover, IFN-α changed the peripheral monocyte subset distribution towards the pro-inflammatory monocyte subset whereas in the myocardium, the presence of the alternative macrophage subset was increased at day 3 post-MI. Our findings suggest that induction of type I IFN signalling in human monocytes coincides with adverse LV remodelling. In rats, however, IFN-α administration deteriorated post-MI healing. These findings underscore important but also contradictory roles for the type I IFN response during cardiac healing following MI.
Collapse
Affiliation(s)
- Ellis N Ter Horst
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
- Netherlands Heart Institute, Moreelsepark 1, Utrecht, The Netherlands.
- Department of Pathology, Amsterdam UMC, VU University Amsterdam, de Boelelaan 1117, 1081HV, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
| | - Paul A J Krijnen
- Department of Pathology, Amsterdam UMC, VU University Amsterdam, de Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Nazanin Hakimzadeh
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Lourens F H J Robbers
- Department of Cardiology, Amsterdam UMC, VU University Amsterdam, de Boelelaan 1117, Amsterdam, The Netherlands
| | - Alexander Hirsch
- Department of Cardiology and Radiology, Erasmus Medical Centre, Dr. Molewaterplein 40, Rotterdam, The Netherlands
| | - Robin Nijveldt
- Department of Cardiology, Amsterdam UMC, VU University Amsterdam, de Boelelaan 1117, Amsterdam, The Netherlands
| | - Ingrid Lommerse
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam UMC, location AMC, Plesmanlaan 125, Amsterdam, The Netherlands
| | - Ruud D Fontijn
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, VU University Amsterdam, de Boelelaan 1117, Amsterdam, The Netherlands
| | - Elisa Meinster
- Department of Pathology, Amsterdam UMC, VU University Amsterdam, de Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, VU University Amsterdam, de Boelelaan 1117, Amsterdam, The Netherlands
| | - Ronak Delewi
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Niels van Royen
- Department of Cardiology, Radboud University Medical Centre, Geert Grooteplein Zuid 10, Nijmegen, The Netherlands
| | - Felix Zijlstra
- Department of Cardiology, Erasmus Medical Centre, Dr. Molewaterplein 40, Rotterdam, The Netherlands
| | - Albert C van Rossum
- Department of Cardiology, Amsterdam UMC, VU University Amsterdam, de Boelelaan 1117, Amsterdam, The Netherlands
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam UMC, location AMC, Plesmanlaan 125, Amsterdam, The Netherlands
| | - Tineke C T M van der Pouw Kraan
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, VU University Amsterdam, de Boelelaan 1117, Amsterdam, The Netherlands
| | - Anton J Horrevoets
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, VU University Amsterdam, de Boelelaan 1117, Amsterdam, The Netherlands
| | - Anja M van der Laan
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Hans W M Niessen
- Department of Pathology, Amsterdam UMC, VU University Amsterdam, de Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
- Department of Cardiac Surgery, Amsterdam UMC, VU University Amsterdam, de Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Jan J Piek
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Interplay between sympathetic nervous system and inflammation in aseptic loosening of hip joint replacement. Sci Rep 2018; 8:16044. [PMID: 30375409 PMCID: PMC6207762 DOI: 10.1038/s41598-018-33360-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023] Open
Abstract
Inflammation is a common symptom in joint disorders such as rheumatoid arthritis, osteoarthritis (OA) and implant aseptic loosening (AL). The sympathetic nervous system is well known to play a critical role in regulating inflammatory conditions, and imbalanced sympathetic activity has been observed in rheumatoid arthritis. In AL it is not clear whether the sympathetic nervous system is altered. In this study we evaluated the systemic and local profile of neuroimmune molecules involved in the interplay between the sympathetic nervous system and the periprosthetic inflammation in hip AL. Our results showed that periprosthetic inflammation does not trigger a systemic response of the sympathetic nervous system, but is mirrored rather by the impairment of the sympathetic activity locally in the hip joint. Moreover, macrophages were identified as key players in the local regulation of inflammation by the sympathetic nervous system in a process that is implant debris-dependent and entails the reduction of both adrenergic and Neuropetide Y (NPY)-ergic activity. Additionally, our results showed a downregulation of semaphorin 3A (SEMA3A) that may be part of the mechanism sustaining the periprosthetic inflammation. Overall, the local sympathetic nervous system emerges as a putative target to mitigate the inflammatory response to debris release and extending the lifespan of orthopedic implants.
Collapse
|