1
|
Lee HK, Yang YJ, Koirala GR, Oh S, Kim TI. From lab to wearables: Innovations in multifunctional hydrogel chemistry for next-generation bioelectronic devices. Biomaterials 2024; 310:122632. [PMID: 38824848 DOI: 10.1016/j.biomaterials.2024.122632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Functional hydrogels have emerged as foundational materials in diagnostics, therapy, and wearable devices, owing to their high stretchability, flexibility, sensing, and outstanding biocompatibility. Their significance stems from their resemblance to biological tissue and their exceptional versatility in electrical, mechanical, and biofunctional engineering, positioning themselves as a bridge between living organisms and electronic systems, paving the way for the development of highly compatible, efficient, and stable interfaces. These multifaceted capability revolutionizes the essence of hydrogel-based wearable devices, distinguishing them from conventional biomedical devices in real-world practical applications. In this comprehensive review, we first discuss the fundamental chemistry of hydrogels, elucidating their distinct properties and functionalities. Subsequently, we examine the applications of these bioelectronics within the human body, unveiling their transformative potential in diagnostics, therapy, and human-machine interfaces (HMI) in real wearable bioelectronics. This exploration serves as a scientific compass for researchers navigating the interdisciplinary landscape of chemistry, materials science, and bioelectronics.
Collapse
Affiliation(s)
- Hin Kiu Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ye Ji Yang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Gyan Raj Koirala
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Suyoun Oh
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
2
|
Abd Elhamid AS, Heikal L, Ghareeb DA, Abdulmalek SA, Mady O, Teleb M, Khattab SN, El-Gizawy SA. Engineering Thermo/pH-Responsive Lactoferrin Nanostructured Microbeads for Oral Targeting of Colorectal Cancer. ACS Biomater Sci Eng 2024; 10:4985-5000. [PMID: 39079030 DOI: 10.1021/acsbiomaterials.4c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
AIM Colorectal cancer is an extremely aggressive form of cancer that often leads to death. Lactoferrin shows potential for targeting and treating colorectal cancer; however, oral delivery faces hurdles hampering clinical applications. We engineered dual-responsive lactoferrin nanostructured microbeads to overcome delivery hurdles and enhance drug targeting. METHODS The hydrophobic drug mesalazine (MSZ) was coupled to lactoferrin to form amphiphilic conjugate nanoparticles, dispersed in water. The lipid-soluble polyphenolic drug resveratrol (RSV) was then encapsulated into the hydrophobic core of LF-MSZ nanoparticles. To impart thermoresponsive properties, the dual-payload NPs were coupled with a PNIPAAm shell; finally, to further endow the nanoparticles with gastrointestinal resistance and pH responsiveness, the nanoparticles were microencapsulated into ionically cross-linked pectin-alginate beads. RESULTS The nanoparticles showed enhanced internalization and cytotoxicity against HCT colon cancer cells via LF-receptor-mediated endocytosis. Thermal triggering and tuned release were conferred by the temperature-sensitive polymer. The coatings protected the drugs from degradation. Orally delivered microbeads significantly reduced tumor burden in a mouse colon cancer model, lowering carcinoembryonic antigen and elevating antioxidant enzymes. Apoptotic pathways were stimulated, indicated by heightened Bax/Bcl2 ratio and caspase-3/9 expression. CONCLUSION Overall, we propose the innovative lactoferrin nanostructured microbeads as a paradigm shift in oral colorectal cancer therapeutics.
Collapse
Affiliation(s)
- Ahmed S Abd Elhamid
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Lamia Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Doaa A Ghareeb
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications, New Borg El Arab, Alexandria 21934, Egypt
| | - Shaymaa A Abdulmalek
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications, New Borg El Arab, Alexandria 21934, Egypt
| | - Omar Mady
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Mohamed Teleb
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Sanaa A El-Gizawy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
3
|
Zhu T, Wan L, Li R, Zhang M, Li X, Liu Y, Cai D, Lu H. Janus structure hydrogels: recent advances in synthetic strategies, biomedical microstructure and (bio)applications. Biomater Sci 2024; 12:3003-3026. [PMID: 38695621 DOI: 10.1039/d3bm02051g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Janus structure hydrogels (JSHs) are novel materials. Their primary fabrication methods and various applications have been widely reported. JSHs are primarily composed of Janus particles (JNPs) and polysaccharide components. They exhibit two distinct physical or chemical properties, generating intriguing characteristics due to their asymmetric structure. Normally, one side (adhesive interface) is predominantly constituted of polysaccharide components, primarily serving excellent adhesion. On the other side (functional surface), they integrate diverse functionalities, concurrently performing a plethora of synergistic functions. In the biomedical field, JSHs are widely applied in anti-adhesion, drug delivery, wound healing, and other areas. It also exhibits functions in seawater desalination and motion sensing. Thus, JSHs hold broad prospects for applications, and they possess significant research value in nanotechnology, environmental science, healthcare, and other fields. Additionally, this article proposes the challenges and future work facing these fields.
Collapse
Affiliation(s)
- Taifu Zhu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Lei Wan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Ruiqi Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Mu Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Xiaoling Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Yilong Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Dingjun Cai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Haibin Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
- Department of Stomatology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, 510900, China.
| |
Collapse
|
4
|
Mor S, Yadav R, Bhakuni K, Rawat P, Bisht M, Deenadayalu N, Venkatesu P. Unraveling the Role of Deep Eutectic Solvents with Varying Hydrogen-Bond Acceptors on the Thermoresponsive Polymer Poly( N-isopropylacrylamide). J Phys Chem B 2024. [PMID: 38683962 DOI: 10.1021/acs.jpcb.4c00888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Deep eutectic solvents (DESs) have emerged as promising tools for crafting polymeric materials across diverse domains. This study delves into the impact of a series of DESs on the phase behavior of poly(N-isopropylacrylamide) (PNIPAM) in aqueous environments, presenting compelling insights into their performance. Specifically, we explore the conformational phase behavior of PNIPAM in the presence of four distinct lactic acid (LA)-based DESs: LA-betaine (LA-BET), LA-proline (LA-PRO), LA-choline chloride (LA-CC), and LA-urea (LA-U). By maintaining a consistent hydrogen-bond donor (HBD) while varying the hydrogen-bond acceptor (HBA), we unravel how different DES compositions modulate the phase transition behavior of PNIPAM. Our findings underscore the profound influence of DESs comprising LA as the HBD and diverse HBAs-BET, PRO, CC, and U on the thermoresponsive behavior of PNIPAM. Employing spectroscopic techniques such as ultraviolet-visible (UV-vis) spectroscopy, steady-state fluorescence, Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), ζ-potential, and transmission electron microscopy (TEM), we elucidate the preferential interactions between the HBA groups within DESs and the hydration layer of PNIPAM. Notably, temperature-dependent DLS analyses reveal a discernible decrease in the lower critical solution temperature (LCST) of PNIPAM with increasing DES concentration, ultimately disrupting the hydrogen-bond interactions and resulting in early hydrophobic collapse of the polymer, which can be clearly seen in the TEM micrographs. Furthermore, the formation of polymer composites within the mixed system leads to notable alterations in the physiochemical properties of PNIPAM, as evidenced by shifts in its LCST value in the presence of DESs. This perturbation disrupts hydrogen-bond interactions, inducing hydrophobic collapse of the polymers, a phenomenon vividly captured in TEM micrographs. In essence, our study sheds new light on the pivotal role of varying HBA groups within DESs in modulating the conformational transitions of PNIPAM. These insights not only enrich our fundamental understanding but also hold immense promise for the development of smart polymeric systems with multifaceted applications spanning bioimaging, biomedical science, polymer science, and beyond.
Collapse
Affiliation(s)
- Sanjay Mor
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ritu Yadav
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Kavya Bhakuni
- Department of Chemistry, St. Stephen's College, University of Delhi, Delhi 110007, India
| | - Pradeep Rawat
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Meena Bisht
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110007, India
| | - Nirmala Deenadayalu
- Department of Chemistry, Durban University of Technology, Durban4000, South Africa
| | | |
Collapse
|
5
|
He S, Zhang M, Chen B, Wei X, Su X. Modification of Welan gum with poly(2-oxazoline) to obtain thermoviscosifying polymer for enhanced oil recovery. Int J Biol Macromol 2024; 263:130193. [PMID: 38360243 DOI: 10.1016/j.ijbiomac.2024.130193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/03/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Thermoviscosifying polymers refer to a category of smart materials that exhibit a responsive behavior to environmental stimuli, specifically demonstrating a natural rise in viscosity of solutions as the temperature increases. The temperature-dependent behavior exhibited by thermally viscous polymers renders them potentially advantageous in the context of Enhanced Oil Recovery (EOR). There exists a dearth of research pertaining to the application of thermoviscosifying polymer for better recovery in reservoirs characterized by high temperatures and high salt content. In order to tackle the mentioned concerns, this study examined the utilization of welan gum modified with poly(2-oxazoline) as thermally responsive chain segments to enhance viscosity. The objective was to evaluate the ability to enhance viscosity under thermal conditions and to assess their effectiveness in displacement of reservoir oil in high temperature and high salt environments. This study aimed to establish a theoretical framework for understanding the correlation between the molecular structure and performance of novel thermally viscous polymers. Additionally, it sought to offer practical insights into designing the molecular structure of thermally viscous polymers suitable for polymer flooding in high temperature and high salt environments. Furthermore, the study proposed the application of these new thermoviscosifying polymers for EOR.
Collapse
Affiliation(s)
- Shuai He
- School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Mingmin Zhang
- Zhejiang Research Institute of Tianjin University, Shaoxing 312369, China.
| | - Bin Chen
- State Key Laboratory of Offshore Oilfield Exploitation, Tianjin 300452, China; CNOOC EnerTech-Drilling and Production Co., Tianjin 300452, China
| | - Xia Wei
- Research Institute of Experiment and Detection, Xinjiang Oilfield Company, Karamay 834000, China
| | - Xin Su
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
Dartora VFC, Passos JS, Costa-Lotufo LV, Lopes LB, Panitch A. Thermosensitive Polymeric Nanoparticles for Drug Co-Encapsulation and Breast Cancer Treatment. Pharmaceutics 2024; 16:231. [PMID: 38399285 PMCID: PMC10892816 DOI: 10.3390/pharmaceutics16020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Despite advances in breast cancer treatment, there remains a need for local management of noninvasive, low-grade ductal carcinoma in situ (DCIS). These focal lesions are well suited for local intraductal treatment. Intraductal administration supported target site drug retention, improved efficacy, and reduced systemic exposure. Here, we used a poly(N-isopropyl acrylamide, pNIPAM) nanoparticle delivery system loaded with cytotoxic piplartine and an MAPKAP Kinase 2 inhibitor (YARA) for this purpose. For tumor environment targeting, a collagen-binding peptide SILY (RRANAALKAGELYKSILYGSG-hydrazide) was attached to pNIPAM nanoparticles, and the nanoparticle diameter, zeta potential, drug loading, and release were assessed. The system was evaluated for cytotoxicity in a 2D cell culture and 3D spheroids. In vivo efficacy was evaluated using a chemical carcinogenesis model in female Sprague-Dawley rats. Nanoparticle delivery significantly reduced the IC50 of piplartine (4.9 times) compared to the drug in solution. The combination of piplartine and YARA in nanoparticles further reduced the piplartine IC50 (~15 times). Treatment with these nanoparticles decreased the in vivo tumor incidence (5.2 times). Notably, the concentration of piplartine in mammary glands treated with nanoparticles (35.3 ± 22.4 μg/mL) was substantially higher than in plasma (0.7 ± 0.05 μg/mL), demonstrating targeted drug retention. These results indicate that our nanocarrier system effectively reduced tumor development with low systemic exposure.
Collapse
Affiliation(s)
- Vanessa Franco Carvalho Dartora
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-900, Brazil; (V.F.C.D.); (J.S.P.); (L.V.C.-L.); (L.B.L.)
- Department of Biomedical Engineering, College of Engineering, University of California Davis, Davis, CA 95616, USA
| | - Julia S. Passos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-900, Brazil; (V.F.C.D.); (J.S.P.); (L.V.C.-L.); (L.B.L.)
| | - Leticia V. Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-900, Brazil; (V.F.C.D.); (J.S.P.); (L.V.C.-L.); (L.B.L.)
| | - Luciana B. Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-900, Brazil; (V.F.C.D.); (J.S.P.); (L.V.C.-L.); (L.B.L.)
| | - Alyssa Panitch
- Department of Biomedical Engineering, College of Engineering, University of California Davis, Davis, CA 95616, USA
- Wallace H. Coulter Department of Biomedical Engineering, College of Engineering, Georgia Institute of Technology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Nakata Y, Kitamura S, Terao K. Dual thermoresponsive polysaccharide derivative - water system. Partially substituted amylose butylcarbamate in water. Carbohydr Polym 2024; 325:121587. [PMID: 38008477 DOI: 10.1016/j.carbpol.2023.121587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 11/28/2023]
Abstract
Partially substituted amylose n-butylcarbamate (ABC) samples were synthesized with weight-average molar mass Mw ranging between 40 kg mol-1 and 220 kg mol-1 with different degree of substitution DS. When DS was between 0.17 and 0.33, the ABC samples were soluble in water. Furthermore, both LCST and UCST type phase separations were observed for the ABC samples in water when DS is >0.26. The closed-loop phase diagrams for the dual thermoresponsive ABC samples in water were constructed by turbidity measurement. The UCST ranged from 70 °C to 77 °C and the LCST ranged from 13 °C to 17 °C. SAXS measurements were performed for dilute aqueous ABC solutions to determine the chain conformation of ABC at various temperatures. The resulting form factor at the polymer mass concentration of 3 mg mL-1 indicated that the chain conformation is almost independent of temperature, except for the chain diameter, which is influenced by the temperature-dependent hydration behavior. This result suggests that the attractive interactions between ABC chains are not very significant even between UCST and LCST, where higher concentrated polymer solutions show macroscopic phase separation.
Collapse
Affiliation(s)
- Yuma Nakata
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Shinichi Kitamura
- Center for Research and Development of Bioresources, Organization for Research Promotion, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai 599-8570, Japan
| | - Ken Terao
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
8
|
Waldmann L, Nguyen DNT, Arbault S, Nicolai T, Benyahia L, Ravaine V. Tuning the bis-hydrophilic balance of microgels: A tool to control the stability of water-in-water emulsions. J Colloid Interface Sci 2024; 653:581-593. [PMID: 37738931 DOI: 10.1016/j.jcis.2023.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023]
Abstract
HYPOTHESIS The stability of purely aqueous emulsions (W/W) formed by mixing incompatible polymers, can be achieved through the Pickering effect of particles adsorption at the interface. However, there is, as yet, no guideline regarding the chemical nature of the particles to predict whether they will stabilize a particular W/W emulsion. Bis-hydrophilic soft microgels, made of copolymerized poly(N-isopropylacrylamide) (pNIPAM) and dextran (Dex), act as very efficient stabilizers for PEO/Dextran emulsions, because the two polymers have an affinity for each polymer phase. EXPERIMENTS The ratio between both components of the microgels is varied in order to modulate the bis-hydrophilic balance, the content of Dex compared to pNIPAM varying from 0 to 60 wt%. The partition between the two aqueous phases and the adsorption of microgels at the W/W interface is measured by confocal microscopy. The stability of emulsions is assessed via turbidity measurements and microstructural investigations under sedimentation or compression. FINDINGS The adsorption of particles and their partitioning is found to evolve progressively as a function of bis-hydrophilic balance. At room temperature, the stability of the resulting W/W emulsions also depends on the bis-hydrophilic balance with a maximum of stability for the particles containing 50%wt of Dex, for the Dex-in-PEO emulsions, while the PEO-in-Dex become stable above this value. The thermo-responsiveness of the microgels translates into stability inversion of the emulsions below 50 wt% of Dex in the microgels, whereas above 50 wt%, no emulsion is stable. This work paves the way of a guideline to design efficient and responsive W/W stabilizers.
Collapse
Affiliation(s)
- Léa Waldmann
- Bordeaux INP, ISM, UMR 5255 CNRS - Univ. Bordeaux, F-33400 Talence, France; Univ. Bordeaux, CNRS, Bordeaux INP, CBMN UMR 5248, F-33600 Pessac, France
| | - Do-Nhu-Trang Nguyen
- IMMM, UMR 6283 CNRS - Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France
| | - Stéphane Arbault
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN UMR 5248, F-33600 Pessac, France
| | - Taco Nicolai
- IMMM, UMR 6283 CNRS - Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France
| | - Lazhar Benyahia
- IMMM, UMR 6283 CNRS - Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France
| | - Valérie Ravaine
- Bordeaux INP, ISM, UMR 5255 CNRS - Univ. Bordeaux, F-33400 Talence, France.
| |
Collapse
|
9
|
Wang J, Liu L, Zhang S, Liao B, Zhao K, Li Y, Xu J, Chen L. Review of the Perspectives and Study of Thermo-Responsive Polymer Gels and Applications in Oil-Based Drilling Fluids. Gels 2023; 9:969. [PMID: 38131955 PMCID: PMC10742521 DOI: 10.3390/gels9120969] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Thermoresponsive polymer gels are a type of intelligent material that can react to changes in temperature. These materials possess excellent innovative properties and find use in various fields. This paper systematically analyzes the methods for testing and regulating phase transition temperatures of thermo-responsive polymer gels based on their response mechanism. The report thoroughly introduces the latest research on thermo-responsive polymer gels in oil and gas extraction, discussing their advantages and challenges across various environments. Additionally, it elucidates how the application limitations of high-temperature and high-salt conditions can be resolved through process optimization and material innovation, ultimately broadening the scope of application of thermo-responsive polymer gels in oil and gas extraction. The article discusses the technological development and potential applications of thermo-responsive polymer gels in oil-based drilling fluids. This analysis aims to offer researchers in the oil and gas industry detailed insights into future possibilities for thermo-responsive polymer gels and to provide helpful guidance for their practical use in oil-based drilling fluids.
Collapse
Affiliation(s)
- Jintang Wang
- State Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China; (L.L.); (K.Z.); (Y.L.); (J.X.)
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China;
| | - Lei Liu
- State Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China; (L.L.); (K.Z.); (Y.L.); (J.X.)
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China;
| | - Siyang Zhang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China;
| | - Bo Liao
- State Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China; (L.L.); (K.Z.); (Y.L.); (J.X.)
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China;
| | - Ke Zhao
- State Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China; (L.L.); (K.Z.); (Y.L.); (J.X.)
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China;
| | - Yiyao Li
- State Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China; (L.L.); (K.Z.); (Y.L.); (J.X.)
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China;
| | - Jiaqi Xu
- State Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China; (L.L.); (K.Z.); (Y.L.); (J.X.)
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China;
| | - Longqiao Chen
- CNPC Offshore Engineering Company Limited, Beijing 100028, China;
| |
Collapse
|
10
|
Passos J, Lopes LB, Panitch A. Collagen-Binding Nanoparticles for Paclitaxel Encapsulation and Breast Cancer Treatment. ACS Biomater Sci Eng 2023; 9:6805-6820. [PMID: 37982792 PMCID: PMC10716849 DOI: 10.1021/acsbiomaterials.3c01332] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
In this study, we developed a novel hybrid collagen-binding nanocarrier for potential intraductal administration and local breast cancer treatment. The particles were formed by the encapsulation of nanostructured lipid carriers (NLCs) containing the cytotoxic drug paclitaxel within a shell of poly(N-isopropylacrylamide) (pNIPAM), and were functionalized with SILY, a peptide that binds to collagen type I (which is overexpressed in the mammary tumor microenvironment) to improve local retention and selectivity. The encapsulation of the NLCs in the pNIPAM shell increased nanoparticle size by approximately 140 nm, and after purification, a homogeneous system of hybrid nanoparticles (∼96%) was obtained. The nanoparticles exhibited high loading efficiency (<76%) and were capable of prolonging paclitaxel release for up to 120 h. SILY-modified nanoparticles showed the ability to bind to collagen-coated surfaces and naturally elaborated collagen. Hybrid nanoparticles presented cytotoxicity up to 3.7-fold higher than pNIPAM-only nanoparticles on mammary tumor cells cultured in monolayers. In spheroids, the increase in cytotoxicity was up to 1.8-fold. Compared to lipid nanoparticles, the hybrid nanoparticle modified with SILY increased the viability of nontumor breast cells by up to 1.59-fold in a coculture model, suggesting the effectiveness and safety of the system.
Collapse
Affiliation(s)
- Julia
Sapienza Passos
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- Department
of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Luciana B. Lopes
- Department
of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Alyssa Panitch
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
11
|
Peralta ME, Parisi JC, Castrogiovanni DC, Jadhav SA, Carlos L, Bosio GN, Mártire DO. Effective intracellular release of ibuprofen triggered by thermosensitive magnetic nanocarriers. Colloids Surf B Biointerfaces 2023; 230:113508. [PMID: 37562121 DOI: 10.1016/j.colsurfb.2023.113508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Stimuli-responsive nanocarriers are being widely applied in the development of new strategies for the diagnosis and treatment of diseases. An inherent difficulty in general drug therapy is the lack of precision with respect to a specific pathological site, which can lead to toxicity, excessive drug consumption, or premature degradation. In this work, the controlled drug delivery is achieved by using magnetite nanoparticles coated with mesoporous silica with core-shell structure (MMS) and grafted with the thermoresponsive polymer poly [N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate] (MMS-P). The efficiency of MMS-P as a temperature-controlled drug delivery system was evaluated by in vitro release experiments using ibuprofen (IBU) in various mammalian cell models. Further, the effects of IBU as a photoprotectant in cells exposed to photodynamic therapy (PDT) in a carbaryl-induced neurodegenerative model were evaluated. The results showed that MMS-P nanocarriers do not exhibit cytotoxicity in HepG2 cells at high doses such as 7600 µg mL-1. Pre-incubation of MMS-P charged with IBU showed no effect on the PDT in N2A cells; however, it produced a further decrease in the viability of HepG2 cells, leading to a reduction to PDT resistance. On the other hand, a cytoprotective effect against carbaryl toxicity in N2A cells was observed in IBU administrated by MMS-P, which confirms the effective intracellular IBU uptake by means of MMS-P. These results encourage the potential application of MMS-P as a drug delivery system and confirm the effect of IBU as a cytoprotective agent in a neurodegenerative model.
Collapse
Affiliation(s)
- Marcos E Peralta
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN (CONICET-UNCo), Universidad Nacional Del Comahue, Neuquén 8300, Argentina
| | - Julieta C Parisi
- Instituto Multidisciplinario de Biología Celular (IMBICE), CICPBA - CONICET, UNLP, La Plata 1900, Argentina
| | - Daniel C Castrogiovanni
- Instituto Multidisciplinario de Biología Celular (IMBICE), CICPBA - CONICET, UNLP, La Plata 1900, Argentina
| | - Sushilkumar A Jadhav
- School of Nanoscience and Technology, Shivaji University Kolhapur, Vidyanagar, 416004 Kolhapur, Maharashtra, India
| | - Luciano Carlos
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN (CONICET-UNCo), Universidad Nacional Del Comahue, Neuquén 8300, Argentina.
| | - Gabriela N Bosio
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata-CONICET, Universidad Nacional de La Plata, La Plata 1900, Argentina.
| | - Daniel O Mártire
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata-CONICET, Universidad Nacional de La Plata, La Plata 1900, Argentina
| |
Collapse
|
12
|
Bubli SY, Smolag M, Blackwell E, Lin YC, Tsavalas JG, Li L. Inducing an LCST in hydrophilic polysaccharides via engineered macromolecular hydrophobicity. Sci Rep 2023; 13:14896. [PMID: 37689784 PMCID: PMC10492858 DOI: 10.1038/s41598-023-41947-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023] Open
Abstract
Thermoresponsive polysaccharide-based materials with tunable transition temperatures regulating phase-separated microdomains offer substantial opportunities in tissue engineering and biomedical applications. To develop novel synthetic thermoresponsive polysaccharides, we employed versatile chemical routes to attach hydrophobic adducts to the backbone of hydrophilic dextran and gradually increased the hydrophobicity of the dextran chains to engineer phase separation. Conjugating methacrylate moieties to the dextran backbone yielded a continuous increase in macromolecular hydrophobicity that induced a reversible phase transition whose lower critical solution temperature can be modulated via variations in polysaccharide concentration, molecular weight, degree of methacrylation, ionic strength, surfactant, urea and Hofmeister salts. The phase separation is driven by increased hydrophobic interactions of methacrylate residues, where the addition of surfactant and urea disassociates hydrophobic interactions and eliminates phase transition. Morphological characterization of phase-separated dextran solutions via scanning electron and flow imaging microscopy revealed the formation of microdomains upon phase transition. These novel thermoresponsive dextrans exhibited promising cytocompatibility in cell culture where the phase transition exerted negligible effects on the attachment, spreading and proliferation of human dermal fibroblasts. Leveraging the conjugated methacrylate groups, we employed photo-initiated radical polymerization to generate phase-separated hydrogels with distinct microdomains. Our bottom-up approach to engineering macromolecular hydrophobicity of conventional hydrophilic, non-phase separating dextrans to induce robust phase transition and generate thermoresponsive phase-separated biomaterials will find applications in mechanobiology, tissue repair and regenerative medicine.
Collapse
Affiliation(s)
- Saniya Yesmin Bubli
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, 03824, USA
| | - Matthew Smolag
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, 03824, USA
| | - Ellen Blackwell
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, 03824, USA
| | - Yung-Chun Lin
- Department of Chemistry, University of New Hampshire, Durham, NH, 03824, USA
| | - John G Tsavalas
- Department of Chemistry, University of New Hampshire, Durham, NH, 03824, USA
- Materials Science Program, University of New Hampshire, Durham, NH, 03824, USA
| | - Linqing Li
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, 03824, USA.
| |
Collapse
|
13
|
Paenkaew S, Mahanitipong U, Rutnakornpituk M, Reiser O. Magnetite Nanoparticles Functionalized with Thermoresponsive Polymers as a Palladium Support for Olefin and Nitroarene Hydrogenation. ACS OMEGA 2023; 8:14531-14540. [PMID: 37125099 PMCID: PMC10134246 DOI: 10.1021/acsomega.3c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
A thermoresponsive and recyclable nanomaterial was synthesized by surface modification of magnetite nanoparticles (MNPs) with poly(N-isopropylacrylamide-co-diethylaminoethyl methacrylate) (P(NIPAAm-co-DEAEMA)), having PNIPAAm as a thermoresponsive moiety and PDEAEMA for catalyst binding. Palladium (Pd) nanoparticles were incorporated into this material, and the resulting nanocatalyst was efficient in the hydrogenation of olefins and nitro compounds with turnover frequencies (TOFs) up to 750 h-1. Consistent catalytic activity in 10 consecutive runs was observed when performing the hydrogenation at 45 °C, i.e., above the lower critical solution temperature (LCST) of the copolymer (37 °C), followed by cooling to 15 °C, i.e., below the LCST of the copolymer.
Collapse
Affiliation(s)
- Sujittra Paenkaew
- Department
of Chemistry and Center of Excellence in Biomaterials, Faculty of
Science, Naresuan University, Phitsanulok 65000, Thailand
- Institute
of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Usana Mahanitipong
- Department
of Chemistry and Center of Excellence in Biomaterials, Faculty of
Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Metha Rutnakornpituk
- Department
of Chemistry and Center of Excellence in Biomaterials, Faculty of
Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Oliver Reiser
- Institute
of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
14
|
Henschel C, Schanzenbach D, Laschewsky A, Ko CH, Papadakis CM, Müller-Buschbaum P. Thermoresponsive and co-nonsolvency behavior of poly(N-vinyl isobutyramide) and poly(N-isopropyl methacrylamide) as poly(N-isopropyl acrylamide) analogs in aqueous media. Colloid Polym Sci 2023. [DOI: 10.1007/s00396-023-05083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Abstract
Sets of the nonionic polymers poly(N-vinyl isobutyramide) (pNVIBAm) and poly(N-isopropyl methacrylamide) (pNIPMAm) are synthesized by radical polymerization covering the molar mass range from about 20,000 to 150,000 kg mol−1, and their thermoresponsive and solvent-responsive behaviors in aqueous solution are studied. Both polymers feature a lower critical solution temperature (LCST) apparently of the rare so-called type II, as characteristic for their well-studied analogue poly(N-isopropyl acrylamide) (pNIPAm). Moreover, in analogy to pNIPAm, both polymers exhibit co-nonsolvency behavior in mixtures of water with several co-solvents, including short-chain alcohols as well as a range of polar aprotic solvents. While the cloud points of the aqueous solutions are a few degrees higher than those for pNIPAm and increase in the order pNIPAm < pNVIBAm < pNIPMAm, the co-nonsolvency behavior becomes less pronounced in the order pNIPAm > pNVIBAm > pNIPMAm. Exceptionally, pNIPMAm does not show co-nonsolvency in mixtures of water and N,N-dimethylformamide.
Graphical Abstract
Collapse
|
15
|
Hermosillo‐Ochoa E, Cortez‐Lemus NA. End‐group controlling aqueous solution properties in star‐shaped poly(2‐hydroxyethyl acrylate) and poly(2‐hydroxyethyl acrylate)‐
b
‐poly(
N
‐isopropylacrylamide) polymers. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Eduardo Hermosillo‐Ochoa
- Centro de Graduados e Investigación en Química Tecnológico Nacional de México/Instituto Tecnológico de Tijuana Tijuana Mexico
| | - Norma A. Cortez‐Lemus
- Centro de Graduados e Investigación en Química Tecnológico Nacional de México/Instituto Tecnológico de Tijuana Tijuana Mexico
| |
Collapse
|
16
|
Fandrich P, Esteban Vázquez J, Haverkamp R, Hellweg T. Growth of Smart Microgels in a Flow Reactor Scrutinized by In-Line SAXS. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1084-1092. [PMID: 36630721 DOI: 10.1021/acs.langmuir.2c02796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this work, a continuous flow setup for in situ investigation of microgel growth with small-angle X-ray scattering (SAXS) is established. Poly(N-n-propylacrylamide) (PNNPAM) and poly(N-isopropylacrylamide) (PNIPAM) microgels are synthesized in H2O at different residence times inside a continuous flow reactor. The microgels are investigated by in situ SAXS and ex situ photon correlation spectroscopy. The size of the microgels was found to be reproducible in independent experiments with run times of up to 7 h. Already the scattering curves of the microgels with a time of residence of 15 min show a well-defined form factor. Further analysis of the scattering profiles confirms the spherical shape of the microgels. At a residence time of 2 min, the scattering intensity is significantly lower corresponding to a smaller particle size. The experimental conditions remain constant over time, which is crucial for long-time experiments. The PNNPAM system is found to be more suitable for the flow reactor experiment with in-line SAXS as it shows less polymer deposition in the tubing and forms particles with lower polydispersity. The presented reactor is characterized by a compact design and offers a plug-and-play setup close to the sample environment. This work paves the way for investigations of microgel growth at e.g. synchrotron X-ray beamlines.
Collapse
Affiliation(s)
- Pascal Fandrich
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615Bielefeld, Germany
| | - Jorge Esteban Vázquez
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615Bielefeld, Germany
| | - René Haverkamp
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615Bielefeld, Germany
| | - Thomas Hellweg
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615Bielefeld, Germany
| |
Collapse
|
17
|
Effect of anions, urea and aggregation state on the thermal behavior of PDMAEMA-based polymers. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-05013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Sabadasch V, Dirksen M, Fandrich P, Hellweg T. Multifunctional Core-Shell Microgels as Pd-Nanoparticle Containing Nanoreactors With Enhanced Catalytic Turnover. Front Chem 2022; 10:889521. [PMID: 35692683 PMCID: PMC9185801 DOI: 10.3389/fchem.2022.889521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022] Open
Abstract
In this work, we present core-shell microgels with tailor-made architecture and properties for the incorporation of palladium nanoparticles. The microgel core consists of poly-N-isopropylacrylamide (PNIPAM) copolymerized with methacrylic acid (MAc) as anchor point for the incorporation of palladium nanoparticles. The microgel shell is prepared by copolymerization of NIPAM and the UV-sensitive comonomer 2-hydroxy-4-(methacryloyloxy)-benzophenone (HMABP). The obtained core-shell architecture was analyzed by means of photon correlation spectroscopy, while the incorporated amount of HMABP was further confirmed via Fourier transform infrared spectroscopy. Subsequently, the microgel system was used for loading with palladium nanoparticles and their size and localization were investigated by transmission electron microscopy. The catalytic activity of the monodisperse palladium nanoparticles was tested by reduction of 4-nitrophenol to 4-aminophenol. The obtained reaction rate constants for the core-shell system showed enhanced activity compared to the Pd-loaded bare core system. Furthermore, it was possible to recycle the catalyst several times. Analysis via transmission electron microscopy revealed, that the incorporated palladium nanoparticles emerged undamaged after the reaction and subsequent purification process since no aggregation or loss in size was observed.
Collapse
|
19
|
Siebenmorgen C, Zu G, Keskin D, van Rijn P. Dynamic Covalent Cross-linked Nanogel-stabilized Pickering Emulsion for Responsive Microstructures. Macromol Rapid Commun 2022; 43:e2100766. [PMID: 35436017 DOI: 10.1002/marc.202100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/15/2022] [Indexed: 11/09/2022]
Abstract
Designing new dynamic matrices in combination with a highly diverse material formation approach as Pickering emulsionsprovides us with the tools to engineer innovative dynamic porous microstructures in a highly controllable fashion. Here we make use of nanogels (nGels), which exhibits dynamic covalent cross-linking capabilities, as surface stabilizing agents in view of their highly controllable physiochemical properties. The method provides successful formation of dynamic covalent cross-linked hydrogel microstructures based on ketone and amine functionalized nGels using Pickering emulsions was shown. In this system we incorporated a pH-triggerable responsive behavior. The physiochemical properties of the resulting microstructure can be further tailored by modifying the intramolecular interactions at the interface, making this systems interesting for a wide range of applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Clio Siebenmorgen
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering-FB40, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Guangyue Zu
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering-FB40, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Damla Keskin
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering-FB40, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Patrick van Rijn
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering-FB40, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| |
Collapse
|
20
|
Effect of the macromolecular architecture on the thermoresponsive behavior of poly(N-isopropylacrylamide) in copolymers with poly(N,N-dimethylacrylamide) in aqueous solutions: Block vs random copolymers. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Leer K, Cinar G, Solomun JI, Martin L, Nischang I, Traeger A. Core-crosslinked, temperature- and pH-responsive micelles: design, physicochemical characterization, and gene delivery application. NANOSCALE 2021; 13:19412-19429. [PMID: 34591061 DOI: 10.1039/d1nr04223h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stimuli-responsive block copolymer micelles can provide tailored properties for the efficient delivery of genetic material. In particular, temperature- and pH-responsive materials are of interest, since their physicochemical properties can be easily tailored to meet the requirements for successful gene delivery. Within this study, a stimuli-responsive micelle system for gene delivery was designed based on a diblock copolymer consisting of poly(N,N-diethylacrylamide) (PDEAm) as a temperature-responsive segment combined with poly(aminoethyl acrylamide) (PAEAm) as a pH-responsive, cationic segment. Upon temperature increase, the PDEAm block becomes hydrophobic due to its lower critical solution temperature (LCST), leading to micelle formation. Furthermore, the monomer 2-(pyridin-2-yldisulfanyl)ethyl acrylate (PDSAc) was incorporated into the temperature-responsive PDEAm building block enabling disulfide crosslinking of the formed micelle core to stabilize its structure regardless of temperature and dilution. The cloud points of the PDEAm block and the diblock copolymer were investigated by turbidimetry and fluorescence spectroscopy. The temperature-dependent formation of micelles was analyzed by dynamic light scattering (DLS) and elucidated in detail by an analytical ultracentrifuge (AUC), which provided detailed insights into the solution dynamics between polymers and assembled micelles as a function of temperature. Finally, the micelles were investigated for their applicability as gene delivery vectors by evaluation of cytotoxicity, pDNA binding, and transfection efficiency using HEK293T cells. The investigations showed that core-crosslinking resulted in a 13-fold increase in observed transfection efficiency. Our study presents a comprehensive investigation from polymer synthesis to an in-depth physicochemical characterization and biological application of a crosslinked micelle system including stimuli-responsive behavior.
Collapse
Affiliation(s)
- Katharina Leer
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Gizem Cinar
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Jana I Solomun
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Liam Martin
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
22
|
Hirama A, Chou LC, Kakuchi R. Streamlined access to end-functionalized thermoresponsive polymers via a combination of bulk RAFT polymerization and quasi solvent-free Passerini three-component reaction. Polym J 2021. [DOI: 10.1038/s41428-021-00504-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Chervinskii S, Issah I, Lahikainen M, Rashed AR, Kuntze K, Priimagi A, Caglayan H. Humidity- and Temperature-Tunable Metal-Hydrogel-Metal Reflective Filters. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50564-50572. [PMID: 34643385 PMCID: PMC8554756 DOI: 10.1021/acsami.1c15616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/04/2021] [Indexed: 06/01/2023]
Abstract
A tunable reflectance filter based on a metal-hydrogel-metal structure responsive to humidity and temperature is reported. The filter employs a poly(N-isopropylacrylamide)-acrylamidobenzophenone (PNIPAm-BP) hydrogel as an insulator layer in the metal-insulator-metal (MIM) assembly. The optical resonance of the structure is tunable by water immersion across the visible and near-infrared range. Swelling/deswelling and the volume phase transition of the hydrogel allow continuous reversible humidity- and/or temperature-induced tuning of the optical resonance. This work paves the way toward low-cost large-area fabrication of actively tunable reversible photonic devices.
Collapse
|
24
|
Gayathri V, Jaisankar SN, Samanta D. Temperature and pH responsive polymers: sensing applications. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1988636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Varnakumar Gayathri
- Polymer Science & Technology division, CSIR-Central Leather Research Institute, Chennai, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Sellamuthu Nagappan Jaisankar
- Polymer Science & Technology division, CSIR-Central Leather Research Institute, Chennai, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Debasis Samanta
- Polymer Science & Technology division, CSIR-Central Leather Research Institute, Chennai, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
25
|
Kim T, Lee J, Lee B, Park J, Song S, Kim BK, Kim SY. Determination of the hydrogenation state of benzene by the thermally induced phase separation of Poly(ethersulfone). POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Marsili L, Dal Bo M, Eisele G, Donati I, Berti F, Toffoli G. Characterization of Thermoresponsive Poly-N-Vinylcaprolactam Polymers for Biological Applications. Polymers (Basel) 2021; 13:2639. [PMID: 34451180 PMCID: PMC8400179 DOI: 10.3390/polym13162639] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022] Open
Abstract
Poly-N-Vinylcaprolactam (PNVCL) is a thermoresponsive polymer that exhibits lower critical solution temperature (LCST) between 25 and 50 °C. Due to its alleged biocompatibility, this polymer is becoming popular for biomedical and environmental applications. PNVCL with carboxyl terminations has been widely used for the preparation of thermoresponsive copolymers, micro- and nanogels for drug delivery and oncological therapies. However, the fabrication of such specific targeting devices needs standardized and reproducible preparation methods. This requires a deep understanding of how the miscibility behavior of the polymer is affected by its structural properties and the solution environment. In this work, PNVCL-COOH polymers were prepared via free radical polymerization (FRP) in order to exhibit LCST between 33 and 42 °C. The structural properties were investigated with NMR, FT-IR and conductimetric titration and the LCST was calculated via UV-VIS and DLS. The LCST is influenced by the molecular mass, as shown by both DLS and viscosimetric values. Finally, the behavior of the polymer was described as function of its concentration and in presence of different biologically relevant environments, such as aqueous buffers, NaCl solutions and human plasma.
Collapse
Affiliation(s)
- Lorenzo Marsili
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute, IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute, IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Giorgio Eisele
- Centro Alta Tecnologia "Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni" Srl, via G. Colombo 81, 20133 Milan, Italy
| | - Ivan Donati
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute, IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| |
Collapse
|
27
|
Giaouzi D, Pispas S. Complexation behavior of PNIPAM-b-QPDMAEA copolymer aggregates with linear DNAs of different lengths. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Bravi Costantino ML, Oberti TG, Cortizo AM, Cortizo MS. Thermoresponsive behavior of scaffolds based on fumarate- N-isopropylacrylamide copolymers for potential biomedical applications. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1931206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- M. Leticia Bravi Costantino
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata – CONICET CCT-La Plata, C.C., La Plata, Argentina
| | - Tamara G. Oberti
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata – CONICET CCT-La Plata, C.C., La Plata, Argentina
| | - Ana M. Cortizo
- Departamento de Cs. Biológicas, Facultad de Cs. Exactas, Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM), UNLP, La Plata, Argentina
| | - M. Susana Cortizo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata – CONICET CCT-La Plata, C.C., La Plata, Argentina
| |
Collapse
|
29
|
Majerčíková M, Nádaždy P, Chorvát D, Satrapinskyy L, Valentová H, Kroneková Z, Šiffalovič P, Kronek J, Zahoranová A. Effect of Dexamethasone on Thermoresponsive Behavior of Poly(2-Oxazoline) Diblock Copolymers. Polymers (Basel) 2021; 13:polym13091357. [PMID: 33919321 PMCID: PMC8122420 DOI: 10.3390/polym13091357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 01/22/2023] Open
Abstract
Thermoresponsive polymers play an important role in designing drug delivery systems for biomedical applications. In this contribution, the effect of encapsulated hydrophobic drug dexamethasone on thermoresponsive behavior of diblock copolymers was studied. A small series of diblock copoly(2-oxazoline)s was prepared by combining thermoresponsive 2-n-propyl-2-oxazoline (nPrOx) and hydrophilic 2-methyl-2-oxazoline (MeOx) in two ratios and two polymer chain lengths. The addition of dexamethasone affected the thermoresponsive behavior of one of the copolymers, nPrOx20-MeOx180, in the aqueous medium by shifting the cloud point temperature to lower values. In addition, the formation of microparticles containing dexamethasone was observed during the heating of the samples. The morphology and number of microparticles were affected by the structure and concentration of copolymer, the drug concentration, and the temperature. The crystalline nature of formed microparticles was confirmed by polarized light microscopy, confocal Raman microscopy, and wide-angle X-ray scattering. The results demonstrate the importance of studying drug/polymer interactions for the future development of thermoresponsive drug carriers.
Collapse
Affiliation(s)
- Monika Majerčíková
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; (M.M.); (Z.K.)
| | - Peter Nádaždy
- Institute of Physics of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia; (P.N.); (P.Š.)
| | - Dušan Chorvát
- International Laser Centre, Department of Biophotonics, Ilkovičova 3, 841 04 Bratislava, Slovakia;
| | - Leonid Satrapinskyy
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská Dolina, 842 48 Bratislava, Slovakia;
| | - Helena Valentová
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic;
| | - Zuzana Kroneková
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; (M.M.); (Z.K.)
| | - Peter Šiffalovič
- Institute of Physics of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia; (P.N.); (P.Š.)
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
| | - Juraj Kronek
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; (M.M.); (Z.K.)
- Correspondence: (J.K.); (A.Z.)
| | - Anna Zahoranová
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163MC, A-1060 Vienna, Austria
- Correspondence: (J.K.); (A.Z.)
| |
Collapse
|
30
|
Shu T, Hu L, Shen Q, Jiang L, Zhang Q, Serpe MJ. Stimuli-responsive polymer-based systems for diagnostic applications. J Mater Chem B 2021; 8:7042-7061. [PMID: 32743631 DOI: 10.1039/d0tb00570c] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stimuli-responsive polymers exhibit properties that make them ideal candidates for biosensing and molecular diagnostics. Through rational design of polymer composition combined with new polymer functionalization and synthetic strategies, polymers with myriad responsivities, e.g., responses to temperature, pH, biomolecules, CO2, light, and electricity can be achieved. When these polymers are specifically designed to respond to biomarkers, stimuli-responsive devices/probes, capable of recognizing and transducing analyte signals, can be used to diagnose and treat disease. In this review, we highlight recent state-of-the-art examples of stimuli-responsive polymer-based systems for biosensing and bioimaging.
Collapse
Affiliation(s)
- Tong Shu
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China
| | - Liang Hu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Qiming Shen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| | - Li Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.
| | - Michael J Serpe
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| |
Collapse
|
31
|
Naziris N, Skandalis A, Mavromoustakos T, Pispas S, Demetzos C. Association of the Thermodynamics with the Functionality of Thermoresponsive Chimeric Nanosystems. Methods Mol Biol 2021; 2207:221-233. [PMID: 33113139 DOI: 10.1007/978-1-0716-0920-0_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Stimuli-responsive nanosystems are an emerging technology in the field of therapy and are very promising for various applications, including targeted drug delivery. In this chapter, our scope is to integrate two different methodologies, namely differential scanning calorimetry (DSC) and dynamic light scattering (DLS), in order to rationally approach the functional behavior of thermoresponsive chimeric/mixed liposomes and interpret their thermoresponsiveness on a thermodynamic basis. In particular, chimeric bilayers comprised of the phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and two different-in-composition thermoresponsive amphiphilic block copolymers poly(N-isopropylacrylamide)-b-poly(lauryl acrylate) (PNIPAM-b-PLA) 1 or 2 were built by a conventional evaporation technique, followed by DSC, and chimeric liposomes of DPPC and PNIPAM-b-PLA 1 were developed and studied by DLS, after preparation and after a simple heating protocol. The results from both methodologies indicate the composition- and concentration-dependent lyotropic effect of the foreign copolymer molecule on the properties and functionality of the lipidic membrane.
Collapse
Affiliation(s)
- Nikolaos Naziris
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, Greece.
| | - Athanasios Skandalis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens, Greece
| | - Thomas Mavromoustakos
- Department of Chemistry, Laboratory of Organic Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens, Greece
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, Greece.
| |
Collapse
|
32
|
Aflori M. Smart Nanomaterials for Biomedical Applications-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:396. [PMID: 33557177 PMCID: PMC7913901 DOI: 10.3390/nano11020396] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022]
Abstract
Recent advances in nanotechnology have forced the obtaining of new materials with multiple functionalities. Due to their reduced dimensions, nanomaterials exhibit outstanding physio-chemical functionalities: increased absorption and reactivity, higher surface area, molar extinction coefficients, tunable plasmonic properties, quantum effects, and magnetic and photo properties. However, in the biomedical field, it is still difficult to use tools made of nanomaterials for better therapeutics due to their limitations (including non-biocompatible, poor photostabilities, low targeting capacity, rapid renal clearance, side effects on other organs, insufficient cellular uptake, and small blood retention), so other types with controlled abilities must be developed, called "smart" nanomaterials. In this context, the modern scientific community developed a kind of nanomaterial which undergoes large reversible changes in its physical, chemical, or biological properties as a consequence of small environmental variations. This systematic mini-review is intended to provide an overview of the newest research on nanosized materials responding to various stimuli, including their up-to-date application in the biomedical field.
Collapse
Affiliation(s)
- Magdalena Aflori
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
33
|
Prasser Q, Steinbach D, Kodura D, Schildknecht V, König K, Weber C, Brendler E, Vogt C, Peuker U, Barner-Kowollik C, Mertens F, Schacher FH, Goldmann AS, Plamper FA. Electrochemical Stimulation of Water-Oil Interfaces by Nonionic-Cationic Block Copolymer Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1073-1081. [PMID: 33356289 DOI: 10.1021/acs.langmuir.0c02822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Variable interfacial tension could be desirable for many applications. Beyond classical stimuli like temperature, we introduce an electrochemical approach employing polymers. Hence, aqueous solutions of the nonionic-cationic block copolymer poly(ethylene oxide)114-b-poly{[2-(methacryloyloxy)ethyl]diisopropylmethylammonium chloride}171 (i.e., PEO114-b-PDPAEMA171 with a quaternized poly(diisopropylaminoethyl methacrylate) block) were investigated by emerging drop measurements and dynamic light scattering, analyzing the PEO114-b-qPDPAEMA171 impact on the interfacial tension between water and n-decane and its micellar formation in the aqueous bulk phase. Potassium hexacyanoferrates (HCFs) were used as electroactive complexants for the charged block, which convert the bishydrophilic copolymer into amphiphilic species. Interestingly, ferricyanides ([Fe(CN)6]3-) act as stronger complexants than ferrocyanides ([Fe(CN)6]4-), leading to an insoluble qPDPAEMA block in the presence of ferricyanides. Hence, bulk micellization was demonstrated by light scattering. Due to their addressability, in situ redox experiments were performed to trace the interfacial tension under electrochemical control, directly utilizing a drop shape analyzer. Here, the open-circuit potential (OCP) was changed by electrolysis to vary the ratio between ferricyanides and ferrocyanides in the aqueous solution. While a chemical oxidation/reduction is feasible, also an electrochemical oxidation leads to a significant change in the interfacial tension properties. In contrast, a corresponding electrochemical reduction showed only a slight response after converting ferricyanides to ferrocyanides. Atomic force microscopy (AFM) images of the liquid/liquid interface transferred to a solid substrate showed particles that are in accordance with the diameter from light scattering experiments of the bulk phase. In conclusion, the present results could be an important step toward economic switching of interfaces suitable, e.g., for emulsion breakage.
Collapse
Affiliation(s)
- Quirin Prasser
- Institute of Physical Chemistry, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Daniel Steinbach
- Institute of Physical Chemistry, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Daniel Kodura
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Vincent Schildknecht
- Institute of Physical Chemistry, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Katja König
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Christian Weber
- Institute of Mechanical Process Engineering and Mineral Processing, TU Bergakademie Freiberg, Agricolastraße 1, 09599 Freiberg, Germany
- Federal Institute for Geosciences and Natural Resources, Stilleweg 2, 30655 Hannover, Germany
| | - Erica Brendler
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany
| | - Carla Vogt
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany
| | - Urs Peuker
- Institute of Mechanical Process Engineering and Mineral Processing, TU Bergakademie Freiberg, Agricolastraße 1, 09599 Freiberg, Germany
| | - Christopher Barner-Kowollik
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Florian Mertens
- Institute of Physical Chemistry, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Anja S Goldmann
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Felix A Plamper
- Institute of Physical Chemistry, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| |
Collapse
|
34
|
Insights in the rheological properties of PLGA-PEG-PLGA aqueous dispersions: Structural properties and temperature-dependent behaviour. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Tomonaga H, Hayashi K, Matsuyama T, Ida J. Synthesis of thermoresponsive copolymer/silica‐coated magnetite nanoparticle composite and its application for heavy metal ion recovery. J Appl Polym Sci 2020. [DOI: 10.1002/app.50303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | - Kodai Hayashi
- Graduate School of Engineering Soka University Tokyo Japan
| | | | - Junichi Ida
- Faculty of Science and Engineering Soka University Tokyo Japan
| |
Collapse
|
36
|
Fandrich P, Wiehemeier L, Dirksen M, Wrede O, Kottke T, Hellweg T. Acrylamide precipitation polymerization in a continuous flow reactor: an in situ FTIR study reveals kinetics. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04762-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractIn this work, we present a combination of a continuous flow reactor with in situ monitoring of the monomer conversion in a precipitation polymerization. The flow reactor is equipped with a preheating area for the synthesis of thermoresponsive microgels, based on N-isopropylacrylamide (NIPAM). The reaction progress is monitored with in situ FTIR spectroscopy. The monomer conversion at defined residence times is determined from absorbance spectra of the reaction solutions by linear combination with reference spectra of the stock solution and the purified microgel. The reconstruction of the spectra appears to be in good agreement with experimental data in the range of 1710 to 1530 cm− 1, in which prominent absorption bands are used as probes for the monomer and the polymer. With increasing residence time, we observed a decrease in intensity of the ν(C=C) vibration, originating from the monomer, while the ν(C=O) vibration is shifted to higher frequencies by polymerization. Differences between the determined inline conversion kinetics and offline growth kinetics, determined by photon correlation spectroscopy (PCS), are discussed in terms of diffusion and point to a crucial role of mixing in precipitation polymerizations.
Collapse
|
37
|
Johnson EC, Willott JD, Gresham IJ, Murdoch TJ, Humphreys BA, Prescott SW, Nelson A, de Vos WM, Webber GB, Wanless EJ. Enrichment of Charged Monomers Explains Non-monotonic Polymer Volume Fraction Profiles of Multi-stimulus Responsive Copolymer Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12460-12472. [PMID: 33105998 DOI: 10.1021/acs.langmuir.0c01502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multi-stimulus responsive poly(2-(2-methoxyethoxy)ethyl methacrylate-co-2-(diethylamino)ethyl methacrylate) [P(MEO2MA-co-DEA)] 80:20 mol % copolymer brushes were synthesized on planar silica substrates via surface-initiated activators continuously regenerated via electron transfer atom transfer radical polymerization. Brush thickness was sensitive to changes in pH and temperature as monitored with ellipsometry. At low pH, the brush is charged and swollen, while at high pH, the brush is uncharged and more collapsed. Clear thermoresponsive behavior is also observed with the brush more swollen at low temperatures compared to high temperatures at both high and low pH. Neutron reflectometry was used to determine the polymer volume fraction profiles (VFPs) at various pH values and temperatures. A region of lower polymer content, or a depletion region, near the substrate is present in all of the experimental polymer VFPs, and it is more pronounced at low pH (high charge) and less so at high pH (low charge). Polymer VFPs calculated through numerical self-consistent field theory suggest that enrichment of DEA monomers near the substrate results in the experimentally observed non-monotonic VFPs. Adsorption of DEA monomers to the substrate prior to initiation of polymerization could give rise to DEA segment-enriched region proximal to the substrate.
Collapse
Affiliation(s)
- Edwin C Johnson
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Joshua D Willott
- Membrane Surface Science (MSuS), Membrane Science and Technology cluster, Mesa+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands
| | - Isaac J Gresham
- School of Chemical Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Timothy J Murdoch
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Ben A Humphreys
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Stuart W Prescott
- School of Chemical Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Andrew Nelson
- ANSTO, Locked bag 2001, Kirrawee DC, Sydney, New South Wales 2232, Australia
| | - Wiebe M de Vos
- Membrane Surface Science (MSuS), Membrane Science and Technology cluster, Mesa+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands
| | - Grant B Webber
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Erica J Wanless
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
38
|
Sponchioni M, Manfredini N, Zanoni A, Scibona E, Morbidelli M, Moscatelli D. Readily Adsorbable Thermoresponsive Polymers for the Preparation of Smart Cell-Culturing Surfaces on Site. ACS Biomater Sci Eng 2020; 6:5337-5345. [PMID: 33455282 DOI: 10.1021/acsbiomaterials.0c01029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The efficacy of several cell therapy products is directly impacted by trypsinization, which can diminish the engrafting capacity of transplanted cells by cleaving cell surface receptors. Thermoresponsive surfaces can alleviate this drawback, enabling temperature-driven and enzyme-free cell harvesting. However, the production of thermoresponsive surfaces relies on dedicated and complex equipment, often involving protocols dependent on high surface activation energies that prevent the development of scalable and universal platforms. In this work, we developed thermoresponsive copolymers incorporating styrene units that enable the copolymer adsorption on tissue culture polystyrene surfaces from an alcoholic solution in a short time, regardless of the vessel size and geometry, and without any particular equipment. In this way, the procedure can be performed with minimal effort by the end user on any surface. The thermoresponsive copolymers were synthesized via reversible addition-fragmentation chain transfer polymerization, providing high control over the polymer microstructure, a key parameter for tuning its cloud point and architecture. Block copolymers comprising a thermoresponsive segment and a polystyrene block exhibited optimal adhesion on conventional cell culture surfaces and permitted a more efficient temperature-mediated harvesting of adipose-derived stromal cells and Chinese hamster ovary cells compared to their statistical counterparts. To expand the application of this polymer deposition protocol to serum-free cell culture, we also considered the polymer modification with the tripeptide arginine-glycine-aspartic acid, known to promote the cell adhesion to synthetic substrates. The incorporation of this peptide enabled the collection in serum-free conditions of intact cell sheets from surfaces prepared shortly before their usage.
Collapse
Affiliation(s)
- Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 2013 Milano, Italy
| | - Nicolò Manfredini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 2013 Milano, Italy
| | - Arianna Zanoni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 2013 Milano, Italy
| | - Ernesto Scibona
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Massimo Morbidelli
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Davide Moscatelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 2013 Milano, Italy
| |
Collapse
|
39
|
Poly(N,N-bis(2-methoxyethyl)acrylamide), a thermoresponsive non-ionic polymer combining the amide and the ethyleneglycolether motifs. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04701-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractPoly(N,N-bis(2-methoxyethyl)acrylamide) (PbMOEAm) featuring two classical chemical motifs from non-ionic water-soluble polymers, namely, the amide and ethyleneglycolether moieties, was synthesized by reversible addition fragmentation transfer (RAFT) polymerization. This tertiary polyacrylamide is thermoresponsive exhibiting a lower critical solution temperature (LCST)–type phase transition. A series of homo- and block copolymers with varying molar masses but low dispersities and different end groups were prepared. Their thermoresponsive behavior in aqueous solution was analyzed via turbidimetry and dynamic light scattering (DLS). The cloud points (CP) increased with increasing molar masses, converging to 46 °C for 1 wt% solutions. This rise is attributed to the polymers’ hydrophobic end groups incorporated via the RAFT agents. When a surfactant-like strongly hydrophobic end group was attached using a functional RAFT agent, CP was lowered to 42 °C, i.e., closer to human body temperature. Also, the effect of added salts, in particular, the role of the Hofmeister series, on the phase transition of PbMOEAm was investigated, exemplified for the kosmotropic fluoride, intermediate chloride, and chaotropic thiocyanate anions. A pronounced shift of the cloud point of about 10 °C to lower or higher temperatures was observed for 0.2 M fluoride and thiocyanate, respectively. When PbMOEAm was attached to a long hydrophilic block of poly(N,N-dimethylacrylamide) (PDMAm), the cloud points of these block copolymers were strongly shifted towards higher temperatures. While no phase transition was observed for PDMAm-b-pbMOEAm with short thermoresponsive blocks, block copolymers with about equally sized PbMOEAm and PDMAm blocks underwent the coil-to-globule transition around 60 °C.
Collapse
|
40
|
Fischer T, Demco DE, Fechete R, Möller M, Singh S. Poly(vinylamine-co-N-isopropylacrylamide) linear polymer and hydrogels with tuned thermoresponsivity. SOFT MATTER 2020; 16:6549-6562. [PMID: 32617537 DOI: 10.1039/d0sm00408a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The fabrication of functional hydrogels with tuned thermoresponsivity is a major challenge. To meet this challenge we copolymerize N-isopropylacrylamide (NIPAm) with N-vinylformamide (NVF) in different ratios with the formamide group being subsequently selectively hydrolyzed to the corresponding amine (VAm). The copolymers are crosslinked with phenylcarbonate telechelic glycol. The influence of the NIPAm : VAm ratio on the thermoresponsitiviy is investigated in terms of absorbance, rheology, NMR spectroscopy, relaxometry, and diffusometry. Phase transition temperatures, change in the entropy of the polymer-water system, and width of the transition in the process of coil-to-globule and swollen-to-collapsed network transitions were evaluated by a two state model and Boltzmann sigmoidal function.
Collapse
Affiliation(s)
- Thorsten Fischer
- DWI-Leibniz-Institute for Interactive Materials, e.V., RWTH Aachen University, Forckenbeckstraße 50, D-52074 Aachen, Germany.
| | - Dan E Demco
- DWI-Leibniz-Institute for Interactive Materials, e.V., RWTH Aachen University, Forckenbeckstraße 50, D-52074 Aachen, Germany. and Technical University of Cluj-Napoca, Department of Physics and Chemistry, 25 G. Baritiu Str., RO-400027, Cluj-Napoca, Romania
| | - Radu Fechete
- Technical University of Cluj-Napoca, Department of Physics and Chemistry, 25 G. Baritiu Str., RO-400027, Cluj-Napoca, Romania
| | - Martin Möller
- DWI-Leibniz-Institute for Interactive Materials, e.V., RWTH Aachen University, Forckenbeckstraße 50, D-52074 Aachen, Germany.
| | - Smriti Singh
- DWI-Leibniz-Institute for Interactive Materials, e.V., RWTH Aachen University, Forckenbeckstraße 50, D-52074 Aachen, Germany.
| |
Collapse
|
41
|
Frazar EM, Shah RA, Dziubla TD, Hilt JZ. Multifunctional temperature-responsive polymers as advanced biomaterials and beyond. J Appl Polym Sci 2020; 137:48770. [PMID: 34305165 PMCID: PMC8300996 DOI: 10.1002/app.48770] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/23/2019] [Indexed: 01/03/2023]
Abstract
The versatility and applicability of thermoresponsive polymeric systems have led to great interest and a multitude of publications. Of particular significance, multifunctional poly(N-isopropylacrylamide) (PNIPAAm) systems based on PNIPAAm copolymerized with various functional comonomers or based on PNIPAAm combined with nanomaterials exhibiting unique properties. These multifunctional PNIPAAm systems have revolutionized several biomedical fields such as controlled drug delivery, tissue engineering, self-healing materials, and beyond (e.g., environmental treatment applications). Here, we review these multifunctional PNIPAAm-based systems with various cofunctionalities, as well as highlight their unique applications. For instance, addition of hydrophilic or hydrophobic comonomers can allow for polymer lower critical solution temperature modification, which is especially helpful for physiological applications. Natural comonomers with desirable functionalities have also drawn significant attention as pressure surmounts to develop greener, more sustainable materials. Typically, these systems also tend to be more biocompatible and biodegradable and can be advantageous for use in biopharmaceutical and environmental applications. PNIPAAm-based polymeric nanocomposites are reviewed as well, where incorporation of inorganic or carbon nanomaterials creates synergistic systems that tend to be more robust and widely applicable than the individual components.
Collapse
Affiliation(s)
- E Molly Frazar
- Superfund Research Center, University of Kentucky, Lexington, Kentucky 40536
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506
| | - Rishabh A Shah
- Superfund Research Center, University of Kentucky, Lexington, Kentucky 40536
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506
| | - Thomas D Dziubla
- Superfund Research Center, University of Kentucky, Lexington, Kentucky 40536
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506
| | - J Zach Hilt
- Superfund Research Center, University of Kentucky, Lexington, Kentucky 40536
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506
| |
Collapse
|
42
|
PNIPAM-b-PDMAEA double stimuli responsive copolymers: Effects of composition, end groups and chemical modification on solution self-assembly. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109867] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Stănescu PO, Radu IC, Drăghici C, Teodorescu M. Controlling the thermal response of poly(N-isopropylacrylamide)-poly(ethylene glycol)- poly(N-isopropylacrylamide) triblock copolymers in aqueous solution by means of additives. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
44
|
Imamura R, Masuko K, Mori H. RAFT
polymerization of tertiary sulfonium zwitterionic monomer in aqueous media for synthesis of protein stabilizing double hydrophilic block copolymers. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ryutaro Imamura
- Graduate School of Organic Materials Science, Yamagata University Yamagata Japan
- NOF CORPORATION Ibaraki Japan
| | - Kazunori Masuko
- Graduate School of Organic Materials Science, Yamagata University Yamagata Japan
| | - Hideharu Mori
- Graduate School of Organic Materials Science, Yamagata University Yamagata Japan
| |
Collapse
|
45
|
Effects of Chemical Modifications on the Thermoresponsive Behavior of a PDMAEA-b-PNIPAM-b-POEGA Triblock Terpolymer. Polymers (Basel) 2020; 12:polym12061382. [PMID: 32575556 PMCID: PMC7361810 DOI: 10.3390/polym12061382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/03/2022] Open
Abstract
In this work, the synthesis, selective chemical modifications, and self-assembly behavior in aqueous media of a novel poly(2-(dimethylamino)ethyl acrylate)20-b-poly(N-isopropylacrylamide)11-b-poly(oligo ethylene glycol methyl ether acrylate)18 (PDMAEA20-b-PNIPAM11-b-POEGA18) dual-responsive (pH and temperature) and triply hydrophilic amino-based triblock terpolymer are reported. The amine functional triblock terpolymer was synthesized by sequential reversible addition fragmentation chain transfer polymerization (RAFT) polymerization and molecularly characterized by size exclusion chromatography (SEC) and 1H-NMR spectroscopy that evidenced the success of the three-step polymerization scheme. The tertiary amine pendant groups of the PDMAEA block were chemically modified in order to produce the Q1PDMAEA20-b-PNIPAM11-b-POEGA18 as well as the Q6PDMAEA20-b-PNIPAM11-b-POEGA18 quaternized triblock terpolymers (Q1 and Q6 prefixes show the number of carbon atoms (C1 and C6) attached on the PDMAEA groups) using methyl iodide (CH3I) and 1-iodohexane (C6H13I) as the quaternizing agents and the SPDMAEA20-b-PNIPAM11-b-POEGA18 sulfobetainized triblock terpolymer using 1,3 propanesultone (C3H6O3S) as the sulfobetainization agent. The self-assembly properties of the triblock terpolymers in aqueous solutions upon varying temperature and solution pH were studied by light scattering and fluorescence spectroscopy experiments. The novel triblock terpolymers self-assemble into nanosized aggregates upon solution temperature rise above the nominal lower critical solution temperature (LCST) of the temperature-responsive PNIPAM block. The remarkable stimuli-responsive self-assembly behavior of the novel triblock terpolymers in aqueous media make them interesting candidates for biomedical applications in the fields of drug and gene delivery.
Collapse
|
46
|
Luo GF, Chen WH, Zhang XZ. 100th Anniversary of Macromolecular Science Viewpoint: Poly( N-isopropylacrylamide)-Based Thermally Responsive Micelles. ACS Macro Lett 2020; 9:872-881. [PMID: 35648534 DOI: 10.1021/acsmacrolett.0c00342] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Poly(N-isopropylacrylamide) (PNIPAAm)-based thermally responsive micelles are of great importance as smart materials for a number of applications such as drug delivery and biosensing, owing to their tunable lower critical solution temperature (LCST). Their design and synthesis in the nanoscale size range have been widely studied, and research interest in their structural and physic-chemical properties is continually growing. In this Viewpoint, representative research on the construction of PNIPAAm-based thermally responsive micelles as well as their applications are highlighted and discussed, which would serve as a good start for newcomers in this field and a positive guide for future research.
Collapse
Affiliation(s)
- Guo-Feng Luo
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
47
|
Johnson EC, Willott JD, de Vos WM, Wanless EJ, Webber GB. Interplay of Composition, pH, and Temperature on the Conformation of Multi-stimulus-responsive Copolymer Brushes: Comparison of Experiment and Theory. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5765-5777. [PMID: 32364745 DOI: 10.1021/acs.langmuir.0c00424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Poly(2-(2-methoxyethoxy)ethyl methacrylate) (PMEO2MA), a thermoresponsive polymer with a lower critical solution temperature of ∼28 °C, and poly(2-(diethylamino)ethyl methacrylate) (PDEA), a weak polybase with an apparent pKa of ∼7.5, have been statistically copolymerized using activators continuously regenerated via electron transfer atom transfer radical polymerization to form multi-stimulus-responsive polymer brushes. The stimulus-responsive behavior of these brushes has been investigated with ellipsometry and numerical self-consistent field (nSCF) theory. The pH- and thermoresponsive behaviors of a PDEA homopolymer brush were investigated experimentally in order to benchmark the nSCF theory calculations. nSCF theory was able to reproduce the responsive behavior of PDEA and PMEO2MA homopolymer brushes. Three copolymer compositions (90:10, 70:30, and 50:50 mol % MEO2MA:DEA) were investigated experimentally with pH ramps performed at low and high temperatures and temperature ramps performed at low and high pH. A broader range of compositions were investigated with nSCF theory and compared to the experimental results, with the nSCF calculations able to capture the general behavior of the homopolymer and copolymer brushes. The responsive behavior of each brush to a given stimulus (temperature or pH) was dependent on both the polymer composition and environment (temperature or pH). The influence of pH on the brush increased with higher DEA mol % with a copolymer brush response transitioning from temperature-dominant to pH-dominant. The temperature response of PMEO2MA was completely masked at low and high pH values by the presence of at least 30 mol % polybase in the copolymer.
Collapse
Affiliation(s)
- Edwin C Johnson
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Joshua D Willott
- Membrane Surface Science (MSuS), Membrane Science and Technology Cluster, Mesa+ Institute for Nanotechnology, University of Twente, Enschede 7522 NB, The Netherlands
| | - Wiebe M de Vos
- Membrane Surface Science (MSuS), Membrane Science and Technology Cluster, Mesa+ Institute for Nanotechnology, University of Twente, Enschede 7522 NB, The Netherlands
| | - Erica J Wanless
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Grant B Webber
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
48
|
Niamlaem M, Phuakkong O, Garrigue P, Goudeau B, Ravaine V, Kuhn A, Warakulwit C, Zigah D. Asymmetric Modification of Carbon Nanotube Arrays with Thermoresponsive Hydrogel for Controlled Delivery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23378-23387. [PMID: 32343544 DOI: 10.1021/acsami.0c01017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, bipolar electrochemistry is used to perform wireless indirect electrodeposition of two different polymer coatings on both sides of carbon nanotube arrays. Using a thermoresponsive hydrogel on one side and an inert insoluble polymer on the other side, it is possible to generate, in a single step, a nanoporous reservoir with Janus character closed on one side by a thermoresponsive membrane. The thermoresponsive polymer, poly(N-isopropylacrylamide) (pNIPAM), is generated by the local reduction of persulfate ions, which initiates radical polymerization of NIPAM. Electrophoretic paint (EP) is chosen as an inert polymer. It is deposited by precipitation because of a local decrease in pH during water oxidation. Both polymers can be deposited simultaneously on opposite sides of the bipolar electrode during the application of the electric field, yielding a double-modified Janus object. Moreover, the length and thickness of the polymer layers can be controlled by varying the electric field and the deposition time. This concept is applied to vertically aligned carbon nanotube arrays (VACNTs), trapped inside an anodic aluminum oxide membrane, which can further be used as a smart reservoir for chemical storage and release. A fluorescent dye is loaded in the VACNTs and its release is studied as a function of temperature. Low temperature, when the hydrogel layer is in the swollen state, allows diffusion of the molecule. Dye release occurs on the hydrogel-modified side of the VACNTs. At high temperatures, when the hydrogel layer is in the collapsed state, dye release is blocked because of the impermeability of the pNIPAM layer. This concept paves the way toward the design of advanced devices in the fields of drug storage and directed delivery.
Collapse
Affiliation(s)
- Malinee Niamlaem
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Research Network NANOTEC-Kasetsart on NanoCatalysts and NanoMaterials for Sustainable Energy and Environment: RNN-CMSEE and Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, Kasetsart University, Bangkok 10900, Thailand
| | - Oranit Phuakkong
- Division of Chemistry, Faculty of Science and Technology, Suratthani Rajabhat University, Suratthani 84100, Thailand
| | - Patrick Garrigue
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ENSCBP, Pessac Cedex 33607, France
| | - Bertrand Goudeau
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ENSCBP, Pessac Cedex 33607, France
| | - Valérie Ravaine
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ENSCBP, Pessac Cedex 33607, France
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ENSCBP, Pessac Cedex 33607, France
| | - Chompunuch Warakulwit
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Research Network NANOTEC-Kasetsart on NanoCatalysts and NanoMaterials for Sustainable Energy and Environment: RNN-CMSEE and Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, Kasetsart University, Bangkok 10900, Thailand
| | - Dodzi Zigah
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ENSCBP, Pessac Cedex 33607, France
| |
Collapse
|
49
|
Self-organization in aqueous solutions of thermosensitive star-shaped and linear gradient copolymers of 2-ethyl-2-oxazoline and 2-isopropyl-2-oxazoline. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04638-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Muralter F, Greco F, Coclite AM. Applicability of Vapor-Deposited Thermoresponsive Hydrogel Thin Films in Ultrafast Humidity Sensors/Actuators. ACS APPLIED POLYMER MATERIALS 2020; 2:1160-1168. [PMID: 32201862 PMCID: PMC7076731 DOI: 10.1021/acsapm.9b00957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/23/2019] [Indexed: 06/02/2023]
Abstract
Thermoresponsive polymers reversibly react to changes in temperature and water content of their environment (i.e., relative humidity, RH). In the present contribution, the thermoresponsiveness of poly(N-vinylcaprolactam) thin films cross-linked by di(ethylene glycol) divinyl ether deposited by initiated chemical vapor deposition are investigated to assess their applicability to sensor and actuator setups. A lower critical solution temperature (LCST) is observed at around 16 °C in aqueous environment, associated with a dramatic change in film thickness (e.g., 200% increase at low temperatures) and refractive index, while only thermal expansion of the polymeric system is found, when ramping the temperature in dry atmosphere. In humid environment, we observed a significant response occurring in low RH (already below 5% RH), with the moisture swelling the thin film (up to 4%), but mainly replacing air in the polymeric structure up to ∼40% RH. Non-temperature-dependent swelling is observed up to 80% RH. Above that, thermoresponsive behavior is also demonstrated to be present in humid environment for the first time, whereas toward 100% RH, film thickness and index appear to approach the values obtained in water at the respective temperatures. The response times are similar in a large range of RH and are faster than the ones of the reference humidity sensor used (i.e., seconds). A sensor/actuator hygromorphic device was built by coating a thin flower-shaped poly(dimethylsiloxane) (PDMS) substrate with the thermoresponsive polymer. The large swelling due to water uptake upon exposure to humid environment at temperatures below the LCST caused the petals to bend, mimicking the capability of plants to respond to environmental stimuli via reversible mechanical motion.
Collapse
|