1
|
Rösing S, Ullrich F, Meisterfeld S, Schmidt F, Mlitzko L, Croon M, Nattrass RG, Eberl N, Mahlberg J, Schlee M, Wieland A, Simon P, Hilbig D, Reuner U, Rapp A, Bremser J, Mirtschink P, Drukewitz S, Zillinger T, Beissert S, Paeschke K, Hartmann G, Trifunovic A, Bartok E, Günther C. Chronic endoplasmic reticulum stress in myotonic dystrophy type 2 promotes autoimmunity via mitochondrial DNA release. Nat Commun 2024; 15:1534. [PMID: 38378748 PMCID: PMC10879130 DOI: 10.1038/s41467-024-45535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Myotonic dystrophy type 2 (DM2) is a tetranucleotide CCTG repeat expansion disease associated with an increased prevalence of autoimmunity. Here, we identified an elevated type I interferon (IFN) signature in peripheral blood mononuclear cells and primary fibroblasts of DM2 patients as a trigger of chronic immune stimulation. Although RNA-repeat accumulation was prevalent in the cytosol of DM2-patient fibroblasts, type-I IFN release did not depend on innate RNA immune sensors but rather the DNA sensor cGAS and the prevalence of mitochondrial DNA (mtDNA) in the cytoplasm. Sublethal mtDNA release was promoted by a chronic activation of the ATF6 branch of the unfolded protein response (UPR) in reaction to RNA-repeat accumulation and non-AUG translated tetrapeptide expansion proteins. ATF6-dependent mtDNA release and resulting cGAS/STING activation could also be recapitulated in human THP-1 monocytes exposed to chronic endoplasmic reticulum (ER) stress. Altogether, our study demonstrates a novel mechanism by which large repeat expansions cause chronic endoplasmic reticulum stress and associated mtDNA leakage. This mtDNA is, in turn, sensed by the cGAS/STING pathway and induces a type-I IFN response predisposing to autoimmunity. Elucidating this pathway reveals new potential therapeutic targets for autoimmune disorders associated with repeat expansion diseases.
Collapse
Affiliation(s)
- Sarah Rösing
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
| | - Fabian Ullrich
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Susann Meisterfeld
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
| | - Franziska Schmidt
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
| | - Laura Mlitzko
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
| | - Marijana Croon
- Institute for Mitochondrial Diseases and Aging, Faculty of Medicine, CECAD Research Center, 50931, Cologne, Germany
| | - Ryan G Nattrass
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Nadia Eberl
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
| | - Julia Mahlberg
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Anja Wieland
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Philipp Simon
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Daniel Hilbig
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Ulrike Reuner
- Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
| | - Alexander Rapp
- Department of Biology, Cell biology and Epigenetic, Technical University of Darmstadt, Darmstadt, Germany
| | - Julia Bremser
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Peter Mirtschink
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307, Dresden, Germany
| | - Stephan Drukewitz
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Partner Site Dresden, Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Thomas Zillinger
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Stefan Beissert
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
| | - Katrin Paeschke
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Aleksandra Trifunovic
- Institute for Mitochondrial Diseases and Aging, Faculty of Medicine, CECAD Research Center, 50931, Cologne, Germany
| | - Eva Bartok
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, 53127, Bonn, Germany
- Unit of Experimental Immunology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Claudia Günther
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany.
| |
Collapse
|
2
|
Costa A, Cruz AC, Martins F, Rebelo S. Protein Phosphorylation Alterations in Myotonic Dystrophy Type 1: A Systematic Review. Int J Mol Sci 2023; 24:ijms24043091. [PMID: 36834509 PMCID: PMC9965115 DOI: 10.3390/ijms24043091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Among the most common muscular dystrophies in adults is Myotonic Dystrophy type 1 (DM1), an autosomal dominant disorder characterized by myotonia, muscle wasting and weakness, and multisystemic dysfunctions. This disorder is caused by an abnormal expansion of the CTG triplet at the DMPK gene that, when transcribed to expanded mRNA, can lead to RNA toxic gain of function, alternative splicing impairments, and dysfunction of different signaling pathways, many regulated by protein phosphorylation. In order to deeply characterize the protein phosphorylation alterations in DM1, a systematic review was conducted through PubMed and Web of Science databases. From a total of 962 articles screened, 41 were included for qualitative analysis, where we retrieved information about total and phosphorylated levels of protein kinases, protein phosphatases, and phosphoproteins in DM1 human samples and animal and cell models. Twenty-nine kinases, 3 phosphatases, and 17 phosphoproteins were reported altered in DM1. Signaling pathways that regulate cell functions such as glucose metabolism, cell cycle, myogenesis, and apoptosis were impaired, as seen by significant alterations to pathways such as AKT/mTOR, MEK/ERK, PKC/CUGBP1, AMPK, and others in DM1 samples. This explains the complexity of DM1 and its different manifestations and symptoms, such as increased insulin resistance and cancer risk. Further studies can be done to complement and explore in detail specific pathways and how their regulation is altered in DM1, to find what key phosphorylation alterations are responsible for these manifestations, and ultimately to find therapeutic targets for future treatments.
Collapse
|
3
|
Cellular Senescence and Aging in Myotonic Dystrophy. Int J Mol Sci 2022; 23:ijms23042339. [PMID: 35216455 PMCID: PMC8877951 DOI: 10.3390/ijms23042339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/06/2022] [Accepted: 02/12/2022] [Indexed: 01/10/2023] Open
Abstract
Myotonic dystrophy (DM) is a dominantly inherited multisystemic disorder affecting various organs, such as skeletal muscle, heart, the nervous system, and the eye. Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are caused by expanded CTG and CCTG repeats, respectively. In both forms, the mutant transcripts containing expanded repeats aggregate as nuclear foci and sequester several RNA-binding proteins, resulting in alternative splicing dysregulation. Although certain alternative splicing events are linked to the clinical DM phenotypes, the molecular mechanisms underlying multiple DM symptoms remain unclear. Interestingly, multi-systemic DM manifestations, including muscle weakness, cognitive impairment, cataract, and frontal baldness, resemble premature aging. Furthermore, cellular senescence, a critical contributor to aging, is suggested to play a key role in DM cellular pathophysiology. In particular, several senescence inducers including telomere shortening, mitochondrial dysfunction, and oxidative stress and senescence biomarkers such as cell cycle inhibitors, senescence-associated secretory phenotype, chromatin reorganization, and microRNA have been implicated in DM pathogenesis. In this review, we focus on the clinical similarities between DM and aging, and summarize the involvement of cellular senescence in DM and the potential application of anti-aging DM therapies.
Collapse
|
4
|
Huang J, Zhou Q, Ren Q, Luo L, Ji G, Zheng T. Endoplasmic reticulum stress associates with the development of intervertebral disc degeneration. Front Endocrinol (Lausanne) 2022; 13:1094394. [PMID: 36714579 PMCID: PMC9877331 DOI: 10.3389/fendo.2022.1094394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Endoplasmic reticulum (ER) is an important player in various intracellular signaling pathways that regulate cellular functions in many diseases. Intervertebral disc degeneration (IDD), an age-related degenerative disease, is one of the main clinical causes of low back pain. Although the pathological development of IDD is far from being fully elucidated, many studies have been shown that ER stress (ERS) is involved in IDD development and regulates various processes, such as inflammation, cellular senescence and apoptosis, excessive mechanical loading, metabolic disturbances, oxidative stress, calcium homeostasis imbalance, and extracellular matrix (ECM) dysregulation. This review summarizes the formation of ERS and the potential link between ERS and IDD development. ERS can be a promising new therapeutic target for the clinical management of IDD.
Collapse
Affiliation(s)
- Jishang Huang
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qingluo Zhou
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qun Ren
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Liliang Luo
- Department of Orthopedics, Shangyou Hospital of traditional Chinese Medicine, Ganzhou, China
| | - Guanglin Ji
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tiansheng Zheng
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tiansheng Zheng,
| |
Collapse
|
5
|
Myoparr-Associated and -Independent Multiple Roles of Heterogeneous Nuclear Ribonucleoprotein K during Skeletal Muscle Cell Differentiation. Int J Mol Sci 2021; 23:ijms23010108. [PMID: 35008534 PMCID: PMC8744952 DOI: 10.3390/ijms23010108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022] Open
Abstract
RNA-binding proteins (RBPs) regulate cell physiology via the formation of ribonucleic-protein complexes with coding and non-coding RNAs. RBPs have multiple functions in the same cells; however, the precise mechanism through which their pleiotropic functions are determined remains unknown. In this study, we revealed the multiple inhibitory functions of heterogeneous nuclear ribonucleoprotein K (hnRNPK) for myogenic differentiation. We first identified hnRNPK as a lncRNA Myoparr binding protein. Gain- and loss-of-function experiments showed that hnRNPK repressed the expression of myogenin at the transcriptional level. The hnRNPK-binding region of Myoparr was required to repress myogenin expression. Moreover, hnRNPK repressed the expression of a set of genes coding for aminoacyl-tRNA synthetases in a Myoparr-independent manner. Mechanistically, hnRNPK regulated the eIF2α/Atf4 pathway, one branch of the intrinsic pathways of the endoplasmic reticulum sensors, in differentiating myoblasts. Thus, our findings demonstrate that hnRNPK plays lncRNA-associated and -independent multiple roles during myogenic differentiation, indicating that the analysis of lncRNA-binding proteins will be useful for elucidating both the physiological functions of lncRNAs and the multiple functions of RBPs.
Collapse
|
6
|
Chaudhary P, Sharma S, Singh R, Arya R. Elucidation of ER stress and UPR pathway in sialic acid-deficient cells: Pathological relevance to GNEM. J Cell Biochem 2021; 122:1886-1902. [PMID: 34555215 DOI: 10.1002/jcb.30148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/31/2022]
Abstract
Accumulation of misfolded proteins in endoplasmic reticulum (ER) generates a stress condition in the cell. The cell combats ER stress by activating unfolded protein response (UPR) and ERAD (ER stress-associated degradation) pathway. Failure to restore favorable folding environment results in cell dysfunction and apoptosis. Various neurodegenerative disorders are characterized by the accumulation of misfolded protein, protein aggregates, and ER stress. GNE myopathy (GNEM) is a neuromuscular disorder pathologically characterized by rimmed vacuole formation due to the accumulation of protein aggregates. More than 200 mutations in key sialic acid biosynthetic enzyme UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) have been identified worldwide in the muscle biopsies of GNE myopathy patients. However, the cellular and molecular pathomechanism leading to the disease ar poorly understood. In the present study, the phenomenon of ER stress has been elucidated in GNE mutant cells overexpressing GNE mutations of Indian origin. The effect of GNE mutations on activation of UPR signaling via inositol-requiring transmembrane kinase/endoribonuclease 1 (IRE-1), protein kinase RNA-like endoplasmic reticulum kinase (PERK), and activating transcription factor-6 (ATF6) were deciphered to understand the effect of GNE mutations on these proteins. GRP78 was upregulated with increased X-box-binding protein-1 (XBP-1) splicing and CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) upregulation leading to increased apoptosis of GNE mutant cells. Insulin-like growth factor 1 (IGF-1) ligand rescued the cells from apoptotic phenotype by supporting cell survival mechanism. Our study indicates a balance of cell death and survival that decides cell fate and offers potential therapeutic targets to combat ER stress in diseases associated with dysfunctional UPR pathway.
Collapse
Affiliation(s)
| | - Shweta Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Reema Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ranjana Arya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
7
|
Tiago T, Hummel B, Morelli FF, Basile V, Vinet J, Galli V, Mediani L, Antoniani F, Pomella S, Cassandri M, Garone MG, Silvestri B, Cimino M, Cenacchi G, Costa R, Mouly V, Poser I, Yeger-Lotem E, Rosa A, Alberti S, Rota R, Ben-Zvi A, Sawarkar R, Carra S. Small heat-shock protein HSPB3 promotes myogenesis by regulating the lamin B receptor. Cell Death Dis 2021; 12:452. [PMID: 33958580 PMCID: PMC8102500 DOI: 10.1038/s41419-021-03737-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/03/2023]
Abstract
One of the critical events that regulates muscle cell differentiation is the replacement of the lamin B receptor (LBR)-tether with the lamin A/C (LMNA)-tether to remodel transcription and induce differentiation-specific genes. Here, we report that localization and activity of the LBR-tether are crucially dependent on the muscle-specific chaperone HSPB3 and that depletion of HSPB3 prevents muscle cell differentiation. We further show that HSPB3 binds to LBR in the nucleoplasm and maintains it in a dynamic state, thus promoting the transcription of myogenic genes, including the genes to remodel the extracellular matrix. Remarkably, HSPB3 overexpression alone is sufficient to induce the differentiation of two human muscle cell lines, LHCNM2 cells, and rhabdomyosarcoma cells. We also show that mutant R116P-HSPB3 from a myopathy patient with chromatin alterations and muscle fiber disorganization, forms nuclear aggregates that immobilize LBR. We find that R116P-HSPB3 is unable to induce myoblast differentiation and instead activates the unfolded protein response. We propose that HSPB3 is a specialized chaperone engaged in muscle cell differentiation and that dysfunctional HSPB3 causes neuromuscular disease by deregulating LBR.
Collapse
Affiliation(s)
- Tatiana Tiago
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Federica F Morelli
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Valentina Basile
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Jonathan Vinet
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Veronica Galli
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Laura Mediani
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Francesco Antoniani
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Silvia Pomella
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Matteo Cassandri
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Maria Giovanna Garone
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
| | - Beatrice Silvestri
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161, Rome, Italy
| | - Marco Cimino
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor Sciences DIBINEM, University of Bologna, Bologna, Italy; Centre for Applied Biomedical Research - CRBA, University of Bologna, IRCCS St. Orsola Hospital, Bologna, Italy
| | - Roberta Costa
- Department of Biomedical and Neuromotor Sciences DIBINEM, University of Bologna, Bologna, Italy; Centre for Applied Biomedical Research - CRBA, University of Bologna, IRCCS St. Orsola Hospital, Bologna, Italy
| | - Vincent Mouly
- Centre de Recherche en Myologie, Sorbonne Université, Inserm, Institut de Myologie, F-75013, Paris, France
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
- Dewpoint Therapeutics GmbH, Tatzberg 47, 01307, Dresden, Germany
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Alessandro Rosa
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161, Rome, Italy
| | - Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - Rossella Rota
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Anat Ben-Zvi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Medical Research Council (MRC), University of Cambridge, Cambridge, CB2 1QR, UK
| | - Serena Carra
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy.
| |
Collapse
|
8
|
Gallot YS, Bohnert KR. Confounding Roles of ER Stress and the Unfolded Protein Response in Skeletal Muscle Atrophy. Int J Mol Sci 2021; 22:2567. [PMID: 33806433 PMCID: PMC7961896 DOI: 10.3390/ijms22052567] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle is an essential organ, responsible for many physiological functions such as breathing, locomotion, postural maintenance, thermoregulation, and metabolism. Interestingly, skeletal muscle is a highly plastic tissue, capable of adapting to anabolic and catabolic stimuli. Skeletal muscle contains a specialized smooth endoplasmic reticulum (ER), known as the sarcoplasmic reticulum, composed of an extensive network of tubules. In addition to the role of folding and trafficking proteins within the cell, this specialized organelle is responsible for the regulated release of calcium ions (Ca2+) into the cytoplasm to trigger a muscle contraction. Under various stimuli, such as exercise, hypoxia, imbalances in calcium levels, ER homeostasis is disturbed and the amount of misfolded and/or unfolded proteins accumulates in the ER. This accumulation of misfolded/unfolded protein causes ER stress and leads to the activation of the unfolded protein response (UPR). Interestingly, the role of the UPR in skeletal muscle has only just begun to be elucidated. Accumulating evidence suggests that ER stress and UPR markers are drastically induced in various catabolic stimuli including cachexia, denervation, nutrient deprivation, aging, and disease. Evidence indicates some of these molecules appear to be aiding the skeletal muscle in regaining homeostasis whereas others demonstrate the ability to drive the atrophy. Continued investigations into the individual molecules of this complex pathway are necessary to fully understand the mechanisms.
Collapse
Affiliation(s)
- Yann S. Gallot
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France
| | - Kyle R. Bohnert
- Kinesiology Department, St. Ambrose University, Davenport, IA 52803, USA
| |
Collapse
|
9
|
Chen M, Li S, Hao M, Chen J, Zhao Z, Hong S, Min J, Tang J, Hu M, Hong L. T-type calcium channel blockade induces apoptosis in C2C12 myotubes and skeletal muscle via endoplasmic reticulum stress activation. FEBS Open Bio 2020; 10:2122-2136. [PMID: 32865339 PMCID: PMC7530395 DOI: 10.1002/2211-5463.12965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022] Open
Abstract
Loss of T‐type calcium channel (TCC) function has been reported to result in decreased cell viability and impaired muscle regeneration, but the underlying mechanisms remain largely unknown. We previously found that expression of TCC is reduced in aged pelvic floor muscle of multiple vaginal delivery mice, and this is related to endoplasmic reticulum stress (ERS) activation and autophagy flux blockade. In the present work, we further investigated the effects of TCC function loss on C2C12 myotubes and skeletal muscle, which is mediated by promotion of ERS and ultimately contributes to mitochondrial‐related apoptotic cell death. We found that application of a TCC inhibitor induced mitochondria‐related apoptosis in a dose‐dependent manner and also reduced mitochondrial transmembrane potential (MMP), induced mito‐ROS generation, and enhanced expression of mitochondrial apoptosis proteins. Functional inhibition of TCC induced ERS, resulting in disorder of Ca2+ homeostasis in endoplasmic reticulum, and ultimately leading to cell apoptosis in C2C12 myotubes. Tibialis anterior muscles of T‐type α1H channel knockout mice displayed a smaller skeletal muscle fiber size and elevated ERS‐mediated apoptosis signaling. Our data point to a novel mechanism whereby TCC blockade leads to ERS activation and terminal mitochondrial‐related apoptotic events in C2C12 myotubes and skeletal muscles.
Collapse
Affiliation(s)
- Mao Chen
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, China
| | - Suting Li
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, China
| | - Menglei Hao
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, China
| | - Jue Chen
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, China
| | - Zhihan Zhao
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, China
| | - Shasha Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, China
| | - Jie Min
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, China
| | - Jianming Tang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, China
| | - Ming Hu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, China
| |
Collapse
|
10
|
MBNL1 reverses the proliferation defect of skeletal muscle satellite cells in myotonic dystrophy type 1 by inhibiting autophagy via the mTOR pathway. Cell Death Dis 2020; 11:545. [PMID: 32683410 PMCID: PMC7368861 DOI: 10.1038/s41419-020-02756-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
Skeletal muscle atrophy is one of the clinical symptoms of myotonic dystrophy type 1 (DM1). A decline in skeletal muscle regeneration is an important contributor to muscle atrophy. Skeletal muscle satellite cells (SSCs) drive skeletal muscle regeneration. Increased autophagy can reduce the proliferative capacity of SSCs, which plays an important role in the early regeneration of damaged skeletal muscle in DM1. Discovering new ways to restore SSC proliferation may aid in the identification of new therapeutic targets for the treatment of skeletal muscle atrophy in DM1. In the pathogenesis of DM1, muscleblind-like 1 (MBNL1) protein is generally considered to form nuclear RNA foci and disturb the RNA-splicing function. However, the role of MBNL1 in SSC proliferation in DM1 has not been reported. In this study, we obtained SSCs differentiated from normal DM1-04-induced pluripotent stem cells (iPSCs), DM1-03 iPSCs, and DM1-13-3 iPSCs edited by transcription activator-like (TAL) effector nucleases (TALENs) targeting CTG repeats, and primary SSCs to study the pathogenesis of DM1. DM1 SSC lines and primary SSCs showed decreased MBNL1 expression and elevated autophagy levels. However, DM1 SSCs edited by TALENs showed increased cytoplasmic distribution of MBNL1, reduced levels of autophagy, increased levels of phosphorylated mammalian target of rapamycin (mTOR), and improved proliferation rates. In addition, we confirmed that after MBNL1 overexpression, the proliferative capability of DM1 SSCs and the level of phosphorylated mTOR were enhanced, while the autophagy levels were decreased. Our data also demonstrated that the proliferative capability of DM1 SSCs was enhanced after autophagy was inhibited by overexpressing mTOR. Finally, treatment with rapamycin (an mTOR inhibitor) was shown to abolish the increased proliferation capability of DM1 SSCs due to MBNL1 overexpression. Taken together, these data suggest that MBNL1 reverses the proliferation defect of SSCs in DM1 by inhibiting autophagy via the mTOR pathway.
Collapse
|
11
|
Li S, Hao M, Li B, Chen M, Chen J, Tang J, Hong S, Min J, Hu M, Hong L. CACNA1H downregulation induces skeletal muscle atrophy involving endoplasmic reticulum stress activation and autophagy flux blockade. Cell Death Dis 2020; 11:279. [PMID: 32332705 PMCID: PMC7181873 DOI: 10.1038/s41419-020-2484-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023]
Abstract
Multiple vaginal delivery (MVD) is an important factor for pelvic floor muscle (PFM) function decline and pelvic floor dysfunction (PFD). PFD is common in middle-aged and elderly women, but its pathogenesis is not clear. In this study, we found that the expression of CACNA1H was lower in the PFM of old mice after MVD compared with old or adult mice. In in-vitro studies, we found that treatment with the T-type Ca2+ channel (T-channel) inhibitor NNC-55 or downregulation of the CACNA1H gene by siRNA intervention promoted myotube atrophy and apoptosis. Mechanistically, we revealed that NNC-55 increased the expression of GRP78 and DDIT3 in myotubes, indicating endoplasmic reticulum stress (ERS) activation, and that the IRE1 and PERK pathways might be involved in this effect. NNC-55 induced the formation of autophagosomes but inhibited autophagy flux. Moreover, rapamycin, an autophagy activator, did not rescue myotube atrophy or apoptosis induced by NNC-55, and the autophagy inhibitors 3-MA and HCQ accelerated this damage. Further studies showed that the ERS inhibitors 4-PBA and TUDAC relieved NNC-55-induced damage and autophagy flux blockade. Finally, we found multisite muscle atrophy and decreased muscle function in Cacna1h−/− (TH-null) mice, as well as increased autophagy inhibition and apoptotic signals in the PFM of old WT mice after MVD and TH-null mice. Taken together, our results suggest that MVD-associated PFD is partially attributed to CACNA1H downregulation-induced PFM atrophy and that ERS is a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Suting Li
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Menglei Hao
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Bingshu Li
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Mao Chen
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Jue Chen
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Jianming Tang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Shasha Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Jie Min
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Ming Hu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China.
| |
Collapse
|
12
|
Chandra G, Defour A, Mamchoui K, Pandey K, Mishra S, Mouly V, Sreetama S, Mahad Ahmad M, Mahjneh I, Morizono H, Pattabiraman N, Menon AK, Jaiswal JK. Dysregulated calcium homeostasis prevents plasma membrane repair in Anoctamin 5/TMEM16E-deficient patient muscle cells. Cell Death Discov 2019; 5:118. [PMID: 31341644 PMCID: PMC6639303 DOI: 10.1038/s41420-019-0197-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 01/30/2023] Open
Abstract
Autosomal recessive mutations in Anoctamin 5 (ANO5/TMEM16E), a member of the transmembrane 16 (TMEM16) family of Ca2+-activated ion channels and phospholipid scramblases, cause adult-onset muscular dystrophies (limb girdle muscular dystrophy 2L (LGMD2L) and Miyoshi Muscular Dystrophy (MMD3). However, the molecular role of ANO5 is unclear and ANO5 knockout mouse models show conflicting requirements of ANO5 in muscle. To study the role of ANO5 in human muscle cells we generated a myoblast line from a MMD3-patient carrying the c.2272C>T mutation, which we find causes the mutant protein to be degraded. The patient myoblasts exhibit normal myogenesis, but are compromised in their plasma membrane repair (PMR) ability. The repair deficit is linked to the poor ability of the endoplasmic reticulum (ER) to clear cytosolic Ca2+ increase caused by focal plasma membrane injury. Expression of wild-type ANO5 or pharmacological prevention of injury-triggered cytosolic Ca2+ overload enable injured patient muscle cells to repair. A homology model of ANO5 shows that several of the known LGMD2L/MMD3 patient mutations line the transmembrane region of the protein implicated in its channel activity. These results point to a role of cytosolic Ca2+ homeostasis in PMR, indicate a role for ANO5 in ER-mediated cytosolic Ca2+ uptake and identify normalization of cytosolic Ca2+ homeostasis as a potential therapeutic approach to treat muscular dystrophies caused by ANO5 deficit.
Collapse
Affiliation(s)
- Goutam Chandra
- 1Center of Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010 USA
| | - Aurelia Defour
- 1Center of Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010 USA.,7Present Address: Aix Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, 13385 Marseille, France
| | - Kamel Mamchoui
- 2Center for Research in Myology, Sorbonne Universités, UPMC Université Paris 06, INSERM UMRS974, 47 Boulevard de l'hôpital, 75013 Paris, France
| | - Kalpana Pandey
- 3Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065 USA
| | - Soumya Mishra
- 1Center of Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010 USA
| | - Vincent Mouly
- 2Center for Research in Myology, Sorbonne Universités, UPMC Université Paris 06, INSERM UMRS974, 47 Boulevard de l'hôpital, 75013 Paris, France
| | - SenChandra Sreetama
- 1Center of Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010 USA
| | - Mohammad Mahad Ahmad
- 1Center of Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010 USA
| | - Ibrahim Mahjneh
- 4Department of Neurology, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Hiroki Morizono
- 1Center of Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010 USA.,5Department of Genomics and Precision Medicine, George Washington University, Washington, DC 20037 USA
| | | | - Anant K Menon
- 3Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065 USA
| | - Jyoti K Jaiswal
- 1Center of Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010 USA.,5Department of Genomics and Precision Medicine, George Washington University, Washington, DC 20037 USA
| |
Collapse
|
13
|
Zito E. Targeting ER stress/ER stress response in myopathies. Redox Biol 2019; 26:101232. [PMID: 31181458 PMCID: PMC6556854 DOI: 10.1016/j.redox.2019.101232] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/14/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022] Open
Abstract
There is more skeletal muscle tissue in the body than any other tissue and, as it is the organ of the majority of metabolic activity, muscle defect can affect the health of the entire body. Endoplasmic reticulum (ER) stress due to defects in protein folding/degradation balance, altered calcium and lipid levels and alterations in ER-mitochondria contacts has recently been recognised as the pathogenic cause of many different myopathies. In addition, a maladaptive ER stress response triggered by ER stress and mediated by three ER stress sensors (PERK, IRE1 and ATF6) is involved in a failure to relieve muscle tissue from this stress. Targeting ER stress and the ER stress response pathway offers a broad range of opportunities for treating myopathies but, as the inhibition of the three ER stress sensors may not be safe because it could lead to unexpected effects; it therefore calls for careful analysis of the changes in downstream signal transduction in the different myopathies so these sub-pathways can be pharmacologically targeted. This review summarises the known inhibitors of the ER stress response and the successful results obtained using some of them in mouse models of muscle diseases caused by ER stress/ER stress response. ER stress and the ER stress response are pathogenic causes of myopathies. Pre-clinical models improve our understanding of the safest branch or sub-branch of the ER stress response to inhibit. The inhibitors of signalling downstream of the three ER stress sensors is the safest pharmacological option. Chemical chaperones are promising pharmacological means of treating myopathies.
Collapse
Affiliation(s)
- Ester Zito
- Dulbecco Telethon Institute at IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
| |
Collapse
|
14
|
Afroze D, Kumar A. ER stress in skeletal muscle remodeling and myopathies. FEBS J 2019; 286:379-398. [PMID: 29239106 PMCID: PMC6002870 DOI: 10.1111/febs.14358] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/24/2017] [Accepted: 12/07/2017] [Indexed: 12/18/2022]
Abstract
Skeletal muscle is a highly plastic tissue in the human body that undergoes extensive adaptation in response to environmental cues, such as physical activity, metabolic perturbation, and disease conditions. The endoplasmic reticulum (ER) plays a pivotal role in protein folding and calcium homeostasis in many mammalian cell types, including skeletal muscle. However, overload of misfolded or unfolded proteins in the ER lumen cause stress, which results in the activation of a signaling network called the unfolded protein response (UPR). The UPR is initiated by three ER transmembrane sensors: protein kinase R-like endoplasmic reticulum kinase, inositol-requiring protein 1α, and activating transcription factor 6. The UPR restores ER homeostasis through modulating the rate of protein synthesis and augmenting the gene expression of many ER chaperones and regulatory proteins. However, chronic heightened ER stress can also lead to many pathological consequences including cell death. Accumulating evidence suggests that ER stress-induced UPR pathways play pivotal roles in the regulation of skeletal muscle mass and metabolic function in multiple conditions. They have also been found to be activated in skeletal muscle under catabolic states, degenerative muscle disorders, and various types of myopathies. In this article, we have discussed the recent advancements toward understanding the role and mechanisms through which ER stress and individual arms of the UPR regulate skeletal muscle physiology and pathology.
Collapse
Affiliation(s)
- Dil Afroze
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Immunology and Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, Kashmir, INDIA
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
15
|
McMurtrey JJ, Tso MOM. A review of the immunologic findings observed in retinitis pigmentosa. Surv Ophthalmol 2018; 63:769-781. [PMID: 29551596 DOI: 10.1016/j.survophthal.2018.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 12/20/2022]
Abstract
Most patients suffering from retinitis pigmentosa (RP) inherit the disorder; however, the immune-pathologic features associated with this disease have yet to be extensively studied. Six reports correlate antiretinal immune activity with vision deterioration in RP patients. Some of these patients have sporadic RP that occurs in excess of expected gene segregation during inheritance. The hypothesis that a primary immune-mediated disease process occurs in this sporadic group is supported by significant associations of RP with autoimmune endocrinopathies and other immune-related conditions or factors; however, no immunologic difference regarding RP family history is reported in the peripheral blood studies of RP patients. Twenty-one percent to 51% of RP patients display antiretinal antibodies, whereas 19-58% have antiretinal lymphocyte reactivity to retinal extract, and 60-85% have activated T cells. Mutations in animal models of RP have been shown to cause endoplasmic reticulum stress that may initiate immunopathology for genetic RP, but oxidative stress also encourages immune cytotoxicity. In addition, necrotic cell death is evident, which promotes inflammatory conditions. We review mechanisms and evidence for an occult inflammation in genetic RP and examine reports of efficacy in retarding RP progression with anti-inflammatory agents in clinical trials.
Collapse
Affiliation(s)
- John J McMurtrey
- The Wilmer Ophthalmological Institute, The Johns Hopkins University and Hospital, Baltimore, Maryland, USA.
| | - Mark O M Tso
- The Wilmer Ophthalmological Institute, The Johns Hopkins University and Hospital, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Targeting the enhanced ER stress response in Marinesco-Sjögren syndrome. J Neurol Sci 2017; 385:49-56. [PMID: 29406913 DOI: 10.1016/j.jns.2017.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 11/11/2017] [Accepted: 12/08/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND OBJECTIVE Marinesco-Sjögren syndrome (MSS) is an autosomal recessive infantile-onset disorder characterized by cataracts, cerebellar ataxia, and progressive myopathy caused by mutation of SIL1. In mice, a defect in SIL1 causes endoplasmic reticulum (ER) chaperone dysfunction, leading to unfolded protein accumulation and increased ER stress. However, ER stress and the unfolded protein response (UPR) have not been investigated in MSS patient-derived cells. METHODS Lymphoblastoid cell lines (LCLs) were established from four MSS patients. Spontaneous and tunicamycin-induced ER stress and the UPR were investigated in MSS-LCLs. Expression of UPR markers was analyzed by western blotting. ER stress-induced apoptosis was analyzed by flow cytometry. The cytoprotective effects of ER stress modulators were also examined. RESULTS MSS-LCLs exhibited increased spontaneous ER stress and were highly susceptible to ER stress-induced apoptosis. The inositol-requiring protein 1α (IRE1α)-X-box-binding protein 1 (XBP1) pathway was mainly upregulated in MSS-LCLs. Tauroursodeoxycholic acid (TUDCA) attenuated ER stress-induced apoptosis. CONCLUSION MSS patient-derived cells exhibit increased ER stress, an activated UPR, and susceptibility to ER stress-induced death. TUDCA reduces ER stress-induced death of MSS patient-derived cells. The potential of TUDCA as a therapeutic agent for MSS could be explored further in preclinical studies.
Collapse
|
17
|
Nakamori M, Hamanaka K, Thomas JD, Wang ET, Hayashi YK, Takahashi MP, Swanson MS, Nishino I, Mochizuki H. Aberrant Myokine Signaling in Congenital Myotonic Dystrophy. Cell Rep 2017; 21:1240-1252. [PMID: 29091763 PMCID: PMC5689469 DOI: 10.1016/j.celrep.2017.10.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/02/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023] Open
Abstract
Myotonic dystrophy types 1 (DM1) and 2 (DM2) are dominantly inherited neuromuscular disorders caused by a toxic gain of function of expanded CUG and CCUG repeats, respectively. Although both disorders are clinically similar, congenital myotonic dystrophy (CDM), a severe DM form, is found only in DM1. CDM is also characterized by muscle fiber immaturity not observed in adult DM, suggesting specific pathological mechanisms. Here, we revealed upregulation of the interleukin-6 (IL-6) myokine signaling pathway in CDM muscles. We also found a correlation between muscle immaturity and not only IL-6 expression but also expanded CTG repeat length and CpG methylation status upstream of the repeats. Aberrant CpG methylation was associated with transcriptional dysregulation at the repeat locus, increasing the toxic RNA burden that upregulates IL-6. Because the IL-6 pathway is involved in myocyte maturation and muscle atrophy, our results indicate that enhanced RNA toxicity contributes to severe CDM phenotypes through aberrant IL-6 signaling.
Collapse
Affiliation(s)
- Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | - Kohei Hamanaka
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - James D Thomas
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Eric T Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Yukiko K Hayashi
- Department of Pathophysiology, Tokyo Medical University, Shinjuku, Tokyo 160-0022, Japan
| | - Masanori P Takahashi
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Takahashi N, Kimura AP, Naito S, Yoshida M, Kumano O, Suzuki T, Itaya S, Moriya M, Tsuji M, Ieko M. Sarcolipin expression is repressed by endoplasmic reticulum stress in C2C12 myotubes. J Physiol Biochem 2017; 73:531-538. [DOI: 10.1007/s13105-017-0578-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/29/2017] [Indexed: 01/08/2023]
|
19
|
Abstract
Background Formation of 43S and 48S preinitiation complexes plays an important role in muscle protein synthesis. There is no muscle-wasting mouse model caused by a repressed 43S preinitiation complex assembly. Objective The aim of the present study was to develop a convenient mouse model of skeletal muscle wasting with repressed 43S preinitiation complex assembly. Material and methods A ligand-activatable PERK derivative Fv2E-PERK causes the phosphorylation of eukaryotic initiation factor 2α (eIF2α), which inhibits 43S preinitiation complex assembly. Thus, muscle atrophic phenotypes, intracellular signaling pathways, and intracellular free amino acid profiles were investigated in human skeletal muscle α-actin (HSA) promoter-driven Fv2E-PERK transgenic (Tg) mice. Results HSA-Fv2E-PERK Tg mice treated with the artificial dimerizer AP20187 phosphorylates eIF2α in skeletal muscles and leads to severe muscle atrophy within a few days of ligand injection. Muscle atrophy was accompanied by a counter regulatory activation of mTORC1 signaling. Moreover, intracellular free amino acid levels were distinctively altered in the skeletal muscles of HSA-Fv2E-PERK Tg mice. Conclusions As a novel model of muscle wasting, HSA-Fv2E-PERK Tg mice provide a convenient tool for studying the pathogenesis of muscle loss and for assessing putative therapeutics.
Collapse
|
20
|
Pauly M, Angebault-Prouteau C, Dridi H, Notarnicola C, Scheuermann V, Lacampagne A, Matecki S, Fauconnier J. ER stress disturbs SR/ER-mitochondria Ca 2+ transfer: Implications in Duchenne muscular dystrophy. Biochim Biophys Acta Mol Basis Dis 2017. [PMID: 28625916 DOI: 10.1016/j.bbadis.2017.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Besides its role in calcium (Ca2+) homeostasis, the sarco-endoplamic reticulum (SR/ER) controls protein folding and is tethered to mitochondria. Under pathophysiological conditions the unfolded protein response (UPR) is associated with disturbance in SR/ER-mitochondria crosstalk. Here, we investigated whether ER stress altered SR/ER-mitochondria links, Ca2+ handling and muscle damage in WT (Wild Type) and mdx mice, the murine model of Duchenne Muscular Dystrophy (DMD). In WT mice, the SR/ER-mitochondria links were decreased in isolated FDB muscle fibers after injection of ER stress activator tunicamycin (TM). Ca2+ imaging revealed an increase of cytosolic Ca2+ transient and a decrease of mitochondrial Ca2+ uptake. The force generating capacity of muscle dropped after TM. This impaired contractile function was accompanied by an increase in autophagy markers and calpain-1 activation. Conversely, ER stress inhibitors restored SR/ER-mitochondria links, mitochondrial Ca2+ uptake and improved diaphragm contractility in mdx mice. Our findings demonstrated that ER stress-altered SR/ER-mitochondria links, disturbed Ca2+ handling and muscle function in WT and mdx mice. Thus, ER stress may open up a prospect of new therapeutic targets in DMD.
Collapse
Affiliation(s)
- Marion Pauly
- Inserm U1055, Hypoxie et Physiopathologies, Université Grenoble Alpes, Grenoble, France; Inserm U1046, UMR CNRS 9214, Université Montpellier, CHRU Montpellier, Montpellier, France
| | | | - Haikel Dridi
- Inserm U1046, UMR CNRS 9214, Université Montpellier, CHRU Montpellier, Montpellier, France
| | - Cécile Notarnicola
- Inserm U1046, UMR CNRS 9214, Université Montpellier, CHRU Montpellier, Montpellier, France
| | - Valérie Scheuermann
- Inserm U1046, UMR CNRS 9214, Université Montpellier, CHRU Montpellier, Montpellier, France
| | - Alain Lacampagne
- Inserm U1046, UMR CNRS 9214, Université Montpellier, CHRU Montpellier, Montpellier, France
| | - Stefan Matecki
- Inserm U1046, UMR CNRS 9214, Université Montpellier, CHRU Montpellier, Montpellier, France
| | - Jérémy Fauconnier
- Inserm U1046, UMR CNRS 9214, Université Montpellier, CHRU Montpellier, Montpellier, France.
| |
Collapse
|
21
|
Bohnert KR, McMillan JD, Kumar A. Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease. J Cell Physiol 2017; 233:67-78. [PMID: 28177127 DOI: 10.1002/jcp.25852] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 12/17/2022]
Abstract
Skeletal muscle is the most abundant tissue in the human body and can adapt its mass as a consequence of physical activity, metabolism, growth factors, and disease conditions. Skeletal muscle contains an extensive network of endoplasmic reticulum (ER), called sarcoplasmic reticulum, which plays an important role in the regulation of proteostasis and calcium homeostasis. In many cell types, environmental and genetic factors that disrupt ER function cause an accumulation of misfolded and unfolded proteins in the ER lumen that ultimately leads to ER stress. To alleviate the stress and restore homeostasis, the ER activates a signaling network called the unfolded protein response (UPR). The UPR has three arms, which regulate protein synthesis and expression of many ER chaperone and regulatory proteins. However, the role of individual UPR pathways in skeletal muscle has just begun to be investigated. Recent studies suggest that UPR pathways play pivotal roles in muscle stem cell homeostasis, myogenic differentiation, and regeneration of injured skeletal muscle. Moreover, markers of ER stress and the UPR are activated in skeletal muscle in diverse conditions such as exercise, denervation, starvation, high fat diet, cancer cachexia, and aging. Accumulating evidence also suggests that ER stress may have important roles in the pathogenesis of inflammatory myopathies and genetic muscle disorders. The purpose of this review article is to discuss the role and potential mechanisms by which ER stress and the individual arms of the UPR regulate skeletal muscle formation, plasticity, and function in various physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Kyle R Bohnert
- Department of Anatomical Sciences Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Joseph D McMillan
- Department of Anatomical Sciences Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Ashok Kumar
- Department of Anatomical Sciences Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
22
|
Manole E, Bastian AE, Butoianu N, Goebel HH. Myositis non-inflammatory mechanisms: An up-dated review. J Immunoassay Immunochem 2017; 38:115-126. [DOI: 10.1080/15321819.2017.1298525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Emilia Manole
- “Victor Babes” National Institute of Pathology, Bucharest, Romania
- Research Center, Colentina Clinical Hospital, Bucharest, Romania
| | - Alexandra E. Bastian
- Pathology Department, Colentina Clinical Hospital, Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Niculina Butoianu
- Pediatric Neurology Department, Clinical Hospital “Prof. Dr. Al. Obregia”, Bucharest, Romania
| | - Hans H. Goebel
- Department of Neuropathology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
23
|
Bohnert KR, Gallot YS, Sato S, Xiong G, Hindi SM, Kumar A. Inhibition of ER stress and unfolding protein response pathways causes skeletal muscle wasting during cancer cachexia. FASEB J 2016; 30:3053-68. [PMID: 27206451 PMCID: PMC5001510 DOI: 10.1096/fj.201600250rr] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/12/2016] [Indexed: 12/25/2022]
Abstract
Cachexia is a devastating syndrome that causes morbidity and mortality in a large number of patients with cancer. However, the mechanisms of cancer cachexia remain poorly understood. Accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes stress. The ER responds to this stress through activating certain pathways commonly known as the unfolding protein response (UPR). The main function of UPR is to restore homeostasis, but excessive or prolonged activation of UPR can lead to pathologic conditions. In this study, we examined the role of ER stress and UPR in regulation of skeletal muscle mass in naïve conditions and during cancer cachexia. Our results demonstrate that multiple markers of ER stress are highly activated in skeletal muscle of Lewis lung carcinoma (LLC) and Apc(Min/+) mouse models of cancer cachexia. Treatment of mice with 4-phenylbutyrate (4-PBA), a chemical chaperon and a potent inhibitor of ER stress, significantly reduced skeletal muscle strength and mass in both control and LLC-bearing mice. Blocking the UPR also increased the proportion of fast-type fibers in soleus muscle of both control and LLC-bearing mice. Inhibition of UPR reduced the activity of Akt/mTOR pathway and increased the expression of the components of the ubiquitin-proteasome system and autophagy in LLC-bearing mice. Moreover, we found that the inhibition of UPR causes severe atrophy in cultured myotubes. Our study provides initial evidence that ER stress and UPR pathways are essential for maintaining skeletal muscle mass and strength and for protection against cancer cachexia.-Bohnert, K. R., Gallot, Y. S., Sato, S., Xiong, G., Hindi, S. M., Kumar, A. Inhibition of ER stress and unfolding protein response pathways causes skeletal muscle wasting during cancer cachexia.
Collapse
Affiliation(s)
- Kyle R Bohnert
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Yann S Gallot
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Shuichi Sato
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Guangyan Xiong
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Sajedah M Hindi
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
24
|
Ravel-Chapuis A, Klein Gunnewiek A, Bélanger G, Crawford Parks TE, Côté J, Jasmin BJ. Staufen1 impairs stress granule formation in skeletal muscle cells from myotonic dystrophy type 1 patients. Mol Biol Cell 2016; 27:1728-39. [PMID: 27030674 PMCID: PMC4884064 DOI: 10.1091/mbc.e15-06-0356] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 03/25/2016] [Indexed: 11/11/2022] Open
Abstract
Myotonic dystrophy (DM1) is caused by an expansion of CUG repeats (CUG(exp)) in the DMPK mRNA 3'UTR. CUG(exp)-containing mRNAs become toxic to cells by misregulating RNA-binding proteins. Here we investigated the consequence of this RNA toxicity on the cellular stress response. We report that cell stress efficiently triggers formation of stress granules (SGs) in proliferating, quiescent, and differentiated muscle cells, as shown by the appearance of distinct cytoplasmic TIA-1- and DDX3-containing foci. We show that Staufen1 is also dynamically recruited into these granules. Moreover, we discovered that DM1 myoblasts fail to properly form SGs in response to arsenite. This blockage was not observed in DM1 fibroblasts, demonstrating a cell type-specific defect. DM1 myoblasts display increased expression and sequestration of toxic CUG(exp) mRNAs compared with fibroblasts. Of importance, down-regulation of Staufen1 in DM1 myoblasts rescues SG formation. Together our data show that Staufen1 participates in the inhibition of SG formation in DM1 myoblasts. These results reveal that DM1 muscle cells fail to properly respond to stress, thereby likely contributing to the complex pathogenesis of DM1.
Collapse
Affiliation(s)
- Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Amanda Klein Gunnewiek
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Guy Bélanger
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Tara E Crawford Parks
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
25
|
Gurianova V, Stroy D, Ciccocioppo R, Gasparova I, Petrovic D, Soucek M, Dosenko V, Kruzliak P. Stress response factors as hub-regulators of microRNA biogenesis: implication to the diseased heart. Cell Biochem Funct 2015; 33:509-18. [PMID: 26659949 DOI: 10.1002/cbf.3151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/21/2015] [Accepted: 10/02/2015] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are important regulators of heart function and then an intriguing therapeutic target for plenty of diseases. The problem raised is that many data in this area are contradictory, thus limiting the use of miRNA-based therapy. The goal of this review is to describe the hub-mechanisms regulating the biogenesis and function of miRNAs, which could help in clarifying some contradictions in the miRNA world. With this scope, we analyse an array of factors, including several known agents of stress response, mediators of epigenetic changes, regulators of alternative splicing, RNA editing, protein synthesis and folding and proteolytic systems. All these factors are important in cardiovascular function and most of them regulate miRNA biogenesis, but their influence on miRNAs was shown for non-cardiac cells or some specific cardiac pathologies. Finally, we consider that studying the stress response factors, which are upstream regulators of miRNA biogenesis, in the diseased heart could help in (1) explaining some contradictions concerning miRNAs in heart pathology, (2) making the role of miRNAs in pathogenesis of cardiovascular disease more clear, and therefore, (3) getting powerful targets for its molecular therapy.
Collapse
Affiliation(s)
- Veronika Gurianova
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Dmytro Stroy
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Rachele Ciccocioppo
- Clinica Medica I; Fondazione IRCCS Policlinico San Matteo, Università degli Studi di Pavia, Italy
| | - Iveta Gasparova
- Institute of Biology, Genetics and Medical Genetics, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovak Republic
| | - Daniel Petrovic
- Institute of Histology and Embryology, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Miroslav Soucek
- Second Department of Internal Medicine, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Victor Dosenko
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Peter Kruzliak
- Second Department of Internal Medicine, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic.,Laboratory of Structural Biology and Proteomics, Faculty of Pharmacy, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| |
Collapse
|
26
|
Chen D, Wang Y, Chin ER. Activation of the endoplasmic reticulum stress response in skeletal muscle of G93A*SOD1 amyotrophic lateral sclerosis mice. Front Cell Neurosci 2015; 9:170. [PMID: 26041991 PMCID: PMC4435075 DOI: 10.3389/fncel.2015.00170] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/16/2015] [Indexed: 12/14/2022] Open
Abstract
Mutations in Cu/Zn superoxide dismutase (SOD1) are one of the genetic causes of Amyotrophic Lateral Sclerosis (ALS). Although the primary symptom of ALS is muscle weakness, the link between SOD1 mutations, cellular dysfunction and muscle atrophy and weakness is not well understood. The purpose of this study was to characterize cellular markers of ER stress in skeletal muscle across the lifespan of G93A*SOD1 (ALS-Tg) mice. Muscles were obtained from ALS-Tg and age-matched wild type (WT) mice at 70d (pre-symptomatic), 90d and 120–140d (symptomatic) and analyzed for ER stress markers. In white gastrocnemius (WG) muscle, ER stress sensors PERK and IRE1α were upregulated ~2-fold at 70d and remained (PERK) or increased further (IRE1α) at 120–140d. Phospho-eIF2α, a downstream target of PERK and an inhibitor of protein translation, was increased by 70d and increased further to 12.9-fold at 120–140d. IRE1α upregulation leads to increased splicing of X-box binding protein 1 (XBP-1) to the XBP-1s isoform. XBP-1s transcript was increased at 90d and 120–140d indicating activation of IRE1α signaling. The ER chaperone/heat shock protein Grp78/BiP was upregulated 2-fold at 70d and 90d and increased to 6.1-fold by 120–140d. The ER-stress-specific apoptotic signaling protein CHOP was upregulated 2-fold at 70d and 90d and increased to 13.3-fold at 120–140d indicating progressive activation of an apoptotic signal in muscle. There was a greater increase in Grp78/BiP and CHOP in WG vs. the more oxidative red gastrocnemius (RG) ALS-Tg at 120–140d indicating greater ER stress and apoptosis in fast glycolytic muscle. These data show that the ER stress response is activated in skeletal muscle of ALS-Tg mice by an early pre-symptomatic age and increases with disease progression. These data suggest a mechanism by which myocellular ER stress leads to reduced protein translation and contributes to muscle atrophy and weakness in ALS.
Collapse
Affiliation(s)
- Dapeng Chen
- School of Public Health, University of Maryland MD, USA
| | - Yan Wang
- Proteomics Core Facility, College of Computer, Mathematics and Natural Sciences, University of Maryland MD, USA
| | - Eva R Chin
- School of Public Health, University of Maryland MD, USA
| |
Collapse
|
27
|
Lightfoot AP, McArdle A, Jackson MJ, Cooper RG. In the idiopathic inflammatory myopathies (IIM), do reactive oxygen species (ROS) contribute to muscle weakness? Ann Rheum Dis 2015; 74:1340-6. [DOI: 10.1136/annrheumdis-2014-207172] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/05/2015] [Indexed: 12/13/2022]
Abstract
The idiopathic inflammatory myopathies (IIMs) are a group of rare autoimmune disorders, collectively known as myositis. Affected patients present with proximal muscle weakness, which usually improves following treatment with immunosuppressants, but often incompletely so, thus many patients remain weak. IIMs are characterised histologically by inflammatory cell infiltrates into skeletal muscle and overexpression of major histocompatibility complex I on muscle cell surfaces. Although inflammatory cell infiltrates represent a major feature of myositis there is growing evidence that muscle weakness correlates only poorly with the degree of cellular infiltration, while weakness may in fact precede such infiltrations. The mechanisms underpinning such non-immune cell mediated weakness in IIM are poorly understood. Activation of the endoplasmic reticulum stress pathways appears to be a potential contributor. Data from non-muscle cells indicate that endoplasmic reticulum stress results in altered redox homeostasis capable of causing oxidative damage. In myopathological situations other than IIM, as seen in ageing and sepsis, evidence supports an important role for reactive oxygen species (ROS). Modified ROS generation is associated with mitochondrial dysfunction, depressed force generation and activation of muscle catabolic and autophagy pathways. Despite the growing evidence demonstrating a key role for ROS in skeletal muscle dysfunction in myopathologies other than IIM, no research has yet investigated the role of modified generation of ROS in inducing the weakness characteristic of IIM. This article reviews current knowledge regarding muscle weakness in the absence of immune cells in IIM, and provides a background to the potential role of modified ROS generation as a mechanism of muscle dysfunction. The authors suggest that ROS-mediated mechanisms are potentially involved in non-immune cell mediated weakness seen in IIM and outline how these mechanisms might be investigated in this context. This appears a timely strategy, given recent developments in targeted therapies which specifically modify ROS generation.
Collapse
|
28
|
Wojciechowska M, Olejniczak M, Galka-Marciniak P, Jazurek M, Krzyzosiak WJ. RAN translation and frameshifting as translational challenges at simple repeats of human neurodegenerative disorders. Nucleic Acids Res 2014; 42:11849-64. [PMID: 25217582 PMCID: PMC4231732 DOI: 10.1093/nar/gku794] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Repeat-associated disorders caused by expansions of short sequences have been classified as coding and noncoding and are thought to be caused by protein gain-of-function and RNA gain-of-function mechanisms, respectively. The boundary between such classifications has recently been blurred by the discovery of repeat-associated non-AUG (RAN) translation reported in spinocerebellar ataxia type 8, myotonic dystrophy type 1, fragile X tremor/ataxia syndrome and C9ORF72 amyotrophic lateral sclerosis and frontotemporal dementia. This noncanonical translation requires no AUG start codon and can initiate in multiple frames of CAG, CGG and GGGGCC repeats of the sense and antisense strands of disease-relevant transcripts. RNA structures formed by the repeats have been suggested as possible triggers; however, the precise mechanism of the translation initiation remains elusive. Templates containing expansions of microsatellites have also been shown to challenge translation elongation, as frameshifting has been recognized across CAG repeats in spinocerebellar ataxia type 3 and Huntington's disease. Determining the critical requirements for RAN translation and frameshifting is essential to decipher the mechanisms that govern these processes. The contribution of unusual translation products to pathogenesis needs to be better understood. In this review, we present current knowledge regarding RAN translation and frameshifting and discuss the proposed mechanisms of translational challenges imposed by simple repeat expansions.
Collapse
Affiliation(s)
- Marzena Wojciechowska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Marta Olejniczak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Paulina Galka-Marciniak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Magdalena Jazurek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| |
Collapse
|
29
|
Ogborn DI, McKay BR, Crane JD, Parise G, Tarnopolsky MA. The unfolded protein response is triggered following a single, unaccustomed resistance-exercise bout. Am J Physiol Regul Integr Comp Physiol 2014; 307:R664-9. [PMID: 25009220 DOI: 10.1152/ajpregu.00511.2013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endoplasmic reticulum (ER) stress results from an imbalance between the abundance of synthesized proteins and the folding capacity of the ER. In response, the unfolded protein response (UPR) attempts to restore ER function by attenuating protein synthesis and inducing chaperone expression. Resistance exercise (RE) stimulates protein synthesis; however, a postexercise accumulation of unfolded proteins may activate the UPR. Aging may impair protein folding, and the accumulation of oxidized and misfolded proteins may stimulate the UPR at rest in aged muscle. Eighteen younger (n = 9; 21 ± 3 yr) and older (n = 9; 70 ± 4 yr) untrained men completed a single, unilateral bout of RE using the knee extensors (four sets of 10 repetitions at 75% of one repetition maximum on the leg press and leg extension) to determine whether the UPR is increased in resting, aged muscle and whether RE stimulates the UPR. Muscle biopsies were taken from the nonexercised and exercised vastus lateralis at 3, 24, and 48 h postexercise. Age did not affect any of the proteins and transcripts related to the UPR. Glucose-regulated protein 78 (GRP78) and protein kinase R-like ER protein kinase (PERK) proteins were increased at 48 h postexercise, whereas inositol-requiring enzyme 1 alpha (IRE1α) was elevated at 24 h and 48 h. Despite elevated protein, GRP78 and PERK mRNA was unchanged; however, IRE1α mRNA was increased at 24 h postexercise. Activating transcription factor 6 (ATF6) mRNA increased at 24 h and 48 h, whereas ATF4, CCAAT/enhancer-binding protein homologous protein (CHOP), and growth arrest and DNA damage protein 34 mRNA were unchanged. These data suggest that RE activates specific pathways of the UPR (ATF6/IRE1α), whereas PERK/eukaryotic initiation factor 2 alpha/CHOP does not. In conclusion, acute RE results in UPR activation, irrespective of age.
Collapse
Affiliation(s)
- Daniel I Ogborn
- Department of Medical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Bryon R McKay
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and
| | - Justin D Crane
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and
| | - Gianni Parise
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and
| | - Mark A Tarnopolsky
- Department of Pediatrics and Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
30
|
Rodríguez Cruz PM, Luo YB, Miller J, Junckerstorff RC, Mastaglia FL, Fabian V. An analysis of the sensitivity and specificity of MHC-I and MHC-II immunohistochemical staining in muscle biopsies for the diagnosis of inflammatory myopathies. Neuromuscul Disord 2014; 24:1025-35. [PMID: 25153265 DOI: 10.1016/j.nmd.2014.06.436] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/17/2014] [Accepted: 06/20/2014] [Indexed: 01/09/2023]
Abstract
Although there have been several previous reports of immunohistochemical staining for MHC antigens in muscle biopsies, there appears to be a lack of consensus about its routine use in the diagnostic evaluation of biopsies from patients with suspected inflammatory myopathy. Positive MHC-I staining is nonspecific but is widely used as a marker for inflammatory myopathy, whilst the role of MHC-II staining is not clearly defined. We investigated the sensitivity and specificity of MHC-I and MHC-II immunostaining for the diagnosis of inflammatory myopathy in a large group of biopsies from a single reference laboratory. Positive staining for MHC-I was found to have a high sensitivity in biopsies from patients with inflammatory myopathy but a very low specificity, as it was also common in other non-inflammatory myopathies and neurogenic disorders. On the other hand, MHC-II positivity had a much higher specificity in all major subgroups of inflammatory myopathy, especially inclusion body myositis. The findings indicate that the combination of MHC-I and MHC-II staining results in a higher degree of specificity for the diagnosis of inflammatory myopathy and that in biopsies with inflammation, positive MHC-II staining strongly supports the diagnosis of an immune-mediated myopathy. We recommend that immunohistochemical staining for both MHC-I and MHC-II should be included routinely in the diagnostic evaluation of muscle biopsies from patients with suspected inflammatory myopathy. However, as the sensitivity and interpretation of MHC staining may depend on the technique used, further studies are needed to compare procedures in different centres and develop standardised protocols.
Collapse
Affiliation(s)
- Pedro M Rodríguez Cruz
- Centre for Neuromuscular and Neurological Disorders, Western Australian Neuroscience Research Institute, Perth, Australia; Department of Neurology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Yue-Bei Luo
- Centre for Neuromuscular and Neurological Disorders, Western Australian Neuroscience Research Institute, Perth, Australia; Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - James Miller
- Department of Neurology, Royal Victoria Infirmary, Newcastle-upon-Tyne, United Kingdom
| | - Reimar C Junckerstorff
- Section of Neuropathology, Department of Anatomical Pathology, PathWest Laboratory Medicine WA, Royal Perth Hospital, Perth, Western Australia, Australia; School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Western Australia, Australia
| | - Frank L Mastaglia
- Centre for Neuromuscular and Neurological Disorders, Western Australian Neuroscience Research Institute, Perth, Australia; Institute for Immunology & Infectious Diseases, Murdoch University, Perth, Australia.
| | - Victoria Fabian
- Section of Neuropathology, Department of Anatomical Pathology, PathWest Laboratory Medicine WA, Royal Perth Hospital, Perth, Western Australia, Australia; School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
31
|
Abstract
PURPOSE The aim was to report 4 cases of Fuchs endothelial corneal dystrophy (FECD) in patients with an established diagnosis of myotonic dystrophy (DM) and suggest a mechanism for their association based on the known molecular genetics and potential pathophysiological parallels of DM and FECD. METHODS We reviewed all available medical records and pathology slides for the 4 reported cases from the Department of Ophthalmology at Oregon Health and Science University's Casey Eye Institute and Devers Eye Institute at the Legacy Good Samaritan Medical Center in Portland, OR. RESULTS Four patients were found to have DM and bilateral corneal guttae, consistent with the diagnosis of FECD. All the identified patients were female and were aged between 34 and 63, and 2 patients were related (mother and daughter). The corneal specimens from 2 of the 4 patients who had undergone a corneal transplant were pathologically confirmed to be consistent with the diagnosis of FECD. CONCLUSIONS To our knowledge, FECD has not been previously reported in association with DM. Because both diseases are somewhat prevalent in the United States, it is possible that their coexistence is merely a coincidence in these patients. However, recent studies into the pathogenesis of each disease have shown more parallels between FECD and DM, suggesting the possibility of a noncoincidental association. Potential mutual pathogenic mechanisms may involve altered protein expression causing the deregulation of ion homeostasis, an unstable intronic trinucleotide repeat expansion, or activation of the unfolded protein response and oxidative stress pathways.
Collapse
|
32
|
Increased skeletal muscle expression of the endoplasmic reticulum chaperone GRP78 in patients with myasthenia gravis. J Neuroimmunol 2014; 273:72-6. [PMID: 24882382 DOI: 10.1016/j.jneuroim.2014.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/11/2014] [Accepted: 05/13/2014] [Indexed: 12/22/2022]
Abstract
In myasthenia gravis (MG), damage to neuromuscular junctions may induce endoplasmic reticulum (ER) stress in skeletal muscles. In the current study, skeletal muscles obtained from patients with MG exhibited upregulation of glucose-regulated protein 78 (GRP78) mRNA that was activated by ER stress. Furthermore, GRP78 mRNA expression was higher in patients with MG and myositis than in patients with non-myopathy. We also observed a significant positive correlation between GRP78 mRNA expression and GRP78 protein levels and between GRP78 mRNA expression and age of MG onset. Our findings suggest that muscle weakness in MG might be caused by both neuromuscular junction disruption and ER stress.
Collapse
|
33
|
Giudice J, Cooper TA. RNA-binding proteins in heart development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:389-429. [PMID: 25201112 DOI: 10.1007/978-1-4939-1221-6_11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
RNA-binding proteins (RBPs) are key players of posttranscriptional regulation occurring during normal tissue development. All tissues examined thus far have revealed the importance of RBPs in the regulation of complex networks involved in organ morphogenesis, maturation, and function. They are responsible for controlling tissue-specific gene expression by regulating alternative splicing, mRNA stability, translation, and poly-adenylation. The heart is the first organ form during embryonic development and is also the first to acquire functionality. Numerous remodeling processes take place during late cardiac development since fetal heart first adapts to birth and then undergoes a transition to adult functionality. This physiological remodeling involves transcriptional and posttranscriptional networks that are regulated by RBPs. Disruption of the normal regulatory networks has been shown to cause cardiomyopathy in humans and animal models. Here we review the complexity of late heart development and the current information regarding how RBPs control aspects of postnatal heart development. We also review how activities of RBPs are modulated adding complexity to the regulation of developmental networks.
Collapse
Affiliation(s)
- Jimena Giudice
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA,
| | | |
Collapse
|
34
|
Koh HJ, Toyoda T, Didesch MM, Lee MY, Sleeman MW, Kulkarni RN, Musi N, Hirshman MF, Goodyear LJ. Tribbles 3 mediates endoplasmic reticulum stress-induced insulin resistance in skeletal muscle. Nat Commun 2013; 4:1871. [PMID: 23695665 PMCID: PMC3707125 DOI: 10.1038/ncomms2851] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 04/09/2013] [Indexed: 12/23/2022] Open
Abstract
Endoplasmic Reticulum (ER) stress has been linked to insulin resistance in multiple tissues but the role of ER stress in skeletal muscle has not been explored. ER stress has also been reported to increase tribbles 3 (TRB3) expression in multiple cell lines. Here, we report that high fat feeding in mice, and obesity and type 2 diabetes in humans significantly increases TRB3 and ER stress markers in skeletal muscle. Overexpression of TRB3 in C2C12 myotubes and mouse tibialis anterior muscles significantly impairs insulin signaling. Incubation of C2C12 cells and mouse skeletal muscle with ER stressors thapsigargin and tunicamycin increases TRB3 and impairs insulin signaling and glucose uptake, effects reversed in cells overexpressing RNAi for TRB3 and in muscles from TRB3 knockout mice. Furthermore, TRB3 knockout mice are protected from high fat diet-induced insulin resistance in skeletal muscle. These data demonstrate that TRB3 mediates ER stress-induced insulin resistance in skeletal muscle.
Collapse
Affiliation(s)
- Ho-Jin Koh
- Research Division, Joslin Diabetes Center, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Deldicque L. Endoplasmic reticulum stress in human skeletal muscle: any contribution to sarcopenia? Front Physiol 2013; 4:236. [PMID: 24027531 PMCID: PMC3759750 DOI: 10.3389/fphys.2013.00236] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/13/2013] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle is vital to life as it provides the mechanical power for locomotion, posture and breathing. Beyond these vital functions, skeletal muscle also plays an essential role in the regulation of whole body metabolism, e.g., glucose homeostasis. Although progressive loss of muscle mass with age seems unavoidable, it is critical for older people to keep the highest mass as possible. It is clear that the origin of sarcopenia is multifactorial but, in the present review, it was deliberately chosen to evaluate the likely contribution of one specific cellular stress, namely the endoplasmic reticulum (ER) stress. It is proposed that ER stress can: (1) directly impact muscle mass as one fate of prolonged and unresolved ER stress is cell death and; (2) indirectly create a state of anabolic resistance by inhibiting the mammalian target of rapamycin complex 1 (mTORC1) pathway. With age, many of the key components of the unfolded protein response, such as the chaperones and enzymes, display reduced expression and activity resulting in a dysfunctional ER, accelerating the rate of proteins discarded via the ER-associated degradation. In addition, ER stress can block the mTORC1 pathway which is essential in the response to the anabolic stimulus of nutrients and contractile activity thereby participating to the well-known anabolic resistance state in skeletal muscle during ageing. As exercise increases the expression of several chaperones, it could anticipate or restore the loss of unfolded protein response components with age and thereby reduce the level of ER stress. This hypothesis has not been tested yet but it could be a new mechanism behind the beneficial effects of exercise in the elderly not only for the preservation of muscle mass but also for the regulation of whole body metabolism.
Collapse
Affiliation(s)
- Louise Deldicque
- Exercise Physiology Research Group, Department of Kinesiology, FaBeR, KU Leuven Leuven, Belgium
| |
Collapse
|
36
|
Botta A, Malena A, Loro E, Del Moro G, Suman M, Pantic B, Szabadkai G, Vergani L. Altered Ca2+ homeostasis and endoplasmic reticulum stress in myotonic dystrophy type 1 muscle cells. Genes (Basel) 2013; 4:275-92. [PMID: 24705164 PMCID: PMC3899969 DOI: 10.3390/genes4020275] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/03/2013] [Accepted: 05/16/2013] [Indexed: 12/15/2022] Open
Abstract
The pathogenesis of Myotonic Dystrophy type 1 (DM1) is linked to unstable CTG repeats in the DMPK gene which induce the mis-splicing to fetal/neonatal isoforms of many transcripts, including those involved in cellular Ca2+ homeostasis. Here we monitored the splicing of three genes encoding for Ca2+ transporters and channels (RyR1, SERCA1 and CACN1S) during maturation of primary DM1 muscle cells in parallel with the functionality of the Excitation-Contraction (EC) coupling machinery. At 15 days of differentiation, fetal isoforms of SERCA1 and CACN1S mRNA were significantly higher in DM1 myotubes compared to controls. Parallel functional studies showed that the cytosolic Ca2+ response to depolarization in DM1 myotubes did not increase during the progression of differentiation, in contrast to control myotubes. While we observed no differences in the size of intracellular Ca2+ stores, DM1 myotubes showed significantly reduced RyR1 protein levels, uncoupling between the segregated ER/SR Ca2+ store and the voltage-induced Ca2+ release machinery, parallel with induction of endoplasmic reticulum (ER) stress markers. In conclusion, our data suggest that perturbed Ca2+ homeostasis, via activation of ER stress, contributes to muscle degeneration in DM1 muscle cells likely representing a premature senescence phenotype.
Collapse
Affiliation(s)
- Annalisa Botta
- Department of Genetics, University "Tor Vergata", Roma 00133, Italy.
| | - Adriana Malena
- Department of Neurosciences SNPSRR, University of Padova, Padova 35100, Italy.
| | - Emanuele Loro
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Giulia Del Moro
- Department of Neurosciences SNPSRR, University of Padova, Padova 35100, Italy.
| | - Matteo Suman
- Department of Biomedical Sciences, University of Padua and CNR Neuroscience Institute, Padua 35100, Italy.
| | - Boris Pantic
- Department of Neurosciences SNPSRR, University of Padova, Padova 35100, Italy.
| | - Gyorgy Szabadkai
- Department of Biomedical Sciences, University of Padua and CNR Neuroscience Institute, Padua 35100, Italy.
| | - Lodovica Vergani
- Department of Neurosciences SNPSRR, University of Padova, Padova 35100, Italy.
| |
Collapse
|
37
|
Poulos MG, Batra R, Li M, Yuan Y, Zhang C, Darnell RB, Swanson MS. Progressive impairment of muscle regeneration in muscleblind-like 3 isoform knockout mice. Hum Mol Genet 2013; 22:3547-58. [PMID: 23660517 DOI: 10.1093/hmg/ddt209] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The muscleblind-like (MBNL) genes encode alternative splicing factors that are essential for the postnatal development of multiple tissues, and the inhibition of MBNL activity by toxic C(C)UG repeat RNAs is a major pathogenic feature of the neuromuscular disease myotonic dystrophy. While MBNL1 controls fetal-to-adult splicing transitions in muscle and MBNL2 serves a similar role in the brain, the function of MBNL3 in vivo is unknown. Here, we report that mouse Mbnl3, which encodes protein isoforms that differ in the number of tandem zinc-finger RNA-binding motifs and subcellular localization, is expressed primarily during embryonic development but also transiently during injury-induced adult skeletal muscle regeneration. Mbnl3 expression is required for normal C2C12 myogenic differentiation and high-throughput sequencing combined with cross-linking/immunoprecipitation analysis indicates that Mbnl3 binds preferentially to the 3' untranslated regions of genes implicated in cell growth and proliferation. In addition, Mbnl3ΔE2 isoform knockout mice, which fail to express the major Mbnl3 nuclear isoform, show age-dependent delays in injury-induced muscle regeneration and impaired muscle function. These results suggest that Mbnl3 inhibition by toxic RNA expression may be a contributing factor to the progressive skeletal muscle weakness and wasting characteristic of myotonic dystrophy.
Collapse
Affiliation(s)
- Michael G Poulos
- Department of Molecular Genetics and Microbiology, Genetics Institute and the Center for NeuroGenetics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Udd B, Krahe R. The myotonic dystrophies: molecular, clinical, and therapeutic challenges. Lancet Neurol 2012; 11:891-905. [DOI: 10.1016/s1474-4422(12)70204-1] [Citation(s) in RCA: 335] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Kobayashi K, Izawa T, Kuwamura M, Yamate J. Dysferlin and animal models for dysferlinopathy. J Toxicol Pathol 2012; 25:135-47. [PMID: 22907980 PMCID: PMC3392904 DOI: 10.1293/tox.25.135] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 03/16/2012] [Indexed: 12/27/2022] Open
Abstract
Dysferlin (DYSF) is involved in the membrane-repair process, in the intracellular vesicle system and in T-tubule development in skeletal muscle. It interacts with mitsugumin 53, annexins, caveolin-3, AHNAK, affixin, S100A10, calpain-3, tubulin and dihydropyridine receptor. Limb-girdle muscular dystrophy 2B (LGMD2B) and Miyoshi myopathy (MM) are muscular dystrophies associated with recessively inherited mutations in the DYSF gene. The diseases are characterized by weakness and muscle atrophy that progress slowly and symmetrically in the proximal muscles of the limb girdles. LGMD2B and MM, which are collectively termed “dysferlinopathy”, both lead to abnormalities in vesicle traffic and membrane repair at the plasma membrane in muscle fibers. SJL/J (SJL) and A/J mice are naturally occurring animal models for dysferlinopathy. Since there has been no an approach to therapy for dysferlinopathy, the immediate development of a therapeutic method for this genetic disorder is desirable. The murine models are useful in verification experiments for new therapies and they are valuable tools for identifying factors that accelerate dystrophic changes in skeletal muscle. It could be possible that the genetic or immunological background in SJL or A/J mice could modify muscle damage in experiments involving these models, because SJL and A/J mice show differences in the progress and prevalent sites of skeletal muscle lesions as well as in the gene-expression profiles of their skeletal muscle. In this review, we provide up-to-date information on the function of dysferlin, the development of possible therapies for muscle dystrophies (including dysferlinopathy) and the detection of new therapeutic targets for dysferlinopathy by means of experiments using animal models for dysferlinopathy.
Collapse
|
40
|
Abstract
Our appreciation of the role of endoplasmic reticulum (ER) stress pathways in both skeletal muscle homeostasis and the progression of muscle diseases is gaining momentum. This review provides insight into ER stress mechanisms during physiologic and pathological disturbances in skeletal muscle. The role of ER stress in the response to dietary alterations and acute stressors, including its role in autoimmune and genetic muscle disorders, has been described. Recent studies identifying ER stress markers in diseased skeletal muscle are noted. The emerging evidence for ER-mitochondrial interplay in skeletal muscle and its importance during chronic ER stress in activation of both inflammatory and cell death pathways (autophagy, necrosis, and apoptosis) have been discussed. Thus, understanding the ER stress-related molecular pathways underlying physiologic and pathological phenotypes in healthy and diseased skeletal muscle should lead to novel therapeutic targets for muscle disease.
Collapse
|
41
|
Alter J, Bengal E. Stress-induced C/EBP homology protein (CHOP) represses MyoD transcription to delay myoblast differentiation. PLoS One 2011; 6:e29498. [PMID: 22242125 PMCID: PMC3248460 DOI: 10.1371/journal.pone.0029498] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 11/29/2011] [Indexed: 11/23/2022] Open
Abstract
When mouse myoblasts or satellite cells differentiate in culture, the expression of myogenic regulatory factor, MyoD, is downregulated in a subset of cells that do not differentiate. The mechanism involved in the repression of MyoD expression remains largely unknown. Here we report that a stress-response pathway repressing MyoD transcription is transiently activated in mouse-derived C2C12 myoblasts growing under differentiation-promoting conditions. We show that phosphorylation of the α subunit of the translation initiation factor 2 (eIF2α) is followed by expression of C/EBP homology protein (CHOP) in some myoblasts. ShRNA-driven knockdown of CHOP expression caused earlier and more robust differentiation, whereas its constitutive expression delayed differentiation relative to wild type myoblasts. Cells expressing CHOP did not express the myogenic regulatory factors MyoD and myogenin. These results indicated that CHOP directly repressed the transcription of the MyoD gene. In support of this view, CHOP associated with upstream regulatory region of the MyoD gene and its activity reduced histone acetylation at the enhancer region of MyoD. CHOP interacted with histone deacetylase 1 (HDAC1) in cells. This protein complex may reduce histone acetylation when bound to MyoD regulatory regions. Overall, our results suggest that the activation of a stress pathway in myoblasts transiently downregulate the myogenic program.
Collapse
Affiliation(s)
- Joel Alter
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eyal Bengal
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
42
|
Abnormal prostaglandin E2 production blocks myogenic differentiation in myotonic dystrophy. Neurobiol Dis 2011; 45:122-9. [PMID: 21742035 DOI: 10.1016/j.nbd.2011.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/08/2011] [Accepted: 06/16/2011] [Indexed: 12/13/2022] Open
Abstract
The congenital form of myotonic dystrophy type 1 (DM1) is the most severe type of the disease associated with CTG expansions over 1500 repeats and delayed muscle maturation. The mechanistic basis of the congenital form of DM1 is mostly unknown. Here, we show that muscle satellite cells bearing large CTG expansions (>3000) secrete a soluble factor that inhibits the fusion of normal myoblasts in culture. We identified this factor as prostaglandin E2 (PGE(2)). In these DM1 cells, PGE(2) production is increased through up-regulation of cyclooxygenase 2 (Cox-2), mPGES-1 and prostaglandin EP2/EP4 receptors. Elevated levels of PGE(2) inhibit myogenic differentiation by decreasing the intracellular levels of calcium. Exogenous addition of acetylsalicylic acid, an inhibitor of Cox enzymes, abolishes PGE(2) abnormal secretion and restores the differentiation of DM1 muscle cells. These data indicate that the delay in muscle maturation observed in congenital DM1 may result, at least in part, from an altered autocrine mechanism. Inhibitors of prostaglandin synthesis may thus offer a powerful method to restore the differentiation of DM1 muscle cells.
Collapse
|
43
|
Casas-Tinto S, Zhang Y, Sanchez-Garcia J, Gomez-Velazquez M, Rincon-Limas DE, Fernandez-Funez P. The ER stress factor XBP1s prevents amyloid-beta neurotoxicity. Hum Mol Genet 2011; 20:2144-60. [PMID: 21389082 DOI: 10.1093/hmg/ddr100] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disorder clinically characterized by progressive cognitive impairment. A prominent pathologic hallmark in the AD brain is the abnormal accumulation of the amyloid-β 1-42 peptide (Aβ), but the exact pathways mediating Aβ neurotoxicity remain enigmatic. Endoplasmic reticulum (ER) stress is induced during AD, and has been indirectly implicated as a mediator of Aβ neurotoxicity. We report here that Aβ activates the ER stress response factor X-box binding protein 1 (XBP1) in transgenic flies and in mammalian cultured neurons, yielding its active form, the transcription factor XBP1s. XBP1s shows neuroprotective activity in two different AD models, flies expressing Aβ and mammalian cultured neurons treated with Aβ oligomers. Trying to identify the mechanisms mediating XBP1s neuroprotection, we found that in PC12 cells treated with Aβ oligomers, XBP1s prevents the accumulation of free calcium (Ca(2+)) in the cytosol. This protective activity can be mediated by the downregulation of a specific isoform of the ryanodine Ca(2+) channel, RyR3. In support of this observation, a mutation in the only ryanodine receptor (RyR) in flies also suppresses Aβ neurotoxicity, indicating the conserved mechanisms between the two AD models. These results underscore the functional relevance of XBP1s in Aβ toxicity, and uncover the potential of XBP1 and RyR as targets for AD therapeutics.
Collapse
Affiliation(s)
- Sergio Casas-Tinto
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | |
Collapse
|
44
|
Deldicque L, Cani PD, Philp A, Raymackers JM, Meakin PJ, Ashford MLJ, Delzenne NM, Francaux M, Baar K. The unfolded protein response is activated in skeletal muscle by high-fat feeding: potential role in the downregulation of protein synthesis. Am J Physiol Endocrinol Metab 2010; 299:E695-705. [PMID: 20501874 DOI: 10.1152/ajpendo.00038.2010] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High-fat diets are known to decrease muscle protein synthesis, the adaptation to overload, and insulin sensitivity. Conditions that disrupt endoplasmic reticulum (ER) homeostasis lead to the activation of the unfolded protein response (UPR) that is associated with decreases in protein synthesis, chronic inflammation, and insulin resistance. The purpose of the present study was to establish whether ER stress is induced by a high-fat diet in skeletal muscle and whether ER stress can decrease mTORC1 activity and protein synthesis in muscle cells. Two independent protocols of high-fat feeding activated the UPR in mice. In the first study, mice consuming a high-fat diet containing 70% fat and <1% carbohydrates for 6 wk showed higher markers of the UPR (BiP, IRE1α, and MBTPS2) in the soleus and in the tibialis anterior muscles and ATF4 in the tibialis anterior (P < 0.05). In the second study, a 20-wk high-fat diet containing 46% fat and 36% carbohydrates also increased BiP, IRE1α, and phospho-PERK protein and the expression of ATF4, CHOP, and both the spliced and unspliced forms of XBP1 in the plantar flexors (P < 0.05). In C(2)C(12) muscle cells, tunicamycin, thapsigargin, and palmitic acid all increased UPR markers and decreased phosphorylation of S6K1 (P < 0.05). Collectively, these data show that a high-fat diet activates the UPR in mouse skeletal muscle in vivo. In addition, in vitro studies indicate that palmitic acid, and other well-known ER stress inducers, triggered the UPR in myogenic cells and led to a decrease in protein synthesis and mTORC1 activity.
Collapse
Affiliation(s)
- Louise Deldicque
- Institute of Neurosciences, UCLouvain, Louvain-la-Neuve, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Huichalaf C, Sakai K, Jin B, Jones K, Wang GL, Schoser B, Schneider-Gold C, Sarkar P, Pereira-Smith OM, Timchenko N, Timchenko L. Expansion of CUG RNA repeats causes stress and inhibition of translation in myotonic dystrophy 1 (DM1) cells. FASEB J 2010; 24:3706-19. [PMID: 20479119 DOI: 10.1096/fj.09-151159] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The purpose of this study was to investigate the role of the mutant CUGn RNA in the induction of stress in type 1 myotonic dystrophy (DM1) cells and in the stress-mediated inhibition of protein translation in DM1. To achieve our goals, we performed HPLC-based purification of stress granules (SGs), immunoanalysis of SGs with stress markers TIA-1, CUGBP1, and ph-eIF2, site-specific mutagenesis, and examinations of RNA-protein and protein-protein interactions in myoblasts from control and DM1 patients. The cause-and-effect relationships were addressed in stable cells expressing mutant CUG repeats. We found that the mutant CUGn RNA induces formation of SGs through the increase of the double-stranded RNA-dependent protein kinase (PKR) and following inactivation of eIF2α, one of the substrates of PKR. We show that SGs trap mRNA coding for the DNA repair and remodeling factor MRG15 (MORF4L1), translation of which is regulated by CUGBP1. As the result of the trapping, the levels of MRG15 are reduced in DM1 cells and in CUG-expressing cells. These data show that CUG repeats cause stress in DM1 through the PKR-ph-eIF2α pathway inhibiting translation of certain mRNAs, such as MRG15 mRNA. The repression of protein translation by stress might contribute to the progressive muscle loss in DM1.
Collapse
Affiliation(s)
- Claudia Huichalaf
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mulders SAM, van Engelen BGM, Wieringa B, Wansink DG. Molecular therapy in myotonic dystrophy: focus on RNA gain-of-function. Hum Mol Genet 2010; 19:R90-7. [DOI: 10.1093/hmg/ddq161] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
Piróg KA, Jaka O, Katakura Y, Meadows RS, Kadler KE, Boot-Handford RP, Briggs MD. A mouse model offers novel insights into the myopathy and tendinopathy often associated with pseudoachondroplasia and multiple epiphyseal dysplasia. Hum Mol Genet 2010; 19:52-64. [PMID: 19808781 PMCID: PMC2792148 DOI: 10.1093/hmg/ddp466] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are relatively common skeletal dysplasias belonging to the same bone dysplasia family. PSACH is characterized by generalized epi-metaphyseal dysplasia, short-limbed dwarfism, joint laxity and early onset osteoarthritis. MED is a milder disease with radiographic features often restricted to the epiphyses of the long bones. PSACH and some forms of MED result from mutations in cartilage oligomeric matrix protein (COMP), a pentameric glycoprotein found in cartilage, tendon, ligament and muscle. PSACH-MED patients often have a mild myopathy characterized by mildly increased plasma creatine kinase levels, a variation in myofibre size and/or small atrophic fibres. In some instances, patients are referred to neuromuscular clinics prior to the diagnosis of an underlying skeletal dysplasia; however, the myopathy associated with PSACH-MED has not previously been studied. In this study, we present a detailed study of skeletal muscle, tendon and ligament from a mouse model of mild PSACH harbouring a COMP mutation. Mutant mice exhibited a progressive muscle weakness associated with an increased number of muscle fibres with central nuclei at the perimysium and at the myotendinous junction. Furthermore, the distribution of collagen fibril diameters in the mutant tendons and ligaments was altered towards thicker collagen fibrils, and the tendons became more lax in cyclic strain tests. We hypothesize that the myopathy in PSACH-MED originates from an underlying tendon and ligament pathology that is a direct result of structural abnormalities to the collagen fibril architecture. This is the first comprehensive characterization of the musculoskeletal phenotype of PSACH-MED and is directly relevant to the clinical management of these patients.
Collapse
Affiliation(s)
- Katarzyna A Piróg
- Faculty of Life Sciences, Wellcome Trust Centre for Cell Matrix Research, University of Manchester, Michael Smith Building, Manchester, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
The distribution and characterization of skeletal muscle lesions in dysferlin-deficient SJL and A/J mice. ACTA ACUST UNITED AC 2009; 62:509-17. [PMID: 19615872 DOI: 10.1016/j.etp.2009.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 06/27/2009] [Indexed: 11/23/2022]
Abstract
The pathogenesis of limb-girdle muscular dystrophy type 2B (LGMD2B) dysferlinopathy remains to be investigated. The distribution and characterization of skeletal muscle lesions were examined in two different LGMD2B mouse models, SJL and A/J mice (at 10 and 35 weeks old), in association with the endoplasmic reticulum (ER) stress. SJL mice showed an earlier age of onset and a faster progression of skeletal muscle lesions as compared with those of A/J mice; the sensitivity difference to muscular dystrophic lesions between SJL and A/J mice was observed in the lumbar muscles (particularly, lumbar longissimus and sublumbar muscles); the lesions seen mainly in SJL mice at 35 weeks old consisted of degeneration, necrosis, fatty infiltration, variation in muscle fiber size and atrophy in muscle fibers. Enzyme-histochemically, the fast-twitch muscle fiber was predominant for the degenerative changes seen in the rectus femoris and lateral longissimus muscles of SJL mice. Immunohistochemically, the main reactive cell type observed in and around degenerative and/or necrotic muscle fibers was macrophages, demonstrable with an anti-F4/80 antibody. Because the analyses of spliced XBP1 mRNA, a marker of ER stress, did not show the increased expression, it was considered that ER stress did not affect the progression of skeletal muscle lesions in SJL mice with the advanced stage of dysferlinopathy.
Collapse
|