1
|
Knecht L, Dalsbøl K, Simonsen AH, Pilchner F, Ross JA, Winge K, Salvesen L, Bech S, Hejl AM, Løkkegaard A, Hasselbalch SG, Dodel R, Aznar S, Waldemar G, Brudek T, Folke J. Autoantibody profiles in Alzheimer´s, Parkinson´s, and dementia with Lewy bodies: altered IgG affinity and IgG/IgM/IgA responses to alpha-synuclein, amyloid-beta, and tau in disease-specific pathological patterns. J Neuroinflammation 2024; 21:317. [PMID: 39627772 PMCID: PMC11613470 DOI: 10.1186/s12974-024-03293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/11/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) and Parkinson's disease (PD) are leading neurodegenerative disorders marked by protein aggregation, with AD featuring amyloid-beta (Aβ) and tau proteins, and PD alpha-synuclein (αSyn). Dementia with Lewy bodies (DLB) often presents with a mix of these pathologies. This study explores naturally occurring autoantibodies (nAbs), including Immunoglobulin (Ig)G, IgM, and IgA, which target αSyn, Aβ and tau to maintain homeostasis and were previously found altered in AD and PD patients, among others. MAIN TEXT We extended this investigation across AD, PD and DLB patients investigating both the affinities of IgGs and levels of IgGs, IgMs and IgAs towards αSyn, Aβ and tau utilizing chemiluminescence assays. We confirmed that AD and PD patients exhibited lower levels of high-affinity anti-Aβ and anti-αSyn IgGs, respectively, than healthy controls. AD patients also showed diminished levels of high-affinity anti-αSyn IgGs, while anti-tau IgG affinities did not differ significantly across groups. However, DLB patients exhibited increased anti-αSyn IgG but decreased anti-αSyn IgM levels compared to controls and PD patients, with AD patients showing a similar pattern. Interestingly, AD patients had higher anti-Aβ IgG but lower anti-Aβ IgA levels than DLB patients. DLB patients had reduced anti-Aβ IgM levels compared to controls, and anti-tau IgG levels were lower in AD than PD patients, who had reduced anti-tau IgM levels compared to controls. AD patients uniquely showed higher anti-tau IgA levels. Significant correlations were observed between clinical measures and nAbs, with negative correlations between anti-αSyn IgG affinity and levels in DLB patients and a positive correlation with anti-αSyn IgA levels in PD patients. Disease-specific changes in nAb levels and affinity correlations were identified, highlighting altered immune responses. CONCLUSION This study reveals distinctive nAb profiles in AD, DLB, and PD, pinpointing specific immune deficiencies against pathological proteins. These insights into the autoreactive immune system's role in neurodegeneration suggest nAbs as potential markers for vulnerability to protein aggregation, offering new avenues for understanding and possibly diagnosing these conditions.
Collapse
Affiliation(s)
- Luisa Knecht
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, Entrance 11B, 2. floor, Copenhagen, NV, DK-2400, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, Copenhagen, NV, DK-2400, Denmark
| | - Katrine Dalsbøl
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, Entrance 11B, 2. floor, Copenhagen, NV, DK-2400, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, Copenhagen, NV, DK-2400, Denmark
| | - Anja Hviid Simonsen
- Danish Dementia Research Centre, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen Ø, DK-2100, Denmark
| | - Falk Pilchner
- Chair of Geriatric Medicine, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Hufelandstraße 55, DE-45147, Essen, Germany
| | - Jean Alexander Ross
- Chair of Geriatric Medicine, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Hufelandstraße 55, DE-45147, Essen, Germany
| | - Kristian Winge
- Odense University Hospital, University of Southern Denmark, Copenhagen, Denmark
| | - Lisette Salvesen
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 7, Copenhagen, NV, DK-2400, Denmark
| | - Sara Bech
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 7, Copenhagen, NV, DK-2400, Denmark
| | - Anne-Mette Hejl
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 7, Copenhagen, NV, DK-2400, Denmark
| | - Annemette Løkkegaard
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 7, Copenhagen, NV, DK-2400, Denmark
| | - Steen G Hasselbalch
- Danish Dementia Research Centre, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen Ø, DK-2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen Ø, DK-2100, Denmark
| | - Richard Dodel
- Chair of Geriatric Medicine, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Hufelandstraße 55, DE-45147, Essen, Germany
| | - Susana Aznar
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, Entrance 11B, 2. floor, Copenhagen, NV, DK-2400, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, Copenhagen, NV, DK-2400, Denmark
| | - Gunhild Waldemar
- Danish Dementia Research Centre, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen Ø, DK-2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen Ø, DK-2100, Denmark
| | - Tomasz Brudek
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, Entrance 11B, 2. floor, Copenhagen, NV, DK-2400, Denmark.
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, Copenhagen, NV, DK-2400, Denmark.
| | - Jonas Folke
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, Entrance 11B, 2. floor, Copenhagen, NV, DK-2400, Denmark.
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, Copenhagen, NV, DK-2400, Denmark.
- Chair of Geriatric Medicine, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Hufelandstraße 55, DE-45147, Essen, Germany.
| |
Collapse
|
2
|
Chen L, Lu H, Mao L, Lin J, Liu P. Unraveling the interplay of β-amyloid pathology and Parkinson's disease progression: Insights from autopsy-confirmed patients. Heliyon 2024; 10:e39194. [PMID: 39524781 PMCID: PMC11543873 DOI: 10.1016/j.heliyon.2024.e39194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/05/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Background Parkinson's disease (PD) is a prevalent neurodegenerative disorder that manifests with both motor and non-motor symptoms, with α-synuclein misfolding recognized as a key contributor. Cognitive decline in advanced PD stages prompts interest in amyloid deposition, a hallmark of Alzheimer's disease (AD), as a potential factor. This study explores the impact of β-amyloid (Aβ) pathology in PD patients on disease progression, aiming to elucidate the role of Aβ in PD development and progression. Methods This study included autopsy-confirmed PD patients with post-mortem analyses from the Parkinson's Progression Markers Initiative. Comprehensive clinical assessments, including demographic data, clinical features, CSF markers, and neuroimaging, were conducted. Statistical analyses assessed differences between groups based on the severity of AD neuropathological changes. Results All 16 PD participants exhibited severe Lewy body pathology, with 75 % displaying AD neuropathological changes. At baseline, PD patients with severe or moderate AD neuropathological changes had a lower Aβ42 levels (p = 0.022) and Aβ42/tau ratio (p = 0.001). Longitudinal follow-up data indicated that individuals with severe or moderate AD neuropathological changes exhibited a more rapid decline in MOCA score and BJLOT score, along with a quicker increase in MDS-UPDRS Ⅲ score. Conclusions The study underscores the presence of severe Aβ pathology in PD, suggesting a role in accelerated disease progression. Cross-seeding between Aβ and α-synuclein may contribute to rapid clinical symptom progression. Further research is needed for a comprehensive understanding of neurodegenerative disease complexities and exploring potential therapeutic interventions targeting protein aggregation.
Collapse
Affiliation(s)
- Linxi Chen
- Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Hongsheng Lu
- Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Lingqun Mao
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Junxin Lin
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Peng Liu
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
3
|
Barba L, Abu-Rumeileh S, Barthel H, Massa F, Foschi M, Bellomo G, Gaetani L, Thal DR, Parnetti L, Otto M. Clinical and diagnostic implications of Alzheimer's disease copathology in Lewy body disease. Brain 2024; 147:3325-3343. [PMID: 38991041 DOI: 10.1093/brain/awae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/03/2024] [Accepted: 06/02/2024] [Indexed: 07/13/2024] Open
Abstract
Concomitant Alzheimer's disease (AD) pathology is a frequent event in the context of Lewy body disease (LBD), occurring in approximately half of all cases. Evidence shows that LBD patients with AD copathology show an accelerated disease course, a greater risk of cognitive decline and an overall poorer prognosis. However, LBD-AD cases may show heterogeneous motor and non-motor phenotypes with a higher risk of dementia and, consequently, be not rarely misdiagnosed. In this review, we summarize the current understanding of LBD-AD by discussing the synergistic effects of AD neuropathological changes and Lewy pathology and their clinical relevance. Furthermore, we provide an extensive overview of neuroimaging and fluid biomarkers under assessment for use in LBD-AD and their possible diagnostic and prognostic values. AD pathology can be predicted in vivo by means of CSF, MRI and PET markers, whereas the most promising technique to date for identifying Lewy pathology in different biological tissues is the α-synuclein seed amplification assay. Pathological imaging and CSF AD biomarkers are associated with a higher likelihood of cognitive decline in LBD but do not always mirror the neuropathological severity as in pure AD. Implementing the use of blood-based AD biomarkers might allow faster screening of LBD patients for AD copathology, thus improving the overall diagnostic sensitivity for LBD-AD. Finally, we discuss the literature on novel candidate biomarkers being exploited in LBD-AD to investigate other aspects of neurodegeneration, such as neuroaxonal injury, glial activation and synaptic dysfunction. The thorough characterization of AD copathology in LBD should be taken into account when considering differential diagnoses of dementia syndromes, to allow prognostic evaluation on an individual level, and to guide symptomatic and disease-modifying therapies.
Collapse
Affiliation(s)
- Lorenzo Barba
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle 06120, Germany
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle 06120, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig 04103, Germany
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Matteo Foschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila 67100, Italy
- Department of Neuroscience, Neurology Unit, S. Maria delle Croci Hospital of Ravenna, AUSL Romagna, Ravenna 48121, Italy
| | - Giovanni Bellomo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06129, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06129, Italy
| | - Dietmar R Thal
- Department of Imaging and Pathology, Laboratory for Neuropathology, Leuven Brain Institute, KU Leuven, Leuven 3001, Belgium
- Department of Pathology, UZ Leuven, Leuven 3000, Belgium
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06129, Italy
| | - Markus Otto
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle 06120, Germany
| |
Collapse
|
4
|
Yue Y, Zhang X, Lv W, Lai HY, Shen T. Interplay between the glymphatic system and neurotoxic proteins in Parkinson's disease and related disorders: current knowledge and future directions. Neural Regen Res 2024; 19:1973-1980. [PMID: 38227524 DOI: 10.4103/1673-5374.390970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/26/2023] [Indexed: 01/17/2024] Open
Abstract
Parkinson's disease is a common neurodegenerative disorder that is associated with abnormal aggregation and accumulation of neurotoxic proteins, including α-synuclein, amyloid-β, and tau, in addition to the impaired elimination of these neurotoxic protein. Atypical parkinsonism, which has the same clinical presentation and neuropathology as Parkinson's disease, expands the disease landscape within the continuum of Parkinson's disease and related disorders. The glymphatic system is a waste clearance system in the brain, which is responsible for eliminating the neurotoxic proteins from the interstitial fluid. Impairment of the glymphatic system has been proposed as a significant contributor to the development and progression of neurodegenerative disease, as it exacerbates the aggregation of neurotoxic proteins and deteriorates neuronal damage. Therefore, impairment of the glymphatic system could be considered as the final common pathway to neurodegeneration. Previous evidence has provided initial insights into the potential effect of the impaired glymphatic system on Parkinson's disease and related disorders; however, many unanswered questions remain. This review aims to provide a comprehensive summary of the growing literature on the glymphatic system in Parkinson's disease and related disorders. The focus of this review is on identifying the manifestations and mechanisms of interplay between the glymphatic system and neurotoxic proteins, including loss of polarization of aquaporin-4 in astrocytic endfeet, sleep and circadian rhythms, neuroinflammation, astrogliosis, and gliosis. This review further delves into the underlying pathophysiology of the glymphatic system in Parkinson's disease and related disorders, and the potential implications of targeting the glymphatic system as a novel and promising therapeutic strategy.
Collapse
Affiliation(s)
- Yumei Yue
- Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiaodan Zhang
- Department of Emergency Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wen Lv
- Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hsin-Yi Lai
- Department of Neurology of the Second Affiliated Hospital and School of Brain Science and Brain Medicine, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang Province, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ting Shen
- Department of Neurology of the Second Affiliated Hospital and School of Brain Science and Brain Medicine, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
5
|
Wang AY, Hu HY, Huang LY, Xiao CY, Li QY, Tan L, Hu H. Risk factors for cognitive decline in non-demented elders with amyloid-beta positivity. Alzheimers Res Ther 2024; 16:189. [PMID: 39160609 PMCID: PMC11331665 DOI: 10.1186/s13195-024-01554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/11/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND As a currently incurable but preventable disease, the prevention and early diagnosis of Alzheimer's disease (AD) has long been a research hotspot. Amyloid deposition has been shown to be a major pathological feature of AD. Notably, not all the people with amyloid-beta (Aβ) pathology will have significant cognitive declines and eventually develop AD. Therefore, the aim of this study was to explore the risk factors for cognitive decline in Aβ-positive participants. METHODS We included 650 non-demented participants who were Aβ-positive at baseline from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Mixed effects and COX regression models were applied to assess 37 potential risk factors. Mixed effects models were employed to assess the temporal associations between potential risk factors and four cognitive assessment scales. COX regression models were used to assess the impact of potential risk factors on cognitive diagnosis conversion. Univariate and multivariate analyses were applied to the above models. Additionally, we used the Cochran-Armitage trend test to examine whether the incidence of cognitive decline increased with the number concurrent of risk factors. RESULTS Six factors (low diastolic pressure, low body mass index, retired status, a history of drug abuse, Parkinsonism, and depression) were the identified risk factors and four factors (a history of urinary disease, musculoskeletal diseases, no major surgical history, and no prior dermatologic-connective tissue diseases) were found to be suggestive risk factors. The incidence of cognitive decline in the Aβ-positive participants gradually increased as the number of concurrent risk factors increased (p for trend = 0.0005). CONCLUSIONS Our study may facilitate the understanding of the potential pathological processes in AD and provide novel targets for the prevention of cognitive decline among participants with Aβ positivity.
Collapse
Affiliation(s)
- An-Yi Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - He-Ying Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Liang-Yu Huang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Chu-Yun Xiao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Qiong-Yao Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China.
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China.
| |
Collapse
|
6
|
Abyadeh M, Gupta V, Paulo JA, Mahmoudabad AG, Shadfar S, Mirshahvaladi S, Gupta V, Nguyen CT, Finkelstein DI, You Y, Haynes PA, Salekdeh GH, Graham SL, Mirzaei M. Amyloid-beta and tau protein beyond Alzheimer's disease. Neural Regen Res 2024; 19:1262-1276. [PMID: 37905874 PMCID: PMC11467936 DOI: 10.4103/1673-5374.386406] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT The aggregation of amyloid-beta peptide and tau protein dysregulation are implicated to play key roles in Alzheimer's disease pathogenesis and are considered the main pathological hallmarks of this devastating disease. Physiologically, these two proteins are produced and expressed within the normal human body. However, under pathological conditions, abnormal expression, post-translational modifications, conformational changes, and truncation can make these proteins prone to aggregation, triggering specific disease-related cascades. Recent studies have indicated associations between aberrant behavior of amyloid-beta and tau proteins and various neurological diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, as well as retinal neurodegenerative diseases like Glaucoma and age-related macular degeneration. Additionally, these proteins have been linked to cardiovascular disease, cancer, traumatic brain injury, and diabetes, which are all leading causes of morbidity and mortality. In this comprehensive review, we provide an overview of the connections between amyloid-beta and tau proteins and a spectrum of disorders.
Collapse
Affiliation(s)
| | - Vivek Gupta
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Sina Shadfar
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Shahab Mirshahvaladi
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Christine T.O. Nguyen
- Department of Optometry and Vision Sciences, School of Health Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - David I. Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Yuyi You
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Paul A. Haynes
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Ghasem H. Salekdeh
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Stuart L. Graham
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| |
Collapse
|
7
|
Arezoumandan S, Cousins KA, Ohm DT, Lowe M, Chen M, Gee J, Phillips JS, McMillan CT, Luk KC, Deik A, Spindler MA, Tropea TF, Weintraub D, Wolk DA, Grossman M, Lee V, Chen‐Plotkin AS, Lee EB, Irwin DJ. Tau maturation in the clinicopathological spectrum of Lewy body and Alzheimer's disease. Ann Clin Transl Neurol 2024; 11:673-685. [PMID: 38263854 PMCID: PMC10963284 DOI: 10.1002/acn3.51988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024] Open
Abstract
OBJECTIVE Alzheimer's disease neuropathologic change and alpha-synucleinopathy commonly co-exist and contribute to the clinical heterogeneity of dementia. Here, we examined tau epitopes marking various stages of tangle maturation to test the hypotheses that tau maturation is more strongly associated with beta-amyloid compared to alpha-synuclein, and within the context of mixed pathology, mature tau is linked to Alzheimer's disease clinical phenotype and negatively associated with Lewy body dementia. METHODS We used digital histology to measure percent area-occupied by pathology in cortical regions among individuals with pure Alzheimer's disease neuropathologic change, pure alpha-synucleinopathy, and a co-pathology group with both Alzheimer's and alpha-synuclein pathologic diagnoses. Multiple tau monoclonal antibodies were used to detect early (AT8, MC1) and mature (TauC3) epitopes of tangle progression. We used linear/logistic regression to compare groups and test the association between pathologies and clinical features. RESULTS There were lower levels of tau pathology (β = 1.86-2.96, p < 0.001) across all tau antibodies in the co-pathology group compared to the pure Alzheimer's pathology group. Among individuals with alpha-synucleinopathy, higher alpha-synuclein was associated with greater early tau (AT8 β = 1.37, p < 0.001; MC1 β = 1.2, p < 0.001) but not mature tau (TauC3 p = 0.18), whereas mature tau was associated with beta-amyloid (β = 0.21, p = 0.01). Finally, lower tau, particularly TauC3 pathology, was associated with lower frequency of both core clinical features and categorical clinical diagnosis of dementia with Lewy bodies. INTERPRETATION Mature tau may be more closely related to beta-amyloidosis than alpha-synucleinopathy, and pathophysiological processes of tangle maturation may influence the clinical features of dementia in mixed Lewy-Alzheimer's pathology.
Collapse
Affiliation(s)
- Sanaz Arezoumandan
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Daniel T. Ohm
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - MaKayla Lowe
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Min Chen
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - James Gee
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Jeffrey S. Phillips
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Corey T. McMillan
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kelvin C. Luk
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Andres Deik
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Thomas F. Tropea
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Daniel Weintraub
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - David A. Wolk
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Murray Grossman
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Virginia Lee
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Edward B. Lee
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - David J. Irwin
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
8
|
Tunold JA, Tan MMX, Toft M, Ross O, van de Berg WDJ, Pihlstrøm L. Lysosomal Polygenic Burden Drives Cognitive Decline in Parkinson's Disease with Low Alzheimer Risk. Mov Disord 2024; 39:596-601. [PMID: 38124396 DOI: 10.1002/mds.29698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Genetics influence cognitive progression in Parkinson's disease, possibly through mechanisms related to Lewy and Alzheimer's disease pathology. Lysosomal polygenic burden has recently been linked to more severe Lewy pathology post mortem. OBJECTIVES To assess the influence of lysosomal polygenic burden on cognitive progression in Parkinson's disease patients with low Alzheimer's disease risk. METHODS Using Cox regression we assessed association between lysosomal polygenic scores and time to Montreal Cognitive Assessment score ≤ 21 in the Parkinson's Progression Markers Initiative cohort (n = 374), with replication in data from the Parkinson's Disease Biomarker Program (n = 777). Patients were stratified by Alzheimer's disease polygenic risk. RESULTS The lysosomal polygenic score was associated with faster progression of cognitive decline in patients with low Alzheimer's disease risk in both datasets (P = 0.0032 and P = 0.0054, respectively). CONCLUSION Our study supports complex interplay between genetics and neuropathology in Parkinson's disease-related cognitive impairment, emphasizing the role of lysosomal polygenic burden. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jon-Anders Tunold
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Manuela M X Tan
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Owen Ross
- Mayo Clinic, Department of Neuroscience, Jacksonville, Florida, USA
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
9
|
Walker L, Attems J. Prevalence of Concomitant Pathologies in Parkinson's Disease: Implications for Prognosis, Diagnosis, and Insights into Common Pathogenic Mechanisms. JOURNAL OF PARKINSON'S DISEASE 2024; 14:35-52. [PMID: 38143370 PMCID: PMC10836576 DOI: 10.3233/jpd-230154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2023] [Indexed: 12/26/2023]
Abstract
Pathologies characteristic of Alzheimer's disease (i.e., hyperphosphorylated tau and amyloid-β (Aβ) plaques), cardiovascular disease, and limbic predominant TDP-43 encephalopathy (LATE) often co-exist in patients with Parkinson's disease (PD), in addition to Lewy body pathology (α-synuclein). Numerous studies point to a putative synergistic relationship between hyperphosphorylation tau, Aβ, cardiovascular lesions, and TDP-43 with α-synuclein, which may alter the stereotypical pattern of pathological progression and accelerate cognitive decline. Here we discuss the prevalence and relationships between common concomitant pathologies observed in PD. In addition, we highlight shared genetic risk factors and developing biomarkers that may provide better diagnostic accuracy for patients with PD that have co-existing pathologies. The tremendous heterogeneity observed across the PD spectrum is most likely caused by the complex interplay between pathogenic, genetic, and environmental factors, and increasing our understanding of how these relate to idiopathic PD will drive research into finding accurate diagnostic tools and disease modifying therapies.
Collapse
Affiliation(s)
- Lauren Walker
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Johannes Attems
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
10
|
Ramirez E, Ganegamage SK, Min S, Patel H, Ogunware A, Plascencia-Villa G, Alnakhala H, Shimanaka K, Tripathi A, Wang KW, Zhu X, Rochet JC, Kuo MH, Counts SE, Perry G, Dettmer U, Lasagna-Reeves CA, Fortin JS. Evaluation of N- and O-Linked Indole Triazines for a Dual Effect on α-Synuclein and Tau Aggregation. ACS Chem Neurosci 2023; 14:3913-3927. [PMID: 37818657 PMCID: PMC10624178 DOI: 10.1021/acschemneuro.3c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder underlying dementia in the geriatric population. AD manifests by two pathological hallmarks: extracellular amyloid-β (Aβ) peptide-containing senile plaques and intraneuronal neurofibrillary tangles comprised of aggregated hyperphosphorylated tau protein (p-tau). However, more than half of AD cases also display the presence of aggregated α-synuclein (α-syn)-containing Lewy bodies. Conversely, Lewy bodies disorders have been reported to have concomitant Aβ plaques and neurofibrillary tangles. Our drug discovery program focuses on the synthesis of multitarget-directed ligands to abrogate aberrant α-syn, tau (2N4R), and p-tau (1N4R) aggregation and to slow the progression of AD and related dementias. To this end, we synthesized 11 compounds with a triazine-linker and evaluated their effectiveness in reducing α-syn, tau isoform 2N4R, and p-tau isoform 1N4R aggregation. We utilized biophysical methods such as thioflavin T (ThT) fluorescence assays, transmission electron microscopy (TEM), photoinduced cross-linking of unmodified proteins (PICUP), and M17D intracellular inclusion cell-based assays to evaluate the antiaggregation properties and cellular protection of our best compounds. We also performed disaggregation assays with isolated Aβ-plaques from human AD brains. Our results demonstrated that compound 10 was effective in reducing both oligomerization and fibril formation of α-syn and tau isoform 2N4R in a dose-dependent manner via ThT and PICUP assays. Compound 10 was also effective at reducing the formation of recombinant α-syn, tau 2N4R, and p-tau 1N4R fibrils by TEM. Compound 10 reduced the development of α-syn inclusions in M17D neuroblastoma cells and stopped the seeding of tau P301S using biosensor cells. Disaggregation experiments showed smaller Aβ-plaques and less paired helical filaments with compound 10. Compound 10 may provide molecular scaffolds for further optimization and preclinical studies for neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Eduardo Ramirez
- Department
of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
| | - Susantha K. Ganegamage
- Department
of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sehong Min
- Department
of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Henika Patel
- Department
of Anatomy Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Adedayo Ogunware
- Department
of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Germán Plascencia-Villa
- Department
of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Heba Alnakhala
- Ann
Romney
Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical
School, Boston, Massachusetts 02115, United States
| | - Kazuma Shimanaka
- Ann
Romney
Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical
School, Boston, Massachusetts 02115, United States
| | - Arati Tripathi
- Ann
Romney
Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical
School, Boston, Massachusetts 02115, United States
| | - Kuang-Wei Wang
- Department
of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiongwei Zhu
- Department
of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Jean-Christophe Rochet
- Department
of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Min-Hao Kuo
- Department
of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Scott E. Counts
- Department
of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503, United States
| | - George Perry
- Department
of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ulf Dettmer
- Ann
Romney
Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical
School, Boston, Massachusetts 02115, United States
| | - Cristian A. Lasagna-Reeves
- Department
of Anatomy Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Jessica S. Fortin
- Department
of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
11
|
Tunold JA, Tan MMX, Koga S, Geut H, Rozemuller AJM, Valentino R, Sekiya H, Martin NB, Heckman MG, Bras J, Guerreiro R, Dickson DW, Toft M, van de Berg WDJ, Ross OA, Pihlstrøm L. Lysosomal polygenic risk is associated with the severity of neuropathology in Lewy body disease. Brain 2023; 146:4077-4087. [PMID: 37247383 PMCID: PMC10545498 DOI: 10.1093/brain/awad183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Intraneuronal accumulation of misfolded α-synuclein is the pathological hallmark of Parkinson's disease and dementia with Lewy bodies, often co-occurring with variable degrees of Alzheimer's disease related neuropathology. Genetic association studies have successfully identified common variants associated with disease risk and phenotypic traits in Lewy body disease, yet little is known about the genetic contribution to neuropathological heterogeneity. Using summary statistics from Parkinson's disease and Alzheimer's disease genome-wide association studies, we calculated polygenic risk scores and investigated the relationship with Lewy, amyloid-β and tau pathology. Associations were nominated in neuropathologically defined samples with Lewy body disease from the Netherlands Brain Bank (n = 217) and followed up in an independent sample series from the Mayo Clinic Brain Bank (n = 394). We also generated stratified polygenic risk scores based on single-nucleotide polymorphisms annotated to eight functional pathways or cell types previously implicated in Parkinson's disease and assessed for association with Lewy pathology in subgroups with and without significant Alzheimer's disease co-pathology. In an ordinal logistic regression model, the Alzheimer's disease polygenic risk score was associated with concomitant amyloid-β and tau pathology in both cohorts. Moreover, both cohorts showed a significant association between lysosomal pathway polygenic risk and Lewy pathology, which was more consistent than the association with a general Parkinson's disease risk score and specific to the subset of samples without significant concomitant Alzheimer's disease related neuropathology. Our findings provide proof of principle that the specific risk alleles a patient carries for Parkinson's and Alzheimer's disease also influence key aspects of the underlying neuropathology in Lewy body disease. The interrelations between genetic architecture and neuropathology are complex, as our results implicate lysosomal risk loci specifically in the subset of samples without Alzheimer's disease co-pathology. Our findings hold promise that genetic profiling may help predict the vulnerability to specific neuropathologies in Lewy body disease, with potential relevance for the further development of precision medicine in these disorders.
Collapse
Affiliation(s)
- Jon-Anders Tunold
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| | - Manuela M X Tan
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Hanneke Geut
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Program Neurodegeneration, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Rebecca Valentino
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Nicholas B Martin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Michael G Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jose Bras
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Program Neurodegeneration, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
12
|
Leitão ADG, Ahammad RU, Spencer B, Wu C, Masliah E, Rissman RA. Novel systemic delivery of a peptide-conjugated antisense oligonucleotide to reduce α-synuclein in a mouse model of Alzheimer's disease. Neurobiol Dis 2023; 186:106285. [PMID: 37690676 PMCID: PMC10584037 DOI: 10.1016/j.nbd.2023.106285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
Neurodegenerative disorders of aging are characterized by the progressive accumulation of proteins such as α-synuclein (α-syn) and amyloid beta (Aβ). Misfolded and aggregated α-syn has been implicated in neurological disorders such as Parkinson's disease, and Dementia with Lewy Bodies, but less so in Alzheimer's Disease (AD), despite the fact that accumulation of α-syn has been confirmed in over 50% of postmortem brains neuropathologically diagnosed with AD. To date, no therapeutic strategy has effectively or consistently downregulated α-syn in AD. Here we tested the hypothesis that by using a systemically-delivered peptide (ApoB11) bound to a modified antisense oligonucleotide against α-syn (ASO-α-syn), we can downregulate α-syn expression in an AD mouse model and improve behavioral and neuropathologic phenotypes. Our results demonstrate that monthly systemic treatment with of ApoB11:ASO α-syn beginning at 6 months of age reduces expression of α-synuclein in the brains of 9-month-old AD mice. Downregulation of α-syn led to reduction in Aβ plaque burden, prevented neuronal loss and astrogliosis. Furthermore, we found that AD mice treated with ApoB11:ASO α-syn had greatly improved hippocampal and spatial memory function in comparison to their control counterparts. Collectively, our data supports the reduction of α-syn through use of systemically-delivered ApoB11:ASO α-syn as a promising future disease-modifying therapeutic for AD.
Collapse
Affiliation(s)
- André D G Leitão
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Rijwan U Ahammad
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Brian Spencer
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America; Alzheimer's Therapeutic Research Institute, Keck School of Medicine of the University of Southern California, San Diego, CA 92121, United States of America
| | - Eliezer Masliah
- Laboratory of Neurogenetics, National Institute of Aging, National Institute of Health, Bethesda, MD 20892, United States of America
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America; Alzheimer's Therapeutic Research Institute, Keck School of Medicine of the University of Southern California, San Diego, CA 92121, United States of America; VA San Diego Healthcare System, San Diego, CA 92161, United States of America.
| |
Collapse
|
13
|
Jellinger KA. Morphological characteristics differentiate dementia with Lewy bodies from Parkinson disease with and without dementia. J Neural Transm (Vienna) 2023:10.1007/s00702-023-02660-3. [PMID: 37306790 DOI: 10.1007/s00702-023-02660-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
Dementia with Lewy bodies (DLB) and Parkinson disease (PD) with and without dementia are entities of a spectrum of Lewy body diseases. About 26.3% of all PD patients develop dementia increasing up to 83%. Parkinson disease-dementia (PDD) and DLB share many clinical and morphological features that separate them from non-demented PD (PDND). Clinically distinguished by the temporal sequence of motor and cognitive symptoms, the pathology of PDD and DLB includes variable combinations of Lewy body (LB) and Alzheimer (AD) lesions, both being more severe in DLB, but much less frequent and less severe in PDND. The objective of this study was to investigate the morphological differences between these three groups. 290 patients with pathologically confirmed PD were reviewed. 190 of them had clinical dementia; 110 met the neuropathological criteria of PDD and 80 of DLB. The major demographic and clinical data were obtained from medical records. Neuropathology included semiquantitative assessment of LB and AD pathologies including cerebral amyloid angiopathy (CAA). PDD patients were significantly older than PDND and DLB ones (83.9 vs 77.9 years, p < 0.05); the age of DLB patients was between them (80.0 years), while the disease duration was shortest in DLB. Brain weight was lowest in DLB, which showed higher Braak LB scores (mean 5.2 vs 4.2) and highest Braak tau stages (mean 5.2 vs 4.4 and 2.3, respectively). Thal Aβ phases were also highest in DLB (mean 4.1 vs 3.0 and 1.8, respectively). Major findings were frequency and degree of CAA, being highest in DLB (95% vs 50% and 24%, with scores 2.9 vs 0.7 and 0.3, respectively), whereas other small vessel lesions showed no significant differences. Striatal Aβ deposits also differentiated DLB from the other groups. This and other studies of larger cohorts of PD patients indicate that the association of CAA and cortical tau-but less-LB pathologies are associated with more severe cognitive decline and worse prognosis that distinguish DLB from PDD and PDND. The particular impact of both CAA and tau pathology supports the concept of a pathogenic continuum ranging from PDND to DLB + AD within the spectrum of age-related synucleinopathies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
14
|
Cousins KAQ, Irwin DJ, Chen-Plotkin A, Shaw LM, Arezoumandan S, Lee EB, Wolk DA, Weintraub D, Spindler M, Deik A, Grossman M, Tropea TF. Plasma GFAP associates with secondary Alzheimer's pathology in Lewy body disease. Ann Clin Transl Neurol 2023; 10:802-813. [PMID: 37000892 DOI: 10.1002/acn3.51768] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
OBJECTIVE Within Lewy body spectrum disorders (LBSD) with α-synuclein pathology (αSyn), concomitant Alzheimer's disease (AD) pathology is common and is predictive of clinical outcomes, including cognitive impairment and decline. Plasma phosphorylated tau 181 (p-tau181 ) is sensitive to AD neuropathologic change (ADNC) in clinical AD, and plasma glial fibrillary acidic protein (GFAP) is associated with the presence of β-amyloid plaques. While these plasma biomarkers are well tested in clinical and pathological AD, their diagnostic and prognostic performance for concomitant AD in LBSD is unknown. METHODS In autopsy-confirmed αSyn-positive LBSD, we tested how plasma p-tau181 and GFAP differed across αSyn with concomitant ADNC (αSyn+AD; n = 19) and αSyn without AD (αSyn; n = 30). Severity of burden was scored on a semiquantitative scale for several pathologies (e.g., β-amyloid and tau), and scores were averaged across sampled brainstem, limbic, and neocortical regions. RESULTS Linear models showed that plasma GFAP was significantly higher in αSyn+AD compared to αSyn (β = 0.31, 95% CI = 0.065-0.56, and P = 0.015), after covarying for age at plasma, plasma-to-death interval, and sex; plasma p-tau181 was not (P = 0.37). Next, linear models tested associations of AD pathological features with both plasma analytes, covarying for plasma-to-death, age at plasma, and sex. GFAP was significantly associated with brain β-amyloid (β = 15, 95% CI = 6.1-25, and P = 0.0018) and tau burden (β = 12, 95% CI = 2.5-22, and P = 0.015); plasma p-tau181 was not associated with either (both P > 0.34). INTERPRETATION Findings indicate that plasma GFAP may be sensitive to concomitant AD pathology in LBSD, especially accumulation of β-amyloid plaques.
Collapse
Affiliation(s)
- Katheryn A Q Cousins
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sanaz Arezoumandan
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Daniel Weintraub
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Meredith Spindler
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Andres Deik
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Murray Grossman
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Thomas F Tropea
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Leitão AD, Spencer B, Sarsoza F, Ngolab J, Amalraj J, Masliah E, Wu C, Rissman RA. Hippocampal Reduction of α-Synuclein via RNA Interference Improves Neuropathology in Alzheimer's Disease Mice. J Alzheimers Dis 2023; 95:349-361. [PMID: 37522208 PMCID: PMC10578232 DOI: 10.3233/jad-230232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) cases are often characterized by the pathological accumulation of α-synuclein (α-syn) in addition to amyloid-β (Aβ) and tau hallmarks. The role of α-syn has been extensively studied in synucleinopathy disorders, but less so in AD. Recent studies have shown that α-syn may also play a role in AD and its downregulation may be protective against the toxic effects of Aβ accumulation. OBJECTIVE We hypothesized that selectively knocking down α-syn via RNA interference improves the neuropathological and biochemical findings in AD mice. METHODS Here we used amyloid precursor protein transgenic (APP-Tg) mice to model AD and explore pathologic and behavioral phenotypes with knockdown of α-syn using RNA interference. We selectively reduced α-syn levels by stereotaxic bilateral injection of either LV-shRNA α-syn or LV-shRNA-luc (control) into the hippocampus of AD mice. RESULTS We found that downregulation of α-syn results in significant reduction in the number of Aβ plaques. In addition, mice treated with LV-shRNA α-syn had amelioration of abnormal microglial activation (Iba1) and astrocytosis (GFAP) phenotypes in AD mice. CONCLUSION Our data suggests a novel link between Aβ and α-syn pathology as well as a new therapeutic angle for targeting AD.
Collapse
Affiliation(s)
- André D.G. Leitão
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Brian Spencer
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Floyd Sarsoza
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, La Jolla, CA, USA
| | - Jennifer Ngolab
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Jessica Amalraj
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | | | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Robert A. Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Department of Physiology and Neuroscience, Alzheimer’s Therapeutic Research Institute of the Keck School of Medicine of the University of Southern California, San Diego, CA, USA
- VA San Diego Healthcare System, La Jolla, CA, USA
| |
Collapse
|
16
|
Real R, Martinez-Carrasco A, Reynolds RH, Lawton MA, Tan MMX, Shoai M, Corvol JC, Ryten M, Bresner C, Hubbard L, Brice A, Lesage S, Faouzi J, Elbaz A, Artaud F, Williams N, Hu MTM, Ben-Shlomo Y, Grosset DG, Hardy J, Morris HR. Association between the LRP1B and APOE loci in the development of Parkinson's disease dementia. Brain 2022; 146:1873-1887. [PMID: 36348503 PMCID: PMC10151192 DOI: 10.1093/brain/awac414] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/04/2022] [Accepted: 10/16/2022] [Indexed: 11/11/2022] Open
Abstract
Parkinson's disease is one of the most common age-related neurodegenerative disorders. Although predominantly a motor disorder, cognitive impairment and dementia are important features of Parkinson's disease, particularly in the later stages of the disease. However, the rate of cognitive decline varies among Parkinson's disease patients, and the genetic basis for this heterogeneity is incompletely understood. To explore the genetic factors associated with rate of progression to Parkinson's disease dementia, we performed a genome-wide survival meta-analysis of 3,923 clinically diagnosed Parkinson's disease cases of European ancestry from four longitudinal cohorts. In total, 6.7% of individuals with Parkinson's disease developed dementia during study follow-up, on average 4.4 ± 2.4 years from disease diagnosis. We have identified the APOE ε4 allele as a major risk factor for the conversion to Parkinson's disease dementia [hazards ratio = 2.41 (1.94-3.00), P = 2.32 × 10-15], as well as a new locus within the ApoE and APP receptor LRP1B gene [hazards ratio = 3.23 (2.17-4.81), P = 7.07 × 10-09]. In a candidate gene analysis, GBA variants were also identified to be associated with higher risk of progression to dementia [hazards ratio = 2.02 (1.21-3.32), P = 0.007]. CSF biomarker analysis also implicated the amyloid pathway in Parkinson's disease dementia, with significantly reduced levels of amyloid β42 (P = 0.0012) in Parkinson's disease dementia compared to Parkinson's disease without dementia. These results identify a new candidate gene associated with faster conversion to dementia in Parkinson's disease and suggest that amyloid-targeting therapy may have a role in preventing Parkinson's disease dementia.
Collapse
Affiliation(s)
- Raquel Real
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Alejandro Martinez-Carrasco
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Regina H Reynolds
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Michael A Lawton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Manuela M X Tan
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| | - Maryam Shoai
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Jean-Christophe Corvol
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Mina Ryten
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Catherine Bresner
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Leon Hubbard
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Alexis Brice
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Suzanne Lesage
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Johann Faouzi
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France
- Centre Inria de Paris, 75012 Paris, France
| | - Alexis Elbaz
- Centre for Research in Epidemiology and Population Health, INSERM U1018, Team "Exposome, heredity, cancer, and health", 94807 Villejuif, France
| | - Fanny Artaud
- Centre for Research in Epidemiology and Population Health, INSERM U1018, Team "Exposome, heredity, cancer, and health", 94807 Villejuif, France
| | - Nigel Williams
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Michele T M Hu
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford OX3 9DU, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford OX1 3QU, UK
| | - Yoav Ben-Shlomo
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Donald G Grosset
- School of Neuroscience and Psychology, University of Glasgow, Glasgow G51 4TF, UK
| | - John Hardy
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, London W1T 7DN, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
17
|
Optic radiation atrophy in Lewy body disease with visual hallucination on phase difference enhanced magnetic resonance images. Sci Rep 2022; 12:18556. [PMID: 36329069 PMCID: PMC9633778 DOI: 10.1038/s41598-022-21847-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Visual hallucinations (VH) occur commonly in Lewy body disease (LBD), including Parkinson's disease (PD), PD with dementia, and dementia with Lewy bodies. We aimed to use phase difference enhanced imaging (PADRE) to assess structural abnormalities of optic radiation (OR) in patients with Lewy body disease (LBD) concomitant with VH. Firstly, two radiologists reviewed the OR appearances in healthy subjects (HS) on PADRE. Next, based on the OR abnormalities, two reviewers assessed the PADRE images from 18 HS and 38 and 110 patients with LBD, with and without VH, respectively, in a blinded manner. Finally, all patients with LBD without VH were eventually followed up for at least 5 years after magnetic resonance imaging to determine the appearance of VH. The radiologists identified three layers, namely external sagittal stratum, internal sagittal stratum, and tapetum, in OR on the PADRE in HS. Moreover, they were able to consensually define the OR as abnormal when the layers were obscured and the disappearance of the cranial side. The sensitivity/specificity of abnormal OR for each case was 68%/81% (LBD with VH vs. LBD without VH). Furthermore, VH appeared in 12 of the 21 (57%) patients with LBD and abnormal OR during the follow-up period. However, no patients without abnormal OR reported VH. Patients with LBD and VH demonstrated the abnormal OR. This, in turn, might be a useful marker to distinguish the patients with VH from those without VH and HS. Moreover, abnormal OR on PADRE may precede the appearance of VH in LBD.
Collapse
|
18
|
Bluhm A, Schrempel S, Schilling S, von Hörsten S, Schulze A, Roßner S, Hartlage-Rübsamen M. Immunohistochemical Demonstration of the pGlu79 α-Synuclein Fragment in Alzheimer’s Disease and Its Tg2576 Mouse Model. Biomolecules 2022; 12:biom12071006. [PMID: 35883562 PMCID: PMC9312983 DOI: 10.3390/biom12071006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
The deposition of β-amyloid peptides and of α-synuclein proteins is a neuropathological hallmark in the brains of Alzheimer’s disease (AD) and Parkinson’s disease (PD) subjects, respectively. However, there is accumulative evidence that both proteins are not exclusive for their clinical entity but instead co-exist and interact with each other. Here, we investigated the presence of a newly identified, pyroglutamate79-modified α-synuclein variant (pGlu79-aSyn)—along with the enzyme matrix metalloproteinase-3 (MMP-3) and glutaminyl cyclase (QC) implicated in its formation—in AD and in the transgenic Tg2576 AD mouse model. In the human brain, pGlu79-aSyn was detected in cortical pyramidal neurons, with more distinct labeling in AD compared to control brain tissue. Using immunohistochemical double and triple labelings and confocal laser scanning microscopy, we demonstrate an association of pGlu79-aSyn, MMP-3 and QC with β-amyloid plaques. In addition, pGlu79-aSyn and QC were present in amyloid plaque-associated reactive astrocytes that were also immunoreactive for the chaperone heat shock protein 27 (HSP27). Our data are consistent for the transgenic mouse model and the human clinical condition. We conclude that pGlu79-aSyn can be generated extracellularly or within reactive astrocytes, accumulates in proximity to β-amyloid plaques and induces an astrocytic protein unfolding mechanism involving HSP27.
Collapse
Affiliation(s)
- Alexandra Bluhm
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (A.B.); (Sa.S.); (M.H.-R.)
| | - Sarah Schrempel
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (A.B.); (Sa.S.); (M.H.-R.)
| | - Stephan Schilling
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, 06120 Halle (Saale), Germany; (S.S.); (A.S.)
- Faculty of Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, 06366 Köthen, Germany
| | - Stephan von Hörsten
- Department for Experimental Therapy, University Clinics Erlangen and Preclinical Experimental Center, University of Erlangen-Nuremberg, 91054 Erlangen, Germany;
| | - Anja Schulze
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, 06120 Halle (Saale), Germany; (S.S.); (A.S.)
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (A.B.); (Sa.S.); (M.H.-R.)
- Correspondence: ; Tel.: +49-341-9725758
| | - Maike Hartlage-Rübsamen
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (A.B.); (Sa.S.); (M.H.-R.)
| |
Collapse
|
19
|
Jellinger KA. Are there morphological differences between Parkinson's disease-dementia and dementia with Lewy bodies? Parkinsonism Relat Disord 2022; 100:24-32. [PMID: 35691178 DOI: 10.1016/j.parkreldis.2022.05.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/21/2022] [Accepted: 05/30/2022] [Indexed: 12/17/2022]
Abstract
Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB) are two major neurocognitive disorders in the spectrum of Lewy body diseases that overlap in many clinical and neuropathological features, although they show several differences. Clinically distinguished mainly based on the duration of parkinsonism prior to development of dementia, their morphology is characterized by a variable combination of Lewy body (LB) and Alzheimer's disease (AD) pathologies, the latter usually being more frequent and severe in DLB. OBJECTIVE The aims of the study were to investigate essential neuropathological differences between PDD and DLB in a larger cohort of autopsy cases. METHODS 110 PDD autopsy cases were compared with 78 DLB cases. The major demographic, clinical (duration of illness, final MMSE) and neuropathological data were assessed retrospectively. Neuropathological studies used standardized methods and immunohistochemistry for phospho-tau, β-amyloid (Aß) and α-synuclein, with semiquantitative assessment of the major histological lesions. RESULTS PDD patients were significantly older at death than DLB ones (mean 83.9 vs. 79.8 years), with a significantly longer disease duration (mean 9.2 vs. 6.7 years). Braak LB scores and particularly neuritic Braak stages were significantly higher in the DLB group (mean 5.1and 5.1 vs. 4.2 and 4.4, respectively), as were Thal Aβ phases (mean 4.1 vs. 3.0). Diffuse striatal Aβ plaques were considerable in 55% and moderate in 45% of DLB cases, but were extremely rare in PDD. The most significant differences concerned the frequency and degree of cerebral amyloid angiopathy (CAA), being significantly higher in DLB (98.7 vs. 50%, and mean degree of 2.9 vs. 0.72, respectively). Worse prognosis in DLB than in PDD was linked to both increased Braak neuritic stages and more severe CAA. INTERPRETATION These and other recent studies imply the association of CAA, more severe concomitant AD pathology, and striatal Aβ load with cognitive decline and more rapid disease process that distinguishes DLB from PDD, while the influence of other cerebrovascular diseases or co-pathologies in both disorders was not specifically examined. The importance of both CAA and tau pathology in DLB and much less in PDD supports the concept of a pathogenetic continuum from Parkinson's disease (PD) - > PDD - > DLB - > DLB + AD and subtypes of AD with LB pathology within the spectrum of age-related proteinopathies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Vienna, Austria, Alberichgasse 5/13, A-1150, Vienna, Austria.
| |
Collapse
|
20
|
Morphological basis of Parkinson disease-associated cognitive impairment: an update. J Neural Transm (Vienna) 2022; 129:977-999. [PMID: 35726096 DOI: 10.1007/s00702-022-02522-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Cognitive impairment is one of the most salient non-motor symptoms of Parkinson disease (PD) that poses a significant burden on the patients and carers as well as being a risk factor for early mortality. People with PD show a wide spectrum of cognitive dysfunctions ranging from subjective cognitive decline and mild cognitive impairment (MCI) to frank dementia. The mean frequency of PD with MCI (PD-MCI) is 25.8% and the pooled dementia frequency is 26.3% increasing up to 83% 20 years after diagnosis. A better understanding of the underlying pathological processes will aid in directing disease-specific treatment. Modern neuroimaging studies revealed considerable changes in gray and white matter in PD patients with cognitive impairment, cortical atrophy, hypometabolism, dopamine/cholinergic or other neurotransmitter dysfunction and increased amyloid burden, but multiple mechanism are likely involved. Combined analysis of imaging and fluid markers is the most promising method for identifying PD-MCI and Parkinson disease dementia (PDD). Morphological substrates are a combination of Lewy- and Alzheimer-associated and other concomitant pathologies with aggregation of α-synuclein, amyloid, tau and other pathological proteins in cortical and subcortical regions causing destruction of essential neuronal networks. Significant pathological heterogeneity within PD-MCI reflects deficits in various cognitive domains. This review highlights the essential neuroimaging data and neuropathological changes in PD with cognitive impairment, the amount and topographical distribution of pathological protein aggregates and their pathophysiological relevance. Large-scale clinicopathological correlative studies are warranted to further elucidate the exact neuropathological correlates of cognitive impairment in PD and related synucleinopathies as a basis for early diagnosis and future disease-modifying therapies.
Collapse
|
21
|
Zeng Q, Pan H, Zhao Y, Wang Y, Xu Q, Tan J, Yan X, Li J, Tang B, Guo J. Evaluation of common and rare variants of Alzheimer's disease-causal genes in Parkinson's disease. Parkinsonism Relat Disord 2022; 97:8-14. [PMID: 35276586 DOI: 10.1016/j.parkreldis.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Parkinson's disease (PD) and Alzheimer's disease (AD) are the most common neurodegenerative diseases in the elderly. Recently, some variants of AD-causal genes (APP, PSEN1, PSEN2) have been reported in PD. In this study, we investigated the association between coding variants of AD-causal genes and PD in a large Chinese population cohort. METHODS We performed whole-exome sequencing (WES) on 1,917 patients with early-onset or familial PD and 1,652 controls, and whole-genome sequencing (WGS) on 1,962 sporadic late-onset PD and 1,279 controls. Genetic and phenotypic data were analyzed with regression analyses and the optimized sequence kernel association test. Further validation study was performed by Fisher's exact test. RESULTS We found that rs75733498 in the PSEN2 gene was significantly associated with early-onset or familial PD; however, no significant relationship was discovered between rs75733498 and sporadic late-onset PD. The result of the validation study still revealed a significant association between rs75733498 and PD. We observed a suggestive association with APP gene in early-onset or familial PD when considering damaging missense variants alone (p = 0.018) or combined with loss-of-function variants (p = 0.029). Further phenotypic analysis did not demonstrate any significant associations. CONCLUSION Our results support a possible genetic contribution of AD-causal genes to PD. These findings warrant further genetic and functional confirmation, and more powerful association studies will better decipher the mechanisms of PD.
Collapse
Affiliation(s)
- Qian Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yige Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jieqiong Tan
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China; Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China; Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China; Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.
| |
Collapse
|
22
|
Miller RL, Dhavale DD, O’Shea JY, Andruska KM, Liu J, Franklin EE, Buddhala C, Loftin SK, Cirrito JR, Perrin RJ, Cairns NJ, Campbell MC, Perlmutter JS, Kotzbauer PT. Quantifying regional α -synuclein, amyloid β, and tau accumulation in lewy body dementia. Ann Clin Transl Neurol 2022; 9:106-121. [PMID: 35060360 PMCID: PMC8862415 DOI: 10.1002/acn3.51482] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/30/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Parkinson disease (PD) is defined by the accumulation of misfolded α-synuclein (α-syn) in Lewy bodies and Lewy neurites. It affects multiple cortical and subcortical neuronal populations. The majority of people with PD develop dementia, which is associated with Lewy bodies in neocortex and referred to as Lewy body dementia (LBD). Other neuropathologic changes, including amyloid β (Aβ) and tau accumulation, occur in some LBD cases. We sought to quantify α-syn, Aβ, and tau accumulation in neocortical, limbic, and basal ganglia regions. METHODS We isolated insoluble protein from fresh frozen postmortem brain tissue samples for eight brains regions from 15 LBD, seven Alzheimer disease (AD), and six control cases. We measured insoluble α-syn, Aβ, and tau with recently developed sandwich ELISAs. RESULTS We detected a wide range of insoluble α-syn accumulation in LBD cases. The majority had substantial α-syn accumulation in most regions, and dementia severity correlated with neocortical α-syn. However, three cases had low neocortical levels that were indistinguishable from controls. Eight LBD cases had substantial Aβ accumulation, although the mean Aβ level in LBD was lower than in AD. The presence of Aβ was associated with greater α-syn accumulation. Tau accumulation accompanied Aβ in only one LBD case. INTERPRETATION LBD is associated with insoluble α-syn accumulation in neocortical regions, but the relatively low neocortical levels in some cases suggest that other changes contribute to impaired function, such as loss of neocortical innervation from subcortical regions. The correlation between Aβ and α-syn accumulation suggests a pathophysiologic relationship between these two processes.
Collapse
Affiliation(s)
- Rebecca L. Miller
- Department of NeurologyWashington University School of MedicineSt. LouisMO
- Hope Center for Neurological DisordersWashington University School of MedicineSt. LouisMO
| | - Dhruva D. Dhavale
- Department of NeurologyWashington University School of MedicineSt. LouisMO
- Hope Center for Neurological DisordersWashington University School of MedicineSt. LouisMO
| | - Jennifer Y. O’Shea
- Department of NeurologyWashington University School of MedicineSt. LouisMO
- Hope Center for Neurological DisordersWashington University School of MedicineSt. LouisMO
| | - Kristin M. Andruska
- Department of NeurologyWashington University School of MedicineSt. LouisMO
- Hope Center for Neurological DisordersWashington University School of MedicineSt. LouisMO
| | - Jialu Liu
- Department of NeurologyWashington University School of MedicineSt. LouisMO
- Hope Center for Neurological DisordersWashington University School of MedicineSt. LouisMO
| | - Erin E. Franklin
- Hope Center for Neurological DisordersWashington University School of MedicineSt. LouisMO
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMO
| | - Chandana Buddhala
- Department of NeurologyWashington University School of MedicineSt. LouisMO
- Hope Center for Neurological DisordersWashington University School of MedicineSt. LouisMO
| | - Susan K. Loftin
- Department of NeurologyWashington University School of MedicineSt. LouisMO
- Department of RadiologyWashington University School of MedicineSt. LouisMO
| | - John R. Cirrito
- Department of NeurologyWashington University School of MedicineSt. LouisMO
- Hope Center for Neurological DisordersWashington University School of MedicineSt. LouisMO
| | - Richard J. Perrin
- Department of NeurologyWashington University School of MedicineSt. LouisMO
- Hope Center for Neurological DisordersWashington University School of MedicineSt. LouisMO
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMO
| | - Nigel J. Cairns
- Department of NeurologyWashington University School of MedicineSt. LouisMO
- Hope Center for Neurological DisordersWashington University School of MedicineSt. LouisMO
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMO
- College of Medicine and HealthUniversity of ExeterExeterUnited Kingdom
| | - Meghan C. Campbell
- Department of NeurologyWashington University School of MedicineSt. LouisMO
- Hope Center for Neurological DisordersWashington University School of MedicineSt. LouisMO
- Department of RadiologyWashington University School of MedicineSt. LouisMO
| | - Joel S. Perlmutter
- Department of NeurologyWashington University School of MedicineSt. LouisMO
- Department of RadiologyWashington University School of MedicineSt. LouisMO
- Department of NeuroscienceWashington University School of MedicineSt. LouisMO
- Program in Occupational TherapyWashington University School of MedicineSt. LouisMO
- Program in Physical TherapyWashington University School of MedicineSt. LouisMO
| | - Paul T. Kotzbauer
- Department of NeurologyWashington University School of MedicineSt. LouisMO
- Hope Center for Neurological DisordersWashington University School of MedicineSt. LouisMO
- Developmental BiologyWashington University School of MedicineSt. LouisMO
| |
Collapse
|
23
|
Shankar J, K.M G, Wilson B. Potential applications of nanomedicine for treating Parkinson's disease. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Bassil F, Meymand ES, Brown HJ, Xu H, Cox TO, Pattabhiraman S, Maghames CM, Wu Q, Zhang B, Trojanowski JQ, Lee VMY. α-Synuclein modulates tau spreading in mouse brains. J Exp Med 2021; 218:211481. [PMID: 33091110 PMCID: PMC7588140 DOI: 10.1084/jem.20192193] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/12/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022] Open
Abstract
α-Synuclein (α-syn) and tau aggregates are the neuropathological hallmarks of Parkinson’s disease (PD) and Alzheimer’s disease (AD), respectively, although both pathologies co-occur in patients with these diseases, suggesting possible crosstalk between them. To elucidate the interactions of pathological α-syn and tau, we sought to model these interactions. We show that increased accumulation of tau aggregates occur following simultaneous introduction of α-syn mousepreformed fibrils (mpffs) and AD lysate–derived tau seeds (AD-tau) both in vitro and in vivo. Interestingly, the absence of endogenous mouse α-syn in mice reduces the accumulation and spreading of tau, while the absence of tau did not affect the seeding or spreading capacity of α-syn. These in vivo results are consistent with our in vitro data wherein the presence of tau has no synergistic effects on α-syn. Our results point to the important role of α-syn as a modulator of tau pathology burden and spreading in the brains of AD, PDD, and DLB patients.
Collapse
Affiliation(s)
- Fares Bassil
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.,AbbVie, Foundational Neuroscience Center, Cambridge, MA
| | - Emily S Meymand
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Hannah J Brown
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Hong Xu
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Timothy O Cox
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Shankar Pattabhiraman
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Chantal M Maghames
- The Department of Cancer Biology and Abramson Family Cancer Research Institute, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Qihui Wu
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Bin Zhang
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - John Q Trojanowski
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Virginia M-Y Lee
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
25
|
Abstract
The use of PET imaging agents in oncology, cardiovascular disease, and neurodegenerative disease shows the power of this technique in evaluating the molecular and biological characteristics of numerous diseases. These agents provide crucial information for designing therapeutic strategies for individual patients. Novel PET tracers are in continual development and many have potential use in clinical and research settings. This article discusses the potential applications of tracers in diagnostics, the biological characteristics of diseases, the ability to provide prognostic indicators, and using this information to guide treatment strategies including monitoring treatment efficacy in real time to improve outcomes and survival.
Collapse
|
26
|
Willumsen N, Poole T, Nicholas JM, Fox NC, Ryan NS, Lashley T. Variability in the type and layer distribution of cortical Aβ pathology in familial Alzheimer's disease. Brain Pathol 2021; 32:e13009. [PMID: 34319632 PMCID: PMC9048809 DOI: 10.1111/bpa.13009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022] Open
Abstract
Familial Alzheimer's disease (FAD) is caused by autosomal dominant mutations in the PSEN1, PSEN2 or APP genes, giving rise to considerable clinical and pathological heterogeneity in FAD. Here we investigate variability in clinical data and the type and distribution of Aβ pathologies throughout the cortical layers of different FAD mutation cases. Brain tissue from 20 FAD cases [PSEN1 pre-codon 200 (n = 10), PSEN1 post-codon 200 (n = 6), APP (n = 4)] were investigated. Frontal cortex sections were stained immunohistochemically for Aβ, and Nissl to define the cortical layers. The frequency of different amyloid-beta plaque types was graded for each cortical layer and the severity of cerebral amyloid angiopathy (CAA) was determined in cortical and leptomeningeal blood vessels. Comparisons were made between FAD mutations and APOE4 status, with associations between pathology, clinical and genetic data investigated. In this cohort, possession of an APOE4 allele was associated with increased disease duration but not with age at onset, after adjusting for mutation sub-group and sex. We found Aβ pathology to be heterogeneous between cases although Aβ load was highest in cortical layer 3 for all mutation groups and a higher Aβ load was associated with APOE4. The PSEN1 post-codon 200 group had a higher Aβ load in lower cortical layers, with a small number of this group having increased cotton wool plaque pathology in lower layers. Cotton wool plaque frequency was positively associated with the severity of CAA in the whole cohort and in the PSEN1 post-codon 200 group. Carriers of the same PSEN1 mutation can have differing patterns of Aβ deposition, potentially because of differences in risk factors. Our results highlight possible influences of APOE4 genotype, and PSEN1 mutation type on Aβ deposition, which may have effects on the clinical heterogeneity of FAD.
Collapse
Affiliation(s)
- Nanet Willumsen
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Teresa Poole
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK.,Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Jennifer M Nicholas
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK.,Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at University College London, London, UK
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at University College London, London, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
27
|
Baek MS, Lee MJ, Kim HK, Lyoo CH. Temporal trajectory of biofluid markers in Parkinson's disease. Sci Rep 2021; 11:14820. [PMID: 34285331 PMCID: PMC8292456 DOI: 10.1038/s41598-021-94345-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
Full dynamics of biofluid biomarkers have been unknown in patients with Parkinson’s disease (PD). Using data from 396 PD patients and 182 controls in the Parkinson's Progression Markers Initiative (PPMI) database, we estimated long-term temporal trajectories of CSF α-synuclein (α-syn), amyloid-β (Aβ), total tau (t-tau), phosphorylated tau (p-tau) and serum neurofilament light chain (NfL) by integrating function between the baseline levels and annual changes. At baseline, PD patients showed lower CSF α-syn, Aβ, t-tau and p-tau levels than those of the controls. In all PD patients, CSF α-syn and Aβ decreased in a negative exponential pattern before the onset of motor symptoms, whereas CSF t-tau and p-tau, and serum NfL increased. Patients with cognitive impairment exhibited faster decline of Aβ and α-syn and faster rise of t-tau, p-tau and NfL, when compared to those without. Similarly, low Aβ group showed earlier decline of α-syn, faster rise of t-tau, p-tau and NfL, and faster decline of cognitive performances, when compared to high Aβ group. Our results suggest that longitudinal changes in biomarkers can be influenced by cognitive impairment and Aβ burden at baseline. PD patients with Aβ pathology may be associated with early appearance of α-synuclein pathology, rapid progression of axonal degeneration and neurodegeneration, and consequently greater cognitive decline.
Collapse
Affiliation(s)
- Min Seok Baek
- Department of Neurology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Gangwon do, Republic of Korea.,Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, 20 Eonjuro 63-gil, Gangnam-gu, Seoul, Republic of Korea
| | - Myung Jun Lee
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Gudeok-ro 179, Seo-gu, Busan, 49241, Republic of Korea.
| | - Han-Kyeol Kim
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, 20 Eonjuro 63-gil, Gangnam-gu, Seoul, Republic of Korea
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, 20 Eonjuro 63-gil, Gangnam-gu, Seoul, Republic of Korea
| |
Collapse
|
28
|
Milán-Tomás Á, Fernández-Matarrubia M, Rodríguez-Oroz MC. Lewy Body Dementias: A Coin with Two Sides? Behav Sci (Basel) 2021; 11:94. [PMID: 34206456 PMCID: PMC8301188 DOI: 10.3390/bs11070094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Lewy body dementias (LBDs) consist of dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD), which are clinically similar syndromes that share neuropathological findings with widespread cortical Lewy body deposition, often with a variable degree of concomitant Alzheimer pathology. The objective of this article is to provide an overview of the neuropathological and clinical features, current diagnostic criteria, biomarkers, and management of LBD. Literature research was performed using the PubMed database, and the most pertinent articles were read and are discussed in this paper. The diagnostic criteria for DLB have recently been updated, with the addition of indicative and supportive biomarker information. The time interval of dementia onset relative to parkinsonism remains the major distinction between DLB and PDD, underpinning controversy about whether they are the same illness in a different spectrum of the disease or two separate neurodegenerative disorders. The treatment for LBD is only symptomatic, but the expected progression and prognosis differ between the two entities. Diagnosis in prodromal stages should be of the utmost importance, because implementing early treatment might change the course of the illness if disease-modifying therapies are developed in the future. Thus, the identification of novel biomarkers constitutes an area of active research, with a special focus on α-synuclein markers.
Collapse
Affiliation(s)
- Ángela Milán-Tomás
- Department of Neurology, Clínica Universidad de Navarra, 28027 Madrid, Spain;
| | - Marta Fernández-Matarrubia
- Department of Neurology, Clínica Universidad de Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - María Cruz Rodríguez-Oroz
- Department of Neurology, Clínica Universidad de Navarra, 28027 Madrid, Spain;
- Department of Neurology, Clínica Universidad de Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- CIMA, Center of Applied Medical Research, Universidad de Navarra, Neurosciences Program, 31008 Pamplona, Spain
| |
Collapse
|
29
|
Lee Y, Jeon S, Kang SW, Park M, Baik K, Yoo HS, Chung SJ, Jeong SH, Jung JH, Lee PH, Sohn YH, Evans AC, Ye BS. Interaction of CSF α-synuclein and amyloid beta in cognition and cortical atrophy. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12177. [PMID: 34046519 PMCID: PMC8140203 DOI: 10.1002/dad2.12177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/28/2021] [Accepted: 02/25/2021] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Lewy body-related pathology is commonly observed at autopsy in individuals with dementia, but in vivo biomarkers for α-synucleinopathy are lacking. METHODS Baseline cerebrospinal fluid (CSF) biomarkers, polygenic risk score (PRS) for Parkinson's disease (PRS-PD) and Alzheimer's disease (PRS-AD), longitudinal cognitive scores, and magnetic resonance imaging were measured in 217 participants from the Alzheimer's Disease Neuroimaging Initiative. Linear mixed models were used to find the relationship of CSF biomarkers and the PRS with cognition and cortical atrophy. RESULTS Higher PRS-PD and PRS-AD were associated with lower CSF α-synuclein and amyloid beta (Aβ), respectively. Lower CSF α-synuclein and the interaction of CSF α-synuclein and Aβ were associated with lower cognitive scores and global cortical atrophy most prominently in the occipital cortex. DISCUSSION Lower CSF α-synuclein could be a biomarker for α-synucleinopathy, and the simultaneous evaluation of CSF biomarkers for AD and CSF α-synuclein could reveal the independent and interactive effects on cognition and cortical atrophy.
Collapse
Affiliation(s)
- Young‐gun Lee
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Seun Jeon
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Sung Woo Kang
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Mincheol Park
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Kyoungwon Baik
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Han Soo Yoo
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Seok Jong Chung
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Seong Ho Jeong
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Jin Ho Jung
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Phil Hyu Lee
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Young Ho Sohn
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Alan C. Evans
- Brain Research InstituteYonsei University College of MedicineSeoulKorea
| | - Byoung Seok Ye
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | | |
Collapse
|
30
|
Compta Y, Revesz T. Neuropathological and Biomarker Findings in Parkinson's Disease and Alzheimer's Disease: From Protein Aggregates to Synaptic Dysfunction. JOURNAL OF PARKINSONS DISEASE 2021; 11:107-121. [PMID: 33325398 PMCID: PMC7990431 DOI: 10.3233/jpd-202323] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is mounting evidence that Parkinson’s disease (PD) and Alzheimer’s disease (AD) share neuropathological hallmarks, while similar types of biomarkers are being applied to both. In this review we aimed to explore similarities and differences between PD and AD at both the neuropathology and the biomarker levels, specifically focusing on protein aggregates and synapse dysfunction. Thus, amyloid-β peptide (Aβ) and tau lesions of the Alzheimer-type are common in PD and α-synuclein Lewy-type aggregates are frequent findings in AD. Modern neuropathological techniques adding to routine immunohistochemistry might take further our knowledge of these diseases beyond protein aggregates and down to their presynaptic and postsynaptic terminals, with potential mechanistic and even future therapeutic implications. Translation of neuropathological discoveries to the clinic remains challenging. Cerebrospinal fluid (CSF) and positron emission tomography (PET) markers of Aβ and tau have been shown to be reliable for AD diagnosis. Conversely, CSF markers of α-synuclein have not been that consistent. In terms of PET markers, there is no PET probe available for α-synuclein yet, while the AD PET markers range from consistent evidence of their specificity (amyloid imaging) to greater uncertainty of their reliability due to off-target binding (tau imaging). CSF synaptic markers are attractive, still needing more evidence, which currently suggests those might be non-specific markers of disease progression. It can be summarized that there is neuropathological evidence that protein aggregates of AD and PD are present both at the soma and the synapse. Thus, a number of CSF and PET biomarkers beyond α-synuclein, tau and Aβ might capture these different faces of protein-related neurodegeneration. It remains to be seen what the longitudinal outcomes and the potential value as surrogate markers of these biomarkers are.
Collapse
Affiliation(s)
- Yaroslau Compta
- Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic / IDIBAPS / CIBERNED, Barcelona, Catalonia, Spain.,Institut de Neurociències, Maextu's excellence center, University of Barcelona, Barcelona, Catalonia, Spain
| | - Tamas Revesz
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, UK.,Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, UK
| |
Collapse
|
31
|
Na S, Jeong H, Park JS, Chung YA, Song IU. The Impact of Amyloid-Beta Positivity with 18F-Florbetaben PET on Neuropsychological Aspects in Parkinson's Disease Dementia. Metabolites 2020; 10:metabo10100380. [PMID: 32977481 PMCID: PMC7598210 DOI: 10.3390/metabo10100380] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/23/2023] Open
Abstract
The neuropathology of Parkinson’s disease dementia (PDD) is heterogenous, and the impacts of each pathophysiology and their synergistic effects are not fully understood. The aim of this study was to evaluate the frequency and impacts of co-existence with Alzheimer’s disease in patients with PDD by using 18F-florbetaben PET imaging. A total of 23 patients with PDD participated in the study. All participants underwent 18F-florbetaben PET and completed a standardized neuropsychological battery and assessment of motor symptoms. The results of cognitive tests, neuropsychiatric symptoms, and motor symptoms were analyzed between the positive and negative 18F-florbetaben PET groups. Four patients (17.4%) showed significant amyloid burden. Patients with amyloid-beta showed poorer performance in executive function and more severe neuropsychiatric symptoms than those without amyloid-beta. Motor symptoms assessed by UPDRS part III and the modified H&Y Scale were not different between the two groups. The amyloid PET scan of a patient with PDD can effectively reflect a co-existing Alzheimer’s disease pathology. Amyloid PET scans might be able to help physicians of PDD patients showing rapid progression or severe cognitive/behavioral features.
Collapse
Affiliation(s)
- Seunghee Na
- Department of Neurology, Incheon St. Mary’s Hospital, The Catholic University of Korea, Seoul 21431, Korea; (S.N.); (J.-S.P.)
| | - Hyeonseok Jeong
- Department of Radiology, Incheon St. Mary’s Hospital, The Catholic University of Korea, Seoul 21431, Korea;
- Department of Nuclear Medicine, Incheon St. Mary’s Hospital, The Catholic University of Korea, Seoul 21431, Korea
| | - Jong-Sik Park
- Department of Neurology, Incheon St. Mary’s Hospital, The Catholic University of Korea, Seoul 21431, Korea; (S.N.); (J.-S.P.)
| | - Yong-An Chung
- Department of Radiology, Incheon St. Mary’s Hospital, The Catholic University of Korea, Seoul 21431, Korea;
- Department of Nuclear Medicine, Incheon St. Mary’s Hospital, The Catholic University of Korea, Seoul 21431, Korea
- Correspondence: (Y.-A.C.); (I.-U.S.); Tel.: +82-32-280-5242 (Y.-A.C.); Tel.: +82-32-280-5010 (I.-U.S.); Fax: +82-32-280-5244 (Y.-A.C. & I.-U.S.)
| | - In-Uk Song
- Department of Neurology, Incheon St. Mary’s Hospital, The Catholic University of Korea, Seoul 21431, Korea; (S.N.); (J.-S.P.)
- Correspondence: (Y.-A.C.); (I.-U.S.); Tel.: +82-32-280-5242 (Y.-A.C.); Tel.: +82-32-280-5010 (I.-U.S.); Fax: +82-32-280-5244 (Y.-A.C. & I.-U.S.)
| |
Collapse
|
32
|
Esteves AR, Cardoso SM. Differential protein expression in diverse brain areas of Parkinson's and Alzheimer's disease patients. Sci Rep 2020; 10:13149. [PMID: 32753661 PMCID: PMC7403590 DOI: 10.1038/s41598-020-70174-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/10/2020] [Indexed: 11/09/2022] Open
Abstract
Many hypotheses have been postulated to define the etiology of sporadic Parkinson's and Alzheimer's disorders (PD and AD) but there is no consensus on what causes these devastating age-related diseases. Braak staging of both pathologies helped researchers to better understand the progression and to identify their prodromal and symptomatic phases. Indeed, it is well accepted that Lewy body pathology and neurofibrillary tangles appearance correlates with disease progression and severity of symptoms in PD and AD, respectively. Additionally, several studies in PD and AD models try to disclose which cellular mechanisms are defaulted and trigger the neurodegenerative process that culminates with neuronal death causing PD and AD classical symptomatology. Herein, we determined expression levels of proteins involved in microtubule assembly, autophagic-lysosomal pathway and unfolded protein response in the cortex, hippocampus and SNpc of PD and AD patients, vascular dementia patients and aged-match controls. The differential expression allowed us to determine which pathways are determinant to synaptic dysfunction and to establish a time line for disease progression. Our results allow us to challenge the hypothesis that both PD and AD pathologies are caused by α-synuclein or Aβ pathology propagation throughout the brain in a prion-like manner.
Collapse
Affiliation(s)
- A R Esteves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - S M Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal. .,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal. .,Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
33
|
Sleeman I, Lawson RA, Yarnall AJ, Duncan GW, Johnston F, Khoo TK, Burn DJ. Urate and Homocysteine: Predicting Motor and Cognitive Changes in Newly Diagnosed Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2020; 9:351-359. [PMID: 30909247 PMCID: PMC6597987 DOI: 10.3233/jpd-181535] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Urate and homocysteine are potential biomarkers for disease progression in Parkinson's disease (PD). Baseline serum urate concentration has been shown to predict motor but not cognitive decline. The relationship between serum homocysteine concentration and cognitive and motor impairment is unknown. OBJECTIVES The aim of this study was to examine the association between baseline serum urate and homocysteine, and prospective measures of disease progression and cognition over 54 months in early PD. METHODS 154 newly diagnosed PD participants and 99 age-matched controls completed a schedule of assessments at baseline, 18, 36 and 54 months. The Movement Disorders Society Unified Parkinson's Disease Scale Part III (MDS-UPDRS III) was used to assess motor severity. The Montreal Cognitive Assessment (MoCA) was used to assess global cognition. Serum samples drawn at baseline were analysed for urate, homocysteine, red cell folate and vitamin B12 concentrations. RESULTS Baseline urate was 331.4±83.8 and 302.7±78.0μmol/L for control and PD participants, respectively (p = 0.015). Baseline homocysteine was 9.6±3.3 and 11.1±3.8μmol/L for controls and PD participants, respectively (p < 0.01). Linear mixed effects modelling showed that lower baseline urate (β= 0.02, p < 0.001) and higher homocysteine (β= 0.29, p < 0.05) predicted decline in motor function. Only higher homocysteine concentrations at baseline, however, predicted declining MoCA scores over 54 months (β= 0.11, p < 0.01). CONCLUSIONS Lower serum urate concentration is associated with worsening motor function; while higher homocysteine concentration is associated with change in motor function and cognitive decline. Therefore, urate and homocysteine may be suitable biomarkers for predicting motor and cognitive decline in early PD.
Collapse
Affiliation(s)
- Isobel Sleeman
- Institute of Applied Health Sciences, University of Aberdeen, UK.,Institute of Neuroscience, Newcastle University, UK
| | | | | | - Gordon W Duncan
- Institute of Neuroscience, Newcastle University, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Tien K Khoo
- School of Medicine and Menzies Health Institute Queensland, Griffith University, Australia.,School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - David J Burn
- Faculty of Medical Sciences, Newcastle University, UK
| |
Collapse
|
34
|
Delic V, Beck KD, Pang KCH, Citron BA. Biological links between traumatic brain injury and Parkinson's disease. Acta Neuropathol Commun 2020; 8:45. [PMID: 32264976 PMCID: PMC7137235 DOI: 10.1186/s40478-020-00924-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022] Open
Abstract
Parkinson's Disease (PD) is a progressive neurodegenerative disorder with no cure. Clinical presentation is characterized by postural instability, resting tremors, and gait problems that result from progressive loss of A9 dopaminergic neurons in the substantia nigra pars compacta. Traumatic brain injury (TBI) has been implicated as a risk factor for several neurodegenerative diseases, but the strongest evidence is linked to development of PD. Mild TBI (mTBI), is the most common and is defined by minimal, if any, loss of consciousness and the absence of significant observable damage to the brain tissue. mTBI is responsible for a 56% higher risk of developing PD in U.S. Veterans and the risk increases with severity of injury. While the mounting evidence from human studies suggests a link between TBI and PD, fundamental questions as to whether TBI nucleates PD pathology or accelerates PD pathology in vulnerable populations remains unanswered. Several promising lines of research point to inflammation, metabolic dysregulation, and protein accumulation as potential mechanisms through which TBI can initiate or accelerate PD. Amyloid precursor protein (APP), alpha synuclein (α-syn), hyper-phosphorylated Tau, and TAR DNA-binding protein 43 (TDP-43), are some of the most frequently reported proteins upregulated following a TBI and are also closely linked to PD. Recently, upregulation of Leucine Rich Repeat Kinase 2 (LRRK2), has been found in the brain of mice following a TBI. Subset of Rab proteins were identified as biological substrates of LRRK2, a protein also extensively linked to late onset PD. Inhibition of LRRK2 was found to be neuroprotective in PD and TBI models. The goal of this review is to survey current literature concerning the mechanistic overlap between TBI and PD with a particular focus on inflammation, metabolic dysregulation, and aforementioned proteins. This review will also cover the application of rodent TBI models to further our understanding of the relationship between TBI and PD.
Collapse
Affiliation(s)
- Vedad Delic
- Laboratory of Molecular Biology, VA New Jersey Health Care System, Research and Development (Mailstop 15), 385 Tremont Ave, East Orange, NJ, 07018, USA.
- NeuroBehavioral Research Laboratory, VA New Jersey Health Care System, Research and Development (Mailstop 15), 385 Tremont Ave, East Orange, NJ, 07018, USA.
| | - Kevin D Beck
- NeuroBehavioral Research Laboratory, VA New Jersey Health Care System, Research and Development (Mailstop 15), 385 Tremont Ave, East Orange, NJ, 07018, USA
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers- New Jersey Medical School, Newark, NJ, 07103, USA
| | - Kevin C H Pang
- NeuroBehavioral Research Laboratory, VA New Jersey Health Care System, Research and Development (Mailstop 15), 385 Tremont Ave, East Orange, NJ, 07018, USA
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers- New Jersey Medical School, Newark, NJ, 07103, USA
| | - Bruce A Citron
- Laboratory of Molecular Biology, VA New Jersey Health Care System, Research and Development (Mailstop 15), 385 Tremont Ave, East Orange, NJ, 07018, USA
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers- New Jersey Medical School, Newark, NJ, 07103, USA
| |
Collapse
|
35
|
Orgeta V, McDonald KR, Poliakoff E, Hindle JV, Clare L, Leroi I. Cognitive training interventions for dementia and mild cognitive impairment in Parkinson's disease. Cochrane Database Syst Rev 2020; 2:CD011961. [PMID: 32101639 PMCID: PMC7043362 DOI: 10.1002/14651858.cd011961.pub2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Approximately 60% to 80% of people with Parkinson's disease (PD) experience cognitive impairment that impacts on their quality of life. Cognitive decline is a core feature of the disease and can often present before the onset of motor symptoms. Cognitive training may be a useful non-pharmacological intervention that could help to maintain or improve cognition and quality of life for people with PD dementia (PDD) or PD-related mild cognitive impairment (PD-MCI). OBJECTIVES To determine whether cognitive training (targeting single or multiple domains) improves cognition in people with PDD and PD-MCI or other clearly defined forms of cognitive impairment in people with PD. SEARCH METHODS We searched the Cochrane Dementia and Cognitive Improvement Group Trials Register (8 August 2019), the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, CINAHL, and PsycINFO. We searched reference lists and trial registers, searched relevant reviews in the area and conference proceedings. We also contacted experts for clarifications on data and ongoing trials. SELECTION CRITERIA We included randomised controlled trials where the participants had PDD or PD-MCI, and where the intervention was intended to train general or specific areas of cognitive function, targeting either a single domain or multiple domains of cognition, and was compared to a control condition. Multicomponent interventions that also included motor or other elements were considered eligible. DATA COLLECTION AND ANALYSIS Two review authors independently screened titles, abstracts, and full-text articles for inclusion in the review. Two review authors also independently undertook extraction of data and assessment of methodological quality. We used GRADE methods to assess the overall quality of the evidence. MAIN RESULTS Seven studies with a total of 225 participants met the inclusion criteria for this review. All seven studies compared the effects of a cognitive training intervention to a control intervention at the end of treatment periods lasting four to eight weeks. Six studies included people with PD living in the community. These six studies recruited people with single-domain (executive) or multiple-domain mild cognitive impairment in PD. Four of these studies identified participants with MCI using established diagnostic criteria, and two included both people with PD-MCI and people with PD who were not cognitively impaired. One study recruited people with a diagnosis of PD dementia who were living in long-term care settings. The cognitive training intervention in three studies targeted a single cognitive domain, whilst in four studies multiple domains of cognitive function were targeted. The comparison groups either received no intervention or took part in recreational activities (sports, music, arts), speech or language exercises, computerised motor therapy, or motor rehabilitation combined with recreational activity. We found no clear evidence that cognitive training improved global cognition. Although cognitive training was associated with higher scores on global cognition at the end of treatment, the result was imprecise and not statistically significant (6 trials, 178 participants, standardised mean difference (SMD) 0.28, 95% confidence interval (CI) -0.03 to 0.59; low-certainty evidence). There was no evidence of a difference at the end of treatment between cognitive training and control interventions on executive function (5 trials, 112 participants; SMD 0.10, 95% CI -0.28 to 0.48; low-certainty evidence) or visual processing (3 trials, 64 participants; SMD 0.30, 95% CI -0.21 to 0.81; low-certainty evidence). The evidence favoured the cognitive training group on attention (5 trials, 160 participants; SMD 0.36, 95% CI 0.03 to 0.68; low-certainty evidence) and verbal memory (5 trials, 160 participants; SMD 0.37, 95% CI 0.04 to 0.69; low-certainty evidence), but these effects were less certain in sensitivity analyses that excluded a study in which only a minority of the sample were cognitively impaired. There was no evidence of differences between treatment and control groups in activities of daily living (3 trials, 67 participants; SMD 0.03, 95% CI -0.47 to 0.53; low-certainty evidence) or quality of life (5 trials, 147 participants; SMD -0.01, 95% CI -0.35 to 0.33; low-certainty evidence). There was very little information on adverse events. We considered the certainty of the evidence for all outcomes to be low due to risk of bias in the included studies and imprecision of the results. We identified six ongoing trials recruiting participants with PD-MCI, but no ongoing trials of cognitive training for people with PDD. AUTHORS' CONCLUSIONS This review found no evidence that people with PD-MCI or PDD who receive cognitive training for four to eight weeks experience any important cognitive improvements at the end of training. However, this conclusion was based on a small number of studies with few participants, limitations of study design and execution, and imprecise results. There is a need for more robust, adequately powered studies of cognitive training before conclusions can be drawn about the effectiveness of cognitive training for people with PDD and PD-MCI. Studies should use formal criteria to diagnose cognitive impairments, and there is a particular need for more studies testing the efficacy of cognitive training in people with PDD.
Collapse
Affiliation(s)
- Vasiliki Orgeta
- University College LondonDivision of Psychiatry6th Floor, Maple House,149 Tottenham Court Road,LondonUKW1T 7NF
| | - Kathryn R McDonald
- University of ManchesterDivision of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health3.306, Jean McFarlane Building, Oxford RoadManchesterUKM13 9PL
| | - Ellen Poliakoff
- Division of Neuroscience and Experimental Psychology, School of Biological SciencesUniversity of ManchesterManchesterUKM13 9PL
| | - John Vincent Hindle
- Llandudno Hospital, Betsi Cadwaladr University Health BoardCare of the Elderly DepartmentHospital RoadLlandudnoConwyUKLL30 1LB
| | - Linda Clare
- University of ExeterREACH: The Centre for Research in Ageing and Cognitive HealthPerry RoadExeterUKEX4 4QG
| | - Iracema Leroi
- Trinity College DublinGlobal Brain Health InstituteDublinIreland
| | | |
Collapse
|
36
|
Fujishiro H, Kosaka K. When does cerebral β‐amyloid deposition begin in Lewy body dementia? ACTA ACUST UNITED AC 2020. [DOI: 10.1111/ncn3.12372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hiroshige Fujishiro
- Department of Psychiatry Kawasaki Memorial Hospital Miyamae Kawasaki Japan
- Department of Psychiatry Nagoya University Graduate School of Medicine Showa, Nagoya Japan
- Department of Psychiatry Yokohama City University School of Medicine Kanazawa, Yokohama Japan
| | - Kenji Kosaka
- Department of Psychiatry Yokohama City University School of Medicine Kanazawa, Yokohama Japan
| |
Collapse
|
37
|
Jayaraj RL, Azimullah S, Beiram R. Diabetes as a risk factor for Alzheimer's disease in the Middle East and its shared pathological mediators. Saudi J Biol Sci 2020; 27:736-750. [PMID: 32210695 PMCID: PMC6997863 DOI: 10.1016/j.sjbs.2019.12.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
The incidence of Alzheimer's disease (AD) has risen exponentially worldwide over the past decade. A growing body of research indicates that AD is linked to diabetes mellitus (DM) and suggests that impaired insulin signaling acts as a crucial risk factor in determining the progression of this devastating disease. Many studies suggest people with diabetes, especially type 2 diabetes, are at higher risk of eventually developing Alzheimer's dementia or other dementias. Despite nationwide efforts to increase awareness, the prevalence of Diabetes Mellitus (DM) has risen significantly in the Middle East and North African (MENA) region which might be due to rapid urbanization, lifestyle changes, lack of physical activity and rise in obesity. Growing body of evidence indicates that DM and AD are linked because both conditions involve impaired glucose homeostasis and altered brain function. Current theories and hypothesis clearly implicate that defective insulin signaling in the brain contributes to synaptic dysfunction and cognitive deficits in AD. In the periphery, low-grade chronic inflammation leads to insulin resistance followed by tissue deterioration. Thus insulin resistance acts as a bridge between DM and AD. There is pressing need to understand on how DM increases the risk of AD as well as the underlying mechanisms, due to the projected increase in age related disorders. Here we aim to review the incidence of AD and DM in the Middle East and the possible link between insulin signaling and ApoE carrier status on Aβ aggregation, tau hyperphosphorylation, inflammation, oxidative stress and mitochondrial dysfunction in AD. We also critically reviewed mutation studies in Arab population which might influence DM induced AD. In addition, recent clinical trials and animal studies conducted to evaluate the efficiency of anti-diabetic drugs have been reviewed.
Collapse
Key Words
- AAV, Adeno-associated virus
- ABCA1, ATP binding cassette subfamily A member 1
- AD, Alzheimer’s disease
- ADAMTS9, ADAM Metallopeptidase With Thrombospondin Type 1 Motif 9
- AGPAT1, 1-acyl-sn-glycerol-3-phosphate acyltransferase alpha
- Alzheimer’s disease
- Anti-diabetic drugs
- ApoE, Apolipoprotein E
- Arab population
- Aβ, Amyloid-beta
- BACE1, Beta-secretase 1
- BBB, Blood-Brain Barrier
- BMI, Body mass index
- CALR, calreticulin gene
- CIP2A, Cancerous Inhibitor Of Protein Phosphatase 2A
- COX-2, Cyclooxygenase 2
- CSF, Cerebrospinal fluid
- DM, Diabetes mellitus
- DUSP9, Dual Specificity Phosphatase 9
- Diabetes mellitus
- ECE-1, Endotherin converting enzyme 1
- FDG-PET, Fluorodeoxyglucose- positron emission tomography
- FRMD4A, FERM Domain Containing 4A
- FTO, Fat Mass and Obesity Associated Gene
- GLP-1, Glucagon like peptide
- GNPDA2, Glucosamine-6-phosphate deaminase 2
- GSK-3β, Glycogen synthase kinase 3 beta
- IDE, Insulin degrading enzyme
- IGF-1, Insulin-like growth factor 1
- IR, Insulin receptor
- IR, Insulin resistance
- Insulin signaling
- LPA, Lipophosphatidic acid
- MC4R, Melanocortin 4 receptor
- MCI, Myocardial infarction
- MENA, Middle East North African
- MG-H1, Methylglyoxal-hydroimidazolone isomer trifluoroactic acid salt
- MRI, Magnetic resonance imaging
- NDUFS3, NADH:Ubiquinone Oxidoreductase Core Subunit S3
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NFT, Neurofibrillary tangles
- NOTCH4, Neurogenic locus notch homolog protein 4
- PI3K, Phosphoinositide-3
- PP2A, Protein phosphatase 2
- PPAR-γ2, Peroxisome proliferator-activated receptor gamma 2
- Pit-PET, Pittsburgh compound B- positron emission tomography
- RAB1A, Ras-related protein 1A
- SORT, Sortilin
- STZ, Streptozotocin
- T1DM, Type 1 Diabetes Mellitus
- T2DM, Type 2 Diabetes Mellitus
- TCF7L2, Transcription Factor 7 Like 2
- TFAP2B, Transcription Factor AP-2 Beta
Collapse
Affiliation(s)
| | | | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
38
|
Bassil F, Brown HJ, Pattabhiraman S, Iwasyk JE, Maghames CM, Meymand ES, Cox TO, Riddle DM, Zhang B, Trojanowski JQ, Lee VMY. Amyloid-Beta (Aβ) Plaques Promote Seeding and Spreading of Alpha-Synuclein and Tau in a Mouse Model of Lewy Body Disorders with Aβ Pathology. Neuron 2020; 105:260-275.e6. [PMID: 31759806 PMCID: PMC6981053 DOI: 10.1016/j.neuron.2019.10.010] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/12/2019] [Accepted: 10/03/2019] [Indexed: 12/17/2022]
Abstract
Studies have shown an overlap of Aβ plaques, tau tangles, and α-synuclein (α-syn) pathologies in the brains of Alzheimer's disease (AD) and Parkinson's disease (PD) with dementia (PDD) patients, with increased pathological burden correlating with severity of cognitive and motor symptoms. Despite the observed co-pathology and concomitance of motor and cognitive phenotypes, the consequences of the primary amyloidogenic protein on the secondary pathologies remain poorly understood. To better define the relationship between α-syn and Aβ plaques, we injected α-syn preformed fibrils (α-syn mpffs) into mice with abundant Aβ plaques. Aβ deposits dramatically accelerated α-syn pathogenesis and spread throughout the brain. Remarkably, hyperphosphorylated tau (p-tau) was induced in α-syn mpff-injected 5xFAD mice. Finally, α-syn mpff-injected 5xFAD mice showed neuron loss that correlated with the progressive decline of cognitive and motor performance. Our findings suggest a "feed-forward" mechanism whereby Aβ plaques enhance endogenous α-syn seeding and spreading over time post-injection with mpffs.
Collapse
Affiliation(s)
- Fares Bassil
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hannah J Brown
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shankar Pattabhiraman
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joe E Iwasyk
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chantal M Maghames
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily S Meymand
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy O Cox
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dawn M Riddle
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bin Zhang
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Q Trojanowski
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Virginia M-Y Lee
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
39
|
White matter DNA methylation profiling reveals deregulation of HIP1, LMAN2, MOBP, and other loci in multiple system atrophy. Acta Neuropathol 2020; 139:135-156. [PMID: 31535203 PMCID: PMC6942018 DOI: 10.1007/s00401-019-02074-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/29/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Abstract
Multiple system atrophy (MSA) is a fatal late-onset neurodegenerative disease. Although presenting with distinct pathological hallmarks, which in MSA consist of glial cytoplasmic inclusions (GCIs) containing fibrillar α-synuclein in oligodendrocytes, both MSA and Parkinson’s disease are α-synucleinopathies. Pathologically, MSA can be categorized into striatonigral degeneration (SND), olivopontocerebellar atrophy (OPCA) or mixed subtypes. Despite extensive research, the regional vulnerability of the brain to MSA pathology remains poorly understood. Genetic, epigenetic and environmental factors have been proposed to explain which brain regions are affected by MSA, and to what extent. Here, we explored for the first time epigenetic changes in post-mortem brain tissue from MSA cases. We conducted a case–control study, and profiled DNA methylation in white mater from three brain regions characterized by severe-to-mild GCIs burden in the MSA mixed subtype (cerebellum, frontal lobe and occipital lobe). Our genome-wide approach using Illumina MethylationEPIC arrays and a powerful cross-region analysis identified 157 CpG sites and 79 genomic regions where DNA methylation was significantly altered in the MSA mixed-subtype cases. HIP1, LMAN2 and MOBP were amongst the most differentially methylated loci. We replicated these findings in an independent cohort and further demonstrated that DNA methylation profiles were perturbed in MSA mixed subtype, and also to variable degrees in the other pathological subtypes (OPCA and SND). Finally, our co-methylation network analysis revealed several molecular signatures (modules) significantly associated with MSA (disease status and pathological subtypes), and with neurodegeneration in the cerebellum. Importantly, the co-methylation module having the strongest association with MSA included a CpG in SNCA, the gene encoding α-synuclein. Altogether, our results provide the first evidence for DNA methylation changes contributing to the molecular processes altered in MSA, some of which are shared with other neurodegenerative diseases, and highlight potential novel routes for diagnosis and therapeutic interventions.
Collapse
|
40
|
Candreva J, Chau E, Rice ME, Kim JR. Interactions between Soluble Species of β-Amyloid and α-Synuclein Promote Oligomerization while Inhibiting Fibrillization. Biochemistry 2019; 59:425-435. [PMID: 31854188 DOI: 10.1021/acs.biochem.9b00655] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aggregations of β-amyloid (Aβ) and α-synuclein (αS) into oligomeric and fibrillar assemblies are the pathological hallmarks of Alzheimer's and Parkinson's diseases, respectively. Although Aβ and αS affect different regions of the brain and are separated at the cellular level, there is evidence of their eventual interaction in the pathology of both disorders. Characterization of interactions of Aβ and αS at various stages of their aggregation pathways could reveal mechanisms and therapeutic targets for the prevention and cure of these neurodegenerative diseases. In this study, we comprehensively examined the interactions and their molecular manifestations using an array of characterization tools. We show for the first time that αS monomers and oligomers, but not αS fibrils, inhibit Aβ fibrillization while promoting oligomerization of Aβ monomers and stabilizing preformed Aβ oligomers via coassembly, as judged by Thioflavin T fluorescence, transmission electron microscopy, and SDS- and native-PAGE with fluorescently labeled peptides/proteins. In contrast, soluble Aβ species, such as monomers and oligomers, aggregate into fibrils, when incubated alone under the otherwise same condition. Our study provides evidence that the interactions with αS soluble species, responsible for the effects, are mediated primarily by the C-terminus of Aβ, when judged by competitive immunoassays using antibodies recognizing various fragments of Aβ. We also show that the C-terminus of Aβ is a primary site for its interaction with αS fibrils. Collectively, these data demonstrate aggregation state-specific interactions between αS and Aβ and offer insight into a molecular basis of synergistic biological effects between the two polypeptides.
Collapse
Affiliation(s)
- Jason Candreva
- Department of Chemical and Biomolecular Engineering , New York University , 6 MetroTech Center , Brooklyn , New York 11201 , United States
| | - Edward Chau
- Department of Chemical and Biomolecular Engineering , New York University , 6 MetroTech Center , Brooklyn , New York 11201 , United States
| | - Margaret E Rice
- Departments of Neurosurgery, and Neuroscience and Physiology , New York University School of Medicine , New York , New York 10016 , United States
| | - Jin Ryoun Kim
- Department of Chemical and Biomolecular Engineering , New York University , 6 MetroTech Center , Brooklyn , New York 11201 , United States
| |
Collapse
|
41
|
Ahmad W, Ali A, Ali A, Khan S, Khan S, Husain I. Upcoming diagnostic biomarkers with promising prospects in neurological disorders. Clin Exp Pharmacol Physiol 2019; 47:347-356. [PMID: 31746003 DOI: 10.1111/1440-1681.13216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/09/2019] [Accepted: 11/16/2019] [Indexed: 12/12/2022]
Abstract
An exponential increase in the prevalence of neurological disorders requires substantial steps to be taken for their prevention and treatment. Neurodiagnostic biomarkers are gaining momentum presently in order to enhance the diagnostic accuracy of neurodegenerative disorders, to precisely assess their advancement and to monitor the efficiency of therapeutic interventions. Therefore, the primary focus of the present review is the recent development in this field of neurodiagnostic biomarkers, and the current state of biomarker exploration in the context of various neurodegenerative diseases. This review encompasses an updated and detailed account of specific (β-Amyloid, Tau and Phospho-tau 181, Tar-DNA binding protein-43, Progranulin, a-synuclein, Clusterin, etc) and non-specific (genetic, synaptic, inflammatory and coagulation) neurodiagnostic biomarkers and the recent advances in this growing field. This comprehensive review also suggests the utilization of neurodiagnostic markers in network approaches and personalized medication that will eventually improvise the existing diagnostic and therapeutic complexities of neurodiagnostic biomarkers.
Collapse
Affiliation(s)
- Wasim Ahmad
- Department of Pharmacy, Mohammad Al-Mana College for Medical Sciences, Dammam, Saudi Arabia
| | - Abuzer Ali
- College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Amena Ali
- College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Sana Khan
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, India
| | - Saba Khan
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, India
| | | |
Collapse
|
42
|
Iron and other metals in the pathogenesis of Parkinson's disease: Toxic effects and possible detoxification. J Inorg Biochem 2019; 199:110717. [DOI: 10.1016/j.jinorgbio.2019.110717] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/24/2022]
|
43
|
Hartlage-Rübsamen M, Ratz V, Zeitschel U, Finzel L, Machner L, Köppen J, Schulze A, Demuth HU, von Hörsten S, Höfling C, Roßner S. Endogenous mouse huntingtin is highly abundant in cranial nerve nuclei, co-aggregates to Abeta plaques and is induced in reactive astrocytes in a transgenic mouse model of Alzheimer's disease. Acta Neuropathol Commun 2019; 7:79. [PMID: 31109380 PMCID: PMC6526682 DOI: 10.1186/s40478-019-0726-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Pathogenic variants of the huntingtin (HTT) protein and their aggregation have been investigated in great detail in brains of Huntington's disease patients and HTT-transgenic animals. However, little is known about the physiological brain region- and cell type-specific HTT expression pattern in wild type mice and a potential recruitment of endogenous HTT to other pathogenic protein aggregates such as amyloid plaques in cross seeding events. Employing a monoclonal anti-HTT antibody directed against the HTT mid-region and using brain tissue of three different mouse strains, we detected prominent immunoreactivity in a number of brain areas, particularly in cholinergic cranial nerve nuclei, while ubiquitous neuronal staining appeared faint. The region-specific distribution of endogenous HTT was found to be comparable in wild type rat and hamster brain. In human amyloid precursor protein transgenic Tg2576 mice with amyloid plaque pathology, similar neuronal HTT expression patterns and a distinct association of HTT with Abeta plaques were revealed by immunohistochemical double labelling. Additionally, the localization of HTT in reactive astrocytes was demonstrated for the first time in a transgenic Alzheimer's disease animal model. Both, plaque association of HTT and occurrence in astrocytes appeared to be age-dependent. Astrocytic HTT gene and protein expression was confirmed in primary cultures by RT-qPCR and by immunocytochemistry. We provide the first detailed analysis of physiological HTT expression in rodent brain and, under pathological conditions, demonstrate HTT aggregation in proximity to Abeta plaques and Abeta-induced astrocytic expression of endogenous HTT in Tg2576 mice.
Collapse
Affiliation(s)
| | - Veronika Ratz
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Preclinical Experimental Center, Erlangen, Germany
| | - Ulrike Zeitschel
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Lukas Finzel
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Lisa Machner
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Molecular Drug Design and Target Validation, Halle (Saale), Germany
| | - Janett Köppen
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Molecular Drug Design and Target Validation, Halle (Saale), Germany
| | - Anja Schulze
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Molecular Drug Design and Target Validation, Halle (Saale), Germany
| | - Hans-Ulrich Demuth
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Molecular Drug Design and Target Validation, Halle (Saale), Germany
| | - Stephan von Hörsten
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Preclinical Experimental Center, Erlangen, Germany
| | - Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
44
|
Hansen D, Ling H, Lashley T, Holton JL, Warner TT. Review: Clinical, neuropathological and genetic features of Lewy body dementias. Neuropathol Appl Neurobiol 2019; 45:635-654. [PMID: 30977926 DOI: 10.1111/nan.12554] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/09/2019] [Indexed: 01/08/2023]
Abstract
Lewy body dementias are the second most common neurodegenerative dementias after Alzheimer's disease and include dementia with Lewy bodies and Parkinson's disease dementia. They share similar clinical and neuropathological features but differ in the time of dementia and parkinsonism onset. Although Lewy bodies are their main pathological hallmark, several studies have shown the emerging importance of Alzheimer's disease pathology. Clinical amyloid-β imaging using Pittsburgh Compound B (PiB) supports neuropathological studies which found that amyloid-β pathology is more common in dementia with Lewy bodies than in Parkinson's disease dementia. Nevertheless, other co-occurring pathologies, such as cerebral amyloid angiopathy, TDP-43 pathology and synaptic pathology may also influence the development of neurodegeneration and dementia. Recent genetic studies demonstrated an important role of APOE genotype and other genes such as GBA and SNCA which seem to be involved in the pathophysiology of Lewy body dementias. The aim of this article is to review the main clinical, neuropathological and genetic aspects of dementia with Lewy bodies and Parkinson's disease dementia. This is particularly relevant as future management for these two conditions may differ.
Collapse
Affiliation(s)
- D Hansen
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - H Ling
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK.,Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - T Lashley
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - J L Holton
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - T T Warner
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK.,Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
45
|
A distinct brain beta amyloid signature in cerebral amyloid angiopathy compared to Alzheimer’s disease. Neurosci Lett 2019; 701:125-131. [DOI: 10.1016/j.neulet.2019.02.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/04/2019] [Accepted: 02/20/2019] [Indexed: 11/22/2022]
|
46
|
Melzer TR, Stark MR, Keenan RJ, Myall DJ, MacAskill MR, Pitcher TL, Livingston L, Grenfell S, Horne KL, Young BN, Pascoe MJ, Almuqbel MM, Wang J, Marsh SH, Miller DH, Dalrymple-Alford JC, Anderson TJ. Beta Amyloid Deposition Is Not Associated With Cognitive Impairment in Parkinson's Disease. Front Neurol 2019; 10:391. [PMID: 31105633 PMCID: PMC6492461 DOI: 10.3389/fneur.2019.00391] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022] Open
Abstract
The extent to which Alzheimer neuropathology, particularly the accumulation of misfolded beta-amyloid, contributes to cognitive decline and dementia in Parkinson's disease (PD) is unresolved. Here, we used Florbetaben PET imaging to test for any association between cerebral amyloid deposition and cognitive impairment in PD, in a sample enriched for cases with mild cognitive impairment. This cross-sectional study used Movement Disorders Society level II criteria to classify 115 participants with PD as having normal cognition (PDN, n = 23), mild cognitive impairment (PD-MCI, n = 76), or dementia (PDD, n = 16). We acquired 18F-Florbetaben (FBB) amyloid PET and structural MRI. Amyloid deposition was assessed between the three cognitive groups, and also across the whole sample using continuous measures of both global cognitive status and average performance in memory domain tests. Outcomes were cortical FBB uptake, expressed in centiloids and as standardized uptake value ratios (SUVR) using the Centiloid Project whole cerebellum region as a reference, and regional SUVR measurements. FBB binding was higher in PDD, but this difference did not survive adjustment for the older age of the PDD group. We established a suitable centiloid cut-off for amyloid positivity in Parkinson's disease (31.3), but there was no association of FBB binding with global cognitive or memory scores. The failure to find an association between PET amyloid deposition and cognitive impairment in a moderately large sample, particularly given that it was enriched with PD-MCI patients at risk of dementia, suggests that amyloid pathology is not the primary driver of cognitive impairment and dementia in most patients with PD.
Collapse
Affiliation(s)
- Tracy R Melzer
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand.,Brain Research New Zealand Rangahau Roro Aotearoa Centre of Research Excellence, Christchurch, New Zealand
| | - Megan R Stark
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Ross J Keenan
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Pacific Radiology Group, Christchurch, New Zealand
| | - Daniel J Myall
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Michael R MacAskill
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Toni L Pitcher
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand.,Brain Research New Zealand Rangahau Roro Aotearoa Centre of Research Excellence, Christchurch, New Zealand
| | - Leslie Livingston
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Sophie Grenfell
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Kyla-Louise Horne
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Bob N Young
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Maddie J Pascoe
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Mustafa M Almuqbel
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand.,Pacific Radiology Group, Christchurch, New Zealand
| | - Jian Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Steven H Marsh
- Department of Physics and Astronomy, University of Canterbury, Christchurch, New Zealand
| | - David H Miller
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand.,Institute of Neurology, University College London, London, United Kingdom
| | - John C Dalrymple-Alford
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand.,Brain Research New Zealand Rangahau Roro Aotearoa Centre of Research Excellence, Christchurch, New Zealand.,Department of Psychology, University of Canterbury, Christchurch, New Zealand
| | - Tim J Anderson
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand.,Brain Research New Zealand Rangahau Roro Aotearoa Centre of Research Excellence, Christchurch, New Zealand.,Department of Neurology, Christchurch Hospital, Christchurch, New Zealand
| |
Collapse
|
47
|
Bhattacharjee P, Öhrfelt A, Lashley T, Blennow K, Brinkmalm A, Zetterberg H. Mass Spectrometric Analysis of Lewy Body-Enriched α-Synuclein in Parkinson’s Disease. J Proteome Res 2019; 18:2109-2120. [DOI: 10.1021/acs.jproteome.8b00982] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Payel Bhattacharjee
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
| | - Annika Öhrfelt
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, U.K
- Queen Square Brain Bank for Neurological Diseases, UCL Institute of Neurology, London WC1N 3BG, U.K
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80 Mölndal, Sweden
| | - Ann Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80 Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, U.K
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80 Mölndal, Sweden
- UK Dementia Research Institute at UCL, London WC1N 3BG, U.K
| |
Collapse
|
48
|
Predicting cognitive decline with non-clinical markers in Parkinson's disease (PRECODE-2). J Neurol 2019; 266:1203-1210. [PMID: 30820739 PMCID: PMC6469665 DOI: 10.1007/s00415-019-09250-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/05/2019] [Accepted: 02/16/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To investigate whether baseline [123I]FP-CIT SPECT and CSF markers can predict cognitive impairment (CI) in PD patients, and provide a profile of those most at risk. METHODS 262 de novo PD patients from the Parkinson's Progression Markers Initiative database were stratified into two CI groups at the 36-month follow-up: MoCA-defined diagnosis: PD patients who had a MoCA score < 26; neuropsychological test-defined diagnosis: PD patients with MoCA-defined diagnosis and at least two test scores (of six; irrespective of test domain) greater than 1.5 standard deviation below the mean score in healthy controls. Predictive variables of CI were divided into deciles, providing us with ideal cutoff values for each variable. RESULTS At the 36-month follow-up, 108/262 (41.2%) PD patients had CI as defined by the MoCA, of which 40/108 (37.0%) had neuropsychological test-defined CI. Baseline CSF Aβ42 (hazard ratio [HR]: 0.996, confidence interval [CI]: 0.992-0.999, p = 0.025), CSF total tau ([HR]: 1.023, [CI]: 1.002-1.044, p = 0.031) and caudate [123I]FP-CIT SPECT uptake ([HR]: 0.332, [CI]: 0.115-0.960, p = 0.042) were predictors of CI. Patients with reduced CSF Aβ42 (< 384.6 pg/mL), increased CSF total tau (> 45.0 pg/mL) and reduced caudate [123I]FP-CIT SPECT uptake (< 1.82) had a 65% risk of developing CI at 36-month follow-up. CONCLUSION We report a characteristic profile (reduced CSF Aβ42, increased CSF total tau and reduced caudate [123I]FP-CIT SPECT uptake) that enables identification of early PD patients at risk of developing CI. These findings confirm previous reports of low CSF Aβ42, elevated CSF total tau and reduced dopaminergic integrity being associated with cognitive decline in PD.
Collapse
|
49
|
Relationship Between Tau, β Amyloid and α-Synuclein Pathologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:169-176. [PMID: 32096037 DOI: 10.1007/978-981-32-9358-8_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It is becoming increasing clear that multiple pathological lesions co-exist in the brains of the demented and non-demented elderly, and with putative interactions revealed at the molecular level in addition to the cumulative effects on brain damage, mounting evidence suggests manifestation of multiple protein aggregates will have implications for the clinical course of many neurodegenerative diseases associated with dementia. In this section we will discuss how the presence of multiple pathological lesions can affect the pathological and clinical phenotype of neurodegenerative disorders.
Collapse
|
50
|
Yoo HS, Chung SJ, Lee PH, Sohn YH, Kang SY. The Influence of Body Mass Index at Diagnosis on Cognitive Decline in Parkinson's Disease. J Clin Neurol 2019; 15:517-526. [PMID: 31591841 PMCID: PMC6785479 DOI: 10.3988/jcn.2019.15.4.517] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Associations between alterations in body mass index (BMI) and cognitive function have been reported in Parkinson's disease (PD). We investigated whether the BMI at a PD diagnosis is associated with cognitive decline and the future development of dementia. METHODS We recruited 70 patients with de novo PD who underwent neuropsychological testing every 3 years and were followed up for more than 6 years. We classified patients into the following three groups based on their BMI at the diagnosis: under-/normal weight (n=21), overweight (n=22), and obese (n=27). We evaluated differences in the rate of cognitive decline over time among the groups using linear mixed models and the conversion rate to dementia using survival analysis. RESULTS The obese patients with PD showed a slower deterioration of global cognitive function as well as language and memory functions than did the under-/normal-weight group during the 6-year follow-up. The three BMI groups showed different rates of conversion to dementia (log-rank test: p=0.026). The combined overweight and obese group showed a lower risk of developing dementia compared with the under-/normal-weight group (hazard ratio= 0.36, 95% CI=0.12-0.82, p=0.046). CONCLUSIONS We have demonstrated that a higher-than-normal BMI at the time of a PD diagnosis has a protective effect against the deterioration of cognitive function and the conversion to dementia.
Collapse
Affiliation(s)
- Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Suk Yun Kang
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea.
| |
Collapse
|