1
|
Eid S, Lee S, Verkuyl CE, Almanza D, Hanna J, Shenouda S, Belotserkovsky A, Zhao W, Watts JC. The importance of prion research. Biochem Cell Biol 2024; 102:448-471. [PMID: 38996387 DOI: 10.1139/bcb-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Over the past four decades, prion diseases have received considerable research attention owing to their potential to be transmitted within and across species as well as their consequences for human and animal health. The unprecedented nature of prions has led to the discovery of a paradigm of templated protein misfolding that underlies a diverse range of both disease-related and normal biological processes. Indeed, the "prion-like" misfolding and propagation of protein aggregates is now recognized as a common underlying disease mechanism in human neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and the prion principle has led to the development of novel diagnostic and therapeutic strategies for these illnesses. Despite these advances, research into the fundamental biology of prion diseases has declined, likely due to their rarity and the absence of an acute human health crisis. Given the past translational influence, continued research on the etiology, pathogenesis, and transmission of prion disease should remain a priority. In this review, we highlight several important "unsolved mysteries" in the prion disease research field and how solving them may be crucial for the development of effective therapeutics, preventing future outbreaks of prion disease, and understanding the pathobiology of more common human neurodegenerative disorders.
Collapse
Affiliation(s)
- Shehab Eid
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Claire E Verkuyl
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Dustin Almanza
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joseph Hanna
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sandra Shenouda
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ari Belotserkovsky
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Konold T, Spiropoulos J, Hills J, Abdul H, Cawthraw S, Phelan L, McKenna A, Read L, Canoyra S, Marín-Moreno A, Torres JM. Experimental transmission of ovine atypical scrapie to cattle. Vet Res 2023; 54:98. [PMID: 37864218 PMCID: PMC10589953 DOI: 10.1186/s13567-023-01224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/11/2023] [Indexed: 10/22/2023] Open
Abstract
Classical bovine spongiform encephalopathy (BSE) in cattle was caused by the recycling and feeding of meat and bone meal contaminated with a transmissible spongiform encephalopathy (TSE) agent but its origin remains unknown. This study aimed to determine whether atypical scrapie could cause disease in cattle and to compare it with other known TSEs in cattle. Two groups of calves (five and two) were intracerebrally inoculated with atypical scrapie brain homogenate from two sheep with atypical scrapie. Controls were five calves intracerebrally inoculated with saline solution and one non-inoculated animal. Cattle were clinically monitored until clinical end-stage or at least 96 months post-inoculation (mpi). After euthanasia, tissues were collected for TSE diagnosis and potential transgenic mouse bioassay. One animal was culled with BSE-like clinical signs at 48 mpi. The other cattle either developed intercurrent diseases leading to cull or remained clinical unremarkable at study endpoint, including control cattle. None of the animals tested positive for TSEs by Western immunoblot and immunohistochemistry. Bioassay of brain samples from the clinical suspect in Ov-Tg338 and Bov-Tg110 mice was also negative. By contrast, protein misfolding cyclic amplification detected prions in the examined brains from atypical scrapie-challenged cattle, which had a classical BSE-like phenotype. This study demonstrates for the first time that a TSE agent with BSE-like properties can be amplified in cattle inoculated with atypical scrapie brain homogenate.
Collapse
Affiliation(s)
- Timm Konold
- Department of Pathology and Animal Sciences, Animal & Plant Health Agency Weybridge, Addlestone, UK.
| | - John Spiropoulos
- Department of Pathology and Animal Sciences, Animal & Plant Health Agency Weybridge, Addlestone, UK
| | - Janet Hills
- Department of Pathology and Animal Sciences, Animal & Plant Health Agency Weybridge, Addlestone, UK
| | - Hasina Abdul
- Department of Pathology and Animal Sciences, Animal & Plant Health Agency Weybridge, Addlestone, UK
| | - Saira Cawthraw
- Central Unit for Sequencing and PCR, Animal & Plant Health Agency Weybridge, Addlestone, UK
| | - Laura Phelan
- Department of Pathology and Animal Sciences, Animal & Plant Health Agency Weybridge, Addlestone, UK
| | - Amy McKenna
- Department of Pathology and Animal Sciences, Animal & Plant Health Agency Weybridge, Addlestone, UK
| | - Lauren Read
- Department of Pathology and Animal Sciences, Animal & Plant Health Agency Weybridge, Addlestone, UK
| | - Sara Canoyra
- Centro de Investigación en Sanidad Animal (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Alba Marín-Moreno
- Centro de Investigación en Sanidad Animal (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Juan María Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain
| |
Collapse
|
3
|
Artikis E, Kraus A, Caughey B. Structural biology of ex vivo mammalian prions. J Biol Chem 2022; 298:102181. [PMID: 35752366 PMCID: PMC9293645 DOI: 10.1016/j.jbc.2022.102181] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 01/13/2023] Open
Abstract
The structures of prion protein (PrP)-based mammalian prions have long been elusive. However, cryo-EM has begun to reveal the near-atomic resolution structures of fully infectious ex vivo mammalian prion fibrils as well as relatively innocuous synthetic PrP amyloids. Comparisons of these various types of PrP fibrils are now providing initial clues to structural features that correlate with pathogenicity. As first indicated by electron paramagnetic resonance and solid-state NMR studies of synthetic amyloids, all sufficiently resolved PrP fibrils of any sort (n > 10) have parallel in-register intermolecular β-stack architectures. Cryo-EM has shown that infectious brain-derived prion fibrils of the rodent-adapted 263K and RML scrapie strains have much larger ordered cores than the synthetic fibrils. These bona fide prion strains share major structural motifs, but the conformational details and the overall shape of the fibril cross sections differ markedly. Such motif variations, as well as differences in sequence within the ordered polypeptide cores, likely contribute to strain-dependent templating. When present, N-linked glycans and glycophosphatidylinositol (GPI) anchors project outward from the fibril surface. For the mouse RML strain, these posttranslational modifications have little effect on the core structure. In the GPI-anchored prion structures, a linear array of GPI anchors along the twisting fibril axis appears likely to bind membranes in vivo, and as such, may account for pathognomonic membrane distortions seen in prion diseases. In this review, we focus on these infectious prion structures and their implications regarding prion replication mechanisms, strains, transmission barriers, and molecular pathogenesis.
Collapse
Affiliation(s)
- Efrosini Artikis
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Allison Kraus
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
| |
Collapse
|
4
|
Hu Y, Luo Y, Tang G, Huang Y, Kang J, Wang D. Artificial intelligence and its applications in digital hematopathology. BLOOD SCIENCE 2022; 4:136-142. [PMID: 36518598 PMCID: PMC9742095 DOI: 10.1097/bs9.0000000000000130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022] Open
Abstract
The advent of whole-slide imaging, faster image data generation, and cheaper forms of data storage have made it easier for pathologists to manipulate digital slide images and interpret more detailed biological processes in conjunction with clinical samples. In parallel, with continuous breakthroughs in object detection, image feature extraction, image classification and image segmentation, artificial intelligence (AI) is becoming the most beneficial technology for high-throughput analysis of image data in various biomedical imaging disciplines. Integrating digital images into biological workflows, advanced algorithms, and computer vision techniques expands the biologist's horizons beyond the microscope slide. Here, we introduce recent developments in AI applied to microscopy in hematopathology. We give an overview of its concepts and present its applications in normal or abnormal hematopoietic cells identification. We discuss how AI shows great potential to push the limits of microscopy and enhance the resolution, signal and information content of acquired data. Its shortcomings are discussed, as well as future directions for the field.
Collapse
Affiliation(s)
- Yongfei Hu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yinglun Luo
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guangjue Tang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yan Huang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Juanjuan Kang
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University (Foshan Maternity & Child Healthcare Hospital), Foshan, China
| | - Dong Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Zhang X, Pan YH, Chen Y, Pan C, Ma J, Yuan C, Yu G, Ma J. The protease-sensitive N-terminal polybasic region of prion protein modulates its conversion to the pathogenic prion conformer. J Biol Chem 2021; 297:101344. [PMID: 34710372 PMCID: PMC8604679 DOI: 10.1016/j.jbc.2021.101344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
Conversion of normal prion protein (PrPC) to the pathogenic PrPSc conformer is central to prion diseases such as Creutzfeldt-Jakob disease and scrapie; however, the detailed mechanism of this conversion remains obscure. To investigate how the N-terminal polybasic region of PrP (NPR) influences the PrPC-to-PrPSc conversion, we analyzed two PrP mutants: ΔN6 (deletion of all six amino acids in NPR) and Met4-1 (replacement of four positively charged amino acids in NPR with methionine). We found that ΔN6 and Met4-1 differentially impacted the binding of recombinant PrP (recPrP) to the negatively charged phospholipid 1-palmitoyl-2-oleoylphosphatidylglycerol, a nonprotein cofactor that facilitates PrP conversion. Both mutant recPrPs were able to form recombinant prion (recPrPSc) in vitro, but the convertibility was greatly reduced, with ΔN6 displaying the lowest convertibility. Prion infection assays in mammalian RK13 cells expressing WT or NPR-mutant PrPs confirmed these differences in convertibility, indicating that the NPR affects the conversion of both bacterially expressed recPrP and post-translationally modified PrP in eukaryotic cells. We also found that both WT and mutant recPrPSc conformers caused prion disease in WT mice with a 100% attack rate, but the incubation times and neuropathological changes caused by two recPrPSc mutants were significantly different from each other and from that of WT recPrPSc. Together, our results support that the NPR greatly influences PrPC-to-PrPSc conversion, but it is not essential for the generation of PrPSc. Moreover, the significant differences between ΔN6 and Met4-1 suggest that not only charge but also the identity of amino acids in NPR is important to PrP conversion.
Collapse
Affiliation(s)
- Xiangyi Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Ying Chen
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Chenhua Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Ji Ma
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Chonggang Yuan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Guohua Yu
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, School of Life Sciences, Longyan University, Longyan, China
| | - Jiyan Ma
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China; Department of Neurodegeneraive Science, Van Andel Institute, Grand Rapids, Michigan, USA; Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
6
|
Phenotypic diversity of genetic Creutzfeldt-Jakob disease: a histo-molecular-based classification. Acta Neuropathol 2021; 142:707-728. [PMID: 34324063 PMCID: PMC8423680 DOI: 10.1007/s00401-021-02350-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 01/05/2023]
Abstract
The current classification of sporadic Creutzfeldt–Jakob disease (sCJD) includes six major clinicopathological subtypes defined by the physicochemical properties of the protease-resistant core of the pathologic prion protein (PrPSc), defining two major PrPSc types (i.e., 1 and 2), and the methionine (M)/valine (V) polymorphic codon 129 of the prion protein gene (PRNP). How these sCJD subtypes relate to the well-documented phenotypic heterogeneity of genetic CJD (gCJD) is not fully understood. We analyzed molecular and phenotypic features in 208 individuals affected by gCJD, carrying 17 different mutations, and compared them with those of a large series of sCJD cases. We identified six major groups of gCJD based on the combination PrPSc type and codon 129 genotype on PRNP mutated allele, each showing distinctive histopathological characteristics, irrespectively of the PRNP associated mutation. Five gCJD groups, named M1, M2C, M2T, V1, and V2, largely reproduced those previously described in sCJD subtypes. The sixth group shared phenotypic traits with the V2 group and was only detected in patients carrying the E200K-129M haplotype in association with a PrPSc type of intermediate size (“i”) between type 1 and type 2. Additional mutation-specific effects involved the pattern of PrP deposition (e.g., a “thickened” synaptic pattern in E200K carriers, cerebellar “stripe-like linear granular deposits” in those with insertion mutations, and intraneuronal globular dots in E200K-V2 or -M”i”). A few isolated cases linked to rare PRNP haplotypes (e.g., T183A-129M), showed atypical phenotypic features, which prevented their classification into the six major groups. The phenotypic variability of gCJD is mostly consistent with that previously found in sCJD. As in sCJD, the codon 129 genotype and physicochemical properties of PrPSc significantly correlated with the phenotypic variability of gCJD. The most common mutations linked to CJD appear to have a variable and overall less significant effect on the disease phenotype, but they significantly influence disease susceptibility often in a strain-specific manner. The criteria currently used for sCJD subtypes can be expanded and adapted to gCJD to provide an updated classification of the disease with a molecular basis.
Collapse
|
7
|
Pankiewicz JE, Lizińczyk AM, Franco LA, Diaz JR, Martá-Ariza M, Sadowski MJ. Absence of Apolipoprotein E is associated with exacerbation of prion pathology and promotes microglial neurodegenerative phenotype. Acta Neuropathol Commun 2021; 9:157. [PMID: 34565486 PMCID: PMC8474943 DOI: 10.1186/s40478-021-01261-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
Prion diseases or prionoses are a group of rapidly progressing and invariably fatal neurodegenerative diseases. The pathogenesis of prionoses is associated with self-replication and connectomal spread of PrPSc, a disease specific conformer of the prion protein. Microglia undergo activation early in the course of prion pathogenesis and exert opposing roles in PrPSc mediated neurodegeneration. While clearance of PrPSc and apoptotic neurons have disease-limiting effect, microglia-driven neuroinflammation bears deleterious consequences to neuronal networks. Apolipoprotein (apo) E is a lipid transporting protein with pleiotropic functions, which include controlling of the phagocytic and inflammatory characteristics of activated microglia in neurodegenerative diseases. Despite the significance of microglia in prion pathogenesis, the role of apoE in prionoses has not been established. We showed here that infection of wild type mice with 22L mouse adapted scrapie strain is associated with significant increase in the total brain apoE protein and mRNA levels and also with a conspicuous cell-type shift in the apoE expression. There is reduced expression of apoE in activated astrocytes and marked upregulation of apoE expression by activated microglia. We also showed apoE ablation exaggerates PrPSc mediated neurodegeneration. Apoe−/− mice have shorter disease incubation period, increased load of spongiform lesion, pronounced neuronal loss, and exaggerated astro and microgliosis. Astrocytes of Apoe−/− mice display salient upregulation of transcriptomic markers defining A1 neurotoxic astrocytes while microglia show upregulation of transcriptomic markers characteristic for microglial neurodegenerative phenotype. There is impaired clearance of PrPSc and dying neurons by microglia in Apoe−/− mice along with increased level of proinflammatory cytokines. Our work indicates that apoE absence renders clearance of PrPSc and dying neurons by microglia inefficient, while the excess of neuronal debris promotes microglial neurodegenerative phenotype aggravating the vicious cycle of neuronal death and neuroinflammation.
Collapse
|
8
|
Reflections on Cerebellar Neuropathology in Classical Scrapie. Biomolecules 2021; 11:biom11050649. [PMID: 33924986 PMCID: PMC8146067 DOI: 10.3390/biom11050649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 01/15/2023] Open
Abstract
In this review, the most important neuropathological changes found in the cerebella of sheep affected by classical natural scrapie are discussed. This disease is the oldest known of a group of unconventional “infections” caused by toxic prions of different origins. Scrapie is currently considered a “transmissible spongiform encephalopathy” (due to its neuropathological characteristics and its transmission), which is the paradigm of prion pathologies as well as many encephalopathies (prion-like) that present aberrant deposits of insoluble protein with neurotoxic effects due to errors in their catabolization (“misfolding protein diseases”). The study of this disease is, therefore, of great relevance. Our work data from the authors’ previous publications as well as other research in the field. The four most important types of neuropathological changes are neuron abnormalities and loss, neurogliosis, tissue vacuolization (spongiosis) and pathological or abnormal prion protein (PrP) deposits/deposition. These findings were analyzed and compared to other neuropathologies. Various aspects related to the presentation and progression of the disease, the involution of different neuronal types, the neuroglial responses and the appearance of abnormal PrP deposits are discussed. The most important points of controversy in scrapie neuropathology are presented.
Collapse
|
9
|
Shacham T, Patel C, Lederkremer GZ. PERK Pathway and Neurodegenerative Disease: To Inhibit or to Activate? Biomolecules 2021; 11:biom11030354. [PMID: 33652720 PMCID: PMC7996871 DOI: 10.3390/biom11030354] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
With the extension of life span in recent decades, there is an increasing burden of late-onset neurodegenerative diseases, for which effective treatments are lacking. Neurodegenerative diseases include the widespread Alzheimer’s disease (AD) and Parkinson’s disease (PD), the less frequent Huntington’s disease (HD) and Amyotrophic Lateral Sclerosis (ALS) and also rare early-onset diseases linked to mutations that cause protein aggregation or loss of function in genes that maintain protein homeostasis. The difficulties in applying gene therapy approaches to tackle these diseases is drawing increasing attention to strategies that aim to inhibit cellular toxicity and restore homeostasis by intervening in cellular pathways. These include the unfolded protein response (UPR), activated in response to endoplasmic reticulum (ER) stress, a cellular affliction that is shared by these diseases. Special focus is turned to the PKR-like ER kinase (PERK) pathway of the UPR as a target for intervention. However, the complexity of the pathway and its ability to promote cell survival or death, depending on ER stress resolution, has led to some confusion in conflicting studies. Both inhibition and activation of the PERK pathway have been reported to be beneficial in disease models, although there are also some reports where they are counterproductive. Although with the current knowledge a definitive answer cannot be given on whether it is better to activate or to inhibit the pathway, the most encouraging strategies appear to rely on boosting some steps without compromising downstream recovery.
Collapse
Affiliation(s)
- Talya Shacham
- Cell Biology Division, George Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978, Israel; (T.S.); (C.P.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chaitanya Patel
- Cell Biology Division, George Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978, Israel; (T.S.); (C.P.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gerardo Z. Lederkremer
- Cell Biology Division, George Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978, Israel; (T.S.); (C.P.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- Correspondence: ; Tel.: +972-3-640-9239
| |
Collapse
|
10
|
Bender H, Noyes N, Annis JL, Hitpas A, Mollnow L, Croak K, Kane S, Wagner K, Dow S, Zabel M. PrPC knockdown by liposome-siRNA-peptide complexes (LSPCs) prolongs survival and normal behavior of prion-infected mice immunotolerant to treatment. PLoS One 2019; 14:e0219995. [PMID: 31329627 PMCID: PMC6645518 DOI: 10.1371/journal.pone.0219995] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/05/2019] [Indexed: 11/29/2022] Open
Abstract
Prion diseases are members of neurodegenerative protein misfolding diseases (NPMDs) that include Alzheimer's, Parkinson's and Huntington diseases, amyotrophic lateral sclerosis, tauopathies, traumatic brain injuries, and chronic traumatic encephalopathies. No known therapeutics extend survival or improve quality of life of humans afflicted with prion disease. We and others developed a new approach to NPMD therapy based on reducing the amount of the normal, host-encoded protein available as substrate for misfolding into pathologic forms, using RNA interference, a catabolic pathway that decreases levels of mRNA encoding a particular protein. We developed a therapeutic delivery system consisting of small interfering RNA (siRNA) complexed to liposomes and addressed to the central nervous system using a targeting peptide derived from rabies virus glycoprotein. These liposome-siRNA-peptide complexes (LSPCs) cross the blood-brain barrier and deliver PrP siRNA to neuronal cells to decrease expression of the normal cellular prion protein, PrPC, which acts as a substrate for prion replication. Here we show that LSPCs can extend survival and improve behavior of prion-infected mice that remain immunotolerant to treatment. LSPC treatment may be a viable therapy for prion and other NPMDs that can improve the quality of life of patients at terminal disease stages.
Collapse
Affiliation(s)
- Heather Bender
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Noelle Noyes
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States of America
| | - Jessica L. Annis
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Amanda Hitpas
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Luke Mollnow
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Kendra Croak
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Sarah Kane
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Kaitlyn Wagner
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Steven Dow
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Mark Zabel
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| |
Collapse
|
11
|
Vorberg IM. All the Same? The Secret Life of Prion Strains within Their Target Cells. Viruses 2019; 11:v11040334. [PMID: 30970585 DOI: 10.3390/v11040334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 01/23/2023] Open
Abstract
Prions are infectious β-sheet-rich protein aggregates composed of misfolded prion protein (PrPSc) that do not possess coding nucleic acid. Prions replicate by recruiting and converting normal cellular PrPC into infectious isoforms. In the same host species, prion strains target distinct brain regions and cause different disease phenotypes. Prion strains are associated with biophysically distinct PrPSc conformers, suggesting that strain properties are enciphered within alternative PrPSc quaternary structures. So far it is unknown how prion strains target specific cells and initiate productive infections. Deeper mechanistic insight into the prion life cycle came from cell lines permissive to a range of different prion strains. Still, it is unknown why certain cell lines are refractory to infection by one strain but permissive to another. While pharmacologic and genetic manipulations revealed subcellular compartments involved in prion replication, little is known about strain-specific requirements for endocytic trafficking pathways. This review summarizes our knowledge on how prions replicate within their target cells and on strain-specific differences in prion cell biology.
Collapse
Affiliation(s)
- Ina M Vorberg
- German Center for Neurodegenerative Diseases (DZNE e.V.), Sigmund-Freud-Strasse 27, 53127 Bonn, Germany.
- Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany.
| |
Collapse
|
12
|
GPI-anchor signal sequence influences PrPC sorting, shedding and signalling, and impacts on different pathomechanistic aspects of prion disease in mice. PLoS Pathog 2019; 15:e1007520. [PMID: 30608982 PMCID: PMC6334958 DOI: 10.1371/journal.ppat.1007520] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/16/2019] [Accepted: 12/11/2018] [Indexed: 12/31/2022] Open
Abstract
The cellular prion protein (PrPC) is a cell surface glycoprotein attached to the membrane by a glycosylphosphatidylinositol (GPI)-anchor and plays a critical role in transmissible, neurodegenerative and fatal prion diseases. Alterations in membrane attachment influence PrPC-associated signaling, and the development of prion disease, yet our knowledge of the role of the GPI-anchor in localization, processing, and function of PrPCin vivo is limited We exchanged the PrPC GPI-anchor signal sequence of for that of Thy-1 (PrPCGPIThy-1) in cells and mice. We show that this modifies the GPI-anchor composition, which then lacks sialic acid, and that PrPCGPIThy-1 is preferentially localized in axons and is less prone to proteolytic shedding when compared to PrPC. Interestingly, after prion infection, mice expressing PrPCGPIThy-1 show a significant delay to terminal disease, a decrease of microglia/astrocyte activation, and altered MAPK signaling when compared to wild-type mice. Our results are the first to demonstrate in vivo, that the GPI-anchor signal sequence plays a fundamental role in the GPI-anchor composition, dictating the subcellular localization of a given protein and, in the case of PrPC, influencing the development of prion disease. The prion protein (PrPC) is a glycoprotein attached to the neuronal surface via a GPI-anchor. When misfolded to PrPSc, it leads to fatal neurodegenerative diseases which propagates from host to host. PrPSc is the principal component of the infectious agent of prion diseases, the “prion”. Misfolding occurs at the plasma membrane, and when PrPC lacks the GPI-anchor, neuropathology and incubation time of prion disease are strongly modified. Moreover, the composition of the PrPC GPI-anchor impacts on the conversion process. To study the role of the GPI-anchor in the pathophysiology of prion diseases in vivo, we have generated transgenic mice where the PrPC GPI-signal sequence (GPI-SS) is replaced for the one of Thy-1, a neuronal protein with a distinct GPI-anchor and membrane localization. We found that the resulting protein, PrPCGPIThy-1, shows a different GPI-anchor composition, increased axonal localization, and reduced enzymatic shedding. After prion infection, disease progression is significantly delayed, and the neuropathology and cellular signaling are changed. The present work demonstrates that the GPI-SS per se determines the GPI-anchor composition and localization of a given protein and it stresses the importance of PrPC membrane anchorage in prion disease.
Collapse
|
13
|
Fernández-Vega I, Díaz-Lucena D, Azkune Calle I, Geijo M, Juste RA, Llorens F, Vicente Etxenausia I, Santos-Juanes J, Zarranz Imirizaldu JJ, Ferrer I. Sporadic Creutzfeldt-Jakob disease with glial PrP Res nuclear and perinuclear immunoreactivity. Neuropathology 2018; 38:561-567. [PMID: 30123962 DOI: 10.1111/neup.12505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/15/2018] [Accepted: 07/05/2018] [Indexed: 01/03/2023]
Abstract
Proteinase K-resistant prion protein (PrPRes ) nuclear and perinuclear immunoreactivity in oligodendrocytes of the frontal cortex is found in one case of otherwise typical sporadic Creutzfeldt-Jakob disease (sCJD) type VV2a. The PrP nature of the inclusions is validated with several anti-PrP antibodies directed to amino acids 130-160 (12F10), 109-112 (3F4), 97-102 (8G8) and the octarepeat region (amino acids 59-89: SAF32). Cellular identification and subcellular localization were evaluated with double- and triple-labeling immunofluorescence and confocal microscopy using antibodies against PrP, glial markers, and histone H3. Based on review of the literature and our own experience, this is a very odd situation that deserves further validation in other cases.
Collapse
Affiliation(s)
- Ivan Fernández-Vega
- Pathology Department, Hospital Universitario Araba, Vitoria, Spain.,Brain Bank Hospital Universitario Araba, Biobanco Vasco para la Investigación (O+eHun), Vitoria, Spain
| | - Daniela Díaz-Lucena
- Biomedical Research Institute of Bellvitge (IDIBELL), Hospitalet de Llobregat, Spain.,Biomedical Network Research Center of Neurodegenerative Diseases (CIBERNED), Hospitalet de Llobregat, Spain
| | | | - Maria Geijo
- Department of Animal Health, NEIKER-Tecnalia, Derio, Spain
| | - Ramon A Juste
- Department of Animal Health, NEIKER-Tecnalia, Derio, Spain
| | - Franc Llorens
- Biomedical Research Institute of Bellvitge (IDIBELL), Hospitalet de Llobregat, Spain.,Biomedical Network Research Center of Neurodegenerative Diseases (CIBERNED), Hospitalet de Llobregat, Spain
| | - Ikerne Vicente Etxenausia
- Brain Bank Hospital Universitario Araba, Biobanco Vasco para la Investigación (O+eHun), Vitoria, Spain
| | - Jorge Santos-Juanes
- Pathology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Isidro Ferrer
- Biomedical Research Institute of Bellvitge (IDIBELL), Hospitalet de Llobregat, Spain.,Biomedical Network Research Center of Neurodegenerative Diseases (CIBERNED), Hospitalet de Llobregat, Spain.,Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain.,Service of Pathologic Anatomy, Bellvitge University Hospital, Hospitalet de Llobregat, Spain
| |
Collapse
|
14
|
Retrograde Transport by Clathrin-Coated Vesicles is Involved in Intracellular Transport of PrP Sc in Persistently Prion-Infected Cells. Sci Rep 2018; 8:12241. [PMID: 30115966 PMCID: PMC6095914 DOI: 10.1038/s41598-018-30775-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/03/2018] [Indexed: 12/22/2022] Open
Abstract
Intracellular dynamics of an abnormal isoform of prion protein (PrPSc) are tightly associated with prion propagation. However, the machineries involved in the intracellular trafficking of PrPSc are not fully understood. Our previous study suggested that PrPSc in persistently prion-infected cells dynamically circulates between endocytic-recycling compartments (ERCs) and peripheral regions of the cells. To investigate these machineries, we focused on retrograde transport from endosomes to the trans-Golgi network, which is one of the pathways involved in recycling of molecules. PrPSc was co-localized with components of clathrin-coated vesicles (CCVs) as well as those of the retromer complex, which are known as machineries for retrograde transport. Fractionation of intracellular compartments by density gradient centrifugation showed the presence of PrPSc and the components of CCVs in the same fractions. Furthermore, PrPSc was detected in CCVs isolated from intracellular compartments of prion-infected cells. Knockdown of clathrin interactor 1, which is one of the clathrin adaptor proteins involved in retrograde transport, did not change the amount of PrPSc, but it altered the distribution of PrPSc from ERCs to peripheral regions, including late endosomes/lysosomes. These data demonstrated that some PrPSc is transported from endosomes to ERCs by CCVs, which might be involved in the recycling of PrPSc.
Collapse
|
15
|
Pankiewicz JE, Sanchez S, Kirshenbaum K, Kascsak RB, Kascsak RJ, Sadowski MJ. Anti-prion Protein Antibody 6D11 Restores Cellular Proteostasis of Prion Protein Through Disrupting Recycling Propagation of PrP Sc and Targeting PrP Sc for Lysosomal Degradation. Mol Neurobiol 2018; 56:2073-2091. [PMID: 29987703 DOI: 10.1007/s12035-018-1208-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
Abstract
PrPSc is an infectious and disease-specific conformer of the prion protein, which accumulation in the CNS underlies the pathology of prion diseases. PrPSc replicates by binding to the cellular conformer of the prion protein (PrPC) expressed by host cells and rendering its secondary structure a likeness of itself. PrPC is a plasma membrane anchored protein, which constitutively recirculates between the cell surface and the endocytic compartment. Since PrPSc engages PrPC along this trafficking pathway, its replication process is often referred to as "recycling propagation." Certain monoclonal antibodies (mAbs) directed against prion protein can abrogate the presence of PrPSc from prion-infected cells. However, the precise mechanism(s) underlying their therapeutic propensities remains obscure. Using N2A murine neuroblastoma cell line stably infected with 22L mouse-adapted scrapie strain (N2A/22L), we investigated here the modus operandi of the 6D11 clone, which was raised against the PrPSc conformer and has been shown to permanently clear prion-infected cells from PrPSc presence. We determined that 6D11 mAb engages and sequesters PrPC and PrPSc at the cell surface. PrPC/6D11 and PrPSc/6D11 complexes are then endocytosed from the plasma membrane and are directed to lysosomes, therefore precluding recirculation of nascent PrPSc back to the cell surface. Targeting PrPSc by 6D11 mAb to the lysosomal compartment facilitates its proteolysis and eventually shifts the balance between PrPSc formation and degradation. Ongoing translation of PrPC allows maintaining the steady-state level of prion protein within the cells, which was not depleted under 6D11 mAb treatment. Our findings demonstrate that through disrupting recycling propagation of PrPSc and promoting its degradation, 6D11 mAb restores cellular proteostasis of prion protein.
Collapse
Affiliation(s)
- Joanna E Pankiewicz
- Department of Neurology, New York University School of Medicine, 550 First Avenue, Science Building, Room 1007, New York, NY, 10016, USA.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Sandrine Sanchez
- Department of Neurology, New York University School of Medicine, 550 First Avenue, Science Building, Room 1007, New York, NY, 10016, USA
| | - Kent Kirshenbaum
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Regina B Kascsak
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 10314, USA
| | - Richard J Kascsak
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 10314, USA
| | - Martin J Sadowski
- Department of Neurology, New York University School of Medicine, 550 First Avenue, Science Building, Room 1007, New York, NY, 10016, USA. .,Department of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA. .,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
16
|
Song Z, Zhu T, Zhou X, Barrow P, Yang W, Cui Y, Yang L, Zhao D. REST alleviates neurotoxic prion peptide-induced synaptic abnormalities, neurofibrillary degeneration and neuronal death partially via LRP6-mediated Wnt-β-catenin signaling. Oncotarget 2017; 7:12035-52. [PMID: 26919115 PMCID: PMC4914267 DOI: 10.18632/oncotarget.7640] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 02/14/2016] [Indexed: 02/07/2023] Open
Abstract
Prion diseases are a group of infectious neurodegenerative diseases characterized by multiple neuropathological hallmarks including synaptic damage, spongiform degeneration and neuronal death. The factors and mechanisms that maintain cellular morphological integrity and protect against neurodegeneration in prion diseases are still unclear. Here we report that after stimulation with the neurotoxic PrP106-126 fragment in primary cortical neurons, REST translocates from the cytoplasm to the nucleus and protects neurons from harmful effects of PrP106-126. Overexpression of REST reduces pathological damage and abnormal biochemical alterations of neurons induced by PrP106-126 and maintains neuronal viability by stabilizing the level of pro-survival protein FOXO1 and inhibiting the permeability of the mitochondrial outer membrane, release of cytochrome c from mitochondria to cytoplasm and the activation of Capase3. Conversely, knockdown of REST exacerbates morphological damage and inhibits the expression of FOXO1. Additionally, by overexpression or knockdown of LRP6, we further show that LRP6-mediated Wnt-β-catenin signaling partly regulates the expression of REST. Collectively, we demonstrate for the first time novel neuroprotective function of REST in prion diseases and hypothesise that the LRP6-Wnt-β-catenin/REST signaling plays critical and collaborative roles in neuroprotection. This signaling of neuronal survival regulation could be explored as a viable therapeutic target for prion diseases and associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhiqi Song
- The State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ting Zhu
- The State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiangmei Zhou
- The State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Paul Barrow
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, UK
| | - Wei Yang
- The State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongyong Cui
- The State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lifeng Yang
- The State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Deming Zhao
- The State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Flow Cytometric Detection of PrP Sc in Neurons and Glial Cells from Prion-Infected Mouse Brains. J Virol 2017; 92:JVI.01457-17. [PMID: 29046463 DOI: 10.1128/jvi.01457-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/05/2017] [Indexed: 12/13/2022] Open
Abstract
In prion diseases, an abnormal isoform of prion protein (PrPSc) accumulates in neurons, astrocytes, and microglia in the brains of animals affected by prions. Detailed analyses of PrPSc-positive neurons and glial cells are required to clarify their pathophysiological roles in the disease. Here, we report a novel method for the detection of PrPSc in neurons and glial cells from the brains of prion-infected mice by flow cytometry using PrPSc-specific staining with monoclonal antibody (MAb) 132. The combination of PrPSc staining and immunolabeling of neural cell markers clearly distinguished neurons, astrocytes, and microglia that were positive for PrPSc from those that were PrPSc negative. The flow cytometric analysis of PrPSc revealed the appearance of PrPSc-positive neurons, astrocytes, and microglia at 60 days after intracerebral prion inoculation, suggesting the presence of PrPSc in the glial cells, as well as in neurons, from an early stage of infection. Moreover, the kinetic analysis of PrPSc revealed a continuous increase in the proportion of PrPSc-positive cells for all cell types with disease progression. Finally, we applied this method to isolate neurons, astrocytes, and microglia positive for PrPSc from a prion-infected mouse brain by florescence-activated cell sorting. The method described here enables comprehensive analyses specific to PrPSc-positive neurons, astrocytes, and microglia that will contribute to the understanding of the pathophysiological roles of neurons and glial cells in PrPSc-associated pathogenesis.IMPORTANCE Although formation of PrPSc in neurons is associated closely with neurodegeneration in prion diseases, the mechanism of neurodegeneration is not understood completely. On the other hand, recent studies proposed the important roles of glial cells in PrPSc-associated pathogenesis, such as the intracerebral spread of PrPSc and clearance of PrPSc from the brain. Despite the great need for detailed analyses of PrPSc-positive neurons and glial cells, methods available for cell type-specific analysis of PrPSc have been limited thus far to microscopic observations. Here, we have established a novel high-throughput method for flow cytometric detection of PrPSc in cells with more accurate quantitative performance. By applying this method, we succeeded in isolating PrPSc-positive cells from the prion-infected mouse brains via fluorescence-activated cell sorting. This allows us to perform further detailed analysis specific to PrPSc-positive neurons and glial cells for the clarification of pathological changes in neurons and pathophysiological roles of glial cells.
Collapse
|
18
|
Race B, Jeffrey M, McGovern G, Dorward D, Chesebro B. Ultrastructure and pathology of prion protein amyloid accumulation and cellular damage in extraneural tissues of scrapie-infected transgenic mice expressing anchorless prion protein. Prion 2017; 11:234-248. [PMID: 28759310 DOI: 10.1080/19336896.2017.1336274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
In most human and animal prion diseases the abnormal disease-associated prion protein (PrPSc) is deposited as non-amyloid aggregates in CNS, spleen and lymphoid organs. In contrast, in humans and transgenic mice with PrP mutations which cause expression of PrP lacking a glycosylphosphatidylinositol (GPI)-anchor, most PrPSc is in the amyloid form. In transgenic mice expressing only anchorless PrP (tg anchorless), PrPSc is deposited not only in CNS and lymphoid tissues, but also in extraneural tissues including heart, brown fat, white fat, and colon. In the present paper, we report ultrastructural studies of amyloid PrPSc deposition in extraneural tissues of scrapie-infected tg anchorless mice. Amyloid PrPSc fibrils identified by immunogold-labeling were visible at high magnification in interstitial regions and around blood vessels of heart, brown fat, white fat, colon, and lymphoid tissues. PrPSc amyloid was located on and outside the plasma membranes of adipocytes in brown fat and cardiomyocytes, and appeared to invaginate and disrupt the plasma membranes of these cell types, suggesting cellular damage. In contrast, no cellular damage was apparent near PrPSc associated with macrophages in lymphoid tissues and colon, with enteric neuronal ganglion cells in colon or with adipocytes in white fat. PrPSc localized in macrophage phagolysosomes lacked discernable fibrils and might be undergoing degradation. Furthermore, in contrast to wild-type mice expressing GPI-anchored PrP, in lymphoid tissues of tg anchorless mice, PrPSc was not associated with follicular dendritic cells (FDC), and FDC did not display typical prion-associated pathogenic changes.
Collapse
Affiliation(s)
- Brent Race
- a Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories , National Institute of Allergy and Infectious Diseases , Hamilton , MT , USA
| | - Martin Jeffrey
- b Animal and Plant Health Agency (APHA), Lasswade Laboratory , Bush Loan , Penicuik, Midlothian, Scotland , UK
| | - Gillian McGovern
- b Animal and Plant Health Agency (APHA), Lasswade Laboratory , Bush Loan , Penicuik, Midlothian, Scotland , UK
| | - David Dorward
- c Electron Microscopy Section, Research Technology Branch, Rocky Mountain Laboratories , National Institute of Allergy and Infectious Diseases , Hamilton , MT , USA
| | - Bruce Chesebro
- a Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories , National Institute of Allergy and Infectious Diseases , Hamilton , MT , USA
| |
Collapse
|
19
|
Zafar S, Younas N, Sheikh N, Tahir W, Shafiq M, Schmitz M, Ferrer I, Andréoletti O, Zerr I. Cytoskeleton-Associated Risk Modifiers Involved in Early and Rapid Progression of Sporadic Creutzfeldt-Jakob Disease. Mol Neurobiol 2017; 55:4009-4029. [PMID: 28573459 DOI: 10.1007/s12035-017-0589-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
Abstract
A high priority in the prion field is to identify pre-symptomatic events and associated profile of molecular changes. In this study, we demonstrate the pre-symptomatic dysregulation of cytoskeleton assembly and its associated cofilin-1 pathway in strain and brain region-specific manners in MM1 and VV2 subtype-specific Creutzfeldt-Jakob disease at clinical and pre-clinical stage. At physiological level, PrPC interaction with cofilin-1 and phosphorylated form of cofilin (p-cofilin(Ser3)) was investigated in primary cultures of mouse cortex neurons (PCNs) of PrPC wild-type and knockout mice (PrP-/-). Short-interfering RNA downregulation of active form of cofilin-1 resulted in the redistribution/downregulation of PrPC, increase of activated form of microglia, accumulation of dense form of F-actin, and upregulation of p-cofilin(Ser3). This upregulated p-cofilin(Ser3) showed redistribution of expression predominantly in the activated form of microglia in PCNs. At pathological level, cofilin-1 expression was significantly altered in cortex and cerebellum in both humans and mice at pre-clinical stage and at early symptomatic clinical stage of the disease. Further, to better understand the possible mechanism of dysregulation of cofilin-1, we also demonstrated alterations in upstream regulators; LIM kinase isoform 1 (LIMK1), slingshot phosphatase isoform 1 (SSH1), RhoA-associated kinase (Rock2), and amyloid precursor protein (APP) in sporadic Creutzfeldt-Jakob disease MM1 mice and in human MM1 and VV2 frontal cortex and cerebellum samples. In conclusion, our findings demonstrated for the first time a key pre-clinical response of cofilin-1 and the associated pathway in prion disease.
Collapse
Affiliation(s)
- Saima Zafar
- Department of Neurology, Clinical Dementia Center, and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany.
| | - Neelam Younas
- Department of Neurology, Clinical Dementia Center, and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Nadeem Sheikh
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Waqas Tahir
- Department of Neurology, Clinical Dementia Center, and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Mohsin Shafiq
- Department of Neurology, Clinical Dementia Center, and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Matthias Schmitz
- Department of Neurology, Clinical Dementia Center, and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Isidre Ferrer
- Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, University of Barcelona, Hospitalet de Llobregat, Spain.,Network Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Madrid, Spain
| | - Olivier Andréoletti
- Institut National de la Recherche Agronomique/Ecole Nationale Vétérinaire, Toulouse, France
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center, and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| |
Collapse
|
20
|
Ragagnin A, Ezpeleta J, Guillemain A, Boudet-Devaud F, Haeberlé AM, Demais V, Vidal C, Demuth S, Béringue V, Kellermann O, Schneider B, Grant NJ, Bailly Y. Cerebellar compartmentation of prion pathogenesis. Brain Pathol 2017; 28:240-263. [PMID: 28268246 DOI: 10.1111/bpa.12503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/01/2017] [Indexed: 02/06/2023] Open
Abstract
In prion diseases, the brain lesion profile is influenced by the prion "strain" properties, the invasion route to the brain, and still unknown host cell-specific parameters. To gain insight into those endogenous factors, we analyzed the histopathological alterations induced by distinct prion strains in the mouse cerebellum. We show that 22L and ME7 scrapie prion proteins (PrP22L , PrPME7 ), but not bovine spongiform encephalopathy PrP6PB1 , accumulate in a reproducible parasagittal banding pattern in the cerebellar cortex of infected mice. Such banding pattern of PrP22L aggregation did not depend on the neuroinvasion route, but coincided with the parasagittal compartmentation of the cerebellum mostly defined by the expression of zebrins, such as aldolase C and the excitatory amino acid transporter 4, in Purkinje cells. We provide evidence that Purkinje cells display a differential, subtype-specific vulnerability to 22L prions with zebrin-expressing Purkinje cells being more resistant to prion toxicity, while in stripes where PrP22L accumulated most zebrin-deficient Purkinje cells are lost and spongiosis accentuated. In addition, in PrP22L stripes, enhanced reactive astrocyte processes associated with microglia activation support interdependent events between the topographic pattern of Purkinje cell death, reactive gliosis and PrP22L accumulation. Finally, we find that in preclinically-ill mice prion infection promotes at the membrane of astrocytes enveloping Purkinje cell excitatory synapses, upregulation of tumor necrosis factor-α receptor type 1 (TNFR1), a key mediator of the neuroinflammation process. These overall data show that Purkinje cell sensitivity to prion insult is locally restricted by the parasagittal compartmentation of the cerebellum, and that perisynaptic astrocytes may contribute to prion pathogenesis through prion-induced TNFR1 upregulation.
Collapse
Affiliation(s)
- Audrey Ragagnin
- Cytologie et Cytopathologie Neuronales, Institut des Neurosciences Cellulaires & Intégratives, CNRS UPR 3212, Strasbourg, France
| | - Juliette Ezpeleta
- INSERM UMR-S1124, Cellules Souches, Signalisation et Prions, Université Paris Descartes, Paris, France
| | - Aurélie Guillemain
- Cytologie et Cytopathologie Neuronales, Institut des Neurosciences Cellulaires & Intégratives, CNRS UPR 3212, Strasbourg, France
| | - François Boudet-Devaud
- INSERM UMR-S1124, Cellules Souches, Signalisation et Prions, Université Paris Descartes, Paris, France
| | - Anne-Marie Haeberlé
- Cytologie et Cytopathologie Neuronales, Institut des Neurosciences Cellulaires & Intégratives, CNRS UPR 3212, Strasbourg, France
| | - Valérie Demais
- Plateforme Imagerie In Vitro, CNRS UPS-3156, Université de Strasbourg, Strasbourg, France
| | | | - Stanislas Demuth
- Cytologie et Cytopathologie Neuronales, Institut des Neurosciences Cellulaires & Intégratives, CNRS UPR 3212, Strasbourg, France
| | | | - Odile Kellermann
- INSERM UMR-S1124, Cellules Souches, Signalisation et Prions, Université Paris Descartes, Paris, France
| | - Benoit Schneider
- INSERM UMR-S1124, Cellules Souches, Signalisation et Prions, Université Paris Descartes, Paris, France
| | - Nancy J Grant
- Cytologie et Cytopathologie Neuronales, Institut des Neurosciences Cellulaires & Intégratives, CNRS UPR 3212, Strasbourg, France
| | - Yannick Bailly
- Cytologie et Cytopathologie Neuronales, Institut des Neurosciences Cellulaires & Intégratives, CNRS UPR 3212, Strasbourg, France
| |
Collapse
|
21
|
Liu XL, Feng XL, Wang GM, Gong BB, Ahmad W, Liu NN, Zhang YY, Yang L, Ren HL, Cui SS. Exploration of the Main Sites for the Transformation of Normal Prion Protein (PrP C) into Pathogenic Prion Protein (PrP sc). J Vet Res 2017; 61:11-22. [PMID: 29978050 PMCID: PMC5894410 DOI: 10.1515/jvetres-2017-0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/10/2017] [Indexed: 11/26/2022] Open
Abstract
Introduction The functions and mechanisms of prion proteins (PrPC) are currently unknown, but most experts believe that deformed or pathogenic prion proteins (PrPSc) originate from PrPC, and that there may be plural main sites for the conversion of normal PrPC into PrPSc. In order to better understand the mechanism of PrPC transformation to PrPSc, the most important step is to determine the replacement or substitution site. Material and Methods BALB/c mice were challenged with prion RML strain and from 90 days post-challenge (dpc) mice were sacrificed weekly until all of them had been at 160 dpc. The ultra-structure and pathological changes of the brain of experimental mice were observed and recorded by transmission electron microscopy. Results There were a large number of pathogen-like particles aggregated in the myelin sheath of the brain nerves, followed by delamination, hyperplasia, swelling, disintegration, phagocytic vacuolation, and other pathological lesions in the myelin sheath. The aggregated particles did not overflow from the myelin in unstained samples. The phenomenon of particle aggregation persisted all through the disease course, and was the earliest observed pathological change. Conclusion It was deduced that the myelin sheath and lipid rafts in brain nerves, including axons and dendrites, were the main sites for the conversion of PrPC to PrPSc, and the PrPSc should be formed directly by the conversion of protein conformation without the involvement of nucleic acids.
Collapse
Affiliation(s)
- Xi-Lin Liu
- China-Japan Union Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Xiao-Li Feng
- China-Japan Union Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis, Jilin University, Changchun 130062, China.,Biological safety protection third-level laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Guang-Ming Wang
- China-Japan Union Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Bin-Bin Gong
- China-Japan Union Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Waqas Ahmad
- China-Japan Union Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis, Jilin University, Changchun 130062, China.,Section of Epidemiology and Public Health, College of Veterinary and Animal Sciences, Jhang 35200, Pakistan
| | - Nan-Nan Liu
- China-Japan Union Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Yuan-Yuan Zhang
- China-Japan Union Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Li Yang
- China-Japan Union Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Hong-Lin Ren
- China-Japan Union Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Shu-Sen Cui
- China-Japan Union Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis, Jilin University, Changchun 130062, China
| |
Collapse
|
22
|
Jeffrey M, González L, Simmons MM, Hunter N, Martin S, McGovern G. Altered trafficking of abnormal prion protein in atypical scrapie: prion protein accumulation in oligodendroglial inner mesaxons. Neuropathol Appl Neurobiol 2017; 43:215-226. [PMID: 26750308 DOI: 10.1111/nan.12302] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/04/2016] [Accepted: 01/10/2016] [Indexed: 01/09/2023]
Abstract
AIMS Prion diseases exist in classical and atypical disease forms. Both forms are characterized by disease-associated accumulation of a host membrane sialoglycoprotein known as prion protein (PrPd ). In classical forms of prion diseases, PrPd can accumulate in the extracellular space as fibrillar amyloid, intracellularly within lysosomes, but mainly on membranes in association with unique and characteristic membrane pathology. These membrane changes are found in all species and strains of classical prion diseases and consist of spiral, branched and clathrin-coated membrane invaginations on dendrites. Atypical prion diseases have been described in ruminants and man and have distinct biological, biochemical and pathological properties when compared to classical disease. The purpose of this study was to determine whether the subcellular pattern of PrPd accumulation and membrane changes in atypical scrapie were the same as those found in classical prion diseases. METHODS Immunogold electron microscopy was used to examine brains of atypical scrapie-affected sheep and Tg338 mice. RESULTS Classical prion disease-associated membrane lesions were not found in atypical scrapie-affected sheep, however, white matter PrPd accumulation was localized mainly to the inner mesaxon and paranodal cytoplasm of oligodendroglia. Similar lesions were found in myelinated axons of atypical scrapie Tg338-infected mice. However, Tg338 mice also showed the unique grey matter membrane changes seen in classical forms of disease. CONCLUSIONS These data show that atypical scrapie infection directs a change in trafficking of abnormal PrP to axons and oligodendroglia and that the resulting pathology is an interaction between the agent strain and host genotype.
Collapse
Affiliation(s)
- M Jeffrey
- Pathology Department, Animal and Plant Health Agency, Lasswade, UK
| | - L González
- Pathology Department, Animal and Plant Health Agency, Lasswade, UK
| | - M M Simmons
- Pathology Department, Animal and Plant Health Agency, Addlestone, UK
| | - N Hunter
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - S Martin
- Pathology Department, Animal and Plant Health Agency, Lasswade, UK
| | - G McGovern
- Pathology Department, Animal and Plant Health Agency, Lasswade, UK
| |
Collapse
|
23
|
PrP Knockout Cells Expressing Transmembrane PrP Resist Prion Infection. J Virol 2017; 91:JVI.01686-16. [PMID: 27847358 DOI: 10.1128/jvi.01686-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/01/2016] [Indexed: 11/20/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchoring of the prion protein (PrPC) influences PrPC misfolding into the disease-associated isoform, PrPres, as well as prion propagation and infectivity. GPI proteins are found in cholesterol- and sphingolipid-rich membrane regions called rafts. Exchanging the GPI anchor for a nonraft transmembrane sequence redirects PrPC away from rafts. Previous studies showed that nonraft transmembrane PrPC variants resist conversion to PrPres when transfected into scrapie-infected N2a neuroblastoma cells, likely due to segregation of transmembrane PrPC and GPI-anchored PrPres in distinct membrane environments. Thus, it remained unclear whether transmembrane PrPC might convert to PrPres if seeded by an exogenous source of PrPres not associated with host cell rafts and without the potential influence of endogenous expression of GPI-anchored PrPC To further explore these questions, constructs containing either a C-terminal wild-type GPI anchor signal sequence or a nonraft transmembrane sequence containing a flexible linker were expressed in a cell line derived from PrP knockout hippocampal neurons, NpL2. NpL2 cells have physiological similarities to primary neurons, representing a novel and advantageous model for studying transmissible spongiform encephalopathy (TSE) infection. Cells were infected with inocula from multiple prion strains and in different biochemical states (i.e., membrane bound as in brain microsomes from wild-type mice or purified GPI-anchorless amyloid fibrils). Only GPI-anchored PrPC supported persistent PrPres propagation. Our data provide strong evidence that in cell culture GPI anchor-directed membrane association of PrPC is required for persistent PrPres propagation, implicating raft microdomains as a location for conversion. IMPORTANCE Mechanisms of prion propagation, and what makes them transmissible, are poorly understood. Glycosylphosphatidylinositol (GPI) membrane anchoring of the prion protein (PrPC) directs it to specific regions of cell membranes called rafts. In order to test the importance of the raft environment on prion propagation, we developed a novel model for prion infection where cells expressing either GPI-anchored PrPC or transmembrane-anchored PrPC, which partitions it to a different location, were treated with infectious, misfolded forms of the prion protein, PrPres We show that only GPI-anchored PrPC was able to convert to PrPres and able to serially propagate. The results strongly suggest that GPI anchoring and the localization of PrPC to rafts are crucial to the ability of PrPC to propagate as a prion.
Collapse
|
24
|
Adams DB. Prenatal transmission of scrapie in sheep and goats: A case study for veterinary public health. Open Vet J 2016; 6:194-214. [PMID: 27928518 PMCID: PMC5133396 DOI: 10.4314/ovj.v6i3.8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/26/2016] [Indexed: 01/11/2023] Open
Abstract
Unsettled knowledge as to whether scrapie transmits prenatally in sheep and goats and transmits by semen and preimplantation embryos has a potential to compromise measures for controlling, preventing and eliminating the disease. The remedy may be analysis according to a systematic review, allowing comprehensive and accessible treatment of evidence and reasoning, clarifying the issue and specifying the uncertainties. Systematic reviews have clearly formulated questions, can identify relevant studies and appraise their quality and can summarise evidence and reasoning with an explicit methodology. The present venture lays a foundation for a possible systematic review and applies three lines of evidence and reasoning to two questions. The first question is whether scrapie transmits prenatally in sheep and goats. It leads to the second question, which concerns the sanitary safety of artificial breeding technologies, and is whether scrapie transmits in sheep and goats by means of semen and washed or unwashed in vivo derived embryos. The three lines of evidence derive from epidemiological, field and clinical studies, experimentation, and causal reasoning, where inferences are made from the body of scientific knowledge and an understanding of animal structure and function. Evidence from epidemiological studies allow a conclusion that scrapie transmits prenatally and that semen and embryos are presumptive hazards for the transmission of scrapie. Evidence from experimentation confirms that semen and washed or unwashed in vivo derived embryos are hazards for the transmission of scrapie. Evidence from causal reasoning, including experience from other prion diseases, shows that mechanisms exist for prenatal transmission and transmission by semen and embryos in both sheep and goats.
Collapse
Affiliation(s)
- D B Adams
- 24 Noala Street, Aranda, ACT 2614, Australia
| |
Collapse
|
25
|
Barron RM, King D, Jeffrey M, McGovern G, Agarwal S, Gill AC, Piccardo P. PrP aggregation can be seeded by pre-formed recombinant PrP amyloid fibrils without the replication of infectious prions. Acta Neuropathol 2016; 132:611-24. [PMID: 27376534 PMCID: PMC5023723 DOI: 10.1007/s00401-016-1594-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/08/2016] [Accepted: 06/26/2016] [Indexed: 12/22/2022]
Abstract
Mammalian prions are unusual infectious agents, as they are thought to consist solely of aggregates of misfolded prion protein (PrP). Generation of synthetic prions, composed of recombinant PrP (recPrP) refolded into fibrils, has been utilised to address whether PrP aggregates are, indeed, infectious prions. In several reports, neurological disease similar to transmissible spongiform encephalopathy (TSE) has been described following inoculation and passage of various forms of fibrils in transgenic mice and hamsters. However, in studies described here, we show that inoculation of recPrP fibrils does not cause TSE disease, but, instead, seeds the formation of PrP amyloid plaques in PrP-P101L knock-in transgenic mice (101LL). Importantly, both WT-recPrP fibrils and 101L-recPrP fibrils can seed plaque formation, indicating that the fibrillar conformation, and not the primary sequence of PrP in the inoculum, is important in initiating seeding. No replication of infectious prions or TSE disease was observed following both primary inoculation and subsequent subpassage. These data, therefore, argue against recPrP fibrils being infectious prions and, instead, indicate that these pre-formed seeds are acting to accelerate the formation of PrP amyloid plaques in 101LL Tg mice. In addition, these data reproduce a phenotype which was previously observed in 101LL mice following inoculation with brain extract containing in vivo-generated PrP amyloid fibrils, which has not been shown for other synthetic prion models. These data are reminiscent of the "prion-like" spread of aggregated forms of the beta-amyloid peptide (Aβ), α-synuclein and tau observed following inoculation of transgenic mice with pre-formed seeds of each misfolded protein. Hence, even when the protein is PrP, misfolding and aggregation do not reproduce the full clinicopathological phenotype of disease. The initiation and spread of protein aggregation in transgenic mouse lines following inoculation with pre-formed fibrils may, therefore, more closely resemble a seeded proteinopathy than an infectious TSE disease.
Collapse
Affiliation(s)
- Rona M Barron
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK.
| | - Declan King
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - Martin Jeffrey
- Animal and Plant Health Agency, Pentlands Science Park, Midlothian, Scotland, UK
| | - Gillian McGovern
- Animal and Plant Health Agency, Pentlands Science Park, Midlothian, Scotland, UK
| | - Sonya Agarwal
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - Andrew C Gill
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - Pedro Piccardo
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| |
Collapse
|
26
|
Bender HR, Kane S, Zabel MD. Delivery of Therapeutic siRNA to the CNS Using Cationic and Anionic Liposomes. J Vis Exp 2016. [PMID: 27501362 DOI: 10.3791/54106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Prion diseases result from the misfolding of the normal, cellular prion protein (PrP(C)) to an abnormal protease resistant isomer called PrP(Res). The emergence of prion diseases in wildlife populations and their increasing threat to human health has led to increased efforts to find a treatment for these diseases. Recent studies have found numerous anti-prion compounds that can either inhibit the infectious PrP(Res) isomer or down regulate the normal cellular prion protein. However, most of these compounds do not cross the blood brain barrier to effectively inhibit PrP(Res) formation in brain tissue, do not specifically target neuronal PrP(C), and are often too toxic to use in animal or human subjects. We investigated whether siRNA delivered intravascularly and targeted towards neuronal PrP(C) is a safer and more effective anti-prion compound. This report outlines a protocol to produce two siRNA liposomal delivery vehicles, and to package and deliver PrP siRNA to neuronal cells. The two liposomal delivery vehicles are 1) complexed-siRNA liposome formulation using cationic liposomes (LSPCs), and 2) encapsulated-siRNA liposome formulation using cationic or anionic liposomes (PALETS). For the LSPCs, negatively charged siRNA is electrostatically bound to the cationic liposome. A positively charged peptide (RVG-9r [rabies virus glycoprotein]) is added to the complex, which specifically targets the liposome-siRNA-peptide complexes (LSPCs) across the blood brain barrier (BBB) to acetylcholine expressing neurons in the central nervous system (CNS). For the PALETS (peptide addressed liposome encapsulated therapeutic siRNA), the cationic and anionic lipids were rehydrated by the PrP siRNA. This procedure results in encapsulation of the siRNA within the cationic or anionic liposomes. Again, the RVG-9r neuropeptide was bound to the liposomes to target the siRNA/liposome complexes to the CNS. Using these formulations, we have successfully delivered PrP siRNA to AchR-expressing neurons, and decreased the PrP(C) expression of neurons in the CNS.
Collapse
Affiliation(s)
- Heather R Bender
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University
| | - Sarah Kane
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University
| | - Mark D Zabel
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University;
| |
Collapse
|
27
|
Okada H, Miyazawa K, Imamura M, Iwamaru Y, Masujin K, Matsuura Y, Yokoyama T. Transmission of atypical scrapie to homozygous ARQ sheep. J Vet Med Sci 2016; 78:1619-1624. [PMID: 27320968 PMCID: PMC5095634 DOI: 10.1292/jvms.16-0259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Two Cheviot ewes homozygous for the A136L141R154Q171 (AL141RQ) prion protein (PrP) genotype were exposed intracerebrally to brain pools prepared using four field cases of atypical scrapie from the United Kingdom. Animals were clinically normal until the end of the experiment, when they were culled 7 years post-inoculation. Limited accumulation of disease-associated PrP (PrPSc) was observed in the cerebellar molecular layer by immunohistochemistry, but not by western blot or enzyme-linked immunosorbent assay. In addition, PrPSc was partially localized in astrocytes and microglia, suggesting that these cells have a role in PrPSc processing, degradation or both. Our results indicate that atypical scrapie is transmissible to AL141RQ sheep, but these animals act as clinically silent carriers with long incubation times.
Collapse
Affiliation(s)
- Hiroyuki Okada
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0856, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Llorens F, Thüne K, Schmitz M, Ansoleaga B, Frau-Méndez MA, Cramm M, Tahir W, Gotzmann N, Berjaoui S, Carmona M, Silva CJ, Fernandez-Vega I, José Zarranz J, Zerr I, Ferrer I. Identification of new molecular alterations in fatal familial insomnia. Hum Mol Genet 2016; 25:2417-2436. [PMID: 27056979 DOI: 10.1093/hmg/ddw108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 11/12/2022] Open
Abstract
Fatal familial insomnia is a rare disease caused by a D178N mutation in combination with methionine (Met) at codon 129 in the mutated allele of PRNP (D178N-129M haplotype). FFI is manifested by sleep disturbances with insomnia, autonomic disorders and spontaneous and evoked myoclonus, among other symptoms. This study describes new neuropathological and biochemical observations in a series of eight patients with FFI. The mediodorsal and anterior nuclei of the thalamus have severe neuronal loss and marked astrocytic gliosis in every case, whereas the entorhinal cortex is variably affected. Spongiform degeneration only occurs in the entorhinal cortex. Synaptic and fine granular proteinase K digestion (PrPres) immunoreactivity is found in the entorhinal cortex but not in the thalamus. Interleukin 6, interleukin 10 receptor alpha subunit, colony stimulating factor 3 receptor and toll-like receptor 7 mRNA expression increases in the thalamus in FFI. PrPc levels are significantly decreased in the thalamus, entorhinal cortex and cerebellum in FFI. This is accompanied by a particular PrPc and PrPres band profile. Altered PrP solubility consistent with significantly reduced PrP levels in the cytoplasmic fraction and increased PrP levels in the insoluble fraction are identified in FFI cases. Amyloid-like deposits are only seen in the entorhinal cortex. The RT-QuIC assay reveals that all the FFI samples of the entorhinal cortex are positive, whereas the thalamus is positive only in three cases and the cerebellum in two cases. The present findings unveil particular neuropathological and neuroinflammatory profiles in FFI and novel characteristics of natural prion protein in FFI, altered PrPres and Scrapie PrP (abnormal and pathogenic PrP) patterns and region-dependent putative capacity of PrP seeding.
Collapse
Affiliation(s)
- Franc Llorens
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen 37075, Germany
| | - Katrin Thüne
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen 37075, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen 37075, Germany
| | - Belén Ansoleaga
- Institute of Neuropathology, Service of Pathological Anatomy, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, and Biomedical Research Center of Neurodegenerative Diseases (CIBERNED) Hospitalet del Llobregat 08907, Spain
| | - Margalida A Frau-Méndez
- Institute of Neuropathology, Service of Pathological Anatomy, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, and Biomedical Research Center of Neurodegenerative Diseases (CIBERNED) Hospitalet del Llobregat 08907, Spain
| | - Maria Cramm
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen 37075, Germany
| | - Waqas Tahir
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen 37075, Germany
| | - Nadine Gotzmann
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen 37075, Germany
| | - Sara Berjaoui
- Institute of Neuropathology, Service of Pathological Anatomy, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, and Biomedical Research Center of Neurodegenerative Diseases (CIBERNED) Hospitalet del Llobregat 08907, Spain
| | - Margarita Carmona
- Institute of Neuropathology, Service of Pathological Anatomy, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, and Biomedical Research Center of Neurodegenerative Diseases (CIBERNED) Hospitalet del Llobregat 08907, Spain
| | - Christopher J Silva
- USDA, Produce Safety & Microbiology Research Unit, Western Regional Research Center, Albany, CA 94710, USA
| | - Ivan Fernandez-Vega
- Pathology Department University Hospital Araba, and Brain Bank Araba University Hospital, Basque Biobank for Research (O+eHun), Alava 01009, Spain
| | - Juan José Zarranz
- Neurology Department, University Hospital Cruces, University of the Basque Country, Bizkaia 48903, Spain
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen 37075, Germany
| | - Isidro Ferrer
- Institute of Neuropathology, Service of Pathological Anatomy, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, and Biomedical Research Center of Neurodegenerative Diseases (CIBERNED) Hospitalet del Llobregat 08907, Spain
| |
Collapse
|
29
|
Herms J, Dorostkar MM. Dendritic Spine Pathology in Neurodegenerative Diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:221-50. [PMID: 26907528 DOI: 10.1146/annurev-pathol-012615-044216] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Substantial progress has been made toward understanding the neuropathology, genetic origins, and epidemiology of neurodegenerative diseases, including Alzheimer's disease; tauopathies, such as frontotemporal dementia; α-synucleinopathies, such as Parkinson's disease or dementia with Lewy bodies; Huntington's disease; and amyotrophic lateral sclerosis with dementia, as well as prion diseases. Recent evidence has implicated dendritic spine dysfunction as an important substrate of the pathogenesis of dementia in these disorders. Dendritic spines are specialized structures, extending from the neuronal processes, on which excitatory synaptic contacts are formed, and the loss of dendritic spines correlates with the loss of synaptic function. We review the literature that has implicated direct or indirect structural alterations at dendritic spines in the pathogenesis of major neurodegenerative diseases, focusing on those that lead to dementias such as Alzheimer's, Parkinson's, and Huntington's diseases, as well as frontotemporal dementia and prion diseases. We stress the importance of in vivo studies in animal models.
Collapse
Affiliation(s)
- Jochen Herms
- Center for Neuropathology and Prion Research, Ludwig Maximilian University, 81377 Munich, Germany; .,Munich Cluster for Systems Neurology, Ludwig Maximilian University, 81377 Munich, Germany.,German Center for Neurodegenerative Diseases, 81377 Munich, Germany
| | - Mario M Dorostkar
- Center for Neuropathology and Prion Research, Ludwig Maximilian University, 81377 Munich, Germany;
| |
Collapse
|
30
|
Wolf H, Hossinger A, Fehlinger A, Büttner S, Sim V, McKenzie D, Vorberg IM. Deposition pattern and subcellular distribution of disease-associated prion protein in cerebellar organotypic slice cultures infected with scrapie. Front Neurosci 2015; 9:410. [PMID: 26581229 PMCID: PMC4631830 DOI: 10.3389/fnins.2015.00410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/12/2015] [Indexed: 01/05/2023] Open
Abstract
Organotypic cerebellar slices represent a suitable model for characterizing and manipulating prion replication in complex cell environments. Organotypic slices recapitulate prion pathology and are amenable to drug testing in the absence of a blood-brain-barrier. So far, the cellular and subcellular distribution of disease-specific prion protein in organotypic slices is unclear. Here we report the simultaneous detection of disease-specific prion protein and central nervous system markers in wild-type mouse cerebellar slices infected with mouse-adapted prion strain 22L. The disease-specific prion protein distribution profile in slices closely resembles that in vivo, demonstrating granular spot like deposition predominately in the molecular and Purkinje cell layers. Double immunostaining identified abnormal prion protein in the neuropil and associated with neurons, astrocytes and microglia, but absence in Purkinje cells. The established protocol for the simultaneous immunohistochemical detection of disease-specific prion protein and cellular markers enables detailed analysis of prion replication and drug efficacy in an ex vivo model of the central nervous system.
Collapse
Affiliation(s)
- Hanna Wolf
- German Center for Neurodegenerative Diseases Bonn, Germany
| | | | | | - Sven Büttner
- German Center for Neurodegenerative Diseases Bonn, Germany
| | - Valerie Sim
- Centre for Prions and Protein Folding Diseases, University of Alberta Edmonton, AB, Canada
| | - Debbie McKenzie
- Centre for Prions and Protein Folding Diseases, University of Alberta Edmonton, AB, Canada
| | - Ina M Vorberg
- German Center for Neurodegenerative Diseases Bonn, Germany ; Department of Neurology, Rheinische Friedrich-Wilhelms-University of Bonn Bonn, Germany
| |
Collapse
|
31
|
Wang X, McGovern G, Zhang Y, Wang F, Zha L, Jeffrey M, Ma J. Intraperitoneal Infection of Wild-Type Mice with Synthetically Generated Mammalian Prion. PLoS Pathog 2015; 11:e1004958. [PMID: 26136122 PMCID: PMC4489884 DOI: 10.1371/journal.ppat.1004958] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 05/14/2015] [Indexed: 11/23/2022] Open
Abstract
The prion hypothesis postulates that the infectious agent in transmissible spongiform encephalopathies (TSEs) is an unorthodox protein conformation based agent. Recent successes in generating mammalian prions in vitro with bacterially expressed recombinant prion protein provide strong support for the hypothesis. However, whether the pathogenic properties of synthetically generated prion (rec-Prion) recapitulate those of naturally occurring prions remains unresolved. Using end-point titration assay, we showed that the in vitro prepared rec-Prions have infectious titers of around 104 LD50 / μg. In addition, intraperitoneal (i.p.) inoculation of wild-type mice with rec-Prion caused prion disease with an average survival time of 210 – 220 days post inoculation. Detailed pathological analyses revealed that the nature of rec-Prion induced lesions, including spongiform change, disease specific prion protein accumulation (PrP-d) and the PrP-d dissemination amongst lymphoid and peripheral nervous system tissues, the route and mechanisms of neuroinvasion were all typical of classical rodent prions. Our results revealed that, similar to naturally occurring prions, the rec-Prion has a titratable infectivity and is capable of causing prion disease via routes other than direct intra-cerebral challenge. More importantly, our results established that the rec-Prion caused disease is pathogenically and pathologically identical to naturally occurring contagious TSEs, supporting the concept that a conformationally altered protein agent is responsible for the infectivity in TSEs. The transmissible spongiform encephalopathies (TSEs) are a group of infectious neurodegenerative diseases affecting both humans and animals. The prion hypothesis postulates that prions are protein conformation based infectious agents responsible for TSE infectivity. Prions have been synthetically generated in vitro, but it remains unclear whether the properties of synthetically generated prion are the same as those of TSE agents and whether the disease caused by synthetically generated prion is identical to naturally occurring TSEs. In this study, we demonstrated that similar to the classical TSE agents, the synthetically generated prion has a titratable infectivity and is able to cause prion disease in wild-type mice via routes other than direct intra-cerebral inoculation. More importantly, we showed that the synthetically generated prion induced pathological changes, including the dissemination of disease-specific prion protein accumulation and the route and mechanism of neuroinvasion, were all typical of classical TSEs. These results demonstrate the similarity of synthetically generated prion to the infectious agent in TSEs, providing strong evidence supporting the prion hypothesis.
Collapse
Affiliation(s)
- Xinhe Wang
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
| | - Gillian McGovern
- Animal and Plant Health Agency, Lasswade Laboratory, Pentlands Science Park, Penicuik, Midlothian, Scotland
| | - Yi Zhang
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, Shanghai, China
| | - Fei Wang
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
| | - Liang Zha
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
| | - Martin Jeffrey
- Animal and Plant Health Agency, Lasswade Laboratory, Pentlands Science Park, Penicuik, Midlothian, Scotland
| | - Jiyan Ma
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, Shanghai, China
- * E-mail:
| |
Collapse
|
32
|
Reis R, Hennessy E, Murray C, Griffin ÉW, Cunningham C. At the centre of neuronal, synaptic and axonal pathology in murine prion disease: degeneration of neuroanatomically linked thalamic and brainstem nuclei. Neuropathol Appl Neurobiol 2015; 41:780-97. [PMID: 25727649 PMCID: PMC4744702 DOI: 10.1111/nan.12232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/25/2015] [Indexed: 12/13/2022]
Abstract
Aims The processes by which neurons degenerate in chronic neurodegenerative diseases remain unclear. Synaptic loss and axonal pathology frequently precede neuronal loss and protein aggregation demonstrably spreads along neuroanatomical pathways in many neurodegenerative diseases. The spread of neuronal pathology is less studied. Methods We previously demonstrated severe neurodegeneration in the posterior thalamus of multiple prion disease strains. Here we used the ME7 model of prion disease to examine the nature of this degeneration in the posterior thalamus and the major brainstem projections into this region. Results We objectively quantified neurological decline between 16 and 18 weeks post‐inoculation and observed thalamic subregion‐selective neuronal, synaptic and axonal pathology while demonstrating relatively uniform protease‐resistant prion protein (PrP) aggregation and microgliosis across the posterior thalamus. Novel amyloid precursor protein (APP) pathology was particularly prominent in the thalamic posterior (PO) and ventroposterior lateral (VPL) nuclei. The brainstem nuclei forming the major projections to these thalamic nuclei were examined. Massive neuronal loss in the PO was not matched by significant neuronal loss in the interpolaris (Sp5I), while massive synaptic loss in the ventral posteromedial nucleus (VPM) did correspond with significant neuronal loss in the principal trigeminal nucleus. Likewise, significant VPL synaptic loss was matched by significant neuronal loss in the gracile and cuneate nuclei. Conclusion These findings demonstrate significant spread of neuronal pathology from the thalamus to the brainstem in prion disease. The divergent neuropathological features in adjacent neuronal populations demonstrates that there are discrete pathways to neurodegeneration in different neuronal populations.
Collapse
Affiliation(s)
- Renata Reis
- Trinity College Institute of Neuroscience and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Edel Hennessy
- Trinity College Institute of Neuroscience and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Caoimhe Murray
- Trinity College Institute of Neuroscience and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Éadaoin W Griffin
- Trinity College Institute of Neuroscience and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Colm Cunningham
- Trinity College Institute of Neuroscience and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
33
|
Puig B, Altmeppen H, Glatzel M. The GPI-anchoring of PrP: implications in sorting and pathogenesis. Prion 2015; 8:11-8. [PMID: 24509692 DOI: 10.4161/pri.27892] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The cellular prion protein (PrP(C)) is an N-glycosylated GPI-anchored protein usually present in lipid rafts with numerous putative functions. When it changes its conformation to a pathological isoform (then referred to as PrP(Sc)), it is an essential part of the prion, the agent causing fatal and transmissible neurodegenerative prion diseases. There is growing evidence that toxicity and neuronal damage on the one hand and propagation/infectivity on the other hand are two distinct processes of the disease and that the GPI-anchor attachment of PrP(C) and PrP(Sc) plays an important role in protein localization and in neurotoxicity. Here we review how the signal sequence of the GPI-anchor matters in PrP(C) localization, how an altered cellular localization of PrP(C) or differences in GPI-anchor composition can affect prion infection, and we discuss through which mechanisms changes on the anchorage of PrP(C) can modify the disease process.
Collapse
|
34
|
Subcellular distribution of the prion protein in sickness and in health. Virus Res 2015; 207:136-45. [PMID: 25683509 DOI: 10.1016/j.virusres.2015.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 11/22/2022]
Abstract
The cellular prion protein (PrP(C)) is an ubiquitously expressed glycoprotein that is most abundant in the central nervous system. It is thought to play a role in many cellular processes, including neuroprotection, but may also contribute to Alzheimer's disease and some cancers. However, it is best known for its central role in the prion diseases, such as Creutzfeldt-Jakob disease (CJD), bovine spongiform encephalopathy (BSE), and scrapie. These protein misfolding diseases can be sporadic, acquired, or genetic and are caused by refolding of endogenous PrP(C) into a beta sheet-rich, pathogenic form, PrP(Sc). Once prions are present in the central nervous system, they increase and spread during a long incubation period that is followed by a relatively short clinical disease phase, ending in death. PrP molecules can be broadly categorized as either 'good' (cellular) PrP(C) or 'bad' (scrapie prion-type) PrP(Sc), but both populations are heterogeneous and different forms of PrP(C) may influence various cellular activities. Both PrP(C) and PrP(Sc) are localized predominantly at the cell surface, with the C-terminus attached to the plasma membrane via a glycosyl-phosphatidylinositol (GPI) anchor and both can exist in cleaved forms. PrP(C) also has cytosolic and transmembrane forms, and PrP(Sc) is known to exist in a variety of conformations and aggregation states. Here, we discuss the roles of different PrP isoforms in sickness and in health, and show the subcellular distributions of several forms of PrP that are particularly relevant for PrP(C) to PrP(Sc) conversion and prion-induced pathology in the hippocampus.
Collapse
|
35
|
Jeffrey M, McGovern G, Makarava N, González L, Kim YS, Rohwer RG, Baskakov IV. Pathology of SSLOW, a transmissible and fatal synthetic prion protein disorder, and comparison with naturally occurring classical transmissible spongiform encephalopathies. Neuropathol Appl Neurobiol 2014; 40:296-310. [PMID: 23578208 DOI: 10.1111/nan.12053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 03/24/2013] [Indexed: 12/16/2022]
Abstract
AIMS Naturally occurring transmissible spongiform encephalopathies (TSEs) accumulate disease-specific forms of prion protein on cell membranes in association with pathognomonic lesions. We wished to determine whether synthetic prion protein disorders recapitulated these and other subcellular TSE-specific changes. METHODS SSLOW is a TSE initiated with refolded synthetic prion protein. Five terminally sick hamsters previously intracerebrally inoculated with third passage SSLOW were examined using light and immunogold electron microscopy. RESULTS SSLOW-affected hamsters showed widespread abnormal prion protein (PrP(SSLOW) ) and amyloid plaques. PrP(SSLOW) accumulated on plasma lemmas of neurites and glia without pathological changes. PrP(SSLOW) also colocalized with increased coated vesicles and pits, coated spiral membrane invaginations and membrane microfolding. PrP(SSLOW) was additionally observed in lysosomes of microglial cells but not of neurones or astrocytes. CONCLUSIONS PrP(SSLOW) is propagated by cell membrane conversion of normal PrP and lethal disease may be linked to the progressive growth of amyloid plaques. Cell membrane changes present in SSLOW are indistinguishable from those of naturally occurring TSEs. However, some lesions found in SSLOW are absent in natural animal TSEs and vice versa. SSLOW may not entirely recapitulate neuropathological features previously described for natural disease. End-stage neuropathology in SSLOW, particularly the nature and distribution of amyloid plaques may be significantly influenced by the early redistribution of seeds within the inoculum and its recirculation following interstitial, perivascular and other drainage pathways. The way in which seeds are distributed and aggregate into plaques in SSLOW has significant overlap with murine APP overexpressing mice challenged with Aβ.
Collapse
Affiliation(s)
- M Jeffrey
- Animal Health and Veterinary Laboratories Agency, Lasswade Laboratory, Bush Loan, Penicuik, Midlothian, UK
| | | | | | | | | | | | | |
Collapse
|
36
|
Jeffrey M, McGovern G, Barron R, Baumann F. Membrane pathology and microglial activation of mice expressing membrane anchored or membrane released forms of Aβ and mutated human Alzheimer's precursor protein (APP). Neuropathol Appl Neurobiol 2014; 41:458-70. [PMID: 25131655 DOI: 10.1111/nan.12173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/23/2014] [Indexed: 12/29/2022]
Abstract
AIMS Alzheimer's disease and the transmissible spongiform encephalopathies or prion diseases accumulate misfolded and aggregated forms of neuronal cell membrane proteins. Distinctive membrane lesions caused by the accumulation of disease-associated prion protein (PrP(d)) are found in prion disease but morphological changes of membranes are not associated with Aβ in Alzheimer's disease. Membrane changes occur in all prion diseases where PrP(d) is attached to cell membranes by a glycosyl-phosphoinositol (GPI) anchor but are absent from transgenic mice expressing anchorless PrP(d). Here we investigate whether GPI membrane attached Aβ may also cause prion-like membrane lesions. METHODS We used immunogold electron microscopy to determine the localization and pathology of Aβ accumulation in groups of transgenic mice expressing anchored or unanchored forms of Aβ or mutated human Alzheimer's precursor protein. RESULTS GPI attached Aβ did not replicate the membrane lesions of PrP(d). However, as with PrP(d) in prion disease, Aβ peptides derived from each transgenic mouse line initially accumulated on morphologically normal neurite membranes, elicited rapid glial recognition and neurite Aβ was transferred to attenuated microglial and astrocytic processes. CONCLUSIONS GPI attachment of misfolded membrane proteins is insufficient to cause prion-like membrane lesions. Prion disease and murine Aβ amyloidosis both accumulate misfolded monomeric or oligomeric membrane proteins that are recognized by glial processes and acquire such misfolded proteins prior to their accumulation in the extracellular space. In contrast to prion disease where glial cells efficiently endocytose PrP(d) to endolysosomes, activated microglial cells in murine Aβ amyloidosis are not as efficient phagocytes.
Collapse
Affiliation(s)
- Martin Jeffrey
- Animal Health and Veterinary Laboratories Agency, Lasswade Laboratory, Penicuik, Midlothian, UK
| | - Gillian McGovern
- Animal Health and Veterinary Laboratories Agency, Lasswade Laboratory, Penicuik, Midlothian, UK
| | - Rona Barron
- Neurobiology Division, Roslin Institute & R(D)SVS, University of Edinburgh, Roslin, Midlothian, UK
| | - Frank Baumann
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| |
Collapse
|
37
|
Morphological approach to assess the involvement of astrocytes in prion propagation. Cell Tissue Res 2014; 358:57-63. [PMID: 24931403 DOI: 10.1007/s00441-014-1928-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/15/2014] [Indexed: 12/11/2022]
Abstract
Transmissible Spongiform Encephalopathies (TSEs) are a group of neurodegenerative disorders affecting animals and humans and for which no effective treatment is available to date. Vacuolation, neuronal/neurite degeneration, deposition of pathological prion protein (PrPsc) and gliosis are changes typically found in brains from TSE affected individuals. However, the actual role of this last feature, microgliosis and astrocytosis, has not been precisely determined. The overall objective of this work is to assess the involvement of glial cells as components of the host protective system in prion propagation; specifically, to analyze the behavior of astroglial cells in prion progression. To achieve this aim, histopathological and immunohistochemical techniques were carried out on samples from cerebella using Scrapie as the prototype of natural TSEs as this made it possible to assess different stages of the disease; specifically, ages and genotypes from Scrapie-affected animals corresponding to different sources, by using optical, confocal and electron microscopy. The results provided in the present study demonstrate the indisputable involvement of astroglia in prion progression by showing specific changes of this glial population matching up to the evolution of the disease. Moreover, cerebellar lesions mainly associated to Purkinje cells that have not previously been reported in animal prion diseases in natural transmission are described here. The close relationship between PrPsc and GFAP hiperimmunoreactivity and Purkinje cells, alongside the evident thickening of their neurites at terminal stages demonstrated in this study, suggest that these neurons are the main target of this neurodegenerative disease.
Collapse
|
38
|
Abstract
UNLABELLED Natural transmission of prion diseases depends upon the spread of prions from the nervous system to excretory or secretory tissues, but the mechanism of prion transport in axons and into peripheral tissue is unresolved. Here, we examined the temporal and spatial movement of prions from the brain stem along cranial nerves into skeletal muscle as a model of axonal transport and transynaptic spread. The disease-specific isoform of the prion protein, PrP(Sc), was observed in nerve fibers of the tongue approximately 2 weeks prior to PrP(Sc) deposition in skeletal muscle. Initially, PrP(Sc) deposits had a small punctate pattern on the edge of muscle cells that colocalized with synaptophysin, a marker for the neuromuscular junction (NMJ), in >50% of the cells. At later time points PrP(Sc) was widely distributed in muscle cells, but <10% of prion-infected cells exhibited PrP(Sc) deposition at the NMJ, suggesting additional prion replication and dissemination within muscle cells. In contrast to the NMJ, PrP(Sc) was not associated with synaptophysin in nerve fibers but was found to colocalize with LAMP-1 and cathepsin D during early stages of axonal spread. We propose that PrP(Sc)-bound endosomes can lead to membrane recycling in which PrP(Sc) is directed to the synapse, where it either moves across the NMJ into the postsynaptic muscle cell or induces PrP(Sc) formation on muscle cells across the NMJ. IMPORTANCE Prion diseases are transmissible and fatal neurodegenerative diseases in which prion dissemination to excretory or secretory tissues is necessary for natural disease transmission. Despite the importance of this pathway, the cellular mechanism of prion transport in axons and into peripheral tissue is unresolved. This study demonstrates anterograde spread of prions within nerve fibers prior to infection of peripheral synapses (i.e., neuromuscular junction) and infection of peripheral tissues (i.e., muscle cells). Within nerve fibers prions were associated with the endosomal-lysosomal pathway prior to entry into muscle cells. Since early prion spread is anterograde and endosome-lysosomal movement within axons is primarily retrograde, these findings suggest that endosome-bound prions may have an alternate fate that directs prions to the peripheral synapse.
Collapse
|
39
|
Marshall KE, Offerdahl DK, Speare JO, Dorward DW, Hasenkrug A, Carmody AB, Baron GS. Glycosylphosphatidylinositol anchoring directs the assembly of Sup35NM protein into non-fibrillar, membrane-bound aggregates. J Biol Chem 2014; 289:12245-63. [PMID: 24627481 DOI: 10.1074/jbc.m114.556639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In prion-infected hosts, PrPSc usually accumulates as non-fibrillar, membrane-bound aggregates. Glycosylphosphatidylinositol (GPI) anchor-directed membrane association appears to be an important factor controlling the biophysical properties of PrPSc aggregates. To determine whether GPI anchoring can similarly modulate the assembly of other amyloid-forming proteins, neuronal cell lines were generated that expressed a GPI-anchored form of a model amyloidogenic protein, the NM domain of the yeast prion protein Sup35 (Sup35(GPI)). We recently reported that GPI anchoring facilitated the induction of Sup35(GPI) prions in this system. Here, we report the ultrastructural characterization of self-propagating Sup35(GPI) aggregates of either spontaneous or induced origin. Like membrane-bound PrPSc, Sup35(GPI) aggregates resisted release from cells treated with phosphatidylinositol-specific phospholipase C. Sup35(GPI) aggregates of spontaneous origin were detergent-insoluble, protease-resistant, and self-propagating, in a manner similar to that reported for recombinant Sup35NM amyloid fibrils and induced Sup35(GPI) aggregates. However, GPI-anchored Sup35 aggregates were not stained with amyloid-binding dyes, such as Thioflavin T. This was consistent with ultrastructural analyses, which showed that the aggregates corresponded to dense cell surface accumulations of membrane vesicle-like structures and were not fibrillar. Together, these results showed that GPI anchoring directs the assembly of Sup35NM into non-fibrillar, membrane-bound aggregates that resemble PrPSc, raising the possibility that GPI anchor-dependent modulation of protein aggregation might occur with other amyloidogenic proteins. This may contribute to differences in pathogenesis and pathology between prion diseases, which uniquely involve aggregation of a GPI-anchored protein, versus other protein misfolding diseases.
Collapse
Affiliation(s)
- Karen E Marshall
- From the Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana 59840
| | | | | | | | | | | | | |
Collapse
|
40
|
Seelig DM, Nalls AV, Flasik M, Frank V, Eaton S, Mathiason CK, Hoover EA. Lesion profiling and subcellular prion localization of cervid chronic wasting disease in domestic cats. Vet Pathol 2014; 52:107-19. [PMID: 24577721 DOI: 10.1177/0300985814524798] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic wasting disease (CWD) is an efficiently transmitted, fatal, and progressive prion disease of cervids with an as yet to be fully clarified host range. While outbred domestic cats (Felis catus) have recently been shown to be susceptible to experimental CWD infection, the neuropathologic features of the infection are lacking. Such information is vital to provide diagnostic power in the event of natural interspecies transmission and insights into host and strain interactions in interspecies prion infection. Using light microscopy and immunohistochemistry, we detail the topographic pattern of neural spongiosis (the "lesion profile") and the distribution of misfolded prion protein in the primary and secondary passage of feline CWD (Fel(CWD)). We also evaluated cellular and subcellular associations between misfolded prion protein (PrP(D)) and central nervous system neurons and glial cell populations. From these studies, we (1) describe the novel neuropathologic profile of Fel(CWD), which is distinct from either cervid CWD or feline spongiform encephalopathy (FSE), and (2) provide evidence of serial passage-associated interspecies prion adaptation. In addition, we demonstrate through confocal analysis the successful co-localization of PrP(D) with neurons, astrocytes, microglia, lysosomes, and synaptophysin, which, in part, implicates each of these in the neuropathology of Fel(CWD). In conclusion, this work illustrates the simultaneous role of both host and strain in the development of a unique Fel(CWD) neuropathologic profile and that such a profile can be used to discriminate between Fel(CWD) and FSE.
Collapse
Affiliation(s)
- D M Seelig
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - A V Nalls
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - M Flasik
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - V Frank
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - S Eaton
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - C K Mathiason
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - E A Hoover
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
41
|
Prion protein misfolding, strains, and neurotoxicity: an update from studies on Mammalian prions. Int J Cell Biol 2013; 2013:910314. [PMID: 24454379 PMCID: PMC3884631 DOI: 10.1155/2013/910314] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 11/10/2013] [Accepted: 11/11/2013] [Indexed: 11/17/2022] Open
Abstract
Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of fatal neurodegenerative disorders affecting humans and other mammalian species. The central event in TSE pathogenesis is the conformational conversion of the cellular prion protein, PrPC, into the aggregate, β-sheet rich, amyloidogenic form, PrPSc. Increasing evidence indicates that distinct PrPSc conformers, forming distinct ordered aggregates, can encipher the phenotypic TSE variants related to prion strains. Prion strains are TSE isolates that, after inoculation into syngenic hosts, cause disease with distinct characteristics, such as incubation period, pattern of PrPSc distribution, and regional severity of histopathological changes in the brain. In analogy with other amyloid forming proteins, PrPSc toxicity is thought to derive from the existence of various intermediate structures prior to the amyloid fiber formation and/or their specific interaction with membranes. The latter appears particularly relevant for the pathogenesis of TSEs associated with GPI-anchored PrPSc, which involves major cellular membrane distortions in neurons. In this review, we update the current knowledge on the molecular mechanisms underlying three fundamental aspects of the basic biology of prions such as the putative mechanism of prion protein conversion to the pathogenic form PrPSc and its propagation, the molecular basis of prion strains, and the mechanism of induced neurotoxicity by PrPSc aggregates.
Collapse
|
42
|
Godsave SF, Wille H, Pierson J, Prusiner SB, Peters PJ. Plasma membrane invaginations containing clusters of full-length PrPSc are an early form of prion-associated neuropathology in vivo. Neurobiol Aging 2013; 34:1621-31. [PMID: 23481568 DOI: 10.1016/j.neurobiolaging.2012.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022]
Abstract
During prion disease, cellular prion protein (PrP(C)) is refolded into a pathogenic isoform (PrP(Sc)) that accumulates in the central nervous system and causes neurodegeneration and death. We used immunofluorescence, quantitative cryo-immunogold EM, and tomography to detect nascent, full-length PrP(Sc) in the hippocampus of prion-infected mice from early preclinical disease stages onward. Comparison of uninfected and infected brains showed that sites containing full-length PrP(Sc) could be recognized in the neuropil by bright spots and streaks of immunofluorescence on semi-thin (200-nm) sections, and by clusters of cryo-immunogold EM labeling. PrP(Sc) was found mainly on neuronal plasma membranes, most strikingly on membrane invaginations and sites of cell-to-cell contact, and was evident by 65 days postinoculation, or 54% of the incubation period to terminal disease. Both axons and dendrites in the neuropil were affected. We hypothesize that closely apposed plasma membranes provide a favorable environment for prion conversion and intercellular prion transfer. Only a small proportion of clustered PrP immunogold labeling was found at synapses, indicating that synapses are not targeted specifically in prion disease.
Collapse
Affiliation(s)
- Susan F Godsave
- Department of Cell Biology II, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | | | | | | |
Collapse
|
43
|
Sarasa R, Becher D, Badiola JJ, Monzón M. A comparative study of modified confirmatory techniques and additional immuno-based methods for non-conclusive autolytic bovine spongiform encephalopathy cases. BMC Vet Res 2013; 9:212. [PMID: 24138967 PMCID: PMC4015824 DOI: 10.1186/1746-6148-9-212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 10/09/2013] [Indexed: 11/27/2022] Open
Abstract
Background In the framework of the Bovine Spongiform Encephalopathy (BSE) surveillance programme, samples with non-conclusive results using the OIE confirmatory techniques have been repeatedly found. It is therefore necessary to question the adequacy of the previously established consequences of this non-conclusive result: the danger of failing to detect potentially infected cattle or erroneous information that may affect the decision of culling or not of an entire bovine cohort. Moreover, there is a very real risk that the underreporting of cases may possibly lead to distortion of the BSE epidemiological information for a given country. In this study, samples from bovine nervous tissue presenting non-conclusive results by conventional OIE techniques (Western blot and immunohistochemistry) were analyzed. Their common characteristic was a very advanced degree of autolysis. All techniques recommended by the OIE for BSE diagnosis were applied on all these samples in order to provide a comparative study. Specifically, immunohistochemistry, Western blotting, SAF detection by electron microscopy and mouse bioassay were compared. Besides, other non confirmatory techniques, confocal scanning microscopy and colloidal gold labelling of fibrils, were applied on these samples for confirming and improving the results. Results Immunocytochemistry showed immunostaining in agreement with the positive results finally provided by the other confirmatory techniques. These results corroborated the suitability of this technique which was previously developed to examine autolysed (liquified) brain samples. Transmission after inoculation of a transgenic murine model TgbovXV was successful in all inocula but not in all mice, perhaps due to the very scarce PrPsc concentration present in samples. Electron microscopy, currently fallen into disuse, was demonstrated to be, not only capable to provide a final diagnosis despite the autolytic state of samples, but also to be a sensitive diagnostic alternative for resolving cases with low concentrations of PrPsc. Conclusions Demonstration of transmission of the disease even with low concentrations of PrPsc should reinforce that vigilance is required in interpreting results so that subtle changes do not go unnoticed. To maintain a continued supervision of the techniques which are applied in the routine diagnosis would prove essential for the ultimate eradication of the disease.
Collapse
Affiliation(s)
| | | | | | - Marta Monzón
- Research Centre for Encephalopathies and Transmissible Emerging Diseases, University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
44
|
Laferrière F, Tixador P, Moudjou M, Chapuis J, Sibille P, Herzog L, Reine F, Jaumain E, Laude H, Rezaei H, Béringue V. Quaternary structure of pathological prion protein as a determining factor of strain-specific prion replication dynamics. PLoS Pathog 2013; 9:e1003702. [PMID: 24130496 PMCID: PMC3795044 DOI: 10.1371/journal.ppat.1003702] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 08/27/2013] [Indexed: 11/18/2022] Open
Abstract
Prions are proteinaceous infectious agents responsible for fatal neurodegenerative diseases in animals and humans. They are essentially composed of PrP(Sc), an aggregated, misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrP(C)). Stable variations in PrP(Sc) conformation are assumed to encode the phenotypically tangible prion strains diversity. However the direct contribution of PrP(Sc) quaternary structure to the strain biological information remains mostly unknown. Applying a sedimentation velocity fractionation technique to a panel of ovine prion strains, classified as fast and slow according to their incubation time in ovine PrP transgenic mice, has previously led to the observation that the relationship between prion infectivity and PrP(Sc) quaternary structure was not univocal. For the fast strains specifically, infectivity sedimented slowly and segregated from the bulk of proteinase-K resistant PrP(Sc). To carefully separate the respective contributions of size and density to this hydrodynamic behavior, we performed sedimentation at the equilibrium and varied the solubilization conditions. The density profile of prion infectivity and proteinase-K resistant PrP(Sc) tended to overlap whatever the strain, fast or slow, leaving only size as the main responsible factor for the specific velocity properties of the fast strain most infectious component. We further show that this velocity-isolable population of discrete assemblies perfectly resists limited proteolysis and that its templating activity, as assessed by protein misfolding cyclic amplification outcompetes by several orders of magnitude that of the bulk of larger size PrP(Sc) aggregates. Together, the tight correlation between small size, conversion efficiency and duration of disease establishes PrP(Sc) quaternary structure as a determining factor of prion replication dynamics. For certain strains, a subset of PrP assemblies appears to be the best template for prion replication. This has important implications for fundamental studies on prions.
Collapse
Affiliation(s)
- Florent Laferrière
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Philippe Tixador
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Mohammed Moudjou
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Jérôme Chapuis
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Pierre Sibille
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Laetitia Herzog
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Fabienne Reine
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Emilie Jaumain
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Hubert Laude
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Human Rezaei
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Vincent Béringue
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
45
|
Llorens F, Ansoleaga B, Garcia-Esparcia P, Zafar S, Grau-Rivera O, López-González I, Blanco R, Carmona M, Yagüe J, Nos C, Del Río JA, Gelpí E, Zerr I, Ferrer I. PrP mRNA and protein expression in brain and PrP(c) in CSF in Creutzfeldt-Jakob disease MM1 and VV2. Prion 2013; 7:383-93. [PMID: 24047819 DOI: 10.4161/pri.26416] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Creutzfeldt-Jakob disease (CJD) is a heterogenic neurodegenerative disorder associated with abnormal post-translational processing of cellular prion protein (PrP(c)). CJD displays distinctive clinical and pathological features which correlate with the genotype at the codon 129 (methionine or valine: M or V respectively) in the prion protein gene and with size of the protease-resistant core of the abnormal prion protein PrP(sc) (type 1: 20/21 kDa and type 2: 19 kDa). MM1 and VV2 are the most common sporadic CJD (sCJD) subtypes. PrP mRNA expression levels in the frontal cortex and cerebellum are reduced in sCJD in a form subtype-dependent. Total PrP protein levels and PrP(sc) levels in the frontal cortex and cerebellum accumulate differentially in sCJD MM1 and sCJD VV2 with no relation between PrP(sc) deposition and spongiform degeneration and neuron loss, but with microgliosis, and IL6 and TNF-α response. In the CSF, reduced PrP(c), the only form present in this compartment, occurs in sCJD MM1 and VV2. PrP mRNA expression is also reduced in the frontal cortex in advanced stages of Alzheimer disease, Lewy body disease, progressive supranuclear palsy, and frontotemporal lobe degeneration, but PrP(c) levels in brain varies from one disease to another. Reduced PrP(c) levels in CSF correlate with PrP mRNA expression in brain, which in turn reflects severity of degeneration in sCJD.
Collapse
Affiliation(s)
- Franc Llorens
- Institute of Neuropathology; IDIBELL-University Hospital Bellvitge; University of Barcelona; Hospitalet de Llobregat; Barcelona, Spain; CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases); Institute Carlos III; Ministry of Health; Madrid, Spain; Department of Neurology; Clinical Dementia Center and DZNE; University Medical School; Georg-August University; Göttingen, Germany
| | - Belén Ansoleaga
- Institute of Neuropathology; IDIBELL-University Hospital Bellvitge; University of Barcelona; Hospitalet de Llobregat; Barcelona, Spain; CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases); Institute Carlos III; Ministry of Health; Madrid, Spain
| | - Paula Garcia-Esparcia
- Institute of Neuropathology; IDIBELL-University Hospital Bellvitge; University of Barcelona; Hospitalet de Llobregat; Barcelona, Spain; CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases); Institute Carlos III; Ministry of Health; Madrid, Spain
| | - Saima Zafar
- Department of Neurology; Clinical Dementia Center and DZNE; University Medical School; Georg-August University; Göttingen, Germany
| | - Oriol Grau-Rivera
- CJD-Unit and Alzheimer disease and Other Cognitive Disorders Unit; Department of Neurology; Hospital Clínic; Barcelona, Spain
| | - Irene López-González
- Institute of Neuropathology; IDIBELL-University Hospital Bellvitge; University of Barcelona; Hospitalet de Llobregat; Barcelona, Spain; CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases); Institute Carlos III; Ministry of Health; Madrid, Spain
| | - Rosi Blanco
- Institute of Neuropathology; IDIBELL-University Hospital Bellvitge; University of Barcelona; Hospitalet de Llobregat; Barcelona, Spain; CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases); Institute Carlos III; Ministry of Health; Madrid, Spain
| | - Margarita Carmona
- Institute of Neuropathology; IDIBELL-University Hospital Bellvitge; University of Barcelona; Hospitalet de Llobregat; Barcelona, Spain; CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases); Institute Carlos III; Ministry of Health; Madrid, Spain
| | - Jordi Yagüe
- CJD-Unit and Alzheimer disease and Other Cognitive Disorders Unit; Department of Neurology; Hospital Clínic; Barcelona, Spain; Department of Immunology; Hospital Clinic; Barcelona, Spain
| | - Carlos Nos
- General Subdirectorate of Surveillance and Response to Emergencies in Public Health; Department of Public Health in Catalonia; Barcelona, Spain
| | - José Antonio Del Río
- CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases); Institute Carlos III; Ministry of Health; Madrid, Spain; Molecular and Cellular Neurobiotechnology; Catalonian Institute for Bioengineering (IBEC); Parc Científic de Barcelona; Barcelona, Spain; Department of Cell Biology; University of Barcelona; Barcelona, Spain
| | - Ellen Gelpí
- Neurological Tissue Bank of the Biobanc-Hospital; Clínic-Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS); Barcelona, Spain
| | - Inga Zerr
- Department of Neurology; Clinical Dementia Center and DZNE; University Medical School; Georg-August University; Göttingen, Germany
| | - Isidre Ferrer
- Institute of Neuropathology; IDIBELL-University Hospital Bellvitge; University of Barcelona; Hospitalet de Llobregat; Barcelona, Spain; CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases); Institute Carlos III; Ministry of Health; Madrid, Spain
| |
Collapse
|
46
|
Carare RO, Hawkes CA, Jeffrey M, Kalaria RN, Weller RO. Review: Cerebral amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy. Neuropathol Appl Neurobiol 2013; 39:593-611. [DOI: 10.1111/nan.12042] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/07/2013] [Indexed: 01/03/2023]
Affiliation(s)
- R. O. Carare
- Clinical Neurosciences and Experimental Sciences; Faculty of Medicine; University of Southampton; Southampton; UK
| | - C. A. Hawkes
- Clinical Neurosciences and Experimental Sciences; Faculty of Medicine; University of Southampton; Southampton; UK
| | - M. Jeffrey
- Animal Health and Veterinary Laboratories Agency (AHVLA); Bush Loan Penicuik; Edinburgh; UK
| | - R. N. Kalaria
- Centre for Brain Ageing & Vitality; Institute for Ageing and Health; Newcastle University; Newcastle Upon Tyne; UK
| | - R. O. Weller
- Clinical Neurosciences and Experimental Sciences; Faculty of Medicine; University of Southampton; Southampton; UK
| |
Collapse
|
47
|
Profoundly different prion diseases in knock-in mice carrying single PrP codon substitutions associated with human diseases. Proc Natl Acad Sci U S A 2013; 110:14759-64. [PMID: 23959875 DOI: 10.1073/pnas.1312006110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In man, mutations in different regions of the prion protein (PrP) are associated with infectious neurodegenerative diseases that have remarkably different clinical signs and neuropathological lesions. To explore the roots of this phenomenon, we created a knock-in mouse model carrying the mutation associated with one of these diseases [Creutzfeldt-Jakob disease (CJD)] that was exactly analogous to a previous knock-in model of a different prion disease [fatal familial insomnia (FFI)]. Together with the WT parent, this created an allelic series of three lines, each expressing the same protein with a single amino acid difference, and with all native regulatory elements intact. The previously described FFI mice develop neuronal loss and intense reactive gliosis in the thalamus, as seen in humans with FFI. In contrast, CJD mice had the hallmark features of CJD, spongiosis and proteinase K-resistant PrP aggregates, initially developing in the hippocampus and cerebellum but absent from the thalamus. A molecular transmission barrier protected the mice from any infectious prion agents that might have been present in our mouse facility and allowed us to conclude that the diseases occurred spontaneously. Importantly, both models created agents that caused a transmissible neurodegenerative disease in WT mice. We conclude that single codon differences in a single gene in an otherwise normal genome can cause remarkably different neurodegenerative diseases and are sufficient to create distinct protein-based infectious elements.
Collapse
|
48
|
Using protein misfolding cyclic amplification generates a highly neurotoxic PrP dimer causing neurodegeneration. J Mol Neurosci 2013; 51:655-62. [PMID: 23771785 DOI: 10.1007/s12031-013-0039-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 05/27/2013] [Indexed: 10/26/2022]
Abstract
Under the "protein-only" hypothesis, prion-based diseases are proposed to result from an infectious agent that is an abnormal isoform of the prion protein in the scrapie form, PrP(Sc). However, since PrP(Sc) is highly insoluble and easily aggregates in vivo, this view appears to be overly simplistic, implying that the presence of PrP(Sc) may indirectly cause neurodegeneration through its intermediate soluble form. We generated a neurotoxic PrP dimer with partial pathogenic characteristics of PrP(Sc) by protein misfolding cyclic amplification in the presence of 1-palmitoyl-2-oleoylphosphatidylglycerol consisting of recombinant hamster PrP (23-231). After intracerebral injection of the PrP dimer, wild-type hamsters developed signs of neurodegeneration. Clinical symptoms, necropsy findings, and histopathological changes were very similar to those of transmissible spongiform encephalopathies. Additional investigation showed that the toxicity is primarily related to cellular apoptosis. All results suggested that we generated a new neurotoxic form of PrP, PrP dimer, which can cause neurodegeneration. Thus, our study introduces a useful model for investigating PrP-linked neurodegenerative mechanisms.
Collapse
|
49
|
Rangel A, Race B, Striebel J, Chesebro B. Non-amyloid and amyloid prion protein deposits in prion-infected mice differ in blockage of interstitial brain fluid. Neuropathol Appl Neurobiol 2013; 39:217-30. [PMID: 22998478 PMCID: PMC3567241 DOI: 10.1111/j.1365-2990.2012.01303.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 09/18/2012] [Indexed: 01/10/2023]
Abstract
AIMS Prion diseases are characterized by brain deposits of misfolded aggregated protease-resistant prion protein (PrP), termed PrPres. In humans and animals, PrPres is found as either disorganized non-amyloid aggregates or organized amyloid fibrils. Both PrPres forms are found in extracellular spaces of the brain. Thus, both might block drainage of brain interstitial fluid (ISF). The present experiments studied whether ISF blockage occurred during amyloid and/or non-amyloid prion diseases. METHODS Various-sized fluorescein-labelled ISF tracers were stereotactically inoculated into the striatum of adult mice. At times from 5 min to 77 h, uninfected and scrapie-infected mice were compared. C57BL/10 mice expressing wild-type anchored PrP, which develop non-amyloid PrPres similar to humans with sporadic Creutzfeldt-Jakob disease, were compared with Tg44+/+ mice (transgenic mice secreting anchorless PrP) expressing anchorless PrP, which develop amyloid PrPres similar to certain human familial prion diseases. RESULTS In C57BL/10 mice, extensive non-amyloid PrPres aggregate deposition was not associated with abnormal clearance kinetics of tracers. In contrast, scrapie-infected Tg44+/+ mice showed blockage of tracer clearance and colocalization of tracer with perivascular PrPres amyloid. CONCLUSIONS As tracer localization and clearance was normal in infected C57BL/10 mice, ISF blockage was not an important pathogenic mechanism in this model. Therefore, ISF blockage is unlikely to be a problem in non-amyloid human prion diseases such as sporadic Creutzfeldt-Jakob disease. In contrast, partial ISF blockage appeared to be a possible pathogenic mechanism in Tg44+/+ mice. Thus this mechanism might also influence human amyloid prion diseases where expression of anchorless or mutated PrP results in perivascular amyloid PrPres deposition and cerebral amyloid angiopathy.
Collapse
Affiliation(s)
- Alejandra Rangel
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National, Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| | - Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National, Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| | - James Striebel
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National, Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| | - Bruce Chesebro
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National, Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| |
Collapse
|
50
|
Jeffrey M. Review: Membrane-associated misfolded protein propagation in natural transmissible spongiform encephalopathies (TSEs), synthetic prion diseases and Alzheimer's disease. Neuropathol Appl Neurobiol 2013; 39:196-216. [DOI: 10.1111/nan.12004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/06/2012] [Indexed: 12/17/2022]
Affiliation(s)
- M. Jeffrey
- Lasswade Laboratory; Animal Health and Veterinary Laboratories Agency; Penicuik; UK
| |
Collapse
|