1
|
Moens TG, Da Cruz S, Neumann M, Shelkovnikova TA, Shneider NA, Van Den Bosch L. Amyotrophic lateral sclerosis caused by FUS mutations: advances with broad implications. Lancet Neurol 2025; 24:166-178. [PMID: 39862884 DOI: 10.1016/s1474-4422(24)00517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/25/2024] [Accepted: 12/11/2024] [Indexed: 01/27/2025]
Abstract
Autosomal dominant mutations in the gene encoding the DNA and RNA binding protein FUS are a cause of amyotrophic lateral sclerosis (ALS), and about 0·3-0·9% of patients with ALS are FUS mutation carriers. FUS-mutation-associated ALS (FUS-ALS) is characterised by early onset and rapid progression, compared with other forms of ALS. However, different pathogenic mutations in FUS can result in markedly different age at symptom onset and rate of disease progression. Most FUS mutations disrupt its nuclear localisation, leading to its cytoplasmic accumulation in the CNS. FUS also forms inclusions in around 5% of patients with the related neurodegenerative condition frontotemporal dementia. However, there are key differences between the two diseases at the genetic and neuropathological level, which suggest distinct pathogenic processes. Experimental models have uncovered potential pathogenic mechanisms in FUS-ALS and informed therapeutic strategies that are currently in development, including the silencing of FUS expression using an intrathecally administered antisense oligonucleotide.
Collapse
Affiliation(s)
- Thomas G Moens
- Department of Neurosciences, and Leuven Brain Institute, University of Leuven, Leuven, Belgium; Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, Leuven, Belgium; CRUK Scotland Institute, Glasgow, UK
| | - Sandrine Da Cruz
- Department of Neurosciences, and Leuven Brain Institute, University of Leuven, Leuven, Belgium; Laboratory of Neurophysiology in Neurodegenerative Disorders, Center for Brain & Disease Research, VIB, Leuven, Belgium
| | - Manuela Neumann
- German Center for Neurodegenerative Diseases, Tübingen, Germany; Department of Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Tatyana A Shelkovnikova
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute (SITraN), University of Sheffield, Sheffield, UK
| | - Neil A Shneider
- Department of Neurology, Center for Motor Neuron Biology and Disease and Eleanor and Lou Gehrig ALS Center, Columbia University, New York, NY, USA
| | - Ludo Van Den Bosch
- Department of Neurosciences, and Leuven Brain Institute, University of Leuven, Leuven, Belgium; Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, Leuven, Belgium.
| |
Collapse
|
2
|
Liu G, Yang C, Wang X, Chen X, Cai H, Le W. Cerebellum in neurodegenerative diseases: Advances, challenges, and prospects. iScience 2024; 27:111194. [PMID: 39555407 PMCID: PMC11567929 DOI: 10.1016/j.isci.2024.111194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a group of neurological disorders characterized by the progressive dysfunction of neurons and glial cells, leading to their structural and functional degradation in the central and/or peripheral nervous system. Historically, research on NDs has primarily focused on the brain, brain stem, or spinal cord associated with disease-related symptoms, often overlooking the role of the cerebellum. However, an increasing body of clinical and biological evidence suggests a significant connection between the cerebellum and NDs. In several NDs, cerebellar pathology and biochemical changes may start in the early disease stages. This article provides a comprehensive update on the involvement of the cerebellum in the clinical features and pathogenesis of multiple NDs, suggesting that the cerebellum is involved in the onset and progression of NDs through various mechanisms, including specific neurodegeneration, neuroinflammation, abnormal mitochondrial function, and altered metabolism. Additionally, this review highlights the significant therapeutic potential of cerebellum-related treatments for NDs.
Collapse
Affiliation(s)
- Guangdong Liu
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cui Yang
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xin Wang
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xi Chen
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weidong Le
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 200237, China
| |
Collapse
|
3
|
Honda H, Yagita K, Arahata H, Hamasaki H, Noguchi H, Koyama S, Sasagasako N. Increased expression of human antiviral protein MxA in FUS proteinopathy in amyotrophic lateral sclerosis. Brain Pathol 2024; 34:e13191. [PMID: 37586842 PMCID: PMC10901610 DOI: 10.1111/bpa.13191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/06/2023] [Indexed: 08/18/2023] Open
Abstract
FUS mutations are one of the major mutations in familial amyotrophic lateral sclerosis (ALS). The pathological hallmark is FUS-positive neuronal cytoplasmic inclusions (FUS-NCI), known as FUS proteinopathy. Human myxovirus resistance protein 1 (MxA) is an IFN-induced dynamin-like GTPase that acts as antiviral factor. In this study, we examined the expression of MxA in neurons bearing FUS-NCI. We performed immunohistochemistry for FUS and MxA to examine the expression of MxA in two autopsy cases with different FUS gene mutations localized at the nuclear localization signal site (Case 1, H517P; Case 2, R521C). MxA. Most neurons bearing FUS-NCI have increased cytoplasmic MxA expression. Increased cytoplasmic MxA showed several distribution patterns in relation to FUS-NCIs such as the following: colocalization with NCI, distribution more widely than NCI, and different distribution peaks from NCI. Our results suggested that antiviral signaling IFNs are involved upstream in the formation of FUS-NCI in ALS-FUS patients.
Collapse
Affiliation(s)
- Hiroyuki Honda
- Department of Neuropathology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Neurology, Department of Neurology, Neuro Muscular CenterNational Hospital Organization, Omuta National HospitalFukuokaJapan
- Neuropathology CenterNational Hospital Organization, Omuta National HospitalFukuokaJapan
| | - Kaoru Yagita
- Department of Neuropathology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Hajime Arahata
- Division of Neurology, Department of Neurology, Neuro Muscular CenterNational Hospital Organization, Omuta National HospitalFukuokaJapan
| | - Hideomi Hamasaki
- Department of Neuropathology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Hideko Noguchi
- Department of Neuropathology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Sachiko Koyama
- Department of Neuropathology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Naokazu Sasagasako
- Division of Neurology, Department of Neurology, Neuro Muscular CenterNational Hospital Organization, Omuta National HospitalFukuokaJapan
| |
Collapse
|
4
|
Xiao X, Li M, Ye Z, He X, Wei J, Zha Y. FUS gene mutation in amyotrophic lateral sclerosis: a new case report and systematic review. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:1-15. [PMID: 37926865 DOI: 10.1080/21678421.2023.2272170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/08/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease associated with upper and lower motor neuron degeneration and necrosis, characterized by progressive muscle weakness, atrophy, and paralysis. The FUS mutation-associated ALS has been classified as ALS6. We reported a case of ALS6 with de novo mutation and investigated retrospectively the characteristics of cases with FUS mutation. METHODS We reported a male patient with a new heterozygous variant of the FUS gene and comprehensively reviewed 173 ALS cases with FUS mutation. The literature was reviewed from the PubMed MEDLINE electronic database (https://www.ncbi.nlm.nih.gov/pubmed) using "Amyotrophic Lateral Sclerosis and Fus mutation" or "Fus mutation" as key words from 1 January 2009 to 1 January 2022. RESULTS We report a case of ALS6 with a new mutation point (c.1225-1227delGGA) and comprehensively review 173 ALS cases with FUS mutation. Though ALS6 is all with FUS mutation, it is still a highly heterogenous subtype. The average onset age of ALS6 is 35.2 ± 1.3 years, which is much lower than the average onset age of ALS (60 years old). Juvenile FUS mutations have an aggressive progression of disease, with an average time from onset to death or tracheostomy of 18.2 ± 0.5 months. FUS gene has the characteristics of early onset, faster progress, and shorter survival, especially in deletion mutation p.G504Wfs *12 and missense mutation of p.P525L. CONCLUSIONS ALS6 is a highly heterogenous subtype. Our study could allow clinicians to better understand the non-ALS typical symptoms, phenotypes, and pathophysiology of ALS6.
Collapse
Affiliation(s)
- Xin Xiao
- Department of Neurology, Yichang Central Hospital, Institute of Neural Regeneration and Repair, College of Basic Medical Science, China Three Gorges University, Yichang, China and
| | - Min Li
- Department of Neurology, Yichang Central Hospital, Institute of Neural Regeneration and Repair, College of Basic Medical Science, China Three Gorges University, Yichang, China and
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Zhi Ye
- Department of Neurology, Yichang Central Hospital, Institute of Neural Regeneration and Repair, College of Basic Medical Science, China Three Gorges University, Yichang, China and
| | - Xiaoyan He
- Department of Neurology, Yichang Central Hospital, Institute of Neural Regeneration and Repair, College of Basic Medical Science, China Three Gorges University, Yichang, China and
| | - Jun Wei
- Department of Neurology, Yichang Central Hospital, Institute of Neural Regeneration and Repair, College of Basic Medical Science, China Three Gorges University, Yichang, China and
| | - Yunhong Zha
- Department of Neurology, Yichang Central Hospital, Institute of Neural Regeneration and Repair, College of Basic Medical Science, China Three Gorges University, Yichang, China and
| |
Collapse
|
5
|
Shimizu T, Nakayama Y, Hayashi K, Mochizuki Y, Matsuda C, Haraguchi M, Bokuda K, Komori T, Takahashi K. Somatosensory pathway dysfunction in patients with amyotrophic lateral sclerosis in a completely locked-in state. Clin Neurophysiol 2023; 156:253-261. [PMID: 37827876 DOI: 10.1016/j.clinph.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
OBJECTIVE To investigate somatosensory pathway function in patients with amyotrophic lateral sclerosis (ALS) dependent on invasive ventilation and in a completely locked-in state (CLIS). METHODS We examined median nerve somatosensory evoked potentials (SEPs) in 17 ALS patients in a CLIS, including 11 patients with sporadic ALS, one with familial ALS with genes not examined, four with a Cu/Zn superoxide-dismutase-1 (SOD1) gene variant (Val118Leu, Gly93Ser, Cys146Arg), and one with a fused-in-sarcoma gene variant (P525L). We evaluated N9, N13, N20 and P25, and central conduction time (CCT); the data were compared with those of 73 healthy controls. RESULTS N20 and N13 were abolished in 12 and 10 patients, and their latencies was prolonged in four and three patients, respectively. The CCT was prolonged in five patients with measurable N13 and N20. Two patients with SOD1 gene mutations had absent or slightly visible N9. Compared to the CCT and latencies and amplitudes of N13 and N20 in the controls, those in the patient cohort were significantly abnormal. CONCLUSIONS The central somatosensory pathway is severely involved in patients with ALS in a CLIS. SIGNIFICANCE Our findings suggest that median nerve SEP cannot be utilized for communication in patients with ALS in a CLIS.
Collapse
Affiliation(s)
- Toshio Shimizu
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan.
| | - Yuki Nakayama
- Unit for Intractable Disease Nursing Care, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kentaro Hayashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan; Department of Neurology, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Yoko Mochizuki
- Department of Neurology, Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled, Tokyo, Japan
| | - Chiharu Matsuda
- Unit for Intractable Disease Nursing Care, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Michiko Haraguchi
- Unit for Intractable Disease Nursing Care, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kota Bokuda
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Takashi Komori
- Department of Neuropathology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Kazushi Takahashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| |
Collapse
|
6
|
Honda H, Yoshimura M, Arahata H, Yagita K, Sadashima S, Hamasaki H, Shijo M, Koyama S, Noguchi H, Sasagasako N. Mutated FUS in familial amyotrophic lateral sclerosis involves multiple hnRNPs in the formation of neuronal cytoplasmic inclusions. J Neuropathol Exp Neurol 2023; 82:231-241. [PMID: 36592411 DOI: 10.1093/jnen/nlac124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fused in sarcoma (FUS), coded by FUS, is a heterogeneous nuclear ribonucleoprotein (hnRNP). FUS mutations are among the major mutations in familial amyotrophic lateral sclerosis (ALS-FUS: ALS6). The pathological hallmarks of ALS-FUS are FUS-positive neuronal cytoplasmic inclusions (NCI). We examined various hnRNPs in FUS NCIs in the hippocampus in ALS-FUS cases with different FUS mutations (Case 1, H517P; Case 2, R521C). We also examined TDP43-positive NCIs in sporadic ALS hippocampi. Immunohistochemistry was performed using primary antibodies against FUS, p-TDP43, TDP43, hnRNPA1, hnRNPD, PCBP1, PCBP2, and p62. Numerous FUS inclusions were found in the hippocampal granule and pyramidal cell layers. Double immunofluorescence revealed colocalization of FUS and p-TDP43, and FUS and PCBP2 (p-TDP43/FUS: 64.3%, PCBP2/FUS: 23.9%). Colocalization of FUS and PCBP1, however, was rare (PCBP1/FUS: 7.6%). In the hippocampi of patients with sporadic ALS, no colocalization was observed between TDP43-positive inclusions and other hnRNPs. This is the first study to show that FUS inclusions colocalize with other hnRNPs, such as TDP43, PCBP2, and PCBP1. These findings suggest that in ALS-FUS, FUS inclusions are the initiators, followed by alterations of multiple other hnRNPs, resulting in impaired RNA metabolism.
Collapse
Affiliation(s)
- Hiroyuki Honda
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Motoi Yoshimura
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hajime Arahata
- Division of Neurology, Department of Neurology, Neuro Muscular Center, National Omuta Hospital, Fukuoka, Japan
| | - Kaoru Yagita
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shoko Sadashima
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideomi Hamasaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Shijo
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sachiko Koyama
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideko Noguchi
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naokazu Sasagasako
- Division of Neurology, Department of Neurology, Neuro Muscular Center, National Omuta Hospital, Fukuoka, Japan
| |
Collapse
|
7
|
Sensory Involvement in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:ijms232415521. [PMID: 36555161 PMCID: PMC9779879 DOI: 10.3390/ijms232415521] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/19/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Although amyotrophic lateral sclerosis (ALS) is pre-eminently a motor disease, the existence of non-motor manifestations, including sensory involvement, has been described in the last few years. Although from a clinical perspective, sensory symptoms are overshadowed by their motor manifestations, this does not mean that their pathological significance is not relevant. In this review, we have made an extensive description of the involvement of sensory and autonomic systems described to date in ALS, from clinical, neurophysiological, neuroimaging, neuropathological, functional, and molecular perspectives.
Collapse
|
8
|
Lu T, Yang J, Luo L, Wei D. FUS mutations in Asian amyotrophic lateral sclerosis patients: a case report and literature review of genotype-phenotype correlations. Amyotroph Lateral Scler Frontotemporal Degener 2022; 23:580-584. [PMID: 35232295 DOI: 10.1080/21678421.2021.2023189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive weakness and muscular atrophy in the upper or lower limbs, ultimately leading to paralysis and death. Genetic studies have demonstrated that mutation in the gene encoding fused in sarcoma (FUS) is an uncommon cause of ALS. Here, we report a case of a 31-year-old Asian man with ALS with rare onset of dropped-head syndrome. Symptoms, including asymmetric proximal weakness of the upper limbs, hoarseness, dysphagia, and nocturnal dyspnea, emerged over a period of 5 months. After genetic testing, the patient was confirmed to harbor a novel pathogenic heterozygous mutation, c.1558C > T (p.R520C). We summarize the genotype-clinical phenotype relationships in 42 Asian patients with ALS-FUS.
Collapse
Affiliation(s)
- Ting Lu
- Department of Neurology, The First Hospital of Wuhan, Wuhan, PR China.,The First Clinical Medical Institute, Hubei University of Traditional Chinese Medicine, Wuhan, PR China
| | - Jie Yang
- Department of Neurology, The First Hospital of Wuhan, Wuhan, PR China
| | - Lijun Luo
- Department of Neurology, The First Hospital of Wuhan, Wuhan, PR China
| | - Dongsheng Wei
- Department of Neurology, The First Hospital of Wuhan, Wuhan, PR China
| |
Collapse
|
9
|
Vanneste J, Van Den Bosch L. The Role of Nucleocytoplasmic Transport Defects in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:12175. [PMID: 34830069 PMCID: PMC8620263 DOI: 10.3390/ijms222212175] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022] Open
Abstract
There is ample evidence that nucleocytoplasmic-transport deficits could play an important role in the pathology of amyotrophic lateral sclerosis (ALS). However, the currently available data are often circumstantial and do not fully clarify the exact causal and temporal role of nucleocytoplasmic transport deficits in ALS patients. Gaining this knowledge will be of great significance in order to be able to target therapeutically nucleocytoplasmic transport and/or the proteins involved in this process. The availability of good model systems to study the nucleocytoplasmic transport process in detail will be especially crucial in investigating the effect of different mutations, as well as of other forms of stress. In this review, we discuss the evidence for the involvement of nucleocytoplasmic transport defects in ALS and the methods used to obtain these data. In addition, we provide an overview of the therapeutic strategies which could potentially counteract these defects.
Collapse
Affiliation(s)
- Joni Vanneste
- Experimental Neurology, Department of Neurosciences and Leuven Brain Institute (LBI), KU Leuven–University of Leuven, B-3000 Leuven, Belgium;
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, B-3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- Experimental Neurology, Department of Neurosciences and Leuven Brain Institute (LBI), KU Leuven–University of Leuven, B-3000 Leuven, Belgium;
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, B-3000 Leuven, Belgium
| |
Collapse
|
10
|
Tanemoto M, Hisahara S, Ikeda K, Yokokawa K, Manabe T, Tsuda R, Yamamoto D, Matsushita T, Matsumura A, Suzuki S, Shimohama S. Sporadic Amyotrophic Lateral Sclerosis Due to a FUS P525L Mutation with Asymmetric Muscle Weakness and Anti-ganglioside Antibodies. Intern Med 2021; 60:1949-1953. [PMID: 33518565 PMCID: PMC8263198 DOI: 10.2169/internalmedicine.6168-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) due to a fused in sarcoma (FUS) P525L mutation is characterized by a rapidly progressive course. Multifocal motor neuropathy (MMN) may resemble ALS in early stage and is associated with anti-ganglioside antibodies. A 38-year-old woman was admitted to our hospital because of progressive muscle weakness in the right limbs. She had mild mental retardation and minor deformities. Initially, we suspected MMN given the asymmetric muscle weakness and detection of anti-ganglioside antibodies. However, physical and electrophysiological tests did not support MMN, instead suggesting ALS. We confirmed a heterozygous P525L mutation and finally diagnosed this case as ALS due to an FUS mutation.
Collapse
Affiliation(s)
- Masanobu Tanemoto
- Department of Neurology, Sapporo Medical University, School of Medicine, Japan
| | - Shin Hisahara
- Department of Neurology, Sapporo Medical University, School of Medicine, Japan
| | - Kazuna Ikeda
- Department of Neurology, Sapporo Medical University, School of Medicine, Japan
| | - Kazuki Yokokawa
- Department of Neurology, Sapporo Medical University, School of Medicine, Japan
| | - Tatsuo Manabe
- Department of Neurology, Sapporo Medical University, School of Medicine, Japan
| | - Reiko Tsuda
- Department of Neurology, Sapporo Medical University, School of Medicine, Japan
| | - Daisuke Yamamoto
- Department of Neurology, Sapporo Medical University, School of Medicine, Japan
| | - Takashi Matsushita
- Department of Neurology, Sapporo Medical University, School of Medicine, Japan
| | - Akihiro Matsumura
- Department of Neurology, Sapporo Medical University, School of Medicine, Japan
| | - Syuuichirou Suzuki
- Department of Neurology, Sapporo Medical University, School of Medicine, Japan
| | - Shun Shimohama
- Department of Neurology, Sapporo Medical University, School of Medicine, Japan
| |
Collapse
|
11
|
The role of hnRNPs in frontotemporal dementia and amyotrophic lateral sclerosis. Acta Neuropathol 2020; 140:599-623. [PMID: 32748079 PMCID: PMC7547044 DOI: 10.1007/s00401-020-02203-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Dysregulated RNA metabolism is emerging as a crucially important mechanism underpinning the pathogenesis of frontotemporal dementia (FTD) and the clinically, genetically and pathologically overlapping disorder of amyotrophic lateral sclerosis (ALS). Heterogeneous nuclear ribonucleoproteins (hnRNPs) comprise a family of RNA-binding proteins with diverse, multi-functional roles across all aspects of mRNA processing. The role of these proteins in neurodegeneration is far from understood. Here, we review some of the unifying mechanisms by which hnRNPs have been directly or indirectly linked with FTD/ALS pathogenesis, including their incorporation into pathological inclusions and their best-known roles in pre-mRNA splicing regulation. We also discuss the broader functionalities of hnRNPs including their roles in cryptic exon repression, stress granule assembly and in co-ordinating the DNA damage response, which are all emerging pathogenic themes in both diseases. We then present an integrated model that depicts how a broad-ranging network of pathogenic events can arise from declining levels of functional hnRNPs that are inadequately compensated for by autoregulatory means. Finally, we provide a comprehensive overview of the most functionally relevant cellular roles, in the context of FTD/ALS pathogenesis, for hnRNPs A1-U.
Collapse
|
12
|
Häkkinen S, Chu SA, Lee SE. Neuroimaging in genetic frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2020; 145:105063. [PMID: 32890771 DOI: 10.1016/j.nbd.2020.105063] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) have a strong clinical, genetic and pathological overlap. This review focuses on the current understanding of structural, functional and molecular neuroimaging signatures of genetic FTD and ALS. We overview quantitative neuroimaging studies on the most common genes associated with FTD (MAPT, GRN), ALS (SOD1), and both (C9orf72), and summarize visual observations of images reported in the rarer genes (CHMP2B, TARDBP, FUS, OPTN, VCP, UBQLN2, SQSTM1, TREM2, CHCHD10, TBK1).
Collapse
Affiliation(s)
- Suvi Häkkinen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie A Chu
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
Pham J, Keon M, Brennan S, Saksena N. Connecting RNA-Modifying Similarities of TDP-43, FUS, and SOD1 with MicroRNA Dysregulation Amidst A Renewed Network Perspective of Amyotrophic Lateral Sclerosis Proteinopathy. Int J Mol Sci 2020; 21:ijms21103464. [PMID: 32422969 PMCID: PMC7278980 DOI: 10.3390/ijms21103464] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Beyond traditional approaches in understanding amyotrophic lateral sclerosis (ALS), multiple recent studies in RNA-binding proteins (RBPs)-including transactive response DNA-binding protein (TDP-43) and fused in sarcoma (FUS)-have instigated an interest in their function and prion-like properties. Given their prominence as hallmarks of a highly heterogeneous disease, this prompts a re-examination of the specific functional interrelationships between these proteins, especially as pathological SOD1-a non-RBP commonly associated with familial ALS (fALS)-exhibits similar properties to these RBPs including potential RNA-regulatory capabilities. Moreover, the cytoplasmic mislocalization, aggregation, and co-aggregation of TDP-43, FUS, and SOD1 can be identified as proteinopathies akin to other neurodegenerative diseases (NDs), eliciting strong ties to disrupted RNA splicing, transport, and stability. In recent years, microRNAs (miRNAs) have also been increasingly implicated in the disease, and are of greater significance as they are the master regulators of RNA metabolism in disease pathology. However, little is known about the role of these proteins and how they are regulated by miRNA, which would provide mechanistic insights into ALS pathogenesis. This review seeks to discuss current developments across TDP-43, FUS, and SOD1 to build a detailed snapshot of the network pathophysiology underlying ALS while aiming to highlight possible novel therapeutic targets to guide future research.
Collapse
Affiliation(s)
- Jade Pham
- Faculty of Medicine, The University of New South Wales, Kensington, Sydney, NSW 2033, Australia;
| | - Matt Keon
- Iggy Get Out, Neurodegenerative Disease Section, Darlinghurst, Sydney, NSW 2010, Australia; (M.K.); (S.B.)
| | - Samuel Brennan
- Iggy Get Out, Neurodegenerative Disease Section, Darlinghurst, Sydney, NSW 2010, Australia; (M.K.); (S.B.)
| | - Nitin Saksena
- Iggy Get Out, Neurodegenerative Disease Section, Darlinghurst, Sydney, NSW 2010, Australia; (M.K.); (S.B.)
- Correspondence:
| |
Collapse
|
14
|
Amyotrophic Lateral Sclerosis Modifiers in Drosophila Reveal the Phospholipase D Pathway as a Potential Therapeutic Target. Genetics 2020; 215:747-766. [PMID: 32345615 PMCID: PMC7337071 DOI: 10.1534/genetics.119.302985] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/19/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder lacking effective treatments. ALS pathology is linked to mutations in several different genes indicating... Amyotrophic lateral sclerosis (ALS), commonly known as Lou Gehrig’s disease, is a devastating neurodegenerative disorder lacking effective treatments. ALS pathology is linked to mutations in >20 different genes indicating a complex underlying genetic architecture that is effectively unknown. Here, in an attempt to identify genes and pathways for potential therapeutic intervention and explore the genetic circuitry underlying Drosophila models of ALS, we carry out two independent genome-wide screens for modifiers of degenerative phenotypes associated with the expression of transgenic constructs carrying familial ALS-causing alleles of FUS (hFUSR521C) and TDP-43 (hTDP-43M337V). We uncover a complex array of genes affecting either or both of the two strains, and investigate their activities in additional ALS models. Our studies indicate the pathway that governs phospholipase D activity as a major modifier of ALS-related phenotypes, a notion supported by data we generated in mice and others collected in humans.
Collapse
|
15
|
Ohashi N, Nonami J, Kodaira M, Yoshida K, Sekijima Y. Taste disorder in facial onset sensory and motor neuronopathy: a case report. BMC Neurol 2020; 20:71. [PMID: 32113480 PMCID: PMC7049225 DOI: 10.1186/s12883-020-01639-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/10/2020] [Indexed: 11/17/2022] Open
Abstract
Background Taste disorder is a common symptom in the general population. Several studies have shown that patients with neurological disorders, such as amyotrophic lateral sclerosis and Parkinson’s disease, develop taste disturbance. Facial onset sensory and motor neuronopathy (FOSMN) is a rare disease characterized by sensory disturbance and weakness spreading from the face to the limbs caudally. We describe a patient with FOSMN who showed taste disorder as the sole initial symptom. Case presentation A 49-year-old man who smoked cigarettes developed taste disturbance. Despite using zinc supplements, an herbal medication, and an ointment, his taste disorder worsened. 4 years later, a tingling feeling emerged at the tip of his tongue and gradually spread to his entire lips. At 55 years of age, he showed difficulty in swallowing, followed by facial paresthesia, muscle atrophy, and weakness in the face and upper limbs without apparent upper motor neuron sign. Cessation of smoking did not improve his taste disturbance, and he was unable to discriminate different tastes on the entire tongue. In an electrogustometric study, electrical stimulation did not induce any type of taste sensation. Blink reflex showed delayed or diminished R2 responses. Needle electromyography revealed severe chronic neurogenic changes in the tongue and masseter muscles. Mild chronic neurogenic changes were also observed in the limbs. In the thoracic paraspinal muscles, active neurogenic changes were detected. Findings of hematological and cerebrospinal fluid analyses, and magnetic resonance images of the brain and spinal cord were unremarkable. One cycle of intravenous immunoglobulin therapy did not improve his symptoms. We diagnosed him as having FOSMN with the sole initial symptom of taste disorder. Nine years after the onset of taste disorder, he developed impaired sensation of touch in the right upper limb and required tube feeding and ventilator support. Conclusion Taste disorder can be the initial manifestation of FOSMN and might involve the solitary nucleus.
Collapse
Affiliation(s)
- Nobuhiko Ohashi
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Jin Nonami
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Minori Kodaira
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan.
| | - Kunihiro Yoshida
- Division of Neurogenetics, Department of Brain Disease Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Yoshiki Sekijima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan.,Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan
| |
Collapse
|
16
|
Mori S, Honda H, Ishii T, Yoshimura M, Sasagasako N, Suzuki SO, Taniwaki T, Iwaki T. Expanded polyglutamine impairs normal nuclear distribution of fused in sarcoma and poly (rC)‐binding protein 1 in Huntington's disease. Neuropathology 2019; 39:358-367. [DOI: 10.1111/neup.12600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/25/2019] [Accepted: 08/08/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Shinichiro Mori
- Department of NeuropathologyGraduate School of Medical Sciences, Kyushu University Fukuoka Japan
- Department of Neurology, Division of Respirology, Neurology and Rheumatology, Department of MedicineKurume University School of Medicine Kurume Japan
| | - Hiroyuki Honda
- Department of NeuropathologyGraduate School of Medical Sciences, Kyushu University Fukuoka Japan
| | - Takashi Ishii
- Department of BiochemistryFukuoka Dental College Fukuoka Japan
| | - Motoi Yoshimura
- Department of NeuropathologyGraduate School of Medical Sciences, Kyushu University Fukuoka Japan
| | - Naokazu Sasagasako
- Department of NeurologyNeuro‐Muscular Center, National Omuta Hospital Omuta Japan
| | - Satoshi O. Suzuki
- Department of NeuropathologyGraduate School of Medical Sciences, Kyushu University Fukuoka Japan
| | - Takayuki Taniwaki
- Department of Neurology, Division of Respirology, Neurology and Rheumatology, Department of MedicineKurume University School of Medicine Kurume Japan
| | - Toru Iwaki
- Department of NeuropathologyGraduate School of Medical Sciences, Kyushu University Fukuoka Japan
| |
Collapse
|
17
|
Ciani M, Bonvicini C, Scassellati C, Carrara M, Maj C, Fostinelli S, Binetti G, Ghidoni R, Benussi L. The Missing Heritability of Sporadic Frontotemporal Dementia: New Insights from Rare Variants in Neurodegenerative Candidate Genes. Int J Mol Sci 2019; 20:ijms20163903. [PMID: 31405128 PMCID: PMC6721049 DOI: 10.3390/ijms20163903] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022] Open
Abstract
Frontotemporal dementia (FTD) is a common form of dementia among early-onset cases. Several genetic factors for FTD have been revealed, but a large proportion of FTD cases still have an unidentified genetic origin. Recent studies highlighted common pathobiological mechanisms among neurodegenerative diseases. In the present study, we investigated a panel of candidate genes, previously described to be associated with FTD and/or other neurodegenerative diseases by targeted next generation sequencing (NGS). We focused our study on sporadic FTD (sFTD), devoid of disease-causing mutations in GRN, MAPT and C9orf72. Since genetic factors have a substantially higher pathogenetic contribution in early onset patients than in late onset dementia, we selected patients with early onset (<65 years). Our study revealed that, in 50% of patients, rare missense potentially pathogenetic variants in genes previously associated with Alzheimer's disease, Parkinson disease, amyotrophic lateral sclerosis and Lewy body dementia (GBA, ABCA7, PARK7, FUS, SORL1, LRRK2, ALS2), confirming genetic pleiotropy in neurodegeneration. In parallel, a synergic genetic effect on FTD is suggested by the presence of variants in five different genes in one single patient. Further studies employing genome-wide approaches might highlight pathogenic variants in novel genes that explain the still missing heritability of FTD.
Collapse
Affiliation(s)
- Miriam Ciani
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Catia Scassellati
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Matteo Carrara
- Service of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Carlo Maj
- Institute of Genomic Statistics and Bioinformatics, University of Bonn, 53127 Bonn, Germany
| | - Silvia Fostinelli
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Giuliano Binetti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy.
| |
Collapse
|
18
|
Purice MD, Taylor JP. Linking hnRNP Function to ALS and FTD Pathology. Front Neurosci 2018; 12:326. [PMID: 29867335 PMCID: PMC5962818 DOI: 10.3389/fnins.2018.00326] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022] Open
Abstract
Following years of rapid progress identifying the genetic underpinnings of amyotrophic lateral sclerosis (ALS) and related diseases such as frontotemporal dementia (FTD), remarkable consistencies have emerged pointing to perturbed biology of heterogeneous nuclear ribonucleoproteins (hnRNPs) as a central driver of pathobiology. To varying extents these RNA-binding proteins are deposited in pathological inclusions in affected tissues in ALS and FTD. Moreover, mutations in hnRNPs account for a significant number of familial cases of ALS and FTD. Here we review the normal function and potential pathogenic contribution of TDP-43, FUS, hnRNP A1, hnRNP A2B1, MATR3, and TIA1 to disease. We highlight recent evidence linking the low complexity sequence domains (LCDs) of these hnRNPs to the formation of membraneless organelles and discuss how alterations in the dynamics of these organelles could contribute to disease. In particular, we discuss the various roles of disease-associated hnRNPs in stress granule assembly and disassembly, and examine the emerging hypothesis that disease-causing mutations in these proteins lead to accumulation of persistent stress granules.
Collapse
Affiliation(s)
- Maria D Purice
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States.,Howard Hughes Medical Institute, Chevy Chase, MD, United States
| |
Collapse
|
19
|
Mackenzie IRA, Neumann M. Fused in Sarcoma Neuropathology in Neurodegenerative Disease. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024299. [PMID: 28096243 DOI: 10.1101/cshperspect.a024299] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abnormal intracellular accumulation of the fused in sarcoma (FUS) protein is the characteristic pathological feature of cases of familial amyotrophic lateral sclerosis (ALS) caused by FUS mutations (ALS-FUS) and several uncommon disorders that may present with sporadic frontotemporal dementia (FTLD-FUS). Although these findings provide further support for the concept that ALS and FTD are closely related clinical syndromes with an overlapping molecular basis, important differences in the pathological features and results from experimental models indicate that ALS-FUS and FTLD-FUS have distinct pathogenic mechanisms.
Collapse
Affiliation(s)
- Ian R A Mackenzie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Manuela Neumann
- Department of Neuropathology, University of Tübingen and German Center for Neurodegenerative Diseases (DZNE), Tübingen 72076, Germany
| |
Collapse
|
20
|
Polymenidou M, Cleveland DW. Biological Spectrum of Amyotrophic Lateral Sclerosis Prions. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024133. [PMID: 28062558 DOI: 10.1101/cshperspect.a024133] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD) are two neurodegenerative diseases with distinct clinical features but common genetic causes and neuropathological signatures. Ten years after the RNA-binding protein TDP-43 was discovered as the main protein in the cytoplasmic inclusions that characterize ALS and FTLD, their pathogenic mechanisms have never seemed more complex. Indeed, discoveries of the past decade have revolutionized our understanding of these diseases, highlighting their genetic heterogeneity and the involvement of protein-RNA assemblies in their pathogenesis. Importantly, these assemblies serve as the foci of protein misfolding and mature into insoluble structures, which further recruit native proteins, turning them into misfolded forms. This self-perpetuating mechanism is a twisted version of classical prion replication that leads to amplification of pathological protein complexes that spread throughout the neuraxis, offering a pathogenic principle that underlies the rapid disease progression that characterizes ALS and FTLD.
Collapse
Affiliation(s)
- Magdalini Polymenidou
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Don W Cleveland
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, 9500 Gilman Drive, San Diego, La Jolla, California 92093-0670
| |
Collapse
|
21
|
Rogers RS, Tungtur S, Tanaka T, Nadeau LL, Badawi Y, Wang H, Ni HM, Ding WX, Nishimune H. Impaired Mitophagy Plays a Role in Denervation of Neuromuscular Junctions in ALS Mice. Front Neurosci 2017; 11:473. [PMID: 28890682 PMCID: PMC5575151 DOI: 10.3389/fnins.2017.00473] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/10/2017] [Indexed: 12/11/2022] Open
Abstract
Motor neurons in amyotrophic lateral sclerosis (ALS) patients and animal models show degeneration from the nerve terminal, known as dying-back neuropathy. To investigate the mechanism underlying this neuropathy, we analyzed the neuromuscular junctions (NMJs) and motor neuron cell bodies in SOD1G93A mice using electron microscopy. NMJs of SOD1G93A mice exhibited significantly higher numbers of autophagosomes and degenerated mitochondria compared to wild-type controls. Mitophagosomes were identified in the NMJ presynaptic terminals of wild-type mice and SOD1G93A mice. However, the number of mitophagosomes did not increase significantly in SOD1G93A NMJs indicating a defect in mitophagy, the autophagic process to degrade mitochondria. Consistent with this, proteins essential for mitophagy, p62/SQSTM1, Bnip3, Pink1, and Parkin were down-regulated in motor neurons in SOD1G93A mice. Importantly, SQSTM1 is one of the genes mutated in familial ALS patients. We evaluated the effect of impaired mitophagy on motor neurons by analyzing the double knockout mice of Pink1 and Parkin, two genes responsible for sensing depolarized mitochondria and delivering degenerated mitochondria to mitophagosomes. The double knockout mice exhibited NMJ degeneration, including axon swelling and NMJ fragmentation at 4 months of age. These phenotypes were rarely observed in wild-type control mice of the same age. The protein level of ATP synthase β subunit increased in the NMJ presynaptic terminals, suggesting the accumulation of mitochondria at NMJs of the double knockout mice. Importantly, NMJ denervation was observed in the double knockout mice. These data suggest that the reduced mitophagy function in motor neurons of SOD1G93A mice is one of the mechanisms causing degeneration of ALS NMJs.
Collapse
Affiliation(s)
- Robert S Rogers
- Department of Anatomy and Cell Biology, University of Kansas School of MedicineKansas City, KS, United States
| | - Sudheer Tungtur
- Department of Anatomy and Cell Biology, University of Kansas School of MedicineKansas City, KS, United States
| | - Tomohiro Tanaka
- Department of Anatomy and Cell Biology, University of Kansas School of MedicineKansas City, KS, United States
| | - Lisa L Nadeau
- Department of Anatomy and Cell Biology, University of Kansas School of MedicineKansas City, KS, United States
| | - Yomna Badawi
- Department of Anatomy and Cell Biology, University of Kansas School of MedicineKansas City, KS, United States
| | - Hua Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas School of MedicineKansas City, KS, United States
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas School of MedicineKansas City, KS, United States
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas School of MedicineKansas City, KS, United States
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of MedicineKansas City, KS, United States
| |
Collapse
|
22
|
Feuillette S, Delarue M, Riou G, Gaffuri AL, Wu J, Lenkei Z, Boyer O, Frébourg T, Campion D, Lecourtois M. Neuron-to-Neuron Transfer of FUS in Drosophila Primary Neuronal Culture Is Enhanced by ALS-Associated Mutations. J Mol Neurosci 2017; 62:114-122. [PMID: 28429234 DOI: 10.1007/s12031-017-0908-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/08/2017] [Indexed: 01/04/2023]
Abstract
The DNA- and RNA-binding protein fused in sarcoma (FUS) has been pathologically and genetically linked to amyotrophic lateral sclerosis (ALS) or frontotemporal lobar degeneration (FTLD). Cytoplasmic FUS-positive inclusions were identified in the brain and spinal cord of a subset of patients suffering with ALS/FTLD. An increasing number of reports suggest that FUS protein can behave in a prion-like manner. However, no neuropathological studies or experimental data were available regarding cell-to-cell spread of these pathological protein assemblies. In the present report, we investigated the ability of wild-type and mutant forms of FUS to transfer between neuronal cells. We combined the use of Drosophila models for FUS proteinopathies with that of the primary neuronal cultures to address neuron-to-neuron transfer of FUS proteins. Using conditional co-culture models and an optimized flow cytometry-based methodology, we demonstrated that ALS-mutant forms of FUS proteins can transfer between well-differentiated mature Drosophila neurons. These new observations support that a propagating mechanism could be applicable to FUS, leading to the sequential dissemination of pathological proteins over years.
Collapse
Affiliation(s)
| | - Morgane Delarue
- Inserm, U1245, IRIB, Rouen, France.,Normandie Univ, UNIROUEN, Rouen, France
| | - Gaëtan Riou
- Normandie Univ, UNIROUEN, Rouen, France.,Inserm, U1234, IRIB, Rouen, France
| | - Anne-Lise Gaffuri
- Brain Plasticity Unit, ESPCI-Paris Tech, PSL Research University, CNRS UMR4289, Paris, France
| | - Jane Wu
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, 303 E Superior, Chicago, USA
| | - Zsolt Lenkei
- Brain Plasticity Unit, ESPCI-Paris Tech, PSL Research University, CNRS UMR4289, Paris, France
| | - Olivier Boyer
- Normandie Univ, UNIROUEN, Rouen, France.,Inserm, U1234, IRIB, Rouen, France.,Department of Immunology, Rouen University Hospital, Rouen, France
| | - Thierry Frébourg
- Inserm, U1245, IRIB, Rouen, France.,Normandie Univ, UNIROUEN, Rouen, France.,Department of Genetics, Rouen University Hospital, Rouen, France
| | - Dominique Campion
- Inserm, U1245, IRIB, Rouen, France.,Normandie Univ, UNIROUEN, Rouen, France.,Centre Hospitalier du Rouvray, Sotteville-Lès-Rouen, France
| | - Magalie Lecourtois
- Inserm, U1245, IRIB, Rouen, France. .,Normandie Univ, UNIROUEN, Rouen, France.
| |
Collapse
|
23
|
Shellikeri S, Karthikeyan V, Martino R, Black SE, Zinman L, Keith J, Yunusova Y. The neuropathological signature of bulbar-onset ALS: A systematic review. Neurosci Biobehav Rev 2017; 75:378-392. [PMID: 28163193 DOI: 10.1016/j.neubiorev.2017.01.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/24/2017] [Accepted: 01/31/2017] [Indexed: 12/11/2022]
Abstract
ALS is a multisystem disorder affecting motor and cognitive functions. Bulbar-onset ALS (bALS) may be preferentially associated with cognitive and language impairments, compared with spinal-onset ALS (sALS), stemming from a potentially unique neuropathology. The objective of this systematic review was to compare neuropathology findings reported for bALS and sALS subtypes in studies of cadaveric brains. Using Cochrane guidelines, we reviewed articles in MEDLINE, Embase, and PsycINFO databases using standardized search terms for ALS and neuropathology, from inception until July 16th 2016. 17 studies were accepted for analysis. The analysis revealed that both subtypes presented with involvement in motor and frontotemporal cortices, deep cortical structures, and cerebellum and were characterized by neuronal loss, spongiosis, myelin pallor, and ubiquitin+ and TDP43+ inclusion bodies. Changes in Broca and Wernicke areas - regions associated with speech and language processing - were noted exclusively in bALS. Further, some bALS cases presented with atypical pathology such as neurofibrillary tangles and basophilic inclusions, which were not found in sALS cases. Given the limited number of studies, all with methodological biases, further work is required to better understand neuropathology of ALS subtypes.
Collapse
Affiliation(s)
- S Shellikeri
- Department of Speech-Language Pathology, University of Toronto, Toronto, Ontario, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.
| | - V Karthikeyan
- Department of Speech-Language Pathology, University of Toronto, Toronto, Ontario, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - R Martino
- Department of Speech-Language Pathology, University of Toronto, Toronto, Ontario, Canada; Health Care and Outcomes Research, Krembil Research Institute, Toronto, Ontario, Canada; Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - S E Black
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; L.C. Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences, Toronto, Ontario, Canada; Department of Medicine, Neurology, Sunnybrook Health Sciences, Toronto, Ontario, Canada; Department of Medicine, Neurology, University of Toronto, Toronto, Ontario, Canada; Heart & Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences, Toronto, Ontario, Canada
| | - L Zinman
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, Neurology, Sunnybrook Health Sciences, Toronto, Ontario, Canada; Department of Medicine, Neurology, University of Toronto, Toronto, Ontario, Canada
| | - J Keith
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, Sunnybrook Health Sciences, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Y Yunusova
- Department of Speech-Language Pathology, University of Toronto, Toronto, Ontario, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; University Health Network - Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Nolan M, Talbot K, Ansorge O. Pathogenesis of FUS-associated ALS and FTD: insights from rodent models. Acta Neuropathol Commun 2016; 4:99. [PMID: 27600654 PMCID: PMC5011941 DOI: 10.1186/s40478-016-0358-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 07/31/2016] [Indexed: 12/29/2022] Open
Abstract
Disruptions to genes linked to RNA processing and homeostasis are implicated in the pathogenesis of two pathologically related but clinically heterogeneous neurodegenerative diseases, amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Mutations in the Fused-in-Sarcoma (FUS) gene encoding a 526 amino-acid RNA-binding protein are found in a small subset of ALS cases, but FUS mutations do not appear to be a direct cause of FTD. Structural and functional similarities between FUS and another ALS-related RNA-binding protein, TDP-43, highlight the potential importance of aberrant RNA processing in ALS/FTD, and this pathway is now a major focus of interest. Recently, several research groups have reported transgenic vertebrate models of FUSopathy, with varying results. Here, we discuss the evidence for FUS pathogenicity in ALS/FTD, review the experimental approaches used and phenotypic features of FUS rodent models reported to date, and outline their contribution to our understanding of pathogenic mechanisms. Further refinement of vertebrate models will likely aid our understanding of the role of FUS in both diseases.
Collapse
|
25
|
Scekic-Zahirovic J, Sendscheid O, El Oussini H, Jambeau M, Sun Y, Mersmann S, Wagner M, Dieterlé S, Sinniger J, Dirrig-Grosch S, Drenner K, Birling MC, Qiu J, Zhou Y, Li H, Fu XD, Rouaux C, Shelkovnikova T, Witting A, Ludolph AC, Kiefer F, Storkebaum E, Lagier-Tourenne C, Dupuis L. Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss. EMBO J 2016; 35:1077-97. [PMID: 26951610 PMCID: PMC4868956 DOI: 10.15252/embj.201592559] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 12/12/2022] Open
Abstract
FUS is an RNA-binding protein involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS-containing aggregates are often associated with concomitant loss of nuclear FUS Whether loss of nuclear FUS function, gain of a cytoplasmic function, or a combination of both lead to neurodegeneration remains elusive. To address this question, we generated knockin mice expressing mislocalized cytoplasmic FUS and complete FUS knockout mice. Both mouse models display similar perinatal lethality with respiratory insufficiency, reduced body weight and length, and largely similar alterations in gene expression and mRNA splicing patterns, indicating that mislocalized FUS results in loss of its normal function. However, FUS knockin mice, but not FUS knockout mice, display reduced motor neuron numbers at birth, associated with enhanced motor neuron apoptosis, which can be rescued by cell-specific CRE-mediated expression of wild-type FUS within motor neurons. Together, our findings indicate that cytoplasmic FUS mislocalization not only leads to nuclear loss of function, but also triggers motor neuron death through a toxic gain of function within motor neurons.
Collapse
Affiliation(s)
- Jelena Scekic-Zahirovic
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | - Oliver Sendscheid
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Hajer El Oussini
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | - Mélanie Jambeau
- Department of Neurosciences, University of California, San Diego La Jolla, CA, USA Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA
| | - Ying Sun
- Department of Neurosciences, University of California, San Diego La Jolla, CA, USA Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA
| | - Sina Mersmann
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Marina Wagner
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Stéphane Dieterlé
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | - Jérome Sinniger
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | - Sylvie Dirrig-Grosch
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | - Kevin Drenner
- Department of Neurosciences, University of California, San Diego La Jolla, CA, USA Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA
| | | | - Jinsong Qiu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yu Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Hairi Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Caroline Rouaux
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | | | - Anke Witting
- Department of Neurology University of Ulm, Ulm, Germany
| | | | - Friedemann Kiefer
- Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Erik Storkebaum
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Clotilde Lagier-Tourenne
- Department of Neurosciences, University of California, San Diego La Jolla, CA, USA Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA
| | - Luc Dupuis
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| |
Collapse
|
26
|
Abstract
Genes linked to amyotrophic lateral sclerosis (ALS) susceptibility are being identified at an increasing rate owing to advances in molecular genetic technology. Genetic mechanisms in ALS pathogenesis seem to exert major effects in about 10% of patients, but genetic factors at some level may be important components of disease risk in most patients with ALS. Identification of gene variants associated with ALS has informed concepts of the pathogenesis of ALS, aided the identification of therapeutic targets, facilitated research to develop new ALS biomarkers, and supported the establishment of clinical diagnostic tests for ALS-linked genes.
Collapse
Affiliation(s)
- Kevin Boylan
- Department of Neurology, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
27
|
King A, Troakes C, Smith B, Nolan M, Curran O, Vance C, Shaw CE, Al-Sarraj S. ALS-FUS pathology revisited: singleton FUS mutations and an unusual case with both a FUS and TARDBP mutation. Acta Neuropathol Commun 2015; 3:62. [PMID: 26452761 PMCID: PMC4600255 DOI: 10.1186/s40478-015-0235-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 08/25/2015] [Indexed: 12/12/2022] Open
Abstract
Introduction Mutations in the FUS gene have been shown to be a rare cause of amyotrophic lateral sclerosis (ALS-FUS) and whilst well documented clinically and genetically there have been relatively few neuropathological studies.Recent work suggested a possible correlation between pathological features such as frequency of basophilic inclusions in neurons and rate of clinical decline, other studies have revealed a discrepancy between the upper motor neuron features detected clinically and the associated pathology. The purpose of this study was to describe the pathological features associated with more recently discovered FUS mutations and reinvestigate those with well recognised mutations in an attempt to correlate the pathology with mutation and/or clinical phenotype. The brains and spinal cords of seven cases of ALS-FUS were examined neuropathologically, including cases with the newly described p.K510E mutation and a case with both a known p.P525L mutation in the FUS gene and a truncating p.Y374X mutation in the TARDBP gene. Results The neuropathology in all cases revealed basophilic and FUS inclusions in the cord. The density and type of inclusions varied markedly between cases, but did not allow a clear correlation with clinical progression. Only one case showed significant motor cortical pathology despite the upper motor neuron clinical features being evident in 4 patients. The case with both a FUS and TARDBP mutation revealed FUS positive inclusions but no TDP-43 pathology. Instead there were unusual p62 positive, FUS negative neuronal and glial inclusions as well as dot-like neurites. Conclusions The study confirms cases of ALS-FUS to be mainly a lower motor neuron disease and to have pathology that does not appear to neatly correlate with clinical features or genetics. Furthermore, the case with both a FUS and TARDBP mutation reveals an intriguing pathological profile which at least in part involves a very unusual staining pattern for the ubiquitin-binding protein p62.
Collapse
|
28
|
Matsumoto A, Suzuki H, Fukatsu R, Shimizu H, Suzuki Y, Hisanaga K. An autopsy case of frontotemporal lobar degeneration with the appearance of fused in sarcoma inclusions (basophilic inclusion body disease) clinically presenting corticobasal syndrome. Neuropathology 2015; 36:77-87. [PMID: 26227957 DOI: 10.1111/neup.12232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 06/17/2015] [Accepted: 06/21/2015] [Indexed: 12/14/2022]
Abstract
We describe an autopsy case of basophilic inclusion body disease (BIBD), a subtype of frontotemporal lobar degeneration (FTLD) with the appearance of fused in sarcoma (FUS) inclusions (FTLD-FUS), clinically presenting corticobasal syndrome (CBS). A 54-year-old man initially developed worsening of stuttering and right hand clumsiness. Neurological examinations revealed rigidity in the right upper and lower extremities, buccofacial apraxia, and right-side dominant limb-kinetic and ideomotor apraxia. Neuroimaging showed asymmetric left-dominant brain atrophy and a cerebral blood flow reduction in the ipsilateral frontal region. At 56 years, his apraxia had advanced, and ideational apraxia was observed. Furthermore, the asymmetry in the limb-kinetic and ideomotor apraxia had disappeared, and both conditions had become bilateral. He had a new onset of aphasia. His symptoms progressed and he died 9 years after the initial symptoms. The brain weighed 955 g. Diffuse brain atrophy was most obvious in the bilateral frontotemporal regions. The atrophy of the left superior frontal and precentral gyri and bilateral basal ganglia was remarkable. Histologically, there was a marked loss of neurons with gliosis in the affected areas, where basophilic neuronal cytoplasmic inclusions were observed. The inclusions were immunoreactive for FUS, p62, and TATA-binding protein-associated factor 15 (TAF15), but not for phosphorylated tau, transactive response DNA-binding protein of 43 kDa (TDP-43), neurofilament protein, or Ewing sarcoma (EWS). From these pathological findings, this case was diagnosed as having BIBD as an FTLD-FUS variant. Spinal cord lower motor neurons were spared in number, similar to primary lateral sclerosis. Mutations in FUS were undetectable. Common background pathologies for CBS include corticobasal degeneration, Alzheimer's disease, PSP, FTLD with phosphorylated TDP-43 inclusions (FTLD-TDP), Pick's disease, Lewy body disease and CJD. However, FTLD-FUS (BIBD) has been rarely reported. Our case suggested further pathological heterogeneity in CBS than had previously been reported. It is necessary to consider FTLD-FUS (BIBD) as a background pathology for CBS in the future.
Collapse
Affiliation(s)
- Arifumi Matsumoto
- Departments of Neurology and Clinical Research Center, National Hospital Organization, Miyagi Hospital, Watari-gun, Miyagi
| | - Hiroyoshi Suzuki
- Department of Pathology and Laboratory Medicine, National Hospital Organization, Sendai Medical Center
| | - Reiko Fukatsu
- Department of Clinical Research, National Rehabilitation Center for Persons with Disabilities, Tokorozawa City, Saitama, Japan
| | - Hiroshi Shimizu
- Departments of Neurology and Clinical Research Center, National Hospital Organization, Miyagi Hospital, Watari-gun, Miyagi
| | - Yasushi Suzuki
- Department of Neurology, National Hospital Organization, Sendai Medical Center, Sendai
| | - Kinya Hisanaga
- Departments of Neurology and Clinical Research Center, National Hospital Organization, Miyagi Hospital, Watari-gun, Miyagi
| |
Collapse
|
29
|
Scotter EL, Chen HJ, Shaw CE. TDP-43 Proteinopathy and ALS: Insights into Disease Mechanisms and Therapeutic Targets. Neurotherapeutics 2015; 12:352-63. [PMID: 25652699 PMCID: PMC4404432 DOI: 10.1007/s13311-015-0338-x] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Therapeutic options for patients with amyotrophic lateral sclerosis (ALS) are currently limited. However, recent studies show that almost all cases of ALS, as well as tau-negative frontotemporal dementia (FTD), share a common neuropathology characterized by the deposition of TAR-DNA binding protein (TDP)-43-positive protein inclusions, offering an attractive target for the design and testing of novel therapeutics. Here we demonstrate how diverse environmental stressors linked to stress granule formation, as well as mutations in genes encoding RNA processing proteins and protein degradation adaptors, initiate ALS pathogenesis via TDP-43. We review the progressive development of TDP-43 proteinopathy from cytoplasmic mislocalization and misfolding through to macroaggregation and the addition of phosphate and ubiquitin moieties. Drawing from cellular and animal studies, we explore the feasibility of therapeutics that act at each point in pathogenesis, from mitigating genetic risk using antisense oligonucleotides to modulating TDP-43 proteinopathy itself using small molecule activators of autophagy, the ubiquitin-proteasome system, or the chaperone network. We present the case that preventing the misfolding of TDP-43 and/or enhancing its clearance represents the most important target for effectively treating ALS and frontotemporal dementia.
Collapse
Affiliation(s)
- Emma L. Scotter
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, de Crespigny Park, London, SE5 8AF UK
- Department of Pharmacology, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Han-Jou Chen
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, de Crespigny Park, London, SE5 8AF UK
| | - Christopher E. Shaw
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, de Crespigny Park, London, SE5 8AF UK
| |
Collapse
|
30
|
Frickenhaus M, Wagner M, Mallik M, Catinozzi M, Storkebaum E. Highly efficient cell-type-specific gene inactivation reveals a key function for the Drosophila FUS homolog cabeza in neurons. Sci Rep 2015; 5:9107. [PMID: 25772687 PMCID: PMC5390904 DOI: 10.1038/srep09107] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 02/19/2015] [Indexed: 12/14/2022] Open
Abstract
To expand the rich genetic toolkit of Drosophila melanogaster, we evaluated whether introducing FRT or LoxP sites in endogenous genes could allow for cell-type-specific gene inactivation in both dividing and postmitotic cells by GAL4-driven expression of FLP or Cre recombinase. For proof of principle, conditional alleles were generated for cabeza (caz), the Drosophila homolog of human FUS, a gene implicated in the neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Upon selective expression in neurons or muscle, both FLP and Cre mediated caz inactivation in all neurons or muscle cells, respectively. Neuron-selective caz inactivation resulted in failure of pharate adult flies to eclose from the pupal case, and adult escapers displayed motor performance defects and reduced life span. Due to Cre-toxicity, FLP/FRT is the preferred system for cell-type-specific gene inactivation, and this strategy outperforms RNAi-mediated knock-down. Furthermore, the GAL80 target system allowed for temporal control over gene inactivation, as induction of FLP expression from the adult stage onwards still inactivated caz in >99% of neurons. Remarkably, selective caz inactivation in adult neurons did not affect motor performance and life span, indicating that neuronal caz is required during development, but not for maintenance of adult neuronal function.
Collapse
Affiliation(s)
- Marie Frickenhaus
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
- Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Marina Wagner
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
- Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Moushami Mallik
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
- Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Marica Catinozzi
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
- Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Erik Storkebaum
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
- Faculty of Medicine, University of Münster, 48149 Münster, Germany
| |
Collapse
|
31
|
Maniecka Z, Polymenidou M. From nucleation to widespread propagation: A prion-like concept for ALS. Virus Res 2015; 207:94-105. [PMID: 25656065 DOI: 10.1016/j.virusres.2014.12.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/12/2014] [Accepted: 12/29/2014] [Indexed: 12/12/2022]
Abstract
Propagation of pathological protein assemblies via a prion-like mechanism has been suggested to drive neurodegenerative diseases, such as Parkinson's and Alzheimer's. Recently, amyotrophic lateral sclerosis (ALS)-linked proteins, such as SOD1, TDP-43 and FUS were shown to follow self-perpetuating seeded aggregation, thereby adding ALS to the group of prion-like disorders. The cell-to-cell spread of these pathological protein assemblies and their pathogenic mechanism is poorly understood. However, as ALS is a non-cell autonomous disease and pathology in glial cells was shown to contribute to motor neuron damage, spreading mechanisms are likely to underlie disease progression via the interplay between affected neurons and their neighboring glial cells.
Collapse
Affiliation(s)
- Zuzanna Maniecka
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Magdalini Polymenidou
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
32
|
Jellinger KA. Neuropathology of multiple system atrophy: New thoughts about pathogenesis. Mov Disord 2014; 29:1720-41. [DOI: 10.1002/mds.26052] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/29/2014] [Accepted: 09/16/2014] [Indexed: 12/14/2022] Open
|
33
|
Siuda J, Fujioka S, Wszolek ZK. Parkinsonian syndrome in familial frontotemporal dementia. Parkinsonism Relat Disord 2014; 20:957-64. [PMID: 24998994 DOI: 10.1016/j.parkreldis.2014.06.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/27/2014] [Accepted: 06/06/2014] [Indexed: 12/12/2022]
Abstract
Parkinsonism in frontotemporal dementia (FTD) was first described in families with mutations in the microtubule-associated protein tau (MAPT) and progranulin (PRGN) genes. Since then, mutations in several other genes have been identified for FTD with parkinsonism, including chromosome 9 open reading frame 72 (C9ORF72), chromatin modifying protein 2B (CHMP2B), valosin-containing protein (VCP), fused in sarcoma (FUS) and transactive DNA-binding protein (TARDBP). The clinical presentation of patients with familial forms of FTD with parkinsonism is highly variable. The parkinsonism seen in FTD patients is usually characterized by akinetic-rigid syndrome and is mostly associated with the behavioral variant of FTD (bvFTD); however, some cases may present with classical Parkinson's disease. In other cases, atypical parkinsonism resembling progressive supranuclear palsy (PSP) or corticobasal syndrome (CBS) has also been described. Although rare, parkinsonism in FTD may coexist with motor neuron disease. Structural neuroimaging, which is crucial for the diagnosis of FTD, shows characteristic patterns of brain atrophy associated with specific mutations. Structural neuroimaging is not helpful in distinguishing among patients with parkinsonian features. Furthermore, dopaminergic imaging that shows nigrostriatal neurodegeneration in FTD with parkinsonism cannot discriminate parkinsonian syndromes that arise from different mutations. Generally, parkinsonism in FTD is levodopa unresponsive, but there have been cases where a temporary benefit has been reported, so dopaminergic treatment is worth trying, especially, when motor and non-motor manifestations can cause significant problems with daily functioning. In this review, we present an update on the clinical and genetic correlations of FTD with parkinsonism.
Collapse
Affiliation(s)
- Joanna Siuda
- Department of Neurology, Silesian Medical University, Katowice, Poland; Department of Neuroscience, Mayo Clinic Jacksonville, FL, USA
| | | | | |
Collapse
|
34
|
Deng H, Gao K, Jankovic J. The role of FUS gene variants in neurodegenerative diseases. Nat Rev Neurol 2014; 10:337-48. [DOI: 10.1038/nrneurol.2014.78] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Mochizuki Y, Kawata A, Maruyama H, Homma T, Watabe K, Kawakami H, Komori T, Mizutani T, Matsubara S. A Japanese patient with familial ALS and a p.K510M mutation in the gene for FUS (FUS) resulting in the totally locked-in state. Neuropathology 2014; 34:504-9. [PMID: 24841222 DOI: 10.1111/neup.12130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/17/2014] [Indexed: 12/13/2022]
Abstract
We describe a Japanese patient with familial amyotrophic lateral sclerosis (ALS) and a p.K510M mutation in the fused in sarcoma gene (FUS). The patient's condition was characterized clinically by an early onset and rapid progression. The patient eventually required mechanical ventilation and progressed to the totally locked-in state. Neuropathologically, multiple system degeneration with many FUS-immunoreactive structures was observed. The involvement of the globus pallidus, subthalamic nucleus, substantia nigra, cerebellar efferent system, and both upper and lower motor neurons in the present patient was comparable to that described for ALS patients with different mutations in FUS, all of whom progressed to the totally locked-in state. However, the patient also exhibited degeneration of the cerebellar afferent system and posterior column. Furthermore, the appearance of non-compact FUS-immunoreactive neuronal cytoplasmic inclusions and many FUS-immunoreactive glial cytoplasmic inclusions were unique to the present patient. These features suggest that the morphological characteristics of the FUS-immunoreactive structures and distribution of the lesions vary with the diversity of mutations in FUS.
Collapse
Affiliation(s)
- Yoko Mochizuki
- Department of Pathology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan; Department of Neurology, Tokyo Metropolitan Kita Medical and Rehabilitation Centre for the Disabled, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ito H. Basophilic inclusions and neuronal intermediate filament inclusions in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Neuropathology 2014; 34:589-95. [PMID: 24673472 DOI: 10.1111/neup.12119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 02/22/2014] [Indexed: 12/13/2022]
Abstract
Basophilic inclusions (BIs) and neuronal intermediate filament inclusions (NIFIs) are key structures of basophilic inclusion body disease and neuronal intermediate filament inclusion disease (NIFID), respectively. BIs are sharply-defined, oval or crescent neuronal intracytoplasmic inclusions that appear pale blue-gray in color with HE staining and purple in color with Nissl but are stained poorly with silver impregnation techniques. Immunohistochemically BIs are negative for tau, trans-activation response DNA 43 (TDP-43), α-synuclein, neurofilament (NF) and α-internexin, positive for p62, and variably ubiquitinated. Noticeably, BIs are consistently fused in sarcoma (FUS) positive. NIFIs are by definition immuno-positive for class IV IFs including three NF triplet subunit proteins and α-internexin but negative for tau, TDP-43, and α-synuclein. In NIFID cases several types of inclusions have been identified. Among them, hyaline conglomerate-like inclusions are the only type that meets the above immunohistochemical features of NIFIs. This type of inclusion appears upon HE staining as multilobulated, faintly eosinophilic or pale amphophilic spherical masses with a glassy appearance. These hyaline conglomerates appear strongly argyrophilic, and robustly and consistently immuno-positive for IFs. In contrast, this type of inclusion shows no or only occasional dot-like FUS immunoreactivity. Therefore, BIs and NIFIs are distinct from each other in terms of morphological, tinctorial and immunohistochemical features. However, basophilic inclusion body disease (BIBD) and NIFID are difficult to differentiate clinically. Moreover, Pick body-like inclusions, the predominant type of inclusions seen in NIFID, are considerably similar to the BIs of BIBD in that this type of inclusion is basophilic, poorly argyrophilic, negative for IFs and intensely immuno-positive for FUS. As BIBD and NIFID share FUS accumulation as the most prominent molecular pathology, whether these two diseases are discrete entities or represent a pathological continuum remains a question to be answered.
Collapse
Affiliation(s)
- Hidefumi Ito
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
37
|
Mochizuki Y, Kawata A, Hashimoto T, Akiyama H, Kawakami H, Komori T, Oyanagi K, Mizutani T, Matsubara S. An autopsy case of familial amyotrophic lateral sclerosis with FUS R521G mutation. Amyotroph Lateral Scler Frontotemporal Degener 2014; 15:305-8. [PMID: 24575823 DOI: 10.3109/21678421.2014.881500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yoko Mochizuki
- Department of Pathology, Tokyo Metropolitan Neurological Hospital , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Aoki M. [Amyotrophic lateral sclerosis (ALS) with the mutations in the fused in sarcoma/translocated in liposarcoma gene]. Rinsho Shinkeigaku 2013; 53:1080-3. [PMID: 24291885 DOI: 10.5692/clinicalneurol.53.1080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult onset neurodegenerative disorder characterized by the death of upper and lower motor neurons. Mutations in the fused in sarcoma/translated in liposarcoma (FUS/TLS) gene have been discovered to be associated with familial ALS. In a Japanese family with familial ALS, we found the R521C FUS/TLS mutation, which has been reported to be found in various ethnic backgrounds. The family history revealed 23 patients with ALS among 46 family members, suggesting a 100% penetrance rate. They developed muscle weakness at an average age of 35.3 years, and the average age of death was 37.2 years.Neuropathological examination revealed remarkable atrophy of the brainstem tegmentum characterized by cytoplasmic basophilic inclusion bodies in the neurons of the brainstem. We used immunohistochemistry to analyze 3 autopsy cases with the R521C mutation. As the disease duration becomes longer, there were broader distributions of neuronal and glial FUS/TLS-immunoreactive inclusions.
Collapse
Affiliation(s)
- Masashi Aoki
- Department of Neurology, Tohoku University School of Medicine
| |
Collapse
|
39
|
Iguchi Y, Katsuno M, Ikenaka K, Ishigaki S, Sobue G. Amyotrophic lateral sclerosis: an update on recent genetic insights. J Neurol 2013; 260:2917-27. [PMID: 24085347 DOI: 10.1007/s00415-013-7112-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting both upper and lower motor neurons. The prognosis for ALS is extremely poor, but there is a limited course of treatment with only one approved medication. A most striking recent discovery is that TDP-43 is identified as a key molecule that is associated with both sporadic and familial forms of ALS. TDP-43 is not only a pathological hallmark, but also a genetic cause for ALS. Subsequently, a number of ALS-causative genes have been found. Above all, the RNA-binding protein, such as FUS, TAF15, EWSR1 and hnRNPA1, have structural and functional similarities to TDP-43, and physiological functions of some molecules, including VCP, UBQLN2, OPTN, FIG4 and SQSTM1, are involved in a protein degradation system. These discoveries provide valuable insight into the pathogenesis of ALS, and open doors for developing an effective disease-modifying therapy.
Collapse
Affiliation(s)
- Yohei Iguchi
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | | | | | | | | |
Collapse
|
40
|
Taieb G, Labauge P, De Paula AM, Ferraro A, Lumbroso S, Renard D. R521C mutation in the FUS/TLS gene presenting as juvenile onset flail leg syndrome. Muscle Nerve 2013; 48:993-4. [PMID: 23873471 DOI: 10.1002/mus.23956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/18/2013] [Accepted: 07/08/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Guillaume Taieb
- Department of Neurology, CHU Nîmes, Hôpital Caremeau, Nîmes, France
| | | | | | | | | | | |
Collapse
|
41
|
Kirby J, Highley JR, Cox L, Goodall EF, Hewitt C, Hartley JA, Hollinger HC, Fox M, Ince PG, McDermott CJ, Shaw PJ. Lack of unique neuropathology in amyotrophic lateral sclerosis associated with p.K54E angiogenin (ANG) mutation. Neuropathol Appl Neurobiol 2013; 39:562-71. [PMID: 23228179 PMCID: PMC3770927 DOI: 10.1111/nan.12007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 12/04/2012] [Indexed: 12/12/2022]
Abstract
AIMS Five to 10% of cases of amyotrophic lateral sclerosis are familial, with the most common genetic causes being mutations in the C9ORF72, SOD1, TARDBP and FUS genes. Mutations in the angiogenin gene, ANG, have been identified in both familial and sporadic patients in several populations within Europe and North America. The aim of this study was to establish the incidence of ANG mutations in a large cohort of 517 patients from Northern England and establish the neuropathology associated with these cases. METHODS The single exon ANG gene was amplified, sequenced and analysed for mutations. Pathological examination of brain, spinal cord and skeletal muscle included conventional histology and immunohistochemistry. RESULTS Mutation screening identified a single sporadic amyotrophic lateral sclerosis case with a p.K54E mutation, which is absent from 278 neurologically normal control samples. The clinical presentation was of limb onset amyotrophic lateral sclerosis, with rapid disease progression and no evidence of cognitive impairment. Neuropathological examination established the presence of characteristic ubiquitinated and TDP-43-positive neuronal and glial inclusions, but no abnormality in the distribution of angiogenin protein. DISCUSSION There is only one previous report describing the neuropathology in a single case with a p.K17I ANG mutation which highlighted the presence of eosinophilic neuronal intranuclear inclusions in the hippocampus. The absence of this feature in the present case indicates that patients with ANG mutations do not always have pathological changes distinguishable from those of sporadic amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- J Kirby
- Academic Unit of Neurology, Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Verma A, Tandan R. RNA quality control and protein aggregates in amyotrophic lateral sclerosis: a review. Muscle Nerve 2013; 47:330-8. [PMID: 23381726 DOI: 10.1002/mus.23673] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2012] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease in adults. The biologic basis of ALS remains unknown. However, ALS research has taken a dramatic turn over the past 4 years. Ground breaking discoveries of mutations of genes that encode RNA processing proteins, and demonstration that abnormal aggregates of these and other proteins precede motor neuron loss in familial and sporadic ALS, have initiated a paradigm shift in understanding the pathogenic mechanisms of ALS. Curiously, some of these RNA binding proteins have prion-like domains, with a propensity to self-aggregation. The emerging hypothesis that a focal cascade of toxic protein aggregates, and their consequent non-cell-autonomous spread to neighborhood groups of neurons, fits the classical temporo-spatial progression of ALS. This article reviews the current research efforts toward understanding the role of RNA-processing regulation and protein aggregates in ALS.
Collapse
Affiliation(s)
- Ashok Verma
- Department of Neurology, University of Miami Miller School of Medicine, Clinical Research Building, 1120 NW 14 Street, Suite 1317, Miami, Florida 33136, USA.
| | | |
Collapse
|
43
|
Daigle JG, Lanson NA, Smith RB, Casci I, Maltare A, Monaghan J, Nichols CD, Kryndushkin D, Shewmaker F, Pandey UB. RNA-binding ability of FUS regulates neurodegeneration, cytoplasmic mislocalization and incorporation into stress granules associated with FUS carrying ALS-linked mutations. Hum Mol Genet 2012; 22:1193-205. [PMID: 23257289 DOI: 10.1093/hmg/dds526] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an uncommon neurodegenerative disease caused by degeneration of upper and lower motor neurons. Several genes, including SOD1, TDP-43, FUS, Ubiquilin 2, C9orf72 and Profilin 1, have been linked with the sporadic and familiar forms of ALS. FUS is a DNA/RNA-binding protein (RBP) that forms cytoplasmic inclusions in ALS and frontotemporal lobular degeneration (FTLD) patients' brains and spinal cords. However, it is unknown whether the RNA-binding ability of FUS is required for causing ALS pathogenesis. Here, we exploited a Drosophila model of ALS and neuronal cell lines to elucidate the role of the RNA-binding ability of FUS in regulating FUS-mediated toxicity, cytoplasmic mislocalization and incorporation into stress granules (SGs). To determine the role of the RNA-binding ability of FUS in ALS, we mutated FUS RNA-binding sites (F305L, F341L, F359L, F368L) and generated RNA-binding-incompetent FUS mutants with and without ALS-causing mutations (R518K or R521C). We found that mutating the aforementioned four phenylalanine (F) amino acids to leucines (L) (4F-L) eliminates FUS RNA binding. We observed that these RNA-binding mutations block neurodegenerative phenotypes seen in the fly brains, eyes and motor neurons compared with the expression of RNA-binding-competent FUS carrying ALS-causing mutations. Interestingly, RNA-binding-deficient FUS strongly localized to the nucleus of Drosophila motor neurons and mammalian neuronal cells, whereas FUS carrying ALS-linked mutations was distributed to the nucleus and cytoplasm. Importantly, we determined that incorporation of mutant FUS into the SG compartment is dependent on the RNA-binding ability of FUS. In summary, we demonstrate that the RNA-binding ability of FUS is essential for the neurodegenerative phenotype in vivo of mutant FUS (either through direct contact with RNA or through interactions with other RBPs).
Collapse
Affiliation(s)
- J Gavin Daigle
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Farg MA, Soo KY, Warraich ST, Sundaramoorthy V, Blair IP, Atkin JD. Ataxin-2 interacts with FUS and intermediate-length polyglutamine expansions enhance FUS-related pathology in amyotrophic lateral sclerosis. Hum Mol Genet 2012; 22:717-28. [PMID: 23172909 DOI: 10.1093/hmg/dds479] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fused in sarcoma (FUS) is mutated in both sporadic amyotrophic lateral sclerosis (ALS) and familial ALS patients. The mechanisms underlying neurodegeneration are not fully understood, but FUS redistributes from the nucleus to the cytoplasm in affected motor neurons, where it triggers endoplasmic reticulum (ER) stress. Ataxin-2 is a polyglutamine protein which normally contains 22 repeats, but expanded repeats (>34) are found in Spinocerebellar Ataxia type 2. Recently ataxin-2 with intermediate length repeats (27-33) was found to increase the risk of ALS. Here we show that ataxin-2 with an ALS-linked intermediate length repeat (Q31) is a potent modifier of FUS pathology in cellular disease models. Translocation of FUS to the cytoplasm and ER stress were significantly enhanced by co-expression of mutant FUS with ataxin-2 Q31. Ataxin-2 also co-localized with FUS in sporadic and FUS-linked familial ALS patient motor neurons, co-precipitated with FUS in ALS spinal cord lysates, and co-localized with FUS in the ER-Golgi compartments in neuronal cell lines. Fragmentation of the Golgi apparatus is linked to neurodegeneration in ALS and here we show that Golgi fragmentation is induced in cells expressing mutant FUS. Moreover, Golgi fragmentation was enhanced, and the early stages of apoptosis were triggered, when ataxin-2 Q31 was co-expressed with mutant FUS. These findings describe new cellular mechanisms linking ALS with ataxin-2 intermediate length polyQ expansions and provide further evidence linking disruption to ER-Golgi compartments and FUS pathology in ALS.
Collapse
Affiliation(s)
- Manal A Farg
- Department of Biochemistry, La Trobe University, Vic., Australia
| | | | | | | | | | | |
Collapse
|
45
|
Verbeeck C, Deng Q, Dejesus-Hernandez M, Taylor G, Ceballos-Diaz C, Kocerha J, Golde T, Das P, Rademakers R, Dickson DW, Kukar T. Expression of Fused in sarcoma mutations in mice recapitulates the neuropathology of FUS proteinopathies and provides insight into disease pathogenesis. Mol Neurodegener 2012; 7:53. [PMID: 23046583 PMCID: PMC3519790 DOI: 10.1186/1750-1326-7-53] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/27/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mutations in the gene encoding the RNA-binding protein fused in sarcoma (FUS) can cause familial and sporadic amyotrophic lateral sclerosis (ALS) and rarely frontotemproal dementia (FTD). FUS accumulates in neuronal cytoplasmic inclusions (NCIs) in ALS patients with FUS mutations. FUS is also a major pathologic marker for a group of less common forms of frontotemporal lobar degeneration (FTLD), which includes atypical FTLD with ubiquitinated inclusions (aFTLD-U), neuronal intermediate filament inclusion disease (NIFID) and basophilic inclusion body disease (BIBD). These diseases are now called FUS proteinopathies, because they share this disease marker. It is unknown how FUS mutations cause disease and the role of FUS in FTD-FUS cases, which do not have FUS mutations. In this paper we report the development of somatic brain transgenic (SBT) mice using recombinant adeno-associated virus (rAAV) to investigate how FUS mutations lead to neurodegeneration. RESULTS We compared SBT mice expressing wild-type human FUS (FUSWT), and two ALS-linked mutations: FUSR521C and FUSΔ14, which lacks the nuclear localization signal. Both FUS mutants accumulated in the cytoplasm relative to FUSWT. The degree of this shift correlated with the severity of the FUS mutation as reflected by disease onset in humans. Mice expressing the most aggressive mutation, FUSΔ14, recapitulated many aspects of FUS proteinopathies, including insoluble FUS, basophilic and eosiniphilic NCIs, and other pathologic markers, including ubiquitin, p62/SQSTM1, α-internexin, and the poly-adenylate(A)-binding protein 1 (PABP-1). However, TDP-43 did not localize to inclusions. CONCLUSIONS Our data supports the hypothesis that ALS or FTD-linked FUS mutations cause neurodegeneration by increasing cyotplasmic FUS. Accumulation of FUS in the cytoplasm may retain RNA targets and recruit additional RNA-binding proteins, such as PABP-1, into stress-granule like aggregates that coalesce into permanent inclusions that could negatively affect RNA metabolism. Identification of mutations in other genes that cause ALS/FTD, such as C9ORF72, sentaxin, and angiogenin, lends support to the idea that defective RNA metabolism is a critical pathogenic pathway. The SBT FUS mice described here will provide a valuable platform for dissecting the pathogenic mechanism of FUS mutations, define the relationship between FTD and ALS-FUS, and help identify therapeutic targets that are desperately needed for these devastating neurodegenerative disorders.
Collapse
|
46
|
Zou ZY, Cui LY, Sun Q, Li XG, Liu MS, Xu Y, Zhou Y, Yang XZ. De novo FUS gene mutations are associated with juvenile-onset sporadic amyotrophic lateral sclerosis in China. Neurobiol Aging 2012; 34:1312.e1-8. [PMID: 23046859 DOI: 10.1016/j.neurobiolaging.2012.09.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/26/2012] [Accepted: 09/07/2012] [Indexed: 12/18/2022]
Abstract
Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of motor neuron disease and occurs before 25 years of age. Only very few sporadic cases of juvenile-onset ALS have been reported. Rare SOD1 mutations and several FUS mutations have been identified in juvenile-onset ALS patients. To define the genetics of juvenile-onset sporadic ALS (SALS) of Chinese origin, we sequenced all 5 exons of SOD1, exons 3-6 and 12-15 of FUS in 11 juvenile-onset SALS patients, 105 adult-onset ALS patients (including 6 familial ALS [FALS] pedigrees), and 245 healthy controls. For the 11 juvenile-onset SALS and 6 FALS cases, the other 7 exons of FUS were also screened. A heterozygous de novo missense mutation c.1574C>T (p.P525L), a heterozygous de novo 2-base pair deletion c.1509_1510delAG (p.G504Wfs*12), and a nonsense mutation c.1483C>T (p.R495X) was each identified in 1 juvenile SALS patient. A heterozygous missense mutation c.1561C>G (p.R521G) was identified in a FALS proband. In the Chinese population, the frequency of FUS mutation in FALS is 11.4% (95% confidence interval [CI], 0.9%-22.0%), higher than the Japanese (10%; 95% CI, 0.7%-19.3%), and Caucasians (4.9%; 95% CI, 3.9%-6.0%). The frequency of FUS mutation in SALS patients is 1.5% (95% CI, 0.2%-2.9%), which is similar to Koreans (1.6%; 95% CI, 0%-3.2%), but higher than in Caucasians (0.6%; 95% CI, 0.4%-0.8%). Our findings suggest that de novo FUS mutations are associated with juvenile-onset SALS of Chinese origin and that this gene should be screened in ALS patients with a young age of onset, aggressive progression, and sporadic occurrence.
Collapse
Affiliation(s)
- Zhang-Yu Zou
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Verma A. Altered RNA metabolism and amyotrophic lateral sclerosis. Ann Indian Acad Neurol 2012; 14:239-44. [PMID: 22346009 PMCID: PMC3271459 DOI: 10.4103/0972-2327.91933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 10/14/2011] [Accepted: 11/15/2011] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease in adults. Typically, patients with ALS develop progressive weakness resulting, eventually, in respiratory muscle paralysis and death in 3-5 years after the onset of the disease. No definite therapy currently exists for ALS. The biologic basis of the disease is unknown. However, ALS research has taken a dramatic turn over the last 3 years. Landmark discoveries of mutations in the transactive response DNA-binding protein (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS/TLS) as causative of ALS and demonstration that abnormal aggregation of these proteins is the proximate cause of motor neuron loss in familial and sporadic ALS have initiated a paradigm shift in understanding the pathogenic mechanism of this disease. TDP-43 and FUS/TLS are DNA/RNA-binding proteins with striking structural and functional similarities. This article reviews the current direction of research efforts toward understanding the role of RNA (ribonucleic acid) processing regulation in ALS and possible therapeutic pathways in this fatal disease.
Collapse
Affiliation(s)
- Ashok Verma
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
48
|
Graffmo KS, Forsberg K, Bergh J, Birve A, Zetterström P, Andersen PM, Marklund SL, Brännström T. Expression of wild-type human superoxide dismutase-1 in mice causes amyotrophic lateral sclerosis. Hum Mol Genet 2012; 22:51-60. [PMID: 23026746 DOI: 10.1093/hmg/dds399] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A common cause of amyotrophic lateral sclerosis (ALS) is mutations in the gene encoding superoxide dismutase-1. There is evolving circumstantial evidence that the wild-type protein can also be neurotoxic and that it may more generally be involved in the pathogenesis of ALS. To test this proposition more directly, we generated mice that express wild-type human superoxide dismutase-1 at a rate close to that of mutant superoxide dismutase-1 in the commonly studied G93A transgenic model. These mice developed an ALS-like syndrome and became terminally ill after around 370 days. The loss of spinal ventral neurons was similar to that in the G93A and other mutant superoxide dismutase-1 models, and large amounts of aggregated superoxide dismutase-1 were found in spinal cords, but also in the brain. The findings show that wild-type human superoxide dismutase-1 has the ability to cause ALS in mice, and they support the hypothesis of a more general involvement of the protein in the disease in humans.
Collapse
Affiliation(s)
- Karin S Graffmo
- Department of Medical Biosciences, Umeå University, SE-901 85 Umeå, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Murayama S. [Clinical and pathological characteristics of FUS/TLS-associated amyotrophic lateral sclerosis (ALS)]. Rinsho Shinkeigaku 2012; 50:948-50. [PMID: 21921522 DOI: 10.5692/clinicalneurol.50.948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
FUS/TLS is identified as the causative gene of ALS6. FUS/TLS shares a role in nuclear protein as RNA editing with TDP43, and aggregates in basophilic inclusions (BIs) in ALS6 as well as juvenile ALS with BIs. FUS/TLS is also associated with atypical frontotemporal lobar degeneration (aFTLD), neuronal intermediate inclusion body disease (NIBD) and basophilic inclusion body disease (BIBD). Thus, FUS/TLS as well as TDP43 may provide clues to motor neuron disease (MND) and frontotemoporal dementia (FTD). We have established consortium to study MND/FTD in collaboration with neurological, psychiatric and geriatric institutes. Two clinically sporadic ALS-FUS/TLS cases were selected from the consortium: a case of ALS6 without family history and a case of juvenile ALS with BIs. Both cases presented with BIs, which were immunoreactive for anti-FUS/TLS antibodies and ultrastructurally consisted of granulofilamentous profiles common to ubiquitin-immunoreactive inclusions. Two familial ALS6 cases were also studied in the consortium. Biochemical analysis showed no truncation, phosphorylation or ubiquitination of FUS in insoluble fraction, that shows clear difference from TDP43. The mechanism of FUSopathy is currently a challenging theme from the point of protein aggregation.
Collapse
Affiliation(s)
- Shigeo Murayama
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital & Institute of Gerontology
| |
Collapse
|
50
|
Mochizuki Y, Isozaki E, Takao M, Hashimoto T, Shibuya M, Arai M, Hosokawa M, Kawata A, Oyanagi K, Mihara B, Mizutani T. Familial ALS with FUS P525L mutation: two Japanese sisters with multiple systems involvement. J Neurol Sci 2012; 323:85-92. [PMID: 22980027 DOI: 10.1016/j.jns.2012.08.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 08/15/2012] [Accepted: 08/20/2012] [Indexed: 12/13/2022]
Abstract
We evaluated the clinicopathological features of familial amyotrophic lateral sclerosis (ALS) with the fused in sarcoma (FUS) P525L mutation. Two sisters and their mother had a similar clinical course, which was characterized by the development of limb weakness at a young age with rapid disease progression. An elder sister, patient 1, progressed into a totally locked-in state requiring mechanical ventilation and died 26 years after the onset of the disease. In contrast, the younger sister, patient 2, died in the early stages of the disease. The patients had neuropathological findings that indicated a very active degeneration of motor neurons and multiple system degeneration, which led to marked brain and spinal cord atrophy in the long term clinical outcome. The multiple system degeneration included the frontal lobe, the basal ganglia and substantia nigra, cerebellum and related area. Compared with previously reported ALS cases, the severe degeneration of the frontal lobe and the striatum were the characteristic features in the patient 1 in this case study. The degeneration spread over multiple systems might be caused not only by the appearance of the FUS immunoreactive neuronal cytoplasmic inclusions but also by the degeneration of neuronal connections from the primary motor cortex and related areas.
Collapse
Affiliation(s)
- Yoko Mochizuki
- Department of Pathology, Tokyo Metropolitan Neurological Hospital, Tokyo 183-0042, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|