1
|
Liu C, Huang X, Kong J, Li X, Wang Y, Zhang F, Duan J. Podophyllotoxin mediates hepatic toxicity via the C5a/C5aR/ROS/NLRP3 and cGMP/PKG/mTOR axis in rats based on toxicological evidence chain (TEC) concept by phosphoproteomic analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 289:117441. [PMID: 39644570 DOI: 10.1016/j.ecoenv.2024.117441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Podophyllotoxin (PPT), a highly active compound extracted from the rhizome of Dysosma versipellis (DV), has been used as an effective anti-cancer drug clinically since the 1950s. It possesses various biological activities, including antiviral and antitumor effects. However, its clinical application is severely limited due to its hepatotoxicity, and the underlying mechanisms remain unclear. This study aims to elucidate the mechanisms of PPT-induced hepatotoxicity using tandem quality tag (TMT) based quantitative proteomics and phosphoproteomics, providing potential targets and directions for developing new therapeutic strategies to facilitate the safe and rational use of podophyllotoxin in clinical settings. METHODS We employed a comprehensive assessment of PPT-induced hepatotoxicity based on the Toxicology Evidence Chain (TEC) concept, originally proposed by our research group in 2018. This approach involves a tiered search for evidence of Harmful Ingredients Evidence (HIE), Injury Phenotype Evidence (IPE), Adverse Outcomes Evidence (AOE), and Toxic Events Evidence (TEE) during the development of PPT-induced hepatotoxicity, thereby constructing a guiding toxicology evidence chain. Sprague-Dawley (SD) rats were administered 20 mg/kg PPT for 4 consecutive days (HIE). Indicators such as hepatic function, oxidative stress, inflammatory factors, as well as the histopathology of liver tissue were evaluated to assess liver damage and synthetic function (AOE). Proteomics and phosphoproteomics were conducted to systematically assess PPT-induced hepatotoxicity at the level of modified proteins and verify the molecular mechanisms of key molecular pathways (TEE1). Furthermore, in vitro THLE-2 cell models were used in conjunction with CCK8, immunofluorescence, and ELISA assays to validate cytotoxicity and its underlying mechanisms (TEE2). RESULTS Our results showed that after 4 days of PPT administration at 20 mg/kg (HIE), serum levels of AST/ALT, TBA, TP, and ALB in SD rats were significantly increased (P < 0.05), indicating severe liver damage. SOD and T-AOC levels were significantly decreased (P < 0.05), suggesting an oxidative stress state. TNF-α levels were significantly elevated, while IL-10 and IL-3 levels were significantly reduced (P < 0.05), indicating strong activation of the inflammatory response in the liver. Histopathological examination revealed liver sinusoidal congestion in the liver tissue (AOE). Omics analysis revealed that hepatotoxicity primarily affected the complement-pyroptosis and cGMP-PKG-autophagy pathways. Western blot (WB) and RT-qPCR results showed significant upregulation of complement-pyroptosis pathway proteins (C5a, C5aR, NLRP3) and cGMP-PKG-autophagy pathway proteins (PKG, mTOR) in the PPT group (P < 0.05) (TEE1). In vitro cell experiments showed that PPT significantly reduced cell viability (P < 0.05) and increased the expression of proteins associated with pyroptosis and autophagy pathways, including ROS, NLRP3, PKG, and mTOR (P < 0.05) (TEE2). CONCLUSION PPT activates the complement system through the C5a/C5aR/ROS/NLRP3 pathway and induces the formation of inflammasomes, promoting pyroptosis. Simultaneously, PPT activates the cGMP-PKG pathway, inhibiting autophagy and further accelerating pyroptosis, ultimately leading to hepatotoxicity. In conclusion, this study comprehensively revealed the underlying mechanisms of PPT-induced hepatotoxicity using the TEC concept. This approach transforms fragmented toxicity indicators into systematic evidence of toxicity, presenting a hierarchical progression of toxicity evidence and avoiding data accumulation in natural drug toxicology. Our findings represent a significant breakthrough in the elucidation of the mechanisms of hepatotoxicity induced by podophyllotoxin.
Collapse
Affiliation(s)
- Chuanxin Liu
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Key Laboratory of Hereditary Rare Diseases of Health Commission of Henan Province, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China.
| | - Xiaobin Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China.
| | - Jiao Kong
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuejiao Li
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Key Laboratory of Hereditary Rare Diseases of Health Commission of Henan Province, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Yuming Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fangfang Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiajia Duan
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
2
|
Liu Z, Fu H, Gan Y, Ye Y, Huang B, Jiang M, Chen J, Li X. UHPLC-Q-Orbitrap HRMS and network analysis to explore the mechanisms of QiShenYiQi dripping pill for treating myocardial infarction. Front Pharmacol 2024; 15:1443560. [PMID: 39555088 PMCID: PMC11563805 DOI: 10.3389/fphar.2024.1443560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
This study focused on examining the protection of QiShenYiQi dripping pills (QSYQ) against myocardial infarction (MI) and investigating its potential mechanisms. Ultra high performance liquid chromatography-q exactive-orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) was employed to analyze potential active compounds of QSYQ. The targets of these compounds were predicted using an integrated in silico method and cross-referenced with relevant databases to identify associated pathways. Experimental validation was then conducted to confirm the accuracy of the systems pharmacology findings. In the end, network analysis combined with UHPLC screened 13 potential active compounds and obtained 99 targets for the intersection of potential active compounds and diseases. The enrichment analysis results indicated that the cyclic guanosine monophosphate-protein kinase G (cGMP-PKG) signaling pathway might be the mechanism of action of QSYQ in the treatment of MI. Experimental verification demonstrated that QSYQ could alleviate oxidative stress, promote vasodilation, and activate proteins related to the mitochondrial ATP-sensitive potassium channel (KATP) and nitric oxide (NO)-cGMP-PKG signaling pathway. This study provides insights into both the pathogenic mechanisms underlying MI and the molecular mechanisms through which QSYQ may confer protection. Given the role of PKG in regulating myocardial stiffness, it emerges as a promising therapeutic target for myocardial remodeling. We propose that the NO-cGMP-PKG and mitochondrial KATP pathways may serve as candidate therapeutic targets for the development of new interventions for MI.
Collapse
Affiliation(s)
- Zhichao Liu
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Huanjie Fu
- Department of Cardiovascular, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongkang Gan
- Department of Vascular Surgery, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Yujia Ye
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Binghui Huang
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Mingxiu Jiang
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Jinhong Chen
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiaofeng Li
- Department of Cardiovascular, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Xue Y, Lv C, Jin L, Tan D, Wu D, Peng F. Study on the mechanism of Xinmailong injection against chronic heart failure based on transcriptomics and proteomics. J Pharm Biomed Anal 2024; 253:116529. [PMID: 39442444 DOI: 10.1016/j.jpba.2024.116529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Xinmailong (XML), a traditional Chinese medicine derived from Periplaneta americana, is commonly used in China to treat chronic heart failure (CHF). However, its pharmacological mechanism remains unclear. In our research, we employed Doxorubicin (Dox) to create a CHF animal model and administered XML treatment to investigate the pharmacological effects of XML on CHF rats by combining transcriptomic and proteomic analyses. XML improved dox-induced CHF and improved cardiac function, and a joint multi-omics analysis demonstrated that it reduced cardiomyocyte fibrosis during CHF. There is further evidence that XML may alleviate cardiomyocyte fibrosis through its effects on the cGMP-PKG signaling pathway or by reducing the expression levels of COL1A1, COL3A1, MMP9, and CXCR2. In this study, the effects of XML on rats with CHF are examined at the transcriptional and protein levels, as well as its mechanism and mode of action in treating CHF. There may be novel therapeutic targets or clinical indications for XML-based CHF therapy resulting from the study's identification of significant differential genes and signaling pathways.
Collapse
Affiliation(s)
- Yanni Xue
- College of Pharmacy, Dali University, Dali 671000, China; Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali 671000, China
| | - Changling Lv
- College of Pharmacy, Dali University, Dali 671000, China; Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali 671000, China
| | - Lu Jin
- College of Pharmacy, Dali University, Dali 671000, China; Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali 671000, China
| | - Di Tan
- College of Pharmacy, Dali University, Dali 671000, China; Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali 671000, China
| | - Dingyu Wu
- College of Pharmacy, Dali University, Dali 671000, China; Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali 671000, China.
| | - Fang Peng
- College of Pharmacy, Dali University, Dali 671000, China; Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali 671000, China.
| |
Collapse
|
4
|
Cacciapuoti F, Mauro C, Capone V, Chianese S, Tarquinio LG, Gottilla R, Marsico F, Crispo S, Cacciapuoti F. The Role of Vericiguat in Early Phases of Anterior Myocardial Infarction: A Potential Game-Changer? MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1595. [PMID: 39459382 PMCID: PMC11510088 DOI: 10.3390/medicina60101595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
Anterior myocardial infarction is a critical condition with significant implications for cardiac function and patient prognosis. Despite advancements in reperfusion therapies, optimizing recovery during the early phases of myocardial infarction remains challenging. Anterior myocardial infarction can lead to substantial long-term effects on a patient's health due to extensive damage to the heart muscle, particularly the left ventricle, impacting both quality of life and overall prognosis. Vericiguat, a soluble guanylate cyclase stimulator, has shown promise in heart failure, but its role in early anterior myocardial infarction has not yet been fully explored. By enhancing soluble guanylate cyclase activity, vericiguat may increase cyclic guanosine monophosphate production, leading to vasodilation, inhibition of platelet aggregation, and potential cardioprotective effects. Currently, treatment options for anterior myocardial infarction primarily focus on reperfusion strategies and managing complications. However, there is a critical need for adjunctive therapies that specifically target the pathophysiological changes occurring in the early phases of myocardial infarction. Vericiguat's mechanism of action offers a novel approach to improving vascular function and myocardial health, potentially contributing to innovative treatment strategies that could transform the care and prognosis of patients with anterior myocardial infarction.
Collapse
Affiliation(s)
- Federico Cacciapuoti
- Department of Internal Medicine, “L. Vanvitelli” University, 80131 Naples, Italy
| | - Ciro Mauro
- Division of Cardiology, “A. Cardarelli” Hospital, Via A. Cardarelli, 6, 80131 Naples, Italy
| | - Valentina Capone
- Division of Cardiology, “A. Cardarelli” Hospital, Via A. Cardarelli, 6, 80131 Naples, Italy
- Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
| | - Salvatore Chianese
- Division of Cardiology, “A. Cardarelli” Hospital, Via A. Cardarelli, 6, 80131 Naples, Italy
| | - Luca Gaetano Tarquinio
- Post-Graduate School of Emergency Medicine, “L. Vanvitelli” University, 80131 Naples, Italy
| | - Rossella Gottilla
- Division of Cardiology, “A. Cardarelli” Hospital, Via A. Cardarelli, 6, 80131 Naples, Italy
| | - Fabio Marsico
- Division of Cardiology, “A. Cardarelli” Hospital, Via A. Cardarelli, 6, 80131 Naples, Italy
| | - Salvatore Crispo
- Division of Cardiology, “A. Cardarelli” Hospital, Via A. Cardarelli, 6, 80131 Naples, Italy
| | - Fulvio Cacciapuoti
- Division of Cardiology, “A. Cardarelli” Hospital, Via A. Cardarelli, 6, 80131 Naples, Italy
| |
Collapse
|
5
|
Lin X, Qiao L, Liu H, Bao M, Deng H, Jia L, Wen X, Deng F, Wan P, Lyu Y, Han J. An untargeted metabolomics study of cardiac pathology damage in rats caused by low selenium diet alone or in combination with T-2 toxin. Food Chem Toxicol 2024; 189:114759. [PMID: 38796086 DOI: 10.1016/j.fct.2024.114759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
T-2 toxin is a highly cardiotoxic environmental contaminant. Selenium can uphold the cardiovascular system's functionality. Selenium insufficiency is common. The aim of this study was to elucidate the effects of low selenium diet alone or in combination with T-2 toxin on myocardial tissue damage. Thirty-two Sprague-Dawley rats of 3 weeks of age were randomized into control, low selenium diet, low selenium diet combined with T-2 toxin groups (at doses of 10 ng/g and 100 ng/g body weight) for 12-weeks intervention. Pathohistology and ultrastructural changes in cardiac tissue were observed. Changes in cardiac metabolites were analyzed using untargeted metabolomics. The findings demonstrated that cardiac tissue abnormalities, interstitial bleeding, inflammatory cell infiltration, and mitochondrial damage can be brought on by low selenium diet alone or in combination with the T-2 toxin. A low selenium diet alone or in combination with the T-2 toxin affected cardiac metabolic profiles and resulted in aberrant modifications in many metabolic pathways, including the metabolism of amino acids, cholesterol, and thiamine. Accordingly, low selenium diet and T-2 toxin may have a synergistic effect. Our findings provide fresh insights into the processes of cardiac injury by revealing the effects of low selenium diet and T-2 toxin on cardiac metabolism.
Collapse
Affiliation(s)
- Xue Lin
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China.
| | - Lichun Qiao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China.
| | - Haobiao Liu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China.
| | - Miaoye Bao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China.
| | - Huan Deng
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China.
| | - Lianxu Jia
- Xi'an Gem Flower Chang Qing Hospital, Xi'an, Shaanxi, 710201, China.
| | - Xinyue Wen
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China.
| | - Feidan Deng
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China.
| | - Ping Wan
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China.
| | - Yizhen Lyu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China.
| | - Jing Han
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
6
|
Chang PC, Lee HL, Wo HT, Liu HT, Wen MS, Chou CC. Vericiguat suppresses ventricular tachyarrhythmias inducibility in a rabbit myocardial infarction model. PLoS One 2024; 19:e0301970. [PMID: 38626004 PMCID: PMC11020759 DOI: 10.1371/journal.pone.0301970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/26/2024] [Indexed: 04/18/2024] Open
Abstract
BACKGROUND The VICTORIA trial demonstrated a significant decrease in cardiovascular events through vericiguat therapy. This study aimed to assess the potential mechanisms responsible for the reduction of cardiovascular events with vericiguat therapy in a rabbit model of myocardial infarction (MI). METHODS A chronic MI rabbit model was created through coronary artery ligation. Following 4 weeks, the hearts were harvested and Langendorff perfused. Subsequently, electrophysiological examinations and dual voltage-calcium optical mapping studies were conducted at baseline and after administration of vericiguat at a dose of 5 μmol/L. RESULTS Acute vericiguat therapy demonstrated a significant reduction in premature ventricular beat burden and effectively suppressed ventricular arrhythmic inducibility. The electrophysiological influences of vericiguat therapy included an increased ventricular effective refractory period, prolonged action potential duration, and accelerated intracellular calcium (Cai) homeostasis, leading to the suppression of action potential and Cai alternans. The pacing-induced ventricular arrhythmias exhibited a reentrant pattern, attributed to fixed or functional conduction block in the peri-infarct zone. Vericiguat therapy effectively mitigated the formation of cardiac alternans as well as the development of reentrant impulses, providing additional anti-arrhythmic benefits. CONCLUSIONS In the MI rabbit model, vericiguat therapy demonstrates anti-ventricular arrhythmia effects. The vericiguat therapy reduces ventricular ectopic beats, inhibiting the initiation of ventricular arrhythmias. Furthermore, the therapy successfully suppresses cardiac alternans, preventing conduction block and, consequently, the formation of reentry circuits.
Collapse
Affiliation(s)
- Po-Cheng Chang
- Department of Internal Medicine, Division of Cardiology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Medical School, Chang Gung University, Taoyuan, Taiwan
| | - Hui-Ling Lee
- Medical School, Chang Gung University, Taoyuan, Taiwan
- Department of Anesthesia, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Hung-Ta Wo
- Department of Internal Medicine, Division of Cardiology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Medical School, Chang Gung University, Taoyuan, Taiwan
| | - Hao-Tien Liu
- Department of Internal Medicine, Division of Cardiology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Medical School, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Shien Wen
- Department of Internal Medicine, Division of Cardiology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Medical School, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Chuan Chou
- Department of Internal Medicine, Division of Cardiology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Medical School, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
7
|
Meng L, Lu Y, Wang X, Cheng C, Xue F, Xie L, Zhang Y, Sui W, Zhang M, Zhang Y, Zhang C. NPRC deletion attenuates cardiac fibrosis in diabetic mice by activating PKA/PKG and inhibiting TGF-β1/Smad pathways. SCIENCE ADVANCES 2023; 9:eadd4222. [PMID: 37531438 PMCID: PMC10396312 DOI: 10.1126/sciadv.add4222] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/29/2023] [Indexed: 08/04/2023]
Abstract
Cardiac fibrosis plays a key role in the progression of diabetic cardiomyopathy (DCM). Previous studies demonstrated the cardioprotective effects of natriuretic peptides. However, the effects of natriuretic peptide receptor C (NPRC) on cardiac fibrosis in DCM remains unknown. Here, we observed that myocardial NPRC expression was increased in mice and patients with DCM. NPRC-/- diabetic mice showed alleviated cardiac fibrosis, as well as improved cardiac function and remodeling. NPRC knockdown in both cardiac fibroblasts and cardiomyocytes decreased collagen synthesis and proliferation of cardiac fibroblasts. RNA sequencing identified that NPRC deletion up-regulated the expression of TGF-β-induced factor homeobox 1 (TGIF1), which inhibited the phosphorylation of Smad2/3. Furthermore, TGIF1 up-regulation was mediated by the activation of cAMP/PKA and cGMP/PKG signaling induced by NPRC deletion. These findings suggest that NPRC deletion attenuated cardiac fibrosis and improved cardiac remodeling and function in diabetic mice, providing a promising approach to the treatment of diabetic cardiac fibrosis.
Collapse
Affiliation(s)
- Linlin Meng
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yue Lu
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinlu Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Cheng
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fei Xue
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Xie
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yaoyuan Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenhai Sui
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | | | - Yun Zhang
- Corresponding author. (Y.Z.); (C.Z.)
| | | |
Collapse
|
8
|
Jiang H, Jiang Y, Qu Y, Lv J, Zeng H. sGC agonist BAY1021189 promotes thoracic aortic dissection formation by accelerating vascular smooth muscle cell phenotype switch. Eur J Pharmacol 2023:175789. [PMID: 37244376 DOI: 10.1016/j.ejphar.2023.175789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
Thoracic aortic dissection (TAD) is common but lethal cardiovascular disease with high mortality. This study aimed to expound whether and how sGC-PRKG1 signaling pathway might promote the formation of TAD. Our work identified two modules with high relevance to TAD using WGCNA method. Combined with previous studies, we focused on the participation of endothelial NOS (eNOS) in the progression of TAD. Through immunohistochemistry, immunofluorescence and western blot we verified that eNOS expression was elevated in the tissues of patients and mice with aortic dissection, and the phosphorylation Ser1177 of eNOS was activated. In a BAPN-induced TAD mouse model, sGC-PRKG1 signaling pathway promotes TAD formation by inducing vascular smooth muscle cells (VSMCs) phenotype transition, which was demonstrated as a decrease in markers of the contractile phenotype of VSMCs such as αSMA, SM22α, and Calponin. These results were also verified by experiments in vitro. To explore the further mechanism, we conducted immunohistochemistry, western blot and quantitative RT-PCR (qPCR), the results of which indicated that sGC-PRKG1 signaling pathway was activated when TAD occurred. In conclusion, our current study revealed that sGC-PRKG1 signaling pathway could promote TAD formation by accelerating VSMCs phenotype switch.
Collapse
Affiliation(s)
- Hongcheng Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Yue Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yunkun Qu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Hesong Zeng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China.
| |
Collapse
|
9
|
Mu N, Zhang T, Zhu Y, Lu B, Zheng Q, Duan J. The mechanism by which miR-494-3p regulates PGC1-α-mediated inhibition of mitophagy in cardiomyocytes and alleviation of myocardial ischemia-reperfusion injury. BMC Cardiovasc Disord 2023; 23:204. [PMID: 37085803 PMCID: PMC10122381 DOI: 10.1186/s12872-023-03226-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/04/2023] [Indexed: 04/23/2023] Open
Abstract
OBJECTIVE The purpose of this study was to explore whether miR-494-3p inhibits the occurrence of mitochondrial autophagy in cardiomyocytes by inhibiting the expression of PGC1-α and to supplement the theoretical basis for the role of autophagy in cardiac injury induced by hypoxia/reperfusion (H/R). METHODS The expression of miR-494-3p was detected by RT‒qPCR, and the expression of PGC1-α, autophagy-related proteins (LC3, Beclin 1), apoptosis-related proteins (Bax and Bcl-2), PINK1/Parkin signaling pathway-related proteins (PINK1, Parkin) and mitochondrial change-related proteins (Mfn1, Mfn2, OPA1) was detected by Western blotting. The changes in mitochondrial membrane potential were detected by JC-1 staining (ΔΨm). The formation of autophagosomes was observed by transmission electron microscopy. Cell proliferation activity was detected by CCK-8, and cell apoptosis was detected by flow cytometry. A dual-luciferase gene reporter assay identified a targeted binding site between miR-494-3p and PGC1-α. RESULTS The results showed that miR-494-3p and PGC1-α were differentially expressed in H/R cardiomyocytes; that is, the expression of miR-494-3p was downregulated, and the expression of PGC1-α was upregulated. In addition, mitochondrial autophagy occurred in H/R cardiomyocytes. That is, LC3-II/LC3-I, Beclin 1, PINK1, and Parkin expression was upregulated, Mfn1, Mfn2, and OPA1 expression was downregulated, and the mitochondrial membrane potential was decreased. The transfection of miR-494-3p mimic can significantly improve the cell proliferation activity of cardiomyocytes and inhibit the occurrence of cardiomyocyte apoptosis and autophagy, while the transfection of miR-494-3p inhibitor has the opposite result. After transfection of the miR-494-3p mimic, treatment with autophagy inhibitors and activators changed the effects of miR-494-3p on cardiomyocyte proliferation and apoptosis. At the same time, the overexpression of PGC1-α reversed the promoting effect of miR-494-3p on cardiomyocyte proliferation and the inhibitory effect on apoptosis and autophagy. CONCLUSION MiR-494-3p can target and negatively regulate the expression of PGC1-α to inhibit mitophagy in cardiomyocytes.
Collapse
Affiliation(s)
- Ninghui Mu
- General Practice Department, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, China
| | - Tong Zhang
- General Practice Department, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, China
| | - Ying Zhu
- General Practice Department, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, China
| | - Bingtuan Lu
- General Practice Department, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, China
| | - Qi Zheng
- General Practice Department, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, China
| | - Jinlan Duan
- Geriatric Medicine Department, The First People's Hospital of Yunnan Province, No. 157, Jinbi Road, Xishan District, Kunming, Yunnan, 650032, China.
| |
Collapse
|
10
|
Hosseinnejad A, Ludwig N, Mersmann S, Winnerbach P, Bleilevens C, Rossaint R, Rossaint J, Singh S. Bioactive Nanogels Mimicking the Antithrombogenic Nitric Oxide-Release Function of the Endothelium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205185. [PMID: 36635040 DOI: 10.1002/smll.202205185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Nitric oxide (NO) plays a significant role in controlling the physiology and pathophysiology of the body, including the endothelial antiplatelet function and therefore, antithrombogenic property of the blood vessels. This property of NO can be exploited to prevent thrombus formation on artificial surfaces like extracorporeal membrane oxygenators, which when come into contact with blood lead to protein adsorption and thereby platelet activation causing thrombus formation. However, NO is extremely reactive and has a very short biological half-life in blood, so only endogenous generation of NO from the blood contacting material can result into a stable and kinetically controllable local delivery of NO. In this regards, highly hydrophilic bioactive nanogels are presented which can endogenously generate NO in blood plasma from endogenous NO-donors thereby maintaining a physiological NO flux. It is shown that NO releasing nanogels could initiate cGMP-dependent protein kinase signaling followed by phosphorylation of vasodilator-stimulated phosphoprotein in platelets. This prevents platelet activation and aggregation even in presence of highly potent platelet activators like thrombin, adenosine 5'-diphosphate, and U46619 (thromboxane A2 mimetic).
Collapse
Affiliation(s)
- Aisa Hosseinnejad
- DWI-Leibniz-Institute for Interactive Materials e.V. Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Nadine Ludwig
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Bldg. A1, 48149, Münster, Germany
| | - Sina Mersmann
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Bldg. A1, 48149, Münster, Germany
| | - Patrick Winnerbach
- Department of Anesthesiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Christian Bleilevens
- Department of Anesthesiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Rolf Rossaint
- Department of Anesthesiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Bldg. A1, 48149, Münster, Germany
| | - Smriti Singh
- DWI-Leibniz-Institute for Interactive Materials e.V. Forckenbeckstr. 50, 52056, Aachen, Germany
- Max-Planck-Institut für medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| |
Collapse
|
11
|
Russo I, Barale C, Melchionda E, Penna C, Pagliaro P. Platelets and Cardioprotection: The Role of Nitric Oxide and Carbon Oxide. Int J Mol Sci 2023; 24:ijms24076107. [PMID: 37047079 PMCID: PMC10094148 DOI: 10.3390/ijms24076107] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Nitric oxide (NO) and carbon monoxide (CO) represent a pair of biologically active gases with an increasingly well-defined range of effects on circulating platelets. These gases interact with platelets and cells in the vessels and heart and exert fundamentally similar biological effects, albeit through different mechanisms and with some peculiarity. Within the cardiovascular system, for example, the gases are predominantly vasodilators and exert antiaggregatory effects, and are protective against damage in myocardial ischemia-reperfusion injury. Indeed, NO is an important vasodilator acting on vascular smooth muscle and is able to inhibit platelet activation. NO reacts with superoxide anion (O2(-•)) to form peroxynitrite (ONOO(-)), a nitrosating agent capable of inducing oxidative/nitrative signaling and stress both at cardiovascular, platelet, and plasma levels. CO reduces platelet reactivity, therefore it is an anticoagulant, but it also has some cardioprotective and procoagulant properties. This review article summarizes current knowledge on the platelets and roles of gas mediators (NO, and CO) in cardioprotection. In particular, we aim to examine the link and interactions between platelets, NO, and CO and cardioprotective pathways.
Collapse
Affiliation(s)
- Isabella Russo
- Department of Clinical and Biological Sciences of Turin University, Orbassano, I-10043 Turin, Italy
| | - Cristina Barale
- Department of Clinical and Biological Sciences of Turin University, Orbassano, I-10043 Turin, Italy
| | - Elena Melchionda
- Department of Clinical and Biological Sciences of Turin University, Orbassano, I-10043 Turin, Italy
| | - Claudia Penna
- Department of Clinical and Biological Sciences of Turin University, Orbassano, I-10043 Turin, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences of Turin University, Orbassano, I-10043 Turin, Italy
| |
Collapse
|
12
|
Cai Z, Wu C, Xu Y, Cai J, Zhao M, Zu L. The NO-cGMP-PKG Axis in HFpEF: From Pathological Mechanisms to Potential Therapies. Aging Dis 2023; 14:46-62. [PMID: 36818566 PMCID: PMC9937694 DOI: 10.14336/ad.2022.0523] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for almost half of all heart failure (HF) cases worldwide. Unfortunately, its incidence is expected to continue to rise, and effective therapy to improve clinical outcomes is lacking. Numerous efforts currently directed towards the pathophysiology of human HFpEF are uncovering signal transduction pathways and novel therapeutic targets. The nitric oxide-cyclic guanosine phosphate-protein kinase G (NO-cGMP-PKG) axis has been described as an important regulator of cardiac function. Suppression of the NO-cGMP-PKG signalling pathway is involved in the progression of HFpEF. Therefore, the NO-cGMP-PKG signalling pathway is a potential therapeutic target for HFpEF. In this review, we aim to explore the mechanism of NO-cGMP-PKG in the progression of HFpEF and to summarize potential therapeutic drugs that target this signalling pathway.
Collapse
Affiliation(s)
- Zhulan Cai
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Cencen Wu
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Yuan Xu
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Jiageng Cai
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Menglin Zhao
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Lingyun Zu
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, China.
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| |
Collapse
|
13
|
Banjac N, Vasović V, Stilinović N, Tomas A, Vasović L, Martić N, Prodanović D, Jakovljević V. The Effects of Different Doses of Sildenafil on Coronary Blood Flow and Oxidative Stress in Isolated Rat Hearts. Pharmaceuticals (Basel) 2023; 16:118. [PMID: 36678615 PMCID: PMC9864553 DOI: 10.3390/ph16010118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/15/2023] Open
Abstract
The dose-response relationship of sildenafil effects on cardiac function is not completely elucidated. The aim of this study was to assess the effects of different doses of sildenafil on coronary flow and oxidative stress in isolated rat hearts. Coronary flow and markers of oxidative stress, including nitrite outflow, and superoxide anion production in coronary effluent, were determined for isolated rat hearts. The experiments were performed during control conditions and in the presence of sildenafil (10, 20, 50, 200 nM) alone or with Nω-nitro-L-arginine monomethyl ester (L-NAME) (30 μM). Sildenafil was shown to result in a significant increase in coronary flow at lower coronary perfusion pressure (CPP) values at all administered doses, whereas, with an increase in CPP, a reduction in coronary flow was observed. An increase in nitric oxide (NO) was most pronounced in the group treated with the lowest dose of sildenafil at the highest CPP value. After the inhibition of the NO-cyclic guanosine monophosphate (cGMP) signaling (NOS) system by L-NAME, only a dose of 200 nM sildenafil was high enough to overcome the inhibition and to boost release of O2-. That effect was CPP-dependent, with statistical significance reached at 80, 100 and 120 mmHg. Our findings indicate that sildenafil causes changes in heart vasculature in a dose-dependent manner, with a shift from a vasodilatation effect to vasoconstriction with a pressure increase. The highest dose administered is capable of producing superoxide anion radicals in terms of NOS system inhibition.
Collapse
Affiliation(s)
- Nada Banjac
- Medical Faculty, University of Banja Luka, 78000 Republika Srpska, Bosnia and Herzegovina;
| | - Velibor Vasović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (V.V.); (N.S.); (A.T.); (N.M.)
| | - Nebojša Stilinović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (V.V.); (N.S.); (A.T.); (N.M.)
| | - Ana Tomas
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (V.V.); (N.S.); (A.T.); (N.M.)
| | - Lucija Vasović
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Nikola Martić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (V.V.); (N.S.); (A.T.); (N.M.)
| | - Dušan Prodanović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (V.V.); (N.S.); (A.T.); (N.M.)
| | - Vladimir Jakovljević
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| |
Collapse
|
14
|
Meibom D, Micus S, Andreevski AL, Anlauf S, Bogner P, von Buehler CJ, Dieskau AP, Dreher J, Eitner F, Fliegner D, Follmann M, Gericke KM, Maassen S, Meyer J, Schlemmer KH, Steuber H, Tersteegen A, Wunder F. BAY-7081: A Potent, Selective, and Orally Bioavailable Cyanopyridone-Based PDE9A Inhibitor. J Med Chem 2022; 65:16420-16431. [PMID: 36475653 PMCID: PMC9791655 DOI: 10.1021/acs.jmedchem.2c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite advances in the treatment of heart failure in recent years, options for patients are still limited and the disease is associated with considerable morbidity and mortality. Modulating cyclic guanosine monophosphate levels within the natriuretic peptide signaling pathway by inhibiting PDE9A has been associated with beneficial effects in preclinical heart failure models. We herein report the identification of BAY-7081, a potent, selective, and orally bioavailable PDE9A inhibitor with very good aqueous solubility starting from a high-throughput screening hit. Key aspect of the optimization was a switch in metabolism of our lead structures from glucuronidation to oxidation. The switch proved being essential for the identification of compounds with improved pharmacokinetic profiles. By studying a tool compound in a transverse aortic constriction mouse model, we were able to substantiate the relevance of PDE9A inhibition in heart diseases.
Collapse
|
15
|
Zhang D, Lü J, Ren Z, Zhang X, Wu H, Sa R, Wang X, Wang Y, Lin Z, Zhang B. Potential cardiotoxicity induced by Euodiae Fructus: In vivo and in vitro experiments and untargeted metabolomics research. Front Pharmacol 2022; 13:1028046. [PMID: 36353487 PMCID: PMC9637925 DOI: 10.3389/fphar.2022.1028046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/05/2022] [Indexed: 09/16/2023] Open
Abstract
Background: Euodiae Fructus, a well-known herbal medicine, is widely used in Asia and has also gained in popularity in Western countries over the last decades. It has known side effects, which have been observed in clinical settings, but few studies have reported on its cardiotoxicity. Methods: In the present study, experiments using techniques of untargeted metabolomics clarify the hazardous effects of Euodiae Fructus on cardiac function and metabolism in rats in situations of overdosage and unsuitable syndrome differentiation. In vitro assays are conducted to observe the toxic effects of evodiamine and rutaecarpine, two main chemical constituents of Euodiae Fructus, in H9c2 and neonatal rat cardiomyocytes (NRCMs), with their signaling mechanisms analyzed accordingly. Results: The cardiac cytotoxicity of evodiamine and rutaecarpine in in vivo experiments is associated with remarkable alterations in lactate dehydrogenase, creatine kinase, and mitochondrial membrane potential; also with increased intensity of calcium fluorescence, decreased protein expression of the cGMP-PKG pathway in H9c2 cells, and frequency of spontaneous beat in NRCMs. Additionally, the results in rats with Yin deficiency receiving a high-dosage of Euodiae Fructus suggest obvious cardiac physiological dysfunction, abnormal electrocardiogram, pathological injuries, and decreased expression of PKG protein. At the level of endogenous metabolites, the cardiac side effects of overdose and irrational usage of Euodiae Fructus relate to 34 differential metabolites and 10 metabolic pathways involving among others, the purine metabolism, the glycerophospholipid metabolism, the glycerolipid metabolism, and the sphingolipid metabolism. Conclusion: These findings shed new light on the cardiotoxicity induced by Euodiae Fructus, which might be associated with overdose and unsuitable syndrome differentiation, that comes from modulating the cGMP-PKG pathway and disturbing the metabolic pathways of purine, lipid, and amino acid. Continuing research is needed to ensure pharmacovigilance for the safe administration of Chinese herbs in the future.
Collapse
Affiliation(s)
- Dan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jintao Lü
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhixin Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaomeng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Centre for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huanzhang Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rina Sa
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Gansu Provincial Hospital, Lanzhou, China
| | - Xiaofang Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Centre for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhijian Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Centre for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bing Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Centre for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
16
|
Nakata T, Shindo T, Ito K, Eguchi K, Monma Y, Ichijo S, Ryoke R, Satoh W, Kumasaka K, Sato H, Kurosawa R, Satoh K, Kawashima R, Miura M, Kanai H, Yasuda S, Shimokawa H. Beneficial Effects of Low-Intensity Pulsed Ultrasound Therapy on Right Ventricular Dysfunction in Animal Models. JACC Basic Transl Sci 2022; 8:283-297. [PMID: 37034290 PMCID: PMC10077125 DOI: 10.1016/j.jacbts.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/05/2022]
Abstract
Right ventricular failure (RVF) is a leading cause of death in patients with pulmonary hypertension; however, effective treatment remains to be developed. We have developed low-intensity pulsed ultrasound therapy for cardiovascular diseases. In this study, we demonstrated that the expression of endothelial nitric oxide synthase (eNOS) in RVF patients was downregulated and that eNOS expression and its downstream pathway were ameliorated through eNOS activation in 2 animal models of RVF. These results indicate that eNOS is an important therapeutic target of RVF, for which low-intensity pulsed ultrasound therapy is a promising therapy for patients with RVF.
Collapse
Affiliation(s)
- Takashi Nakata
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiko Shindo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenta Ito
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kumiko Eguchi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuto Monma
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sadamitsu Ichijo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Rie Ryoke
- Institute of Development, Aging and Cancer, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Wakako Satoh
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazunori Kumasaka
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Haruka Sato
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Kurosawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kimio Satoh
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryuta Kawashima
- Institute of Development, Aging and Cancer, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahito Miura
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Kanai
- Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
- Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- International University of Health and Welfare, Narita, Japan
- Address for correspondence: Dr Hiroaki Shimokawa, International University of Health and Welfare, Narita 286-8686, Japan.
| |
Collapse
|
17
|
Tawa P, Zhang L, Metwally E, Hou Y, McCoy MA, Seganish WM, Zhang R, Frank E, Sheth P, Hanisak J, Sondey C, Bauman D, Soriano A. Mechanistic insights on novel small molecule allosteric activators of cGMP-dependent protein kinase PKG1α. J Biol Chem 2022; 298:102284. [PMID: 35868561 PMCID: PMC9425037 DOI: 10.1016/j.jbc.2022.102284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 11/30/2022] Open
Abstract
cGMP-dependent protein kinase (PKG) represents a compelling drug target for treatment of cardiovascular diseases. PKG1 is the major effector of beneficial cGMP signaling which is involved in smooth muscle relaxation and vascular tone, inhibition of platelet aggregation and signaling that leads to cardioprotection. In this study, a novel piperidine series of activators previously identified from an ultrahigh-throughput screen were validated to directly bind partially activated PKG1α and subsequently enhance its kinase activity in a concentration-dependent manner. Compounds from initial optimization efforts showed an ability to activate PKG1α independent of the endogenous activator, cGMP. We demonstrate these small molecule activators mimic the effect of cGMP on the kinetic parameters of PKG1α by positively modulating the KM of the peptide substrate and negatively modulating the apparent KM for ATP with increase in catalytic efficiency, kcat. In addition, these compounds also allosterically modulate the binding affinity of cGMP for PKG1α by increasing the affinity of cGMP for the high-affinity binding site (CNB-A) and decreasing the affinity of cGMP for the low-affinity binding site (CNB-B). We show the mode of action of these activators involves binding to an allosteric site within the regulatory domain, near the CNB-B binding site. To the best of our knowledge, these are the first reported non-cGMP mimetic small molecules shown to directly activate PKG1α. Insights into the mechanism of action of these compounds will enable future development of cardioprotective compounds that function through novel modes of action for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Paul Tawa
- Mass Spectrometry & Biophysics, Computational & Structural Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Lei Zhang
- Biologics AR&D Immunoassay Group, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Essam Metwally
- Computational & Structural Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - Yan Hou
- Mass Spectrometry & Biophysics, Computational & Structural Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Mark A McCoy
- Mass Spectrometry & Biophysics, Computational & Structural Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| | | | - Rumin Zhang
- Mass Spectrometry & Biophysics, Computational & Structural Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Emily Frank
- Quantitative Biosciences, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Payal Sheth
- Mass Spectrometry & Biophysics, Computational & Structural Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | | - David Bauman
- Discovery Biology, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Aileen Soriano
- Mass Spectrometry & Biophysics, Computational & Structural Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA.
| |
Collapse
|
18
|
Adhikari G, Baral N, Rauniyar R, Tse G, Karki S, Abdelazeem B, Gergis K, Savarapu P, Isa S, Sud P, Kunadi A. Meta-analysis examining phosphodiesterase-5 inhibitors in heart failure with preserved ejection fraction. Proc AMIA Symp 2022; 35:643-648. [DOI: 10.1080/08998280.2022.2078633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Govinda Adhikari
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| | - Nischit Baral
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| | - Rohit Rauniyar
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| | - Gary Tse
- Kent and Medway Medical School, Canterbury, UK
| | - Sandip Karki
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| | - Basel Abdelazeem
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| | - Kirolos Gergis
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| | - Pramod Savarapu
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| | - Sakiru Isa
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| | - Parul Sud
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| | - Arvind Kunadi
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| |
Collapse
|
19
|
Effects of chronic mirabegron treatment on metabolic and cardiovascular parameters as well as on atherosclerotic lesions of WHHL rabbits with high-fructose high-fat diet-induced insulin resistance. Eur J Pharmacol 2022; 921:174870. [DOI: 10.1016/j.ejphar.2022.174870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022]
|
20
|
Wichaiyo S, Saengklub N. Alterations of sodium-hydrogen exchanger 1 function in response to SGLT2 inhibitors: what is the evidence? Heart Fail Rev 2022; 27:1973-1990. [PMID: 35179683 DOI: 10.1007/s10741-022-10220-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
This review summarizes and describes the current evidence addressing how sodium-glucose cotransporter 2 (SGLT2) inhibitors alter the function of sodium-hydrogen exchanger 1 (NHE-1), in association with their protective effects against adverse cardiovascular events. In the heart, SGLT2 inhibitors modulate the function of NHE-1 (either by direct inhibition or indirect attenuation of protein expression), which promotes cardiac contraction and an enhanced energy supply, in association with improved mitochondrial function, reduced inflammation/oxidative/endoplasmic reticulum stress, and attenuated fibrosis and apoptotic/autophagic cell death. The vasodilating effect of SGLT2 inhibitors has also been proposed due to NHE-1 inhibition. Moreover, platelet-expressed NHE-1 might serve as a target for SGLT2 inhibitors, since these drugs and selective NHE-1 inhibitors produce comparable activity against adenosine diphosphate-stimulated platelet activation. Overall, it is promising that the modulation of the functions of NHE-1 on the heart, blood vessels, and platelets may act as a contributing pathway for the cardiovascular benefits of SGLT2 inhibitors in diabetes and heart failure.
Collapse
Affiliation(s)
- Surasak Wichaiyo
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok, 10400, Thailand. .,Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.
| | - Nakkawee Saengklub
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| |
Collapse
|
21
|
TRPV1 Contributes to Modulate the Nitric Oxide Pathway and Oxidative Stress in the Isolated and Perfused Rat Heart during Ischemia and Reperfusion. Molecules 2022; 27:molecules27031031. [PMID: 35164296 PMCID: PMC8839190 DOI: 10.3390/molecules27031031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
The transient vanilloid receptor potential type 1 (TRPV1) regulates neuronal and vascular functions mediated by nitric oxide (NO) and by the calcitonin gene-related peptide (CGRP). Here, we study the participation of TRPV1 in the regulation of myocardial injury caused by ischemia-reperfusion and in the control of NO, tetrahydrobiopterin (BH4), the cGMP pathway, CGRP, total antioxidant capacity (TAC), malondialdehyde (MDA) and phosphodiesterase-3 (PDE-3). Isolated hearts of Wistar rats perfused according to the Langendorff technique were used to study the effects of an agonist of TRPV1, capsaicin (CS), an antagonist, capsazepine (CZ), and their combination CZ+CS. The hearts were subjected to three conditions: (1) control, (2) ischemia and (3) ischemia-reperfusion. We determined cardiac mechanical activity and the levels of NO, cGMP, BH4, CGRP, TAC, MDA and PDE-3 in ventricular tissue after administration of CS, CZ and CZ+CS. Western blots were used to study the expressions of eNOS, iNOS and phosphorylated NOS (pNOS). Structural changes were determined by histological evaluation. CS prevented damage caused by ischemia-reperfusion by improving cardiac mechanical activity and elevating the levels of NO, cGMP, BH4, TAC and CGRP. TRPV1 and iNOS expression were increased under ischemic conditions, while eNOS and pNOS were not modified. We conclude that the activation of TRPV1 constitutes a therapeutic possibility to counteract the damage caused by ischemia and reperfusion by regulating the NO pathway through CGRP.
Collapse
|
22
|
Wu Y, Ye J, Zhao C, Pang J, Li Y, Lin X. Extracellular protein kinase A and G are potential biomarkers of some inflammation-associated disorders. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221105132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction Protein kinase A (PKA) and protein kinase G (PKG) are the main downstream effectors of second messengers cAMP and cGMP, which play important roles in physiological and pathological processes. Recently, there are two findings: one is PKA catalytic subunits α (PKACα) and PKG II can be secreted, the other is that the two secretory protein kinases are associated with the progression of tumors. Previous data also demonstrate that the two kinases, as signal cascades, involved in inflammation-associated disorders. However, it remains unclear whether the secreted PKACα or PKG II could serve as diagnostic biomarkers for inflammation-associated disorders. Methods The serum from suffered coronary disease, diabetes, rheumatoid arthritis, and schizophrenia were collected. The serum PKACα and PKG II were detected by ELISA. All the patients were consent informed. Results Our results showed that the serum PKACα and PKG II had obvious changes in coronary disease, rheumatoid arthritis, schizophrenia patients. However, the trends was opposite, especially in rheumatoid arthritis. Conclusions Serum PKACα and PKG II could serve as potentially diagnostic biomarkers for some inflammation-associated disorders, such as coronary disease, rheumatoid arthritis, and schizophrenia.
Collapse
Affiliation(s)
- Yan Wu
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jun Ye
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, China
- The Center of Laboratory, Taizhou People’s Hospital, Taizhou, China
| | - Chunhui Zhao
- The Center of Laboratory, Zhenjiang Mental Health Center, Zhenjiang, China
| | - Ji Pang
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yueying Li
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinyue Lin
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
23
|
Yu LM, Dong X, Zhao JK, Xu YL, Xu DY, Xue XD, Zhou ZJ, Huang YT, Zhao QS, Luo LY, Wang ZS, Wang HS. Activation of PKG-CREB-KLF15 by melatonin attenuates Angiotensin II-induced vulnerability to atrial fibrillation via enhancing branched-chain amino acids catabolism. Free Radic Biol Med 2022; 178:202-214. [PMID: 34864165 DOI: 10.1016/j.freeradbiomed.2021.11.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022]
Abstract
Mitochondrial reactive oxygen species (ROS) damage and atrial remodeling serve as the crucial substrates for the genesis of atrial fibrillation (AF). Branched-chain amino acids (BCAAs) catabolic defect plays critical roles in multiple cardiovascular diseases. However, the alteration of atrial BCAA catabolism and its role in AF remain largely unknown. This study aimed to explore the role of BCAA catabolism in the pathogenesis of AF and to further evaluate the therapeutic effect of melatonin with a focus on protein kinase G (PKG)-cAMP response element binding protein (CREB)-Krüppel-like factor 15 (KLF15) signaling. We found that angiotensin II-treated atria exhibited significantly elevated BCAA level, reduced BCAA catabolic enzyme activity, increased AF vulnerability, aggravated atrial electrical and structural remodeling, and enhanced mitochondrial ROS damage. These deleterious effects were attenuated by melatonin co-administration while exacerbated by BCAA oral supplementation. Melatonin treatment ameliorated BCAA-induced atrial damage and reversed BCAA-induced down-regulation of atrial PKGIα expression, CREB phosphorylation as well as KLF15 expression. However, inhibition of PKG partly abolished melatonin-induced beneficial actions. In summary, these data demonstrated that atrial BCAA catabolic defect contributed to the pathogenesis of AF by aggravating tissue fibrosis and mitochondrial ROS damage. Melatonin treatment ameliorated Ang II-induced atrial structural as well as electrical remodeling by activating PKG-CREB-KLF15. The present study reveals additional mechanisms contributing to AF genesis and highlights the opportunity of a novel therapy for AF by targeting BCAA catabolism. Melatonin may serve as a potential therapeutic agent for AF intervention.
Collapse
Affiliation(s)
- Li-Ming Yu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Xue Dong
- Outpatient Department of Liaoning Military Region, General Hospital of Northern Theater Command, 49 Beiling Road, Shenyang, Liaoning, 110032, PR China
| | - Ji-Kai Zhao
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Yin-Li Xu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Deng-Yue Xu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Xiao-Dong Xue
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Zi-Jun Zhou
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Yu-Ting Huang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Qiu-Sheng Zhao
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Lin-Yu Luo
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Zhi-Shang Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Hui-Shan Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
24
|
Banjac NM, Vasović VM, Stilinović NP, Prodanović DV, Tomas Petrović AD, Vasović LV, Jakovljević VL. Tadalafil in Increasing Doses: The Influence on Coronary Blood Flow and Oxidative Stress in Isolated Rat Hearts. Pharmacology 2021; 107:150-159. [PMID: 34903698 DOI: 10.1159/000520498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/27/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION This study aimed to assess the influence of different doses of tadalafil on coronary flow and oxidative stress in isolated rat hearts. METHODS The hearts of male Wistar albino rats (n = 48) were retrogradely perfused according to the Langendorff technique at gradually increased constant perfusion pressure (CPP) (40-120 mm Hg). Coronary flow and oxidative stress markers: nitrite oxide (NO) outflow and superoxide anion production in coronary effluent were measured. The experiments were performed during control conditions and in the presence of tadalafil (10, 20, 50, and 200 nM) alone or with Nω-nitro-L-arginine monomethyl ester (L-NAME) (30 μM). RESULTS Tadalafil administration significantly increased coronary flow at all CPP values at all administered doses. Tadalafil led to an increase in the NO levels, but a statistically significant NO release increase was found only at the highest dose and highest CPP. Tadalafil did not significantly affect the release of O2-. After inhibiting the nitrite oxide synthase system by L-NAME, tadalafil-induced changes in cardiac flow and NO levels were reversed. L-NAME administration had no pronounced effect on the O2- release. CONCLUSION Tadalafil causes changes in the heart vasculature in a dose-dependent manner. It does not lead to a significant increase in the production of superoxide anion radicals.
Collapse
Affiliation(s)
- Nada M Banjac
- University of Banja Luka, Faculty of Medicine, Banja Luka, Bosnia and Herzegovina
| | - Velibor M Vasović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
| | - Nebojša P Stilinović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
| | - Dušan V Prodanović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
| | - Ana D Tomas Petrović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
| | | | - Vladimir Lj Jakovljević
- Department of Physiology, University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia
| |
Collapse
|
25
|
Molecular Signaling to Preserve Mitochondrial Integrity against Ischemic Stress in the Heart: Rescue or Remove Mitochondria in Danger. Cells 2021; 10:cells10123330. [PMID: 34943839 PMCID: PMC8699551 DOI: 10.3390/cells10123330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases are one of the leading causes of death and global health problems worldwide, and ischemic heart disease is the most common cause of heart failure (HF). The heart is a high-energy demanding organ, and myocardial energy reserves are limited. Mitochondria are the powerhouses of the cell, but under stress conditions, they become damaged, release necrotic and apoptotic factors, and contribute to cell death. Loss of cardiomyocytes plays a significant role in ischemic heart disease. In response to stress, protective signaling pathways are activated to limit mitochondrial deterioration and protect the heart. To prevent mitochondrial death pathways, damaged mitochondria are removed by mitochondrial autophagy (mitophagy). Mitochondrial quality control mediated by mitophagy is functionally linked to mitochondrial dynamics. This review provides a current understanding of the signaling mechanisms by which the integrity of mitochondria is preserved in the heart against ischemic stress.
Collapse
|
26
|
Yang HW, Lin CY, Lin FZ, Yu PL, Huang SM, Chen YC, Tsai CS, Yang HY. Phosphodiesterase-1 inhibitor modulates Ca 2+ regulation in sirtuin 1-deficient mouse cardiomyocytes. Eur J Pharmacol 2021; 910:174498. [PMID: 34506778 DOI: 10.1016/j.ejphar.2021.174498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Phosphodiesterase inhibitors can be used to enhance second messenger signaling to regulate intracellular Ca2+ cycling. This study investigated whether ITI-214, a selective phosphodiesterase-1 inhibitor, modulates intracellular Ca2+ regulation, resulting in a positive inotropic effect in sirtuin 1 (Sirt1)-deficient cardiomyocytes. METHODS Mice with cardiac-specific Sirt1 knockout (Sirt1-/-) were used, with Sirt1flox/flox mice serving as controls. Electromechanical analyses of ventricular tissues were conducted, and we monitored intracellular Ca2+ using Fluo-3 as well as reactive oxygen species production in isolated cardiomyocytes. RESULTS Sirt1-/- ventricles showed prolonged action potential duration at 90% repolarization and increased contractile force after treatment with ITI-214. The rates and sustained durations of burst firing in ventricles were higher and longer, respectively, in Sirt1-/- ventricles than in controls. ITI-214 treatment decreased the rates and shortened the durations of burst firing in Sirt1-/- mice. Sirt1-/- cardiomyocytes showed reduced Ca2+ transient amplitudes and sarcoplasmic reticulum (SR) Ca2+ stores compared to those in control cardiac myocytes, which was reversed after ITI-214 treatment. SR Ca2+ leakage was larger in Sirt1-/- cardiac myocytes than in control myocytes. ITI-214 reduced SR Ca2+ leakage in Sirt1-/- cardiac myocytes. Increased levels of reactive oxygen species in Sirt1-/- cardiomyocytes compared to those in controls were reduced after ITI-214 treatment. Levels of Ca2+ regulatory proteins, including ryanodine receptor 2, phospholamban, and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a were not affected by ITI-214 administration. CONCLUSIONS Our results suggest that ITI-214 improves intracellular Ca2+ regulation, which in turn exerts inotropic effects and suppresses arrhythmic events in Sirt1-deficient ventricular myocytes.
Collapse
Affiliation(s)
- Hui-Wen Yang
- Grade Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Yuan Lin
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Zhi Lin
- Grade Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Ling Yu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Hsiang-Yu Yang
- Grade Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
27
|
Kobalava ZD, Lazarev PV. Nitric oxide — soluble guanylate cyclase — cyclic guanosine monophosphate signaling pathway in the pathogenesis of heart failure and search for novel therapeutic targets. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2021. [DOI: 10.15829/1728-8800-2021-3035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Heart failure is a severe disease with an unfavorable prognosis, which requires intensification of therapy and the search for novel approaches to treatment. In this review, the physiological significance of soluble guanylate cyclase-related signaling pathway, reasons for decrease in its activity in heart failure and possible consequences are discussed. Pharmacological methods of stimulating the production of cyclic guanosine monophosphate using drugs with different mechanisms of action are considered. Data from clinical studies regarding their effectiveness and safety are presented. A promising approach is stimulation of soluble guanylate cyclase, which showed beneficial effects in preclinical studies, as well as in the recently completed phase III VICTORIA study.
Collapse
|
28
|
Dynamic Regulation of Cysteine Oxidation and Phosphorylation in Myocardial Ischemia-Reperfusion Injury. Cells 2021; 10:cells10092388. [PMID: 34572037 PMCID: PMC8469016 DOI: 10.3390/cells10092388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/02/2023] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury significantly alters heart function following infarct and increases the risk of heart failure. Many studies have sought to preserve irreplaceable myocardium, termed cardioprotection, but few, if any, treatments have yielded a substantial reduction in clinical I/R injury. More research is needed to fully understand the molecular pathways that govern cardioprotection. Redox mechanisms, specifically cysteine oxidations, are acute and key regulators of molecular signaling cascades mediated by kinases. Here, we review the role of reactive oxygen species in modifying cysteine residues and how these modifications affect kinase function to impact cardioprotection. This exciting area of research may provide novel insight into mechanisms and likely lead to new treatments for I/R injury.
Collapse
|
29
|
Ju W, Liu K, Ouyang S, Liu Z, He F, Wu J. Changes in N6-Methyladenosine Modification Modulate Diabetic Cardiomyopathy by Reducing Myocardial Fibrosis and Myocyte Hypertrophy. Front Cell Dev Biol 2021; 9:702579. [PMID: 34368154 PMCID: PMC8334868 DOI: 10.3389/fcell.2021.702579] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/21/2021] [Indexed: 01/23/2023] Open
Abstract
In this study, we aimed to systematically profile global RNA N6-methyladenosine (m6A) modification patterns in a mouse model of diabetic cardiomyopathy (DCM). Patterns of m6A in DCM and normal hearts were analyzed via m6A-specific methylated RNA immunoprecipitation followed by high-throughput sequencing (MeRIP-seq) and RNA sequencing (RNA-seq). m6A-related mRNAs were validated by quantitative real-time PCR analysis of input and m6A immunoprecipitated RNA samples from DCM and normal hearts. A total of 973 new m6A peaks were detected in DCM samples and 984 differentially methylated sites were selected for further study, including 295 hypermethylated and 689 hypomethylated m6A sites (fold change (FC) > 1.5, P < 0.05). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway analyses indicated that unique m6A-modified transcripts in DCM were closely linked to cardiac fibrosis, myocardial hypertrophy, and myocardial energy metabolism. Total m6A levels were higher in DCM, while levels of the fat mass and obesity-associated (FTO) protein were downregulated. Overexpression of FTO in DCM model mice improved cardiac function by reducing myocardial fibrosis and myocyte hypertrophy. Overall, m6A modification patterns were altered in DCM, and modification of epitranscriptomic processes, such as m6A, is a potentially interesting therapeutic approach.
Collapse
Affiliation(s)
- Wenhao Ju
- Graduate School, Peking Union Medical College, Beijing, China.,Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China.,Beijing Municipal Key Laboratory of Child Development and Nutriomics, Beijing, China
| | - Kai Liu
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China.,Beijing Municipal Key Laboratory of Child Development and Nutriomics, Beijing, China.,Department of Biochemistry & Immunology, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
| | - Shengrong Ouyang
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China.,Beijing Municipal Key Laboratory of Child Development and Nutriomics, Beijing, China
| | - Zhuo Liu
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China.,Beijing Municipal Key Laboratory of Child Development and Nutriomics, Beijing, China
| | - Feng He
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China.,Beijing Municipal Key Laboratory of Child Development and Nutriomics, Beijing, China
| | - Jianxin Wu
- Graduate School, Peking Union Medical College, Beijing, China.,Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China.,Beijing Municipal Key Laboratory of Child Development and Nutriomics, Beijing, China.,Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
30
|
Engin S, Yasar YK, Barut EN, Sezen SF. Improved Endothelium-Dependent Relaxation of Thoracic Aorta in Niclosamide-Treated Diabetic Rats. Cardiovasc Toxicol 2021; 21:563-571. [PMID: 33772737 DOI: 10.1007/s12012-021-09647-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/20/2021] [Indexed: 01/06/2023]
Abstract
Diabetes-induced endothelial dysfunction is critical for the development of diabetic cardiovascular complications. The aim of this study was to investigate the effect of niclosamide (Nic) on vascular endothelial dysfunction in streptozotocin (STZ)-induced diabetic rats. Male Sprague-Dawley rats were injected with a single intraperitoneal injection of STZ (75 mg/kg) to induce type 1 diabetes, and Nic (10 mg/kg) was intraperitoneally administered per day for 4 weeks. Endothelial function was evaluated as carbachol (CCh, an endothelium-dependent vasodilator)-evoked relaxation in the experiments performed on isolated thoracic aortas. The changes in the protein expressions of phosphorylated eNOS at serine 1177 (p-eNOSSer1177) and phosphorylated VASP at serine 239 (p-VASPSer239) of the rat aortas were analyzed by western blotting to determine whether NO/cGMP signaling is involved in the mechanism of Nic. STZ-injected rats had higher fasting blood glucose and less body weight compared to control rats (p < 0.05). Nic treatment did not affect blood glucose levels or body weights of the rats. CCh-induced endothelium-dependent relaxation of the aortic rings was significantly decreased in diabetic rats compared to control (Emax = 66.79 ± 7.41% and 90.28 ± 5.55%, respectively; p < 0.05). CCh-induced relaxation response was greater in Nic-treated diabetic rats compared to diabetic rats (Emax = 91.56 ± 1.20% and 66.79 ± 7.41%, respectively; p < 0.05). Phosphorylation of eNOS and VASP in aortic tissues was significantly reduced in diabetic rats, which were markedly increased by Nic treatment (p < 0.05). We demonstrated that Nic improved endothelial dysfunction possibly through the activation of NO/cGMP signaling without affecting hyperglycemia in diabetic rats. Our results suggesting that Nic has potential of repurposing for diabetic cardiovascular complications.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/physiopathology
- Cell Adhesion Molecules/metabolism
- Cyclic GMP/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Diabetic Angiopathies/chemically induced
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/physiopathology
- Diabetic Angiopathies/prevention & control
- Drug Repositioning
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Male
- Microfilament Proteins/metabolism
- Niclosamide/pharmacology
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Phosphoproteins/metabolism
- Phosphorylation
- Rats, Sprague-Dawley
- Streptozocin
- Vasodilation/drug effects
- Rats
Collapse
Affiliation(s)
- Seckin Engin
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, P.O:61080, Trabzon, Turkey.
| | - Yesim Kaya Yasar
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, P.O:61080, Trabzon, Turkey
- Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkey
| | - Elif Nur Barut
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, P.O:61080, Trabzon, Turkey
| | - Sena F Sezen
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, P.O:61080, Trabzon, Turkey
- Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
31
|
Current Status of Pharmacologic and Nonpharmacologic Therapy in Heart Failure with Preserved Ejection Fraction. Heart Fail Clin 2021; 17:463-482. [PMID: 34051977 DOI: 10.1016/j.hfc.2021.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a significantly symptomatic disease and has a poor prognosis similar to that of heart failure with reduced ejection fraction (HFrEF). Contrary to HFrEF, HFpEF is difficult to diagnose, and the recommended diagnostic algorithm of HFpEF is complicated. Several therapies for HFpEF have failed to reduce mortality or morbidity. HFpEF is thought to be a complex and heterogeneous systemic disorder that has various phenotypes and multiple comorbidities. Therefore, therapeutic strategies of HFpEF need to change depending on the phenotype of the patient. This review highlights the pharmacologic and nonpharmacologic treatment of HFpEF.
Collapse
|
32
|
Lukowski R, Cruz Santos M, Kuret A, Ruth P. cGMP and mitochondrial K + channels-Compartmentalized but closely connected in cardioprotection. Br J Pharmacol 2021; 179:2344-2360. [PMID: 33991427 DOI: 10.1111/bph.15536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 01/01/2023] Open
Abstract
The 3',5'-cGMP pathway triggers cytoprotective responses and improves cardiomyocyte survival during myocardial ischaemia and reperfusion (I/R) injury. These beneficial effects were attributed to NO-sensitive GC induced cGMP production leading to activation of cGMP-dependent protein kinase I (cGKI). cGKI in turn phosphorylates many substrates, which eventually facilitate opening of mitochondrial ATP-sensitive potassium channels (mitoKATP ) and Ca2+ -activated potassium channels of the BK type (mitoBK). Accordingly, agents activating mitoKATP or mitoBK provide protection against I/R-induced damages. Here, we provide an up-to-date summary of the infarct-limiting actions exhibited by the GC/cGMP axis and discuss how mitoKATP and mitoBK, which are present at the inner mitochondrial membrane, confer mito- and cytoprotective effects on cardiomyocytes exposed to I/R injury. In view of this, we believe that the functional connection between the cGMP cascade and mitoK+ channels should be exploited further as adjunct to reperfusion therapy in myocardial infarction.
Collapse
Affiliation(s)
- Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Melanie Cruz Santos
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Anna Kuret
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
33
|
Claridge B, Rai A, Fang H, Matsumoto A, Luo J, McMullen JR, Greening DW. Proteome characterisation of extracellular vesicles isolated from heart. Proteomics 2021; 21:e2100026. [PMID: 33861516 DOI: 10.1002/pmic.202100026] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Abstract
Cardiac intercellular communication is critical for heart function and often dysregulated in cardiovascular diseases. While cardiac extracellular vesicles (cEVs) are emerging mediators of signalling, their isolation remains a technical challenge hindering our understanding of cEV protein composition. Here, we utilised Langendorff-collagenase-based enzymatic perfusion and differential centrifugation to isolate cEVs from mouse heart (yield 3-6 μg/heart). cEVs are ∼200 nm, express classical EV markers (Cd63/81/9+ , Tsg101+ , Pdcd6ip/Alix+ ), and are depleted of blood (Alb/Fga/Hba) and cardiac damage markers (Mb, Tnnt2, Ldhb). Comparison with mechanically-derived EVs revealed greater detection of EV markers and decreased cardiac damage contaminants. Mass spectrometry-based proteomic profiling revealed 1721 proteins in cEVs, implicated in proteasomal and autophagic proteostasis, glycolysis, and fatty acid metabolism; essential functions often disrupted in cardiac pathologies. There was striking enrichment of 942 proteins in cEVs compared to mouse heart tissue - implicated in EV biogenesis, antioxidant activity, and lipid transport, suggesting active cargo selection and specialised function. Interestingly, cEVs contain marker proteins for cardiomyocytes, cardiac progenitors, B-cells, T-cells, macrophages, smooth muscle cells, endothelial cells, and cardiac fibroblasts, suggesting diverse cellular origin. We present a method of cEV isolation and provide insight into potential functions, enabling future studies into EV roles in cardiac physiology and disease.
Collapse
Affiliation(s)
- Bethany Claridge
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Haoyun Fang
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Aya Matsumoto
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jieting Luo
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - David W Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
34
|
Samidurai A, Xi L, Das A, Iness AN, Vigneshwar NG, Li PL, Singla DK, Muniyan S, Batra SK, Kukreja RC. Role of phosphodiesterase 1 in the pathophysiology of diseases and potential therapeutic opportunities. Pharmacol Ther 2021; 226:107858. [PMID: 33895190 DOI: 10.1016/j.pharmthera.2021.107858] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/17/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are superfamily of enzymes that regulate the spatial and temporal relationship of second messenger signaling in the cellular system. Among the 11 different families of PDEs, phosphodiesterase 1 (PDE1) sub-family of enzymes hydrolyze both 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) in a mutually competitive manner. The catalytic activity of PDE1 is stimulated by their binding to Ca2+/calmodulin (CaM), resulting in the integration of Ca2+ and cyclic nucleotide-mediated signaling in various diseases. The PDE1 family includes three subtypes, PDE1A, PDE1B and PDE1C, which differ for their relative affinities for cAMP and cGMP. These isoforms are differentially expressed throughout the body, including the cardiovascular, central nervous system and other organs. Thus, PDE1 enzymes play a critical role in the pathophysiology of diseases through the fundamental regulation of cAMP and cGMP signaling. This comprehensive review provides the current research on PDE1 and its potential utility as a therapeutic target in diseases including the cardiovascular, pulmonary, metabolic, neurocognitive, renal, cancers and possibly others.
Collapse
Affiliation(s)
- Arun Samidurai
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Lei Xi
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Audra N Iness
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Navin G Vigneshwar
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Rakesh C Kukreja
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA.
| |
Collapse
|
35
|
Chrysant SG. A novel approach for the treatment of hypertension with the soluble guanylate cyclase stimulating drug. Expert Opin Drug Saf 2021; 20:635-640. [PMID: 33734912 DOI: 10.1080/14740338.2021.1906221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Despite the significant progress in the development of safe and effective antihypertensive drugs, the control of blood pressure (BP) is still not satisfactory. The current antihypertensive drugs reduce the BP by increasing sodium and water excretion (diuretics), by blocking the action of the sympathetic system, by blocking the calcium entry into vascular smooth muscle cells, or by blocking the action of the renin-angiotensin-aldosterone system. AREAS COVERED There is a need for the development of new antihypertensive drugs with a different mechanism of action. This new class of drugs are the soluble guanylate cyclase (sGC) stimulators and decrease the BP through arterial vasodilation by stimulating the sGC and increasing the production of cyclic-guanosine-monophosphate (cGMP), a potent vasodilator, independently of the endogenous nitric oxide. However, there is limited research on their antihypertensive action. For further knowledge of the antihypertensive effects and safety of these drugs, a focused Medline search of the English language literature was conducted between 2010 and 2020 and 27 studies with pertinent information were selected. EXPERT OPINION The analysis of data from these demonstrated that these drugs are safe and have beneficial antihypertensive and metabolic effects and they will be useful for hypertensive patients with diabetes and dyslipidemia.
Collapse
Affiliation(s)
- Steven G Chrysant
- Department of cardiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
36
|
Boettcher M, Thomas D, Mueck W, Loewen S, Arens E, Yoshikawa K, Becker C. Safety, pharmacodynamic, and pharmacokinetic characterization of vericiguat: results from six phase I studies in healthy subjects. Eur J Clin Pharmacol 2021; 77:527-537. [PMID: 33125516 PMCID: PMC7935833 DOI: 10.1007/s00228-020-03023-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/14/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE To characterize the safety, pharmacodynamics, and pharmacokinetics (PK) of vericiguat in healthy males. METHODS Six phase I studies were conducted in European, Chinese, and Japanese males. Subjects received oral vericiguat as a single dose (0.5-15.0 mg solution [for first-in-human study] or 1.25-10.0 mg immediate release [IR tablets]) or multiple doses (1.25-10.0 mg IR tablets once daily [QD] or 5.0 mg IR tablets twice daily for 7 consecutive days). Bioavailability and food effects on vericiguat PK (IR tablets) were also studied in European subjects. RESULTS Overall, 255 of 265 randomized subjects completed their respective studies. There were no deaths or serious adverse events. Vericiguat was generally well tolerated at doses ≤ 10.0 mg. In the first-in-human study, the most frequent drug-related adverse events were headache and postural dizziness (experienced by five subjects each [7.2%]). Three of four subjects who received vericiguat 15.0 mg (oral solution, fasted) experienced orthostatic reactions. Vericiguat (≤ 10.0 mg, IR tablets) was rapidly absorbed (median time to reach maximum plasma concentration ≤ 2.5 h [fasted]) with a mean half-life of about 22.0 h (range 17.9-27.0 h for single and multiple doses). No evidence for deviation from dose proportionality or unexpected accumulation was observed. Administration of vericiguat 5.0 mg IR tablets with food increased bioavailability by 19% (estimated ratio 119% [90% confidence interval]: 108; 131]), reduced PK variability, and prolonged vericiguat absorption relative to the fasted state. CONCLUSION In general, vericiguat was well tolerated. These results supported further clinical evaluation of vericiguat QD in patients with heart failure. REGISTRY NUMBERS EudraCT: 2011-001627-21; EudraCT: 2012-000953-30.
Collapse
Affiliation(s)
- Michael Boettcher
- Research & Development, Pharmaceuticals, Clinical PD CV, Bayer AG, Wuppertal, Germany
| | - Dirk Thomas
- Experimental Medicine, Bayer AG, Wuppertal, Germany
| | - Wolfgang Mueck
- Research & Development, Pharmaceuticals, Clinical PK CV, Bayer AG, Aprather Weg 18a, 42113, Wuppertal, Germany
| | | | - Erich Arens
- Research & Development, Pharmaceuticals, Clinical PD CV, Bayer AG, Wuppertal, Germany
- Im Straesschen, Monheim, Germany
| | - Kenichi Yoshikawa
- Clinical Sciences, Research & Development Japan, Bayer Yakuhin, Ltd, Osaka, Japan
| | - Corina Becker
- Research & Development, Pharmaceuticals, Clinical PD CV, Bayer AG, Wuppertal, Germany.
- Research & Development, Pharmaceuticals, Clinical PK CV, Bayer AG, Aprather Weg 18a, 42113, Wuppertal, Germany.
| |
Collapse
|
37
|
Neves KB, Morris HE, Alves-Lopes R, Muir KW, Moreton F, Delles C, Montezano AC, Touyz RM. Peripheral arteriopathy caused by Notch3 gain-of-function mutation involves ER and oxidative stress and blunting of NO/sGC/cGMP pathway. Clin Sci (Lond) 2021; 135:753-773. [PMID: 33681964 DOI: 10.1042/cs20201412] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 12/30/2022]
Abstract
Notch3 mutations cause Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL), which predisposes to stroke and dementia. CADASIL is characterised by vascular dysfunction and granular osmiophilic material (GOM) accumulation in cerebral small vessels. Systemic vessels may also be impacted by Notch3 mutations. However vascular characteristics and pathophysiological processes remain elusive. We investigated mechanisms underlying the peripheral vasculopathy mediated by CADASIL-causing Notch3 gain-of-function mutation. We studied: (i) small arteries and vascular smooth muscle cells (VSMCs) from TgNotch3R169C mice (CADASIL model), (ii) VSMCs from peripheral arteries from CADASIL patients, and (iii) post-mortem brains from CADASIL individuals. TgNotch3R169C vessels exhibited GOM deposits, increased vasoreactivity and impaired vasorelaxation. Hypercontractile responses were normalised by fasudil (Rho kinase inhibitor) and 4-phenylbutyrate (4-PBA; endoplasmic-reticulum (ER) stress inhibitor). Ca2+ transients and Ca2+ channel expression were increased in CADASIL VSMCs, with increased expression of Rho guanine nucleotide-exchange factors (GEFs) and ER stress proteins. Vasorelaxation mechanisms were impaired in CADASIL, evidenced by decreased endothelial nitric oxide synthase (eNOS) phosphorylation and reduced cyclic guanosine 3',5'-monophosphate (cGMP) levels, with associated increased soluble guanylate cyclase (sGC) oxidation, decreased sGC activity and reduced levels of the vasodilator hydrogen peroxide (H2O2). In VSMCs from CADASIL patients, sGC oxidation was increased and cGMP levels decreased, effects normalised by fasudil and 4-PBA. Cerebral vessels in CADASIL patients exhibited significant oxidative damage. In conclusion, peripheral vascular dysfunction in CADASIL is associated with altered Ca2+ homoeostasis, oxidative stress and blunted eNOS/sGC/cGMP signaling, processes involving Rho kinase and ER stress. We identify novel pathways underlying the peripheral arteriopathy induced by Notch3 gain-of-function mutation, phenomena that may also be important in cerebral vessels.
Collapse
Affiliation(s)
- Karla B Neves
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Hannah E Morris
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Rhéure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Keith W Muir
- Institute of Neuroscience and Psychology, University of Glasgow and Queen Elizabeth University Hospital, Glasgow, U.K
| | - Fiona Moreton
- Institute of Neuroscience and Psychology, University of Glasgow and Queen Elizabeth University Hospital, Glasgow, U.K
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| |
Collapse
|
38
|
Nofal SD, Patel A, Blackman MJ, Flueck C, Baker DA. Plasmodium falciparum Guanylyl Cyclase-Alpha and the Activity of Its Appended P4-ATPase Domain Are Essential for cGMP Synthesis and Blood-Stage Egress. mBio 2021; 12:e02694-20. [PMID: 33500341 PMCID: PMC7858053 DOI: 10.1128/mbio.02694-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Guanylyl cyclases (GCs) synthesize cyclic GMP (cGMP) and, together with cyclic nucleotide phosphodiesterases, are responsible for regulating levels of this intracellular messenger which mediates myriad functions across eukaryotes. In malaria parasites (Plasmodium spp), as well as their apicomplexan and ciliate relatives, GCs are associated with a P4-ATPase-like domain in a unique bifunctional configuration. P4-ATPases generate membrane bilayer lipid asymmetry by translocating phospholipids from the outer to the inner leaflet. Here, we investigate the role of Plasmodium falciparum guanylyl cyclase alpha (GCα) and its associated P4-ATPase module, showing that asexual blood-stage parasites lacking both the cyclase and P4-ATPase domains are unable to egress from host erythrocytes. GCα-null parasites cannot synthesize cGMP or mobilize calcium, a cGMP-dependent protein kinase (PKG)-driven requirement for egress. Using chemical complementation with a cGMP analogue and point mutagenesis of a crucial conserved residue within the P4-ATPase domain, we show that P4-ATPase activity is upstream of and linked to cGMP synthesis. Collectively, our results demonstrate that GCα is a critical regulator of PKG and that its associated P4-ATPase domain plays a primary role in generating cGMP for merozoite egress.IMPORTANCE The clinical manifestations of malaria arise due to successive rounds of replication of Plasmodium parasites within red blood cells. Once mature, daughter merozoites are released from infected erythrocytes to invade new cells in a tightly regulated process termed egress. Previous studies have shown that the activation of cyclic GMP (cGMP) signaling is critical for initiating egress. Here, we demonstrate that GCα, a unique bifunctional enzyme, is the sole enzyme responsible for cGMP production during the asexual blood stages of Plasmodium falciparum and is required for the cellular events leading up to merozoite egress. We further demonstrate that in addition to the GC domain, the appended ATPase-like domain of GCα is also involved in cGMP production. Our results highlight the critical role of GCα in cGMP signaling required for orchestrating malaria parasite egress.
Collapse
Affiliation(s)
- Stephanie D Nofal
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Avnish Patel
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael J Blackman
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Christian Flueck
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
39
|
Richards DA, Aronovitz MJ, Liu P, Martin GL, Tam K, Pande S, Karas RH, Bloomfield DM, Mendelsohn ME, Blanton RM. CRD-733, a Novel PDE9 (Phosphodiesterase 9) Inhibitor, Reverses Pressure Overload-Induced Heart Failure. Circ Heart Fail 2021; 14:e007300. [PMID: 33464954 DOI: 10.1161/circheartfailure.120.007300] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Augmentation of NP (natriuretic peptide) receptor and cyclic guanosine monophosphate (cGMP) signaling has emerged as a therapeutic strategy in heart failure (HF). cGMP-specific PDE9 (phosphodiesterase 9) inhibition increases cGMP signaling and attenuates stress-induced hypertrophic heart disease in preclinical studies. A novel cGMP-specific PDE9 inhibitor, CRD-733, is currently being advanced in human clinical studies. Here, we explore the effects of chronic PDE9 inhibition with CRD-733 in the mouse transverse aortic constriction pressure overload HF model. METHODS Adult male C57BL/6J mice were subjected to transverse aortic constriction and developed significant left ventricular (LV) hypertrophy after 7 days (P<0.001). Mice then received daily treatment with CRD-733 (600 mg/kg per day; n=10) or vehicle (n=17), alongside sham-operated controls (n=10). RESULTS CRD-733 treatment reversed existing LV hypertrophy compared with vehicle (P<0.001), significantly improved LV ejection fraction (P=0.009), and attenuated left atrial dilation (P<0.001), as assessed by serial echocardiography. CRD-733 prevented elevations in LV end diastolic pressures (P=0.037) compared with vehicle, while lung weights, a surrogate for pulmonary edema, were reduced to sham levels. Chronic CRD-733 treatment increased plasma cGMP levels compared with vehicle (P<0.001), alongside increased phosphorylation of Ser273 of cardiac myosin binding protein-C, a cGMP-dependent protein kinase I phosphorylation site. CONCLUSIONS The PDE9 inhibitor, CRD-733, improves key hallmarks of HF including LV hypertrophy, LV dysfunction, left atrial dilation, and pulmonary edema after pressure overload in the mouse transverse aortic constriction HF model. Additionally, elevated plasma cGMP may be used as a biomarker of target engagement. These findings support future investigation into the therapeutic potential of CRD-733 in human HF.
Collapse
Affiliation(s)
- Daniel A Richards
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (D.A.R., M.J.A., G.L.M., K.T., S.P., R.H.K., R.M.B.)
| | - Mark J Aronovitz
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (D.A.R., M.J.A., G.L.M., K.T., S.P., R.H.K., R.M.B.)
| | - Peiwen Liu
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA (P.L., R.M.B.)
| | - Gregory L Martin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (D.A.R., M.J.A., G.L.M., K.T., S.P., R.H.K., R.M.B.)
| | - Kelly Tam
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (D.A.R., M.J.A., G.L.M., K.T., S.P., R.H.K., R.M.B.)
| | - Suchita Pande
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (D.A.R., M.J.A., G.L.M., K.T., S.P., R.H.K., R.M.B.)
| | - Richard H Karas
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (D.A.R., M.J.A., G.L.M., K.T., S.P., R.H.K., R.M.B.)
| | | | | | - Robert M Blanton
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (D.A.R., M.J.A., G.L.M., K.T., S.P., R.H.K., R.M.B.).,Graduate School of Biomedical Sciences, Tufts University, Boston, MA (P.L., R.M.B.)
| |
Collapse
|
40
|
Abstract
The 3',5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase type I (cGKI aka PKGI) is a major cardiac effector acting downstream of nitric oxide (NO)-sensitive soluble guanylyl cyclase and natriuretic peptides (NPs), which signal through transmembrane guanylyl cyclases. Consistent with the wide distribution of the cGMP-generating guanylyl cyclases, cGKI, which usually elicits its cellular effects by direct phosphorylation of its targets, is present in multiple cardiac cell types including cardiomyocytes (CMs). Although numerous targets of cGMP/cGKI in heart were identified in the past, neither their exact patho-/physiological functions nor cell-type specific roles are clear. Herein, we inform about the current knowledge on the signal transduction downstream of CM cGKI. We believe that better insights into the specific actions of cGMP and cGKI in these cells will help to guide future studies in the search for predictive biomarkers for the response to pharmacological cGMP pathway modulation. In addition, targets downstream of cGMP/cGKI may be exploited for refined and optimized diagnostic and therapeutic strategies in different types of heart disease and their causes. Importantly, key functions of these proteins and particularly sites of regulatory phosphorylation by cGKI should, at least in principle, remain intact, although upstream signaling through the second messenger cGMP is impaired or dysregulated in a stressed or diseased heart state.
Collapse
|
41
|
Ovchinnikov AG, Gvozdeva AD, Blankova ZN, Borisov AA, Ageev FT. The Role of Neprilysin Inhibitors in the Treatment of Heart Failure with Preserved Ejection Fraction. ACTA ACUST UNITED AC 2020; 60:1352. [PMID: 33487158 DOI: 10.18087/cardio.2020.11.n1352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/23/2020] [Indexed: 11/18/2022]
Abstract
Clinical and hemodynamic aggravation of heart failure with preserved ejection fraction (HFpEF) is largely due to progression of left ventricular (LV) diastolic dysfunction. The key role in the normal maintenance of diastolic function is played by a high level of activity of the intracellular signaling axis, cyclic guanosine-monophosphate-protein kinase G, the activity of which is significantly reduced in HFpEF. The activity of this axis can be increased by increasing the bioavailability of natriuretic peptides by blocking the enzyme neutral endopeptidase (neprilisin), which is responsible for the destruction of natriuretic peptides.This review presents experimental and clinical data on the use of neprilysin inhibitors in HFpEF and addresses prospects of this treatment.
Collapse
Affiliation(s)
| | - A D Gvozdeva
- National Medical Research Center of Cardiology, Moscow
| | - Z N Blankova
- National Medical Research Center of Cardiology, Moscow
| | - A A Borisov
- National Medical Research Center of Cardiology, Moscow
| | - F T Ageev
- National Medical Research Center of Cardiology, Moscow
| |
Collapse
|
42
|
Zhang K, Qin X, Wen P, Wu Y, Zhuang J. Systematic analysis of molecular mechanisms of heart failure through the pathway and network-based approach. Life Sci 2020; 265:118830. [PMID: 33259868 DOI: 10.1016/j.lfs.2020.118830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
AIMS The molecular networks and pathways involved in heart failure (HF) are still largely unknown. The present study aimed to systematically investigate the genes associated with HF, comprehensively explore their interactions and functions, and identify possible regulatory networks involved in HF. MAIN METHODS The weighted gene coexpression network analysis (WGCNA), crosstalk analysis, and Pivot analysis were used to identify gene connections, interaction networks, and molecular regulatory mechanisms. Functional analysis and protein-protein interaction (PPI) were performed using DAVID and STRING databases. Gene set variation analysis (GSVA) and receiver operating characteristic (ROC) curve analysis were also performed to evaluate the relationship of the hub genes with HF. KEY FINDINGS A total of 5968 HF-related genes were obtained to construct the co-expression networks, and 18 relatively independent and closely linked modules were identified. Pivot analysis suggested that four transcription factors and five noncoding RNAs were involved in regulating the process of HF. The genes in the module with the highest positive correlation to HF was mainly enriched in cardiac remodeling and response to stress. Five upregulated hub genes (ASPN, FMOD, NT5E, LUM, and OGN) were identified and validated. Furthermore, the GSVA scores of the five hub genes for HF had a relatively high areas under the curve (AUC). SIGNIFICANCE The results of this study revealed specific molecular networks and their potential regulatory mechanisms involved in HF. These may provide new insight into understanding the mechanisms underlying HF and help to identify more effective therapeutic targets for HF.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xianyu Qin
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Pengju Wen
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yueheng Wu
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Jian Zhuang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
43
|
Sadek MS, Cachorro E, El-Armouche A, Kämmerer S. Therapeutic Implications for PDE2 and cGMP/cAMP Mediated Crosstalk in Cardiovascular Diseases. Int J Mol Sci 2020; 21:E7462. [PMID: 33050419 PMCID: PMC7590001 DOI: 10.3390/ijms21207462] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Phosphodiesterases (PDEs) are the principal superfamily of enzymes responsible for degrading the secondary messengers 3',5'-cyclic nucleotides cAMP and cGMP. Their refined subcellular localization and substrate specificity contribute to finely regulate cAMP/cGMP gradients in various cellular microdomains. Redistribution of multiple signal compartmentalization components is often perceived under pathological conditions. Thereby PDEs have long been pursued as therapeutic targets in diverse disease conditions including neurological, metabolic, cancer and autoimmune disorders in addition to numerous cardiovascular diseases (CVDs). PDE2 is a unique member of the broad family of PDEs. In addition to its capability to hydrolyze both cAMP and cGMP, PDE2 is the sole isoform that may be allosterically activated by cGMP increasing its cAMP hydrolyzing activity. Within the cardiovascular system, PDE2 serves as an integral regulator for the crosstalk between cAMP/cGMP pathways and thereby may couple chronically adverse augmented cAMP signaling with cardioprotective cGMP signaling. This review provides a comprehensive overview of PDE2 regulatory functions in multiple cellular components within the cardiovascular system and also within various subcellular microdomains. Implications for PDE2- mediated crosstalk mechanisms in diverse cardiovascular pathologies are discussed highlighting the prospective use of PDE2 as a potential therapeutic target in cardiovascular disorders.
Collapse
Affiliation(s)
| | | | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (M.S.S.); (E.C.)
| | - Susanne Kämmerer
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (M.S.S.); (E.C.)
| |
Collapse
|
44
|
Wang J, Zhou H. Mitochondrial quality control mechanisms as molecular targets in cardiac ischemia -reperfusion injury. Acta Pharm Sin B 2020; 10:1866-1879. [PMID: 33163341 PMCID: PMC7606115 DOI: 10.1016/j.apsb.2020.03.004] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/19/2020] [Accepted: 02/27/2020] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial damage is a critical contributor to cardiac ischemia/reperfusion (I/R) injury. Mitochondrial quality control (MQC) mechanisms, a series of adaptive responses that preserve mitochondrial structure and function, ensure cardiomyocyte survival and cardiac function after I/R injury. MQC includes mitochondrial fission, mitochondrial fusion, mitophagy and mitochondria-dependent cell death. The interplay among these responses is linked to pathological changes such as redox imbalance, calcium overload, energy metabolism disorder, signal transduction arrest, the mitochondrial unfolded protein response and endoplasmic reticulum stress. Excessive mitochondrial fission is an early marker of mitochondrial damage and cardiomyocyte death. Reduced mitochondrial fusion has been observed in stressed cardiomyocytes and correlates with mitochondrial dysfunction and cardiac depression. Mitophagy allows autophagosomes to selectively degrade poorly structured mitochondria, thus maintaining mitochondrial network fitness. Nevertheless, abnormal mitophagy is maladaptive and has been linked to cell death. Although mitochondria serve as the fuel source of the heart by continuously producing adenosine triphosphate, they also stimulate cardiomyocyte death by inducing apoptosis or necroptosis in the reperfused myocardium. Therefore, defects in MQC may determine the fate of cardiomyocytes. In this review, we summarize the regulatory mechanisms and pathological effects of MQC in myocardial I/R injury, highlighting potential targets for the clinical management of reperfusion.
Collapse
Affiliation(s)
- Jin Wang
- Department of Cardiology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Hao Zhou
- Department of Cardiology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| |
Collapse
|
45
|
Abstract
Introduction: Air pollution is linked to mortality and morbidity. Since humans spend nearly all their time indoors, improving indoor air quality (IAQ) is a compelling approach to mitigate air pollutant exposure. To assess interventions, relying on clinical outcomes may require prolonged follow-up, which hinders feasibility. Thus, identifying biomarkers that respond to changes in IAQ may be useful to assess the effectiveness of interventions. Methods: We conducted a narrative review by searching several databases to identify studies published over the last decade that measured the response of blood, urine, and/or salivary biomarkers to variations (natural and intervention-induced) of changes in indoor air pollutant exposure. Results: Numerous studies reported on associations between IAQ exposures and biomarkers with heterogeneity across study designs and methods. This review summarizes the responses of 113 biomarkers described in 30 articles. The biomarkers which most frequently responded to variations in indoor air pollutant exposures were high sensitivity C-reactive protein (hsCRP), von Willebrand Factor (vWF), 8-hydroxy-2′-deoxyguanosine (8-OHdG), and 1-hydroxypyrene (1-OHP). Conclusions: This review will guide the selection of biomarkers for translational studies evaluating the impact of indoor air pollutants on human health.
Collapse
|
46
|
Baine S, Thomas J, Bonilla I, Ivanova M, Belevych A, Li J, Veeraraghavan R, Radwanski PB, Carnes C, Gyorke S. Muscarinic-dependent phosphorylation of the cardiac ryanodine receptor by protein kinase G is mediated by PI3K-AKT-nNOS signaling. J Biol Chem 2020; 295:11720-11728. [PMID: 32580946 PMCID: PMC7450129 DOI: 10.1074/jbc.ra120.014054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/20/2020] [Indexed: 12/30/2022] Open
Abstract
Post-translational modifications of proteins involved in calcium handling in myocytes, such as the cardiac ryanodine receptor (RyR2), critically regulate cardiac contractility. Recent studies have suggested that phosphorylation of RyR2 by protein kinase G (PKG) might contribute to the cardioprotective effects of cholinergic stimulation. However, the specific mechanisms underlying these effects remain unclear. Here, using murine ventricular myocytes, immunoblotting, proximity ligation as-says, and nitric oxide imaging, we report that phosphorylation of Ser-2808 in RyR2 induced by the muscarinic receptor agonist carbachol is mediated by a signaling axis comprising phosphoinositide 3-phosphate kinase, Akt Ser/Thr kinase, nitric oxide synthase 1, nitric oxide, soluble guanylate cyclase, cyclic GMP (cGMP), and PKG. We found that this signaling pathway is compartmentalized in myocytes, as it was distinct from atrial natriuretic peptide receptor-cGMP-PKG-RyR2 Ser-2808 signaling and independent of muscarinic-induced phosphorylation of Ser-239 in vasodilator-stimulated phosphoprotein. These results provide detailed insights into muscarinic-induced PKG signaling and the mediators that regulate cardiac RyR2 phosphorylation critical for cardiovascular function.
Collapse
Affiliation(s)
- Stephen Baine
- College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| | - Justin Thomas
- College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| | - Ingrid Bonilla
- Department of Physiology and Cell Biology, Ohio State University, Columbus, Ohio, USA
| | - Marina Ivanova
- Department of Physiology and Cell Biology, Ohio State University, Columbus, Ohio, USA
| | - Andriy Belevych
- Department of Physiology and Cell Biology, Ohio State University, Columbus, Ohio, USA
| | - Jiaoni Li
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, USA
| | | | | | - Cynthia Carnes
- College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| | - Sandor Gyorke
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
47
|
Wang Y, Yang Q, Shen S, Zhang L, Xiang Y, Weng X. Mst1 promotes mitochondrial dysfunction and apoptosis in oxidative stress-induced rheumatoid arthritis synoviocytes. Aging (Albany NY) 2020; 12:16211-16223. [PMID: 32692720 PMCID: PMC7485731 DOI: 10.18632/aging.103643] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/19/2020] [Indexed: 01/09/2023]
Abstract
In this study, we investigated the role of macrophage stimulating 1 (Mst1) and the AMPK-Sirt1 signaling pathway in the oxidative stress-induced mitochondrial dysfunction and apoptosis seen in rheumatoid arthritis-related fibroblast-like synoviocytes (RA-FLSs). Mst1 mRNA and protein expression was significantly higher in hydrogen peroxide (H2O2)-treated RA-FLSs than untreated controls. H2O2 treatment induced the mitochondrial apoptotic pathway by activating caspase3/9 and Bax in the RA-FLSs. Moreover, H2O2 treatment significantly reduced mitochondrial membrane potential and mitochondrial state-3 and state-4 respiration, but increased reactive oxygen species (ROS). Mst1 silencing significantly reduced oxidative stress-induced mitochondrial dysfunction and apoptosis in RA-FLSs. Sirt1 expression was significantly reduced in the H2O2-treated RA-FLSs, but was higher in the H2O2-treated Mst1-silenced RA-FLSs. Pretreatment with selisistat (Sirt1-specific inhibitor) or compound C (AMPK antagonist) significantly reduced the viability and mitochondrial function in H2O2-treated Mst1-silenced RA-FLSs by inhibiting Sirt1 function or Sirt1 expression, respectively. These findings demonstrate that oxidative stress-related upregulation and activation of Mst1 promotes mitochondrial dysfunction and apoptosis in RA-FLSs by inhibiting the AMPK-Sirt1 signaling pathway. This suggests the Mst1-AMPK-Sirt1 axis is a potential target for RA therapy.
Collapse
Affiliation(s)
- Yingjie Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| | - Qi Yang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China.,Department of Orthopedic Surgery, First Hospital of Harbin, Harbin 150010, China
| | - Songpo Shen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China.,Department of Orthopedic Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Linjie Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| | - Yongbo Xiang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| | - Xisheng Weng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| |
Collapse
|
48
|
Zhang DM, Lin YF. Functional modulation of sarcolemmal K ATP channels by atrial natriuretic peptide-elicited intracellular signaling in adult rabbit ventricular cardiomyocytes. Am J Physiol Cell Physiol 2020; 319:C194-C207. [PMID: 32432931 DOI: 10.1152/ajpcell.00409.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ATP-sensitive potassium (KATP) channels couple cell metabolic status to membrane excitability and are crucial for stress adaptation and cytoprotection in the heart. Atrial natriuretic peptide (ANP), a cardiac peptide important for cardiovascular homeostasis, also exhibits cytoprotective features including protection against myocardial ischemia-reperfusion injuries. However, how ANP modulates cardiac KATP channels is largely unknown. In the present study we sought to address this issue by investigating the role of ANP signaling in functional modulation of sarcolemmal KATP (sarcKATP) channels in ventricular myocytes freshly isolated from adult rabbit hearts. Single-channel recordings were performed in combination with pharmacological approaches in the cell-attached patch configuration. Bath application of ANP markedly potentiated sarcKATP channel activities induced by metabolic inhibition with sodium azide, whereas the KATP-stimulating effect of ANP was abrogated by selective inhibition of the natriuretic peptide receptor type A (NPR-A), cGMP-dependent protein kinase (PKG), reactive oxygen species (ROS), extracellular signal-regulated protein kinase (ERK)1/2, Ca2+/calmodulin-dependent protein kinase II (CaMKII), or the ryanodine receptor (RyR). Blockade of RyRs also nullified hydrogen peroxide (H2O2)-induced stimulation of sarcKATP channels in intact cells. Furthermore, single-channel kinetic analyses revealed that ANP enhanced the function of ventricular sarcKATP channels through destabilizing the long closures and facilitating the opening transitions, without affecting the single-channel conductance. In conclusion, here we report that ANP positively modulates the activity of ventricular sarcKATP channels via an intracellular signaling mechanism consisting of NPR-A, PKG, ROS, ERK1/2, CaMKII, and RyR2. This novel mechanism may regulate cardiac excitability and contribute to cytoprotection, in part, by opening myocardial KATP channels.
Collapse
Affiliation(s)
- Dai-Min Zhang
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Yu-Fung Lin
- Department of Physiology and Membrane Biology, University of California, Davis, California.,Department of Anesthesiology and Pain Medicine, University of California, Davis, California
| |
Collapse
|
49
|
Zimmer DP, Shea CM, Tobin JV, Tchernychev B, Germano P, Sykes K, Banijamali AR, Jacobson S, Bernier SG, Sarno R, Carvalho A, Chien YT, Graul R, Buys ES, Jones JE, Wakefield JD, Price GM, Chickering JG, Milne GT, Currie MG, Masferrer JL. Olinciguat, an Oral sGC Stimulator, Exhibits Diverse Pharmacology Across Preclinical Models of Cardiovascular, Metabolic, Renal, and Inflammatory Disease. Front Pharmacol 2020; 11:419. [PMID: 32322204 PMCID: PMC7156612 DOI: 10.3389/fphar.2020.00419] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/19/2020] [Indexed: 12/29/2022] Open
Abstract
Nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic 3',5' GMP (cGMP) signaling plays a central role in regulation of diverse processes including smooth muscle relaxation, inflammation, and fibrosis. sGC is activated by the short-lived physiologic mediator NO. sGC stimulators are small-molecule compounds that directly bind to sGC to enhance NO-mediated cGMP signaling. Olinciguat, (R)-3,3,3-trifluoro-2-(((5-fluoro-2-(1-(2-fluorobenzyl)-5-(isoxazol-3-yl)-1H-pyrazol-3-yl)pyrimidin-4-yl)amino)methyl)-2-hydroxypropanamide, is a new sGC stimulator currently in Phase 2 clinical development. To understand the potential clinical utility of olinciguat, we studied its pharmacokinetics, tissue distribution, and pharmacologic effects in preclinical models. Olinciguat relaxed human vascular smooth muscle and was a potent inhibitor of vascular smooth muscle proliferation in vitro. These antiproliferative effects were potentiated by the phosphodiesterase 5 inhibitor tadalafil, which did not inhibit vascular smooth muscle proliferation on its own. Olinciguat was orally bioavailable and predominantly cleared by the liver in rats. In a rat whole body autoradiography study, olinciguat-derived radioactivity in most tissues was comparable to plasma levels, indicating a balanced distribution between vascular and extravascular compartments. Olinciguat was explored in rodent models to study its effects on the vasculature, the heart, the kidneys, metabolism, and inflammation. Olinciguat reduced blood pressure in normotensive and hypertensive rats. Olinciguat was cardioprotective in the Dahl rat salt-sensitive hypertensive heart failure model. In the rat ZSF1 model of diabetic nephropathy and metabolic syndrome, olinciguat was renoprotective and associated with lower circulating glucose, cholesterol, and triglycerides. In a mouse TNFα-induced inflammation model, olinciguat treatment was associated with lower levels of endothelial and leukocyte-derived soluble adhesion molecules. The pharmacological features of olinciguat suggest that it may have broad therapeutic potential and that it may be suited for diseases that have both vascular and extravascular pathologies.
Collapse
Affiliation(s)
- Daniel P Zimmer
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Courtney M Shea
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Jenny V Tobin
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Boris Tchernychev
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Peter Germano
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Kristie Sykes
- Research and Development, Ironwood Pharmaceuticals, Boston, MA, United States
| | - Ali R Banijamali
- Research and Development, Ironwood Pharmaceuticals, Boston, MA, United States
| | - Sarah Jacobson
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Sylvie G Bernier
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Renee Sarno
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Andrew Carvalho
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Yueh-Tyng Chien
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Regina Graul
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Emmanuel S Buys
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Juli E Jones
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - James D Wakefield
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Gavrielle M Price
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | | | - G Todd Milne
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Mark G Currie
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Jaime L Masferrer
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| |
Collapse
|
50
|
Wang J, Toan S, Zhou H. New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury. Angiogenesis 2020; 23:299-314. [PMID: 32246225 DOI: 10.1007/s10456-020-09720-2] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
As reperfusion therapies have become more widely used in acute myocardial infarction patients, ischemia-induced myocardial damage has been markedly reduced, but reperfusion-induced cardiac injury has become increasingly evident. The features of cardiac ischemia-reperfusion (I/R) injury include microvascular perfusion defects, platelet activation and sequential cardiomyocyte death due to additional ischemic events at the reperfusion stage. Microvascular obstruction, defined as a no-reflow phenomenon, determines the infarct zone, myocardial function and peri-operative mortality. Cardiac microvascular endothelial cell injury may occur much earlier and with much greater severity than cardiomyocyte injury. Endothelial cells contain fewer mitochondria than other cardiac cells, and several of the pathological alterations during cardiac microvascular I/R injury involve mitochondria, such as increased mitochondrial reactive oxygen species (mROS) levels and disturbed mitochondrial dynamics. Although mROS are necessary physiological second messengers, high mROS levels induce oxidative stress, endothelial senescence and apoptosis. Mitochondrial dynamics, including fission, fusion and mitophagy, determine the shape, distribution, size and function of mitochondria. These adaptive responses modify extracellular signals and orchestrate intracellular processes such as cell proliferation, migration, metabolism, angiogenesis, permeability transition, adhesive molecule expression, endothelial barrier function and anticoagulation. In this review, we discuss the involvement of mROS and mitochondrial morphofunction in cardiac microvascular I/R injury.
Collapse
Affiliation(s)
- Jin Wang
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN, 55812, USA
| | - Hao Zhou
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China. .,Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|