1
|
Höfling C, Ulrich L, Burghardt S, Donkersloot P, Opitz M, Geissler S, Schilling S, Cynis H, Michalski D, Roßner S. Focal Cerebral Ischemia Induces Expression of Glutaminyl Cyclase along with Downstream Molecular and Cellular Inflammatory Responses. Cells 2024; 13:1412. [PMID: 39272984 PMCID: PMC11394561 DOI: 10.3390/cells13171412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Glutaminyl cyclase (QC) and its isoenzyme (isoQC) catalyze the formation of N-terminal pyroglutamate (pGlu) from glutamine on a number of neuropeptides, peptide hormones and chemokines. Chemokines of the C-C ligand (CCL) motif family are known to contribute to inflammation in neurodegenerative conditions. Here, we used a model of transient focal cerebral ischemia to explore functional, cellular and molecular responses to ischemia in mice lacking genes for QC, isoQC and their substrate CCL2. Mice of the different genotypes were evaluated for functional consequences of stroke, infarct volume, activation of glia cells, and for QC, isoQC and CCL2 expression. The number of QC-immunoreactive, but not of isoQC-immunoreactive, neurons increased robustly in the infarct area at 24 and 72 h after ischemia. In parallel, immunohistochemical signals for the QC substrate CCL2 increased from 24 to 72 h after ischemia induction without differences between genotypes analyzed. The increase in CCL2 was accompanied by morphological activation of Iba1-immunoreactive microglia and recruitment of MHC-II-positive cells at 72 h after ischemia. Among other chemokines quantified in the brain tissue, CCL17 showed higher concentrations at 72 h compared to 24 h after ischemia. Collectively, these data suggest a critical role for QC in inflammatory processes in the stroke-affected brain.
Collapse
Affiliation(s)
- Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
- Department of Neurology, University of Leipzig, 04103 Leipzig, Germany;
| | - Luise Ulrich
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| | - Sina Burghardt
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| | - Philippa Donkersloot
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| | - Michael Opitz
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| | - Stefanie Geissler
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Molecular Drug Design and Target Validation, 06120 Halle, Germany; (S.G.); (S.S.); (H.C.)
| | - Stephan Schilling
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Molecular Drug Design and Target Validation, 06120 Halle, Germany; (S.G.); (S.S.); (H.C.)
- Faculty of Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, 06366 Köthen, Germany
| | - Holger Cynis
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Molecular Drug Design and Target Validation, 06120 Halle, Germany; (S.G.); (S.S.); (H.C.)
| | - Dominik Michalski
- Department of Neurology, University of Leipzig, 04103 Leipzig, Germany;
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| |
Collapse
|
2
|
Coimbra JRM, Moreira PI, Santos AE, Salvador JAR. Therapeutic potential of glutaminyl cyclases: Current status and emerging trends. Drug Discov Today 2023; 28:103644. [PMID: 37244566 DOI: 10.1016/j.drudis.2023.103644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Glutaminyl cyclase (QC) activity has been identified as a key effector in distinct biological processes. Human glutaminyl-peptide cyclotransferase (QPCT) and glutaminyl-peptide cyclotransferase-like (QPCTL) are considered attractive therapeutic targets in many human disorders, such as neurodegenerative diseases, and a range of inflammatory conditions, as well as for cancer immunotherapy, because of their capacity to modulate cancer immune checkpoint proteins. In this review, we explore the biological functions and structures of QPCT/L enzymes and highlight their therapeutic relevance. We also summarize recent developments in the discovery of small-molecule inhibitors targeting these enzymes, including an overview of preclinical and clinical studies.
Collapse
Affiliation(s)
- Judite R M Coimbra
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Paula I Moreira
- Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal; Laboratory of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Armanda E Santos
- Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal; Laboratory of Biochemistry and Biology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal.
| |
Collapse
|
3
|
Chen D, Chen Q, Qin X, Tong P, Peng L, Zhang T, Xia C. Development and evolution of human glutaminyl cyclase inhibitors (QCIs): an alternative promising approach for disease-modifying treatment of Alzheimer's disease. Front Aging Neurosci 2023; 15:1209863. [PMID: 37600512 PMCID: PMC10435661 DOI: 10.3389/fnagi.2023.1209863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Human glutaminyl cyclase (hQC) is drawing considerable attention and emerging as a potential druggable target for Alzheimer's disease (AD) due to its close involvement in the pathology of AD via the post-translational pyroglutamate modification of amyloid-β. A recent phase 2a study has shown promising early evidence of efficacy for AD with a competitive benzimidazole-based QC inhibitor, PQ912, which also demonstrated favorable safety profiles. This finding has sparked new hope for the treatment of AD. In this review, we briefly summarize the discovery and evolution of hQC inhibitors, with a particular interest in classic Zinc binding group (ZBG)-containing chemicals reported in recent years. Additionally, we highlight several high-potency inhibitors and discuss new trends and challenges in the development of QC inhibitors as an alternative and promising disease-modifying therapy for AD.
Collapse
Affiliation(s)
- Daoyuan Chen
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Qingxiu Chen
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Xiaofei Qin
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Peipei Tong
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Liping Peng
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Tao Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Institute of Basic Medicine, Fujian Medical University, Fuzhou, China
| | - Chunli Xia
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| |
Collapse
|
4
|
Alpha synuclein processing by MMP-3 - implications for synucleinopathies. Behav Brain Res 2022; 434:114020. [PMID: 35870616 DOI: 10.1016/j.bbr.2022.114020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022]
Abstract
α-Synuclein (aSyn) is a protein implicated in physiological functions such as neurotransmitter release at the synapse and the regulation of gene expression in the nucleus. In addition, pathological aSyn assemblies are characteristic for a class of protein aggregation disorders referred to as synucleinopathies, where aSyn aggregates appear as Lewy bodies and Lewy neurites. We recently discovered a novel post-translational pyroglutamate (pGlu) modification at Gln79 of N-truncated aSyn that promotes oligomer formation and neurotoxicity in human synucleinopathies. A priori, the appearance of pGlu79-aSyn in vivo involves a two-step process of free N-terminal Gln79 residue generation and subsequent cyclization of Gln79 into pGlu79. Prime candidate enzymes for these processes are matrix metalloproteinase-3 (MMP-3) and glutaminyl cyclase (QC). Here, we analyzed the expression of aSyn, MMP-3, QC and pGlu79-aSyn in brains of two transgenic mouse models for synucleinopathies (BAC-SNCA and ASO) by triple immunofluorescent labellings and confocal laser scanning microscopy. We report a co-localization of these proteins in brain structures typically affected by aSyn pathology, namely hippocampus in BAC-SNCA mice and substantia nigra in ASO mice. In addition, Western blot analyses revealed a high abundance of QC, MMP-3 and transgenic human aSyn in brain stem and thalamus but lower levels in cortex/hippocampus, whereas endogenous mouse aSyn was found to be most abundant in cortex/hippocampus, followed by thalamus and brain stem. During aging of ASO mice, we observed no differences between controls and transgenic mice in MMP-3 levels but higher QC content in thalamus of 6-month-old transgenic mice. Transgenic human aSyn abundance transiently increased and then showed decrease in oldest ASO mice analyzed. Immunohistochemistry revealed a successive increase in intraneuronal and extracellular formation of pGlu79-aSyn in substantia nigra during aging of ASO mice. Together, our data are supportive for a role of MMP-3 and QC in the generation of pGlu79-aSyn in brains affected by aSyn pathology.
Collapse
|
5
|
Bluhm A, Schrempel S, Schilling S, von Hörsten S, Schulze A, Roßner S, Hartlage-Rübsamen M. Immunohistochemical Demonstration of the pGlu79 α-Synuclein Fragment in Alzheimer’s Disease and Its Tg2576 Mouse Model. Biomolecules 2022; 12:biom12071006. [PMID: 35883562 PMCID: PMC9312983 DOI: 10.3390/biom12071006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
The deposition of β-amyloid peptides and of α-synuclein proteins is a neuropathological hallmark in the brains of Alzheimer’s disease (AD) and Parkinson’s disease (PD) subjects, respectively. However, there is accumulative evidence that both proteins are not exclusive for their clinical entity but instead co-exist and interact with each other. Here, we investigated the presence of a newly identified, pyroglutamate79-modified α-synuclein variant (pGlu79-aSyn)—along with the enzyme matrix metalloproteinase-3 (MMP-3) and glutaminyl cyclase (QC) implicated in its formation—in AD and in the transgenic Tg2576 AD mouse model. In the human brain, pGlu79-aSyn was detected in cortical pyramidal neurons, with more distinct labeling in AD compared to control brain tissue. Using immunohistochemical double and triple labelings and confocal laser scanning microscopy, we demonstrate an association of pGlu79-aSyn, MMP-3 and QC with β-amyloid plaques. In addition, pGlu79-aSyn and QC were present in amyloid plaque-associated reactive astrocytes that were also immunoreactive for the chaperone heat shock protein 27 (HSP27). Our data are consistent for the transgenic mouse model and the human clinical condition. We conclude that pGlu79-aSyn can be generated extracellularly or within reactive astrocytes, accumulates in proximity to β-amyloid plaques and induces an astrocytic protein unfolding mechanism involving HSP27.
Collapse
Affiliation(s)
- Alexandra Bluhm
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (A.B.); (Sa.S.); (M.H.-R.)
| | - Sarah Schrempel
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (A.B.); (Sa.S.); (M.H.-R.)
| | - Stephan Schilling
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, 06120 Halle (Saale), Germany; (S.S.); (A.S.)
- Faculty of Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, 06366 Köthen, Germany
| | - Stephan von Hörsten
- Department for Experimental Therapy, University Clinics Erlangen and Preclinical Experimental Center, University of Erlangen-Nuremberg, 91054 Erlangen, Germany;
| | - Anja Schulze
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, 06120 Halle (Saale), Germany; (S.S.); (A.S.)
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (A.B.); (Sa.S.); (M.H.-R.)
- Correspondence: ; Tel.: +49-341-9725758
| | - Maike Hartlage-Rübsamen
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (A.B.); (Sa.S.); (M.H.-R.)
| |
Collapse
|
6
|
Hoffmann T, Rahfeld JU, Schenk M, Ponath F, Makioka K, Hutter-Paier B, Lues I, Lemere CA, Schilling S. Combination of the Glutaminyl Cyclase Inhibitor PQ912 (Varoglutamstat) and the Murine Monoclonal Antibody PBD-C06 (m6) Shows Additive Effects on Brain Aβ Pathology in Transgenic Mice. Int J Mol Sci 2021; 22:ijms222111791. [PMID: 34769222 PMCID: PMC8584206 DOI: 10.3390/ijms222111791] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Compelling evidence suggests that pyroglutamate-modified Aβ (pGlu3-Aβ; AβN3pG) peptides play a pivotal role in the development and progression of Alzheimer’s disease (AD). Approaches targeting pGlu3-Aβ by glutaminyl cyclase (QC) inhibition (Varoglutamstat) or monoclonal antibodies (Donanemab) are currently in clinical development. Here, we aimed at an assessment of combination therapy of Varoglutamstat (PQ912) and a pGlu3-Aβ-specific antibody (m6) in transgenic mice. Whereas the single treatments at subtherapeutic doses show moderate (16–41%) but statistically insignificant reduction of Aβ42 and pGlu-Aβ42 in mice brain, the combination of both treatments resulted in significant reductions of Aβ by 45–65%. Evaluation of these data using the Bliss independence model revealed a combination index of ≈1, which is indicative for an additive effect of the compounds. The data are interpreted in terms of different pathways, in which the two drugs act. While PQ912 prevents the formation of pGlu3-Aβ in different compartments, the antibody is able to clear existing pGlu3-Aβ deposits. The results suggest that combination of the small molecule Varoglutamstat and a pE3Aβ-directed monoclonal antibody may allow a reduction of the individual compound doses while maintaining the therapeutic effect.
Collapse
Affiliation(s)
- Torsten Hoffmann
- Vivoryon Therapeutics N.V., Weinbergweg 22, 06120 Halle, Germany;
- Correspondence: (T.H.); (S.S.)
| | - Jens-Ulrich Rahfeld
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Weinbergweg 22, 06120 Halle, Germany; (J.-U.R.); (M.S.)
| | - Mathias Schenk
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Weinbergweg 22, 06120 Halle, Germany; (J.-U.R.); (M.S.)
| | - Falk Ponath
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, USA; (F.P.); (K.M.); (C.A.L.)
| | - Koki Makioka
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, USA; (F.P.); (K.M.); (C.A.L.)
| | - Birgit Hutter-Paier
- QPS Austria GmbH, Department of Neuropharmacology, Parkring 12, A-8074 Grambach, Austria;
| | - Inge Lues
- Vivoryon Therapeutics N.V., Weinbergweg 22, 06120 Halle, Germany;
| | - Cynthia A. Lemere
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, USA; (F.P.); (K.M.); (C.A.L.)
| | - Stephan Schilling
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Weinbergweg 22, 06120 Halle, Germany; (J.-U.R.); (M.S.)
- Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany
- Correspondence: (T.H.); (S.S.)
| |
Collapse
|
7
|
Hartlage-Rübsamen M, Bluhm A, Moceri S, Machner L, Köppen J, Schenk M, Hilbrich I, Holzer M, Weidenfeller M, Richter F, Coras R, Serrano GE, Beach TG, Schilling S, von Hörsten S, Xiang W, Schulze A, Roßner S. A glutaminyl cyclase-catalyzed α-synuclein modification identified in human synucleinopathies. Acta Neuropathol 2021; 142:399-421. [PMID: 34309760 PMCID: PMC8357657 DOI: 10.1007/s00401-021-02349-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022]
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder that is neuropathologically characterized by degeneration of dopaminergic neurons of the substantia nigra (SN) and formation of Lewy bodies and Lewy neurites composed of aggregated α-synuclein. Proteolysis of α-synuclein by matrix metalloproteinases was shown to facilitate its aggregation and to affect cell viability. One of the proteolysed fragments, Gln79-α-synuclein, possesses a glutamine residue at its N-terminus. We argue that glutaminyl cyclase (QC) may catalyze the pyroglutamate (pGlu)79-α-synuclein formation and, thereby, contribute to enhanced aggregation and compromised degradation of α-synuclein in human synucleinopathies. Here, the kinetic characteristics of Gln79-α-synuclein conversion into the pGlu-form by QC are shown using enzymatic assays and mass spectrometry. Thioflavin T assays and electron microscopy demonstrated a decreased potential of pGlu79-α-synuclein to form fibrils. However, size exclusion chromatography and cell viability assays revealed an increased propensity of pGlu79-α-synuclein to form oligomeric aggregates with high neurotoxicity. In brains of wild-type mice, QC and α-synuclein were co-expressed by dopaminergic SN neurons. Using a specific antibody against the pGlu-modified neo-epitope of α-synuclein, pGlu79-α-synuclein aggregates were detected in association with QC in brains of two transgenic mouse lines with human α-synuclein overexpression. In human brain samples of PD and dementia with Lewy body subjects, pGlu79-α-synuclein was shown to be present in SN neurons, in a number of Lewy bodies and in dystrophic neurites. Importantly, there was a spatial co-occurrence of pGlu79-α-synuclein with the enzyme QC in the human SN complex and a defined association of QC with neuropathological structures. We conclude that QC catalyzes the formation of oligomer-prone pGlu79-α-synuclein in human synucleinopathies, which may—in analogy to pGlu-Aβ peptides in Alzheimer’s disease—act as a seed for pathogenic protein aggregation.
Collapse
|
8
|
Xu C, Wang YN, Wu H. Glutaminyl Cyclase, Diseases, and Development of Glutaminyl Cyclase Inhibitors. J Med Chem 2021; 64:6549-6565. [PMID: 34000808 DOI: 10.1021/acs.jmedchem.1c00325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pyroglutamate (pE) modification, catalyzed mainly by glutaminyl cyclase (QC), is prevalent throughout nature and is particularly important in mammals including humans for the maturation of hormones, peptides, and proteins. In humans, the upregulation of QC is involved in multiple diseases and conditions including Alzheimer's disease, Huntington's disease, melanomas, thyroid carcinomas, accelerated atherosclerosis, septic arthritics, etc. This upregulation catalyzes the generation of modified mediators such as pE-amyloid beta (Aß) and pE-chemokine ligand 2 (CCL2) peptides. Not surprisingly, QC has emerged as a reasonable target for the development of therapeutics to combat these diseases and conditions. In this manuscript the deleterious effects of upregulated QC resulting in disease manifestation are reviewed, along with progress on the development of QC inhibitors.
Collapse
Affiliation(s)
- Chenshu Xu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yi-Nan Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Haiqiang Wu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
9
|
Gunn AP, Wong BX, McLean C, Fowler C, Barnard PJ, Duce JA, Roberts BR. Increased glutaminyl cyclase activity in brains of Alzheimer's disease individuals. J Neurochem 2020; 156:979-987. [PMID: 32614980 DOI: 10.1111/jnc.15114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/27/2020] [Accepted: 06/24/2020] [Indexed: 12/23/2022]
Abstract
Glutaminyl cyclases (QC) catalyze the formation of neurotoxic pGlu-modified amyloid-β peptides found in the brains of people with Alzheimer's disease (AD). Reports of several-fold increases in soluble QC (sQC) expression in the brain and peripheral circulation of AD individuals has prompted the development of QC inhibitors as potential AD therapeutics. There is, however, a lack of standardized quantitative data on QC expression in human tissues, precluding inter-laboratory comparison and validation. We tested the hypothesis that QC is elevated in AD tissues by quantifying levels of sQC protein and activity in post-mortem brain tissues from AD and age-matched control individuals. We found a modest but statistically significant increase in sQC protein, which paralleled a similar increase in enzyme activity. In plasma samples sourced from the Australian Imaging, Biomarker and Lifestyle study we determined that QC activity was not different between the AD and control group, though a modest increase was observed in female AD individuals compared to controls. Plasma QC activity was further correlated with levels of circulating monocytes in AD individuals. These data provide quantitative evidence that alterations in QC expression are associated with AD pathology.
Collapse
Affiliation(s)
- Adam P Gunn
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Vic, Australia.,Analytical Chemistry, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Bruce X Wong
- The ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge, UK
| | - Catriona McLean
- Department of Anatomical Pathology, Alfred Hospital, Prahran, Vic, Australia
| | - Chris Fowler
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Vic, Australia
| | - Peter J Barnard
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Vic, Australia
| | - James A Duce
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Vic, Australia.,The ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge, UK
| | - Blaine R Roberts
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Vic, Australia.,Department of Biochemistry, Emory School of Medicine, Atlanta, GA, USA.,Department of Neurology, Emory School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
10
|
Wirths O, Zampar S. Emerging roles of N- and C-terminally truncated Aβ species in Alzheimer’s disease. Expert Opin Ther Targets 2019; 23:991-1004. [DOI: 10.1080/14728222.2019.1702972] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Oliver Wirths
- Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - Silvia Zampar
- Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| |
Collapse
|
11
|
Chougule PS, Najjar RP, Finkelstein MT, Kandiah N, Milea D. Light-Induced Pupillary Responses in Alzheimer's Disease. Front Neurol 2019; 10:360. [PMID: 31031692 PMCID: PMC6473037 DOI: 10.3389/fneur.2019.00360] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/25/2019] [Indexed: 12/25/2022] Open
Abstract
The impact of Alzheimer's disease (AD) on the pupillary light response (PLR) is controversial, being dependent on the stage of the disease and on the experimental pupillometric protocols. The main hypothesis driving pupillometry research in AD is based on the concept that the AD-related neurodegeneration affects both the parasympathetic and the sympathetic arms of the PLR (cholinergic and noradrenergic theory), combined with additional alterations of the afferent limb, involving the melanopsin expressing retinal ganglion cells (mRGCs), subserving the PLR. Only a few studies have evaluated the value of pupillometry as a potential biomarker in AD, providing various results compatible with parasympathetic dysfunction, displaying increased latency of pupillary constriction to light, decreased constriction amplitude, faster redilation after light offset, decreased maximum velocity of constriction (MCV) and maximum constriction acceleration (MCA) compared to controls. Decreased MCV and MCA appeared to be the most accurate of all PLR parameters allowing differentiation between AD and healthy controls while increased post-illumination pupillary response was the most consistent feature, however, these results could not be replicated by more recent studies, focusing on early and pre-clinical stages of the disease. Whether static or dynamic pupillometry yields useful biomarkers for AD screening or diagnosis remains unclear. In this review, we synopsize the current knowledge on pupillometric features in AD and other neurodegenerative diseases, and discuss potential roles of pupillometry in AD detection, diagnosis and monitoring, alone or in combination with additional biomarkers.
Collapse
Affiliation(s)
- Pratik S Chougule
- Department of Visual Neurosciences, Singapore Eye Research Institute, Singapore, Singapore
| | - Raymond P Najjar
- Department of Visual Neurosciences, Singapore Eye Research Institute, Singapore, Singapore.,The Ophthalmology & Visual Sciences ACP, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Maxwell T Finkelstein
- Department of Visual Neurosciences, Singapore Eye Research Institute, Singapore, Singapore
| | - Nagaendran Kandiah
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.,Duke-National University of Singapore (NUS), Singapore, Singapore
| | - Dan Milea
- Department of Visual Neurosciences, Singapore Eye Research Institute, Singapore, Singapore.,The Ophthalmology & Visual Sciences ACP, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore.,Singapore National Eye Centre, Singapore, Singapore
| |
Collapse
|
12
|
Bossak-Ahmad K, Mital M, Płonka D, Drew SC, Bal W. Oligopeptides Generated by Neprilysin Degradation of β-Amyloid Have the Highest Cu(II) Affinity in the Whole Aβ Family. Inorg Chem 2018; 58:932-943. [PMID: 30582328 DOI: 10.1021/acs.inorgchem.8b03051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The catabolism of β-amyloid (Aβ) is carried out by numerous endopeptidases including neprilysin, which hydrolyzes peptide bonds preceding positions 4, 10, and 12 to yield Aβ4-9 and a minor Aβ12- x species. Alternative processing of the amyloid precursor protein by β-secretase also generates the Aβ11- x species. All these peptides contain a Xxx-Yyy-His sequence, also known as an ATCUN or NTS motif, making them strong chelators of Cu(II) ions. We synthesized the corresponding peptides, Phe-Arg-His-Asp-Ser-Gly-OH (Aβ4-9), Glu-Val-His-His-Gln-Lys-am (Aβ11-16), Val-His-His-Gln-Lys-am (Aβ12-16), and pGlu-Val-His-His-Gln-Lys-am (pAβ11-16), and investigated their Cu(II) binding properties using potentiometry, and UV-vis, circular dichroism, and electron paramagnetic resonance spectroscopies. We found that the three peptides with unmodified N-termini formed square-planar Cu(II) complexes at pH 7.4 with analogous geometries but significantly varied Kd values of 6.6 fM (Aβ4-9), 9.5 fM (Aβ12-16), and 1.8 pM (Aβ11-16). Cyclization of the N-terminal Glu11 residue to the pyroglutamate species pAβ11-16 dramatically reduced the affinity (5.8 nM). The Cu(II) affinities of Aβ4-9 and Aβ12-16 are the highest among the Cu(II) complexes of Aβ peptides. Using fluorescence spectroscopy, we demonstrated that the Cu(II) exchange between the Phe-Arg-His and Val-His-His motifs is very slow, on the order of days. These results are discussed in terms of the relevance of Aβ4-9, a major Cu(II) binding Aβ fragment generated by neprilysin, as a possible Cu(II) carrier in the brain.
Collapse
Affiliation(s)
- Karolina Bossak-Ahmad
- Institute of Biochemistry and Biophysics , Polish Academy of Sciences , 02-106 Warsaw , Poland
| | - Mariusz Mital
- Institute of Biochemistry and Biophysics , Polish Academy of Sciences , 02-106 Warsaw , Poland
| | - Dawid Płonka
- Institute of Biochemistry and Biophysics , Polish Academy of Sciences , 02-106 Warsaw , Poland
| | - Simon C Drew
- Institute of Biochemistry and Biophysics , Polish Academy of Sciences , 02-106 Warsaw , Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics , Polish Academy of Sciences , 02-106 Warsaw , Poland
| |
Collapse
|
13
|
Lin W, Zheng X, Fang D, Zhou S, Wu W, Zheng K. Identifying hQC Inhibitors of Alzheimer's Disease by Effective Customized Pharmacophore-Based Virtual Screening, Molecular Dynamic Simulation, and Binding Free Energy Analysis. Appl Biochem Biotechnol 2018; 187:1173-1192. [PMID: 30187344 DOI: 10.1007/s12010-018-2780-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/06/2018] [Indexed: 01/14/2023]
Abstract
Human glutaminyl cyclase (hQC) appeared as a promising new target with its inhibitors attracted much attention for the treatment of Alzheimer's disease (AD) in recent years. But so far, only a few compounds have been reported as hQC inhibitors. To find novel and potent hQC inhibitors, a high-specificity ZBG (zinc-binding groups)-based pharmacophore model comprising customized ZBG feature was first generated using HipHop algorithm in Discovery Studio software for screening out hQC inhibitors from the SPECS database. After purification by docking studies and drug-like ADMET properties filters, four potential hit compounds were retrieved. Subsequently, these hit compounds were subjected to 30-ns molecular dynamic (MD) simulations to explore their binding modes at the active side of hQC. MD simulations demonstrated that these hit compounds formed a chelating interaction with the zinc ion, which was consistent with the finding that the electrostatic interaction was the major driving force for binding to hQC confirmed with MMPBSA energy decomposition. Higher binding affinities of these compounds were also verified by the binding free energy calculations comparing with the references. Thus, these identified compounds might be potential hQC candidates and could be used for further investigation.
Collapse
Affiliation(s)
- Weicong Lin
- Department of Physical Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaojie Zheng
- Department of Physical Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Danqing Fang
- Department of Cardiothoracic Surgery, Affiliated Second Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Shengfu Zhou
- Department of Physical Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wenjuan Wu
- Department of Physical Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Kangcheng Zheng
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
14
|
Serotonin receptor 2c-expressing cells in the ventral CA1 control attention via innervation of the Edinger–Westphal nucleus. Nat Neurosci 2018; 21:1239-1250. [DOI: 10.1038/s41593-018-0207-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/24/2018] [Indexed: 11/09/2022]
|
15
|
Hartlage-Rübsamen M, Bluhm A, Piechotta A, Linnert M, Rahfeld JU, Demuth HU, Lues I, Kuhn PH, Lichtenthaler SF, Roßner S, Höfling C. Immunohistochemical Evidence from APP-Transgenic Mice for Glutaminyl Cyclase as Drug Target to Diminish pE-Abeta Formation. Molecules 2018; 23:molecules23040924. [PMID: 29673150 PMCID: PMC6017857 DOI: 10.3390/molecules23040924] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023] Open
Abstract
Oligomeric assemblies of neurotoxic amyloid beta (Abeta) peptides generated by proteolytical processing of the amyloid precursor protein (APP) play a key role in the pathogenesis of Alzheimer’s disease (AD). In recent years, a substantial heterogeneity of Abeta peptides with distinct biophysical and cell biological properties has been demonstrated. Among these, a particularly neurotoxic and disease-specific Abeta variant is N-terminally truncated and modified to pyroglutamate (pE-Abeta). Cell biological and animal experimental studies imply the catalysis of this modification by the enzyme glutaminyl cyclase (QC). However, direct histopathological evidence in transgenic animals from comparative brain region and cell type-specific expression of transgenic hAPP and QC, on the one hand, and on the formation of pE-Abeta aggregates, on the other, is lacking. Here, using single light microscopic, as well as triple immunofluorescent, labeling, we report the deposition of pE-Abeta only in the brain regions of APP-transgenic Tg2576 mice with detectable human APP and endogenous QC expression, such as the hippocampus, piriform cortex, and amygdala. Brain regions showing human APP expression without the concomitant presence of QC (the anterodorsal thalamic nucleus and perifornical nucleus) do not display pE-Abeta plaque formation. However, we also identified brain regions with substantial expression of human APP and QC in the absence of pE-Abeta deposition (the Edinger-Westphal nucleus and locus coeruleus). In these brain regions, the enzymes required to generate N-truncated Abeta peptides as substrates for QC might be lacking. Our observations provide additional evidence for an involvement of QC in AD pathogenesis via QC-catalyzed pE-Abeta formation.
Collapse
Affiliation(s)
| | - Alexandra Bluhm
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany.
| | - Anke Piechotta
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120 Halle (Saale), Germany.
| | - Miriam Linnert
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120 Halle (Saale), Germany.
| | - Jens-Ulrich Rahfeld
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120 Halle (Saale), Germany.
| | - Hans-Ulrich Demuth
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120 Halle (Saale), Germany.
| | - Inge Lues
- Probiodrug AG, 06120 Halle (Saale), Germany.
| | - Peer-Hendrik Kuhn
- Institute of Pathology, Technical University of Munich, 81675 Munich, Germany.
| | - Stefan F Lichtenthaler
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 81377 Munich, Germany.
- Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany.
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.
- Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany.
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany.
| | - Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
16
|
Lues I, Weber F, Meyer A, Bühring U, Hoffmann T, Kühn-Wache K, Manhart S, Heiser U, Pokorny R, Chiesa J, Glund K. A phase 1 study to evaluate the safety and pharmacokinetics of PQ912, a glutaminyl cyclase inhibitor, in healthy subjects. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2015; 1:182-195. [PMID: 29854937 PMCID: PMC5975062 DOI: 10.1016/j.trci.2015.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Introduction Pyroglutamate-amyloid-β (pE-Aβ) peptides are major components of Aβ-oligomers and Aβ-plaques, which are regarded as key culprits of Alzheimer's disease (AD) pathology. PQ912 is a competitive inhibitor of the enzyme glutaminyl cyclase (QC), essential for the formation of pE-Aβ peptides. Methods A randomized, double-blind, placebo-controlled, single- and multiple-ascending oral dose study investigated the safety, pharmacokinetics, and pharmacodynamics of PQ912 in healthy nonelderly and elderly subjects. Results PQ912 was considered safe and well tolerated with dose-proportional pharmacokinetics up to doses of 200 mg. At higher doses up to 1800 mg, exposure was supraproportional and exposure in elderly subjects was approximately 1.5- to 2.1-fold higher. Exposure in cerebrospinal fluid (CSF) was approximately 20% of the unbound drug in plasma, and both serum and CSF QC activity was inhibited in a dose-related manner. Discussion This first-in-man study of a compound-targeting QC inhibition justifies further development of PQ912 for the treatment of AD.
Collapse
Affiliation(s)
- Inge Lues
- Probiodrug AG, Halle (Saale), Germany
| | | | | | | | | | | | | | | | - Rolf Pokorny
- Covance Clinical Research Unit AG, Allschwil (Basel), Switzerland
| | | | | |
Collapse
|
17
|
Isoglutaminyl cyclase contributes to CCL2-driven neuroinflammation in Alzheimer's disease. Acta Neuropathol 2015; 129:565-83. [PMID: 25666182 PMCID: PMC4366547 DOI: 10.1007/s00401-015-1395-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 11/30/2022]
Abstract
The brains of Alzheimer’s disease (AD) patients are characterized by deposits of Abeta peptides and by accompanying chronic inflammation. Here, we provide evidence that the enzyme isoglutaminyl cyclase (isoQC) is a novel factor contributing to both aspects of AD pathology. Two putative substrates of isoQC, N-truncated Abeta peptides and the monocyte chemoattractant chemokine CCL2, undergo isoQC-catalyzed pyroglutamate (pGlu) modification. This triggers Abeta aggregation and facilitates the biological activity of CCL2, which collectively results in the formation of high molecular weight Abeta aggregates, glial cell activation, neuroinflammation and neuronal cell death. In mouse brain, we found isoQC to be neuron-specifically expressed in neocortical, hippocampal and subcortical structures, localized to the endoplasmic reticulum and Golgi apparatus as well as co-expressed with its substrate CCL2. In aged APP transgenic Tg2576 mice, both isoQC and CCL2 mRNA levels are up-regulated and isoQC and CCL2 proteins were found to be co-induced in Abeta plaque-associated reactive astrocytes. Also, in mouse primary astrocyte culture, a simultaneous up-regulation of isoQC and CCL2 expression was revealed upon Abeta and pGlu-Abeta stimulation. In brains of AD patients, the expression of isoQC and CCL2 mRNA and protein is up-regulated compared to controls and correlates with pGlu-Abeta load and with the decline in mini-mental state examination. Our observations provide evidence for a dual involvement of isoQC in AD pathogenesis by catalysis of pGlu-Abeta and pGlu-CCL2 formation which mutually stimulate inflammatory events and affect cognition. We conclude that isoQC inhibition may target both major pathological events in the development of AD.
Collapse
|
18
|
Höfling C, Indrischek H, Höpcke T, Waniek A, Cynis H, Koch B, Schilling S, Morawski M, Demuth HU, Roßner S, Hartlage-Rübsamen M. Mouse strain and brain region-specific expression of the glutaminyl cyclases QC and isoQC. Int J Dev Neurosci 2014; 36:64-73. [PMID: 24886834 DOI: 10.1016/j.ijdevneu.2014.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 05/20/2014] [Indexed: 11/25/2022] Open
Abstract
Glutaminyl cyclases (QCs) catalyze the formation of pyroglutamate (pGlu) from glutamine precursors at the N-terminus of a number of peptide hormones, neuropeptides and chemokines. This post-translational modification stabilizes these peptides, protects them from proteolytical degradation or is important for their biological activity. However, QC is also involved in a pathogenic pGlu modification of peptides accumulating in protein aggregation disorders such as Alzheimer's disease and familial Danish and familial British dementia. Its isoenzyme (isoQC) was shown to contribute to aspects of inflammation by pGlu-modifying and thereby stabilizing the monocyte chemoattractant protein CCL2. For the generation of respective animal models and for pharmacological treatment studies the characterization of the mouse strain and brain region-specific expression of QC and isoQC is indispensible. In order to address this issue, we used enzymatic activity assays and specific antibodies to detect both QC variants by immunohistochemistry in nine different mouse strains. Comparing different brain regions, the highest enzymatic QC/isoQC activity was detected in ventral brain, followed by cortex and hippocampus. Immunohistochemical stainings revealed that QC/isoQC activity in cortex mostly arises from isoQC expression. For most brain regions, the highest QC/isoQC activity was detected in C3H and FVB mice, whereas low QC/isoQC activity was present in CD1, SJL and C57 mice. Quantification of QC- and isoQC-immunoreactive cells by unbiased stereology revealed a higher abundance of isoQC- than of QC-immunoreactive neurons in Edinger-Westphal nucleus and in substantia nigra. In the locus coeruleus, however, there were comparable densities of QC- and of isoQC-immunoreactive neurons. These observations are of considerable importance with regard to the selection of appropriate mouse strains for the study of QC/isoQC relevance in mouse models of neurodegeneration and neuroinflammation and for the testing of therapeutical interventions in these models.
Collapse
Affiliation(s)
- Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Henrike Indrischek
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Theodor Höpcke
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Alexander Waniek
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Holger Cynis
- Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Department of Drug Design and Target Validation MWT, Halle, Germany
| | - Birgit Koch
- Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Department of Drug Design and Target Validation MWT, Halle, Germany
| | - Stephan Schilling
- Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Department of Drug Design and Target Validation MWT, Halle, Germany
| | - Markus Morawski
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Hans-Ulrich Demuth
- Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Department of Drug Design and Target Validation MWT, Halle, Germany.
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany.
| | | |
Collapse
|
19
|
Sialyl-glycoconjugates in cholesterol-rich microdomains of P388 cells are the triggers for apoptosis induced by Rana catesbeiana oocyte ribonuclease. Glycoconj J 2013; 31:171-84. [PMID: 24271942 DOI: 10.1007/s10719-013-9513-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 10/21/2013] [Accepted: 11/07/2013] [Indexed: 10/26/2022]
Abstract
SBL/RC-RNase was originally isolated from frog (Rana catesbeiana) oocytes and purified as a novel sialic acid-binding lectin (SBL) that displayed strong anti-cancer activity. SBL was later shown to be identical to a ribonuclease (RC-RNase) from oocytes of the same species. The administration of SBL/RC-RNase induced apoptosis (with nuclear condensation and DNA fragmentation) in mouse leukemia P388 cells but did not kill umbilical vein endothelial or fibroblast cells derived from normal tissues. The cytotoxic activity of SBL/RC-RNase was inhibited by desialylation of P388 cells and/or the co-presence of free bovine submaxillary mucin. FACS analysis showed that SBL/RC-RNase was incorporated into cells after attachment to cholesterol-rich microdomains. Addition of the cholesterol remover methyl-β-cyclodextrin reduced SBL/RC-RNase-induced apoptosis. Apoptosis occurred through the caspase-3 pathway following activation of caspase-8 by SBL/RC-RNase. A heat shock cognate protein (Hsc70) and a heat shock protein (Hsp70) (each 70 kDa) on the cell membrane were shown to bind to SBL/RC-RNase by mass spectrometric and flow cytometric analyses. Quercetin, an inhibitor of Hsc70 and Hsp70, significantly reduced SBL/RC-RNase-induced apoptosis. Taken together, our findings suggest that sialyl-glycoconjugates present in cholesterol-rich microdomains form complexes with Hsc70 or Hsp70 that act as triggers for SBL/RC-RNase to induce apoptosis through a pathway involving the activation of caspase-3 and caspase-8.
Collapse
|
20
|
Howell MD, Gottschall PE. Lectican proteoglycans, their cleaving metalloproteinases, and plasticity in the central nervous system extracellular microenvironment. Neuroscience 2012; 217:6-18. [PMID: 22626649 DOI: 10.1016/j.neuroscience.2012.05.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 01/18/2023]
Abstract
The extracellular matrix (ECM) in the central nervous system actively orchestrates and modulates changes in neural structure and function in response to experience, after injury, during disease, and with changes in neuronal activity. A component of the multi-protein, ECM aggregate in brain, the chondroitin sulfate (CS)-bearing proteoglycans (PGs) known as lecticans, inhibit neurite outgrowth, alter dendritic spine shape, elicit closure of critical period plasticity, and block target reinnervation and functional recovery after injury as the major component of a glial scar. While removal of the CS chains from lecticans with chondroitinase ABC improves plasticity, proteolytic cleavage of the lectican core protein may change the conformation of the matrix aggregate and also modulate neural plasticity. This review centers on the roles of the lecticans and the endogenous metalloproteinase families that proteolytically cleave lectican core proteins, the matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs), in neural plasticity. These extracellular metalloproteinases modulate structural neural plasticity-including changes in neurite outgrowth and dendritic spine remodeling-and synaptic plasticity. Some of these actions have been demonstrated to occur via cleavage of the PG core protein. Other actions of the proteases include cleavage of non-matrix substrate proteins, whereas still other actions may occur directly at the cell surface without proteolytic cleavage. The data convincingly demonstrate that metalloproteinases modulate physiological and pathophysiological neural plasticity.
Collapse
Affiliation(s)
- M D Howell
- University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology, Little Rock, AR 72205, USA
| | | |
Collapse
|
21
|
Morawski M, Brückner G, Jäger C, Seeger G, Matthews RT, Arendt T. Involvement of perineuronal and perisynaptic extracellular matrix in Alzheimer's disease neuropathology. Brain Pathol 2012; 22:547-61. [PMID: 22126211 DOI: 10.1111/j.1750-3639.2011.00557.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Brain extracellular matrix (ECM) is organized in specific patterns assumed to mirror local features of neuronal activity and synaptic plasticity. Aggrecan-based perineuronal nets (PNs) and brevican-based perisynaptic axonal coats (ACs) form major structural phenotypes of ECM contributing to the laminar characteristics of cortical areas. In Alzheimer's disease (AD), the deposition of amyloid proteins and processes related to neurofibrillary degeneration may affect the integrity of the ECM scaffold. In this study we investigate ECM organization in primary sensory, secondary and associative areas of the temporal and occipital lobe. By detecting all major PN components we show that the distribution, structure and molecular properties of PNs remain unchanged in AD. Intact PNs occurred in close proximity to amyloid plaques and were even located within their territory. Counting of PNs revealed no significant alteration in AD. Moreover, neurofibrillary tangles never occurred in neurons associated with PNs. ACs were only lost in the core of amyloid plaques in parallel with the loss of synaptic profiles. In contrast, hyaluronan was enriched in the majority of plaques. We conclude that the loss of brevican is associated with the loss of synapses, whereas PNs and related matrix components resist disintegration and may protect neurons from degeneration.
Collapse
Affiliation(s)
- Markus Morawski
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, Universität Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Pyroglutamate-Aβ 3 and 11 colocalize in amyloid plaques in Alzheimer's disease cerebral cortex with pyroglutamate-Aβ 11 forming the central core. Neurosci Lett 2011; 505:109-12. [PMID: 22001577 DOI: 10.1016/j.neulet.2011.09.071] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/21/2011] [Accepted: 09/30/2011] [Indexed: 10/16/2022]
Abstract
N-terminal truncated amyloid beta (Aβ) derivatives, especially the forms having pyroglutamate at the 3 position (AβpE3) or at the 11 position (AβpE11) have become the topic of considerable study. AβpE3 is known to make up a substantial portion of the Aβ species in senile plaques while AβpE11 has received less attention. We have generated very specific polyclonal antibodies against both species. Each antibody recognizes only the antigen against which it was generated on Western blots and neither recognizes full length Aβ. Both anti-AβpE3 and anti-AβpE11 stain senile plaques specifically in Alzheimer's disease cerebral cortex and colocalize with Aβ, as shown by confocal microscopy. In a majority of plaques examined, AβpE11 was observed to be the dominant form in the innermost core. These data suggest that AβpE11 may serve as a generating site for senile plaque formation.
Collapse
|
23
|
Alexandru A, Jagla W, Graubner S, Becker A, Bäuscher C, Kohlmann S, Sedlmeier R, Raber KA, Cynis H, Rönicke R, Reymann KG, Petrasch-Parwez E, Hartlage-Rübsamen M, Waniek A, Rossner S, Schilling S, Osmand AP, Demuth HU, von Hörsten S. Selective hippocampal neurodegeneration in transgenic mice expressing small amounts of truncated Aβ is induced by pyroglutamate-Aβ formation. J Neurosci 2011; 31:12790-801. [PMID: 21900558 PMCID: PMC6623394 DOI: 10.1523/jneurosci.1794-11.2011] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 07/09/2011] [Accepted: 07/12/2011] [Indexed: 12/24/2022] Open
Abstract
Posttranslational amyloid-β (Aβ) modification is considered to play an important role in Alzheimer's disease (AD) etiology. An N-terminally modified Aβ species, pyroglutamate-amyloid-β (pE3-Aβ), has been described as a major constituent of Aβ deposits specific to human AD but absent in normal aging. Formed via cyclization of truncated Aβ species by glutaminyl cyclase (QC; QPCT) and/or its isoenzyme (isoQC; QPCTL), pE3-Aβ aggregates rapidly and is known to seed additional Aβ aggregation. To directly investigate pE3-Aβ toxicity in vivo, we generated and characterized transgenic TBA2.1 and TBA2.2 mice, which express truncated mutant human Aβ. Along with a rapidly developing behavioral phenotype, these mice showed progressively accumulating Aβ and pE3-Aβ deposits in brain regions of neuronal loss, impaired long-term potentiation, microglial activation, and astrocytosis. Illustrating a threshold for pE3-Aβ neurotoxicity, this phenotype was not found in heterozygous animals but in homozygous TBA2.1 or double-heterozygous TBA2.1/2.2 animals only. A significant amount of pE3-Aβ formation was shown to be QC-dependent, because crossbreeding of TBA2.1 with QC knock-out, but not isoQC knock-out, mice significantly reduced pE3-Aβ levels. Hence, lowering the rate of QC-dependent posttranslational pE3-Aβ formation can, in turn, lower the amount of neurotoxic Aβ species in AD.
Collapse
MESH Headings
- Aging/pathology
- Aging/psychology
- Alzheimer Disease/pathology
- Amyloid beta-Protein Precursor/biosynthesis
- Animals
- Behavior, Animal
- Brain/pathology
- Enzyme-Linked Immunosorbent Assay
- Gliosis/pathology
- Heredodegenerative Disorders, Nervous System/genetics
- Heredodegenerative Disorders, Nervous System/pathology
- Heredodegenerative Disorders, Nervous System/psychology
- Hippocampus/pathology
- Humans
- Immunohistochemistry
- Kinetics
- Long-Term Potentiation/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Transgenic
- Microscopy, Electron
- Neuronal Plasticity/genetics
- Neuronal Plasticity/physiology
- Phenotype
- Postural Balance/physiology
- Protein Processing, Post-Translational
- Pyrrolidonecarboxylic Acid/metabolism
- Reflex, Startle/physiology
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kerstin A. Raber
- Experimental Therapy, Friedrich Alexander University Erlangen Nürnberg, 91054 Erlangen, Germany
| | | | - Raik Rönicke
- German Center of Neurodegenerative Diseases, 39120 Magdeburg, Germany
| | - Klaus G. Reymann
- German Center of Neurodegenerative Diseases, 39120 Magdeburg, Germany
- Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | | | - Maike Hartlage-Rübsamen
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04109 Leipzig, Germany, and
| | - Alexander Waniek
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04109 Leipzig, Germany, and
| | - Steffen Rossner
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04109 Leipzig, Germany, and
| | | | - Alexander P. Osmand
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee 37920
| | - Hans-Ulrich Demuth
- Ingenium Pharmaceuticals, 82152 Martinsried, Germany
- Probiodrug, 06120 Halle/Saale, Germany
| | - Stephan von Hörsten
- Experimental Therapy, Friedrich Alexander University Erlangen Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
24
|
Hartlage-Rübsamen M, Morawski M, Waniek A, Jäger C, Zeitschel U, Koch B, Cynis H, Schilling S, Schliebs R, Demuth HU, Roßner S. Glutaminyl cyclase contributes to the formation of focal and diffuse pyroglutamate (pGlu)-Aβ deposits in hippocampus via distinct cellular mechanisms. Acta Neuropathol 2011; 121:705-19. [PMID: 21301857 PMCID: PMC3098988 DOI: 10.1007/s00401-011-0806-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 01/27/2011] [Accepted: 01/27/2011] [Indexed: 12/18/2022]
Abstract
In the hippocampal formation of Alzheimer’s disease (AD) patients, both focal and diffuse deposits of Aβ peptides appear in a subregion- and layer-specific manner. Recently, pyroglutamate (pGlu or pE)-modified Aβ peptides were identified as a highly pathogenic and seeding Aβ peptide species. Since the pE modification is catalyzed by glutaminyl cyclase (QC) this enzyme emerged as a novel pharmacological target for AD therapy. Here, we reveal the role of QC in the formation of different types of hippocampal pE-Aβ aggregates. First, we demonstrate that both, focal and diffuse pE-Aβ deposits are present in defined layers of the AD hippocampus. While the focal type of pE-Aβ aggregates was found to be associated with the somata of QC-expressing interneurons, the diffuse type was not. To address this discrepancy, the hippocampus of amyloid precursor protein transgenic mice was analysed. Similar to observations made in AD, focal (i.e. core-containing) pE-Aβ deposits originating from QC-positive neurons and diffuse pE-Aβ deposits not associated with QC were detected in Tg2576 mouse hippocampus. The hippocampal layers harbouring diffuse pE-Aβ deposits receive multiple afferents from QC-rich neuronal populations of the entorhinal cortex and locus coeruleus. This might point towards a mechanism in which pE-Aβ and/or QC are being released from projection neurons at hippocampal synapses. Indeed, there are a number of reports demonstrating the reduction of diffuse, but not of focal, Aβ deposits in hippocampus after deafferentation experiments. Moreover, we demonstrate in neurons by live cell imaging and by enzymatic activity assays that QC is secreted in a constitutive and regulated manner. Thus, it is concluded that hippocampal pE-Aβ plaques may develop through at least two different mechanisms: intracellularly at sites of somatic QC activity as well as extracellularly through seeding at terminal fields of QC expressing projection neurons.
Collapse
Affiliation(s)
- Maike Hartlage-Rübsamen
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Markus Morawski
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Alexander Waniek
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Carsten Jäger
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Ulrike Zeitschel
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Birgit Koch
- Probiodrug AG, Biocenter, Weinbergweg 22, 06120 Halle/Saale, Germany
| | - Holger Cynis
- Probiodrug AG, Biocenter, Weinbergweg 22, 06120 Halle/Saale, Germany
| | - Stephan Schilling
- Probiodrug AG, Biocenter, Weinbergweg 22, 06120 Halle/Saale, Germany
| | - Reinhard Schliebs
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Hans-Ulrich Demuth
- Probiodrug AG, Biocenter, Weinbergweg 22, 06120 Halle/Saale, Germany
- Ingenium Pharmaceuticals GmbH, Fraunhoferstr. 13, 82152 Martinsried/Munich, Germany
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| |
Collapse
|
25
|
Sambamurti K, Greig NH, Utsuki T, Barnwell EL, Sharma E, Mazell C, Bhat NR, Kindy MS, Lahiri DK, Pappolla MA. Targets for AD treatment: conflicting messages from γ-secretase inhibitors. J Neurochem 2011; 117:359-74. [PMID: 21320126 DOI: 10.1111/j.1471-4159.2011.07213.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Current evidence suggests that Alzheimer's disease (AD) is a multi-factorial disease that starts with accumulation of multiple proteins. We have previously proposed that inhibition of γ-secretase may impair membrane recycling causing neurodegeneration starting at synapses (Sambamurti K., Suram A., Venugopal C., Prakasam A., Zhou Y., Lahiri D. K. and Greig N. H. A partial failure of membrane protein turnover may cause Alzheimer's disease: a new hypothesis. Curr. Alzheimer Res., 3, 2006, 81). We also proposed familal AD mutations increase Aβ42 by inhibiting γ-secretase. Herein, we discuss the failure of Eli Lilly's γ-secretase inhibitor, semagacestat, in clinical trials in the light of our hypothesis, which extends the problem beyond toxicity of Aβ aggregates. We elaborate that γ-secretase inhibitors lead to accumulation of amyloid precursor protein C-terminal fragments that can later be processed by γ-secretase to yields bursts of Aβ to facilitate aggregation. Although we do not exclude a role for toxic Aβ aggregates, inhibition of γ-secretase can affect numerous substrates other than amyloid precursor protein to affect multiple pathways and the combined accumulation of multiple peptides in the membrane may impair its function and turnover. Taken together, protein processing and turnover pathways play an important role in maintaining cellular homeostasis and unless we clearly see consistent disease-related increase in their levels or activity, we need to focus on preserving their function rather than inhibiting them for treatment of AD and similar diseases.
Collapse
Affiliation(s)
- Kumar Sambamurti
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|