1
|
Castelli S, Desideri E, Laureti L, Felice F, De Cristofaro A, Scaricamazza S, Lazzarino G, Ciriolo MR, Ciccarone F. N-acetylaspartate promotes glycolytic-to-oxidative fiber-type switch and resistance to atrophic stimuli in myotubes. Cell Death Dis 2024; 15:686. [PMID: 39300071 DOI: 10.1038/s41419-024-07047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
N-acetylaspartate (NAA) is a neuronal metabolite that can be extruded in extracellular fluids and whose blood concentration increases in several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). Aspartoacylase (ASPA) is the enzyme responsible for NAA breakdown. It is abundantly expressed in skeletal muscle and most other human tissues, but the role of NAA catabolism in the periphery is largely neglected. Here we demonstrate that NAA treatment of differentiated C2C12 muscle cells increases lipid turnover, mitochondrial biogenesis and oxidative metabolism at the expense of glycolysis. These effects were ascribed to NAA catabolism, as CRISPR/Cas9 ASPA KO cells are insensitive to NAA administration. Moreover, the metabolic switch induced by NAA was associated with an augmented resistance to atrophic stimuli. Consistently with in vitro results, SOD1-G93A ALS mice show an increase in ASPA levels in those muscles undergoing the glycolytic to oxidative switch during the disease course. The impact of NAA on the metabolism and resistance capability of myotubes supports a role for this metabolite in the phenotypical adaptations of skeletal muscle in neuromuscular disorders.
Collapse
Affiliation(s)
| | - Enrico Desideri
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, Rome, Italy
| | - Leonardo Laureti
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Federica Felice
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Giacomo Lazzarino
- UniCamillus-Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Maria Rosa Ciriolo
- IRCCS San Raffaele Roma, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Fabio Ciccarone
- IRCCS San Raffaele Roma, Rome, Italy.
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
2
|
Karliner J, Liu Y, Merry DE. Mutant androgen receptor induces neurite loss and senescence independently of ARE binding in a neuronal model of SBMA. Proc Natl Acad Sci U S A 2024; 121:e2321408121. [PMID: 38976730 PMCID: PMC11260106 DOI: 10.1073/pnas.2321408121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/11/2024] [Indexed: 07/10/2024] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a slowly progressing neuromuscular disease caused by a polyglutamine (polyQ)-encoding CAG trinucleotide repeat expansion in the androgen receptor (AR) gene, leading to AR aggregation, lower motor neuron death, and muscle atrophy. AR is a ligand-activated transcription factor that regulates neuronal architecture and promotes axon regeneration; however, whether AR transcriptional functions contribute to disease pathogenesis is not fully understood. Using a differentiated PC12 cell model of SBMA, we identified dysfunction of polyQ-expanded AR in its regulation of neurite growth and maintenance. Specifically, we found that in the presence of androgens, polyQ-expanded AR inhibited neurite outgrowth, induced neurite retraction, and inhibited neurite regrowth. This dysfunction was independent of polyQ-expanded AR transcriptional activity at androgen response elements (ARE). We further showed that the formation of polyQ-expanded AR intranuclear inclusions promoted neurite retraction, which coincided with reduced expression of the neuronal differentiation marker β-III-Tubulin. Finally, we revealed that cell death is not the primary outcome for cells undergoing neurite retraction; rather, these cells become senescent. Our findings reveal that mechanisms independent of AR canonical transcriptional activity underly neurite defects in a cell model of SBMA and identify senescence as a pathway implicated in this pathology. These findings suggest that in the absence of a role for AR canonical transcriptional activity in the SBMA pathologies described here, the development of SBMA therapeutics that preserve this activity may be desirable. This approach may be broadly applicable to other polyglutamine diseases such as Huntington's disease and spinocerebellar ataxias.
Collapse
Affiliation(s)
- Jordyn Karliner
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| | - Yuhong Liu
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| | - Diane E. Merry
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| |
Collapse
|
3
|
DeBartolo D, Arnold FJ, Liu Y, Molotsky E, Tang HY, Merry DE. Differentially disrupted spinal cord and muscle energy metabolism in spinal and bulbar muscular atrophy. JCI Insight 2024; 9:e178048. [PMID: 38452174 PMCID: PMC11128210 DOI: 10.1172/jci.insight.178048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
Prior studies showed that polyglutamine-expanded androgen receptor (AR) is aberrantly acetylated and that deacetylation of the mutant AR by overexpression of nicotinamide adenine dinucleotide-dependent (NAD+-dependent) sirtuin 1 is protective in cell models of spinal and bulbar muscular atrophy (SBMA). Based on these observations and reduced NAD+ in muscles of SBMA mouse models, we tested the therapeutic potential of NAD+ restoration in vivo by treating postsymptomatic transgenic SBMA mice with the NAD+ precursor nicotinamide riboside (NR). NR supplementation failed to alter disease progression and had no effect on increasing NAD+ or ATP content in muscle, despite producing a modest increase of NAD+ in the spinal cords of SBMA mice. Metabolomic and proteomic profiles of SBMA quadriceps muscles indicated alterations in several important energy-related pathways that use NAD+, in addition to the NAD+ salvage pathway, which is critical for NAD+ regeneration for use in cellular energy production. We also observed decreased mRNA levels of nicotinamide riboside kinase 2 (Nmrk2), which encodes a key kinase responsible for NR phosphorylation, allowing its use by the NAD+ salvage pathway. Together, these data suggest a model in which NAD+ levels are significantly decreased in muscles of an SBMA mouse model and intransigent to NR supplementation because of decreased levels of Nmrk2.
Collapse
Affiliation(s)
- Danielle DeBartolo
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Frederick J. Arnold
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Yuhong Liu
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Elana Molotsky
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Shared Resource, Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Diane E. Merry
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Hirunagi T, Nakatsuji H, Sahashi K, Yamamoto M, Iida M, Tohnai G, Kondo N, Yamada S, Murakami A, Noda S, Adachi H, Sobue G, Katsuno M. Exercise attenuates polyglutamine-mediated neuromuscular degeneration in a mouse model of spinal and bulbar muscular atrophy. J Cachexia Sarcopenia Muscle 2024; 15:159-172. [PMID: 37937369 PMCID: PMC10834330 DOI: 10.1002/jcsm.13344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Spinal and bulbar muscular atrophy (SBMA) is a hereditary neuromuscular disorder caused by the expansion of trinucleotide cytosine-adenine-guanine (CAG) repeats, which encodes a polyglutamine (polyQ) tract in the androgen receptor (AR) gene. Recent evidence suggests that, in addition to motor neuron degeneration, defective skeletal muscles are also the primary contributors to the pathogenesis in SBMA. While benefits of physical exercise have been suggested in SBMA, underlying mechanism remains elusive. METHODS We investigated the effect of running exercise in a transgenic mouse model of SBMA carrying human AR with 97 expanded CAGs (AR97Q). We assigned AR97Q mice to exercise and sedentary control groups, and mice in the exercise group received 1-h forced running wheel (5 m/min) 5 days a week for 4 weeks during the early stage of the disease. Motor function (grip strength and rotarod performance) and survival of each group were analysed, and histopathological and biological features in skeletal muscles and motor neurons were evaluated. RESULTS AR97Q mice in the exercise group showed improvement in motor function (~40% and ~50% increase in grip strength and rotarod performance, respectively, P < 0.05) and survival (median survival 23.6 vs. 16.7 weeks, P < 0.05) with amelioration of neuronal and muscular histopathology (~1.4-fold and ~2.8-fold increase in motor neuron and muscle fibre size, respectively, P < 0.001) compared to those in the sedentary group. Nuclear accumulation of polyQ-expanded AR in skeletal muscles and motor neurons was suppressed in the mice with exercise compared to the sedentary mice (~50% and ~30% reduction in 1C2-positive cells in skeletal muscles and motor neurons, respectively, P < 0.05). We found that the exercise activated 5'-adenosine monophosphate-activated protein kinase (AMPK) signalling and inhibited mammalian target of rapamycin pathway that regulates protein synthesis in skeletal muscles of SBMA mice. Pharmacological activation of AMPK inhibited protein synthesis and reduced polyQ-expanded AR proteins in C2C12 muscle cells. CONCLUSIONS Our findings suggest the therapeutic potential of exercise-induced effect via AMPK activation in SBMA.
Collapse
Affiliation(s)
- Tomoki Hirunagi
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Hideaki Nakatsuji
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Kentaro Sahashi
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Mikiyasu Yamamoto
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Madoka Iida
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Genki Tohnai
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
- Aichi Medical UniversityNagakuteJapan
| | - Naohide Kondo
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Shinichiro Yamada
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Ayuka Murakami
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Seiya Noda
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
- Department of NeurologyNational Hospital Organization Suzuka HospitalSuzukaJapan
| | - Hiroaki Adachi
- Department of NeurologyUniversity of Occupational and Environmental Health School of MedicineKitakyushuJapan
| | - Gen Sobue
- Aichi Medical UniversityNagakuteJapan
| | - Masahisa Katsuno
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
- Department of Clinical Research EducationNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
5
|
Lashgari NA, Roudsari NM, Shayan M, Eshraghi S, Momtaz S, Jamialahmadi T, Abdolghaffari AH, Sahebkar A. Spinal Muscular Atrophy Treatment: The MTOR Regulatory Intervention. Curr Med Chem 2024; 31:1512-1522. [PMID: 36788689 DOI: 10.2174/0929867330666230213114909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/29/2022] [Accepted: 12/29/2022] [Indexed: 02/16/2023]
Abstract
Spinal muscular atrophy (SMA) is a hereditary disorder affecting neurons and muscles, resulting in muscle weakness and atrophy. Most SMA cases are diagnosed during infancy or early childhood, the most common inherited cause of infant mortality without treatment. Still, SMA might appear at older ages with milder symptoms. SMA patients demonstrate progressive muscle waste, movement problems, tremors, dysphagia, bone and joint deformations, and breathing difficulties. The mammalian target of rapamycin (mTOR), the mechanistic target of rapamycin, is a member of the phosphatidylinositol 3-kinase-related kinase family of protein kinases encoded by the mTOR gene in humans. The mTOR phosphorylation, deregulation, and autophagy have shown dissimilarity amongst SMA cell types. Therefore, exploring the underlying molecular process in SMA therapy could provide novel insights and pave the way for finding new treatment options. This paper provides new insight into the possible modulatory effect of mTOR/ autophagy in SMA management.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Shayan
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadaf Eshraghi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Kargl CK, Jia Z, Shera DA, Sullivan BP, Burton LC, Kim KH, Nie Y, Hubal MJ, Shannahan JH, Kuang S, Gavin TP. Angiogenic potential of skeletal muscle derived extracellular vesicles differs between oxidative and glycolytic muscle tissue in mice. Sci Rep 2023; 13:18943. [PMID: 37919323 PMCID: PMC10622454 DOI: 10.1038/s41598-023-45787-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023] Open
Abstract
Skeletal muscle fibers regulate surrounding endothelial cells (EC) via secretion of numerous angiogenic factors, including extracellular vesicles (SkM-EV). Muscle fibers are broadly classified as oxidative (OXI) or glycolytic (GLY) depending on their metabolic characteristics. OXI fibers secrete more pro-angiogenic factors and have greater capillary densities than GLY fibers. OXI muscle secretes more EV than GLY, however it is unknown whether muscle metabolic characteristics regulate EV contents and signaling potential. EVs were isolated from primarily oxidative or glycolytic muscle tissue from mice. MicroRNA (miR) contents were determined and endothelial cells were treated with OXI- and GLY-EV to investigate angiogenic signaling potential. There were considerable differences in miR contents between OXI- and GLY-EV and pathway analysis identified that OXI-EV miR were predicted to positively regulate multiple endothelial-specific pathways, compared to GLY-EV. OXI-EV improved in vitro angiogenesis, which may have been mediated through nitric oxide synthase (NOS) related pathways, as treatment of endothelial cells with a non-selective NOS inhibitor abolished the angiogenic benefits of OXI-EV. This is the first report to show widespread differences in miR contents between SkM-EV isolated from metabolically different muscle tissue and the first to demonstrate that oxidative muscle tissue secretes EV with greater angiogenic signaling potential than glycolytic muscle tissue.
Collapse
Affiliation(s)
- Christopher K Kargl
- Department of Health and Kinesiology, Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, IN, USA
| | - Zhihao Jia
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Deborah A Shera
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Brian P Sullivan
- Department of Health and Kinesiology, Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, IN, USA
| | - Lundon C Burton
- Department of Health and Kinesiology, Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, IN, USA
| | - Kun Ho Kim
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Yaohui Nie
- Department of Health and Kinesiology, Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, IN, USA
| | - Monica J Hubal
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | | | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Timothy P Gavin
- Department of Health and Kinesiology, Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
7
|
Garcia Castro DR, Mazuk JR, Heine EM, Simpson D, Pinches RS, Lozzi C, Hoffman K, Morrin P, Mathis D, Lebedev MV, Nissley E, Han KH, Farmer T, Merry DE, Tong Q, Pennuto M, Montie HL. Increased SIRT3 combined with PARP inhibition rescues motor function of SBMA mice. iScience 2023; 26:107375. [PMID: 37599829 PMCID: PMC10433013 DOI: 10.1016/j.isci.2023.107375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/28/2023] [Accepted: 07/08/2023] [Indexed: 08/22/2023] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease with substantial mitochondrial and metabolic dysfunctions. SBMA is caused by polyglutamine (polyQ) expansion in the androgen receptor (AR). Activating or increasing the NAD+-dependent deacetylase, SIRT3, reduced oxidative stress and death of cells modeling SBMA. However, increasing diminished SIRT3 in AR100Q mice failed to reduce acetylation of the SIRT3 target/antioxidant, SOD2, and had no effect on increased total acetylated peptides in quadriceps. Yet, overexpressing SIRT3 resulted in a trend of motor recovery, and corrected TCA cycle activity by decreasing acetylation of SIRT3 target proteins. We sought to boost blunted SIRT3 activity by replenishing diminished NAD+ with PARP inhibition. Although NAD+ was not affected, overexpressing SIRT3 with PARP inhibition fully restored hexokinase activity, correcting the glycolytic pathway in AR100Q quadriceps, and rescued motor endurance of SBMA mice. These data demonstrate that targeting metabolic anomalies can restore motor function downstream of polyQ-expanded AR.
Collapse
Affiliation(s)
- David R. Garcia Castro
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Joseph R. Mazuk
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Erin M. Heine
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Daniel Simpson
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - R. Seth Pinches
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Caroline Lozzi
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Kathryn Hoffman
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Phillip Morrin
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Dylan Mathis
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Maria V. Lebedev
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Elyse Nissley
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Kang Hoo Han
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Tyler Farmer
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Diane E. Merry
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Qiang Tong
- USDA/ARS Children’s Nutrition Research Center, Departments of Pediatrics, Medicine, Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maria Pennuto
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35131 Padova, Italy
| | - Heather L. Montie
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| |
Collapse
|
8
|
Marchioretti C, Andreotti R, Zuccaro E, Lieberman AP, Basso M, Pennuto M. Spinal and bulbar muscular atrophy: From molecular pathogenesis to pharmacological intervention targeting skeletal muscle. Curr Opin Pharmacol 2023; 71:102394. [PMID: 37463556 DOI: 10.1016/j.coph.2023.102394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023]
Abstract
The clinical characteristics of SBMA, also known as Kennedy's disease (OMIM 313200), were initially documented by Dr. H Kawahara in the 18th century and a hundred years later by Dr. W. Kennedy. SBMA is a neuromuscular disease caused by expansions of a CAG microsatellite tandem repeat in exon 1 of the androgen receptor (AR) gene located on the X chromosome. These expansions result in the production of AR with an aberrantly expanded polyglutamine (polyQ) tract. In this review, we explore recent advancements in the significance of gene expression changes in skeletal muscle and discuss how pharmacological interventions targeting this aspect of disease pathogenesis can potentially be translated into therapies for SBMA patients.
Collapse
Affiliation(s)
- Caterina Marchioretti
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Roberta Andreotti
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Emanuela Zuccaro
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| | - Maria Pennuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine (VIMM), Padova, Italy.
| |
Collapse
|
9
|
Galbiati M, Meroni M, Boido M, Cescon M, Rusmini P, Crippa V, Cristofani R, Piccolella M, Ferrari V, Tedesco B, Casarotto E, Chierichetti M, Cozzi M, Mina F, Cicardi ME, Pedretti S, Mitro N, Caretto A, Risè P, Sala A, Lieberman AP, Bonaldo P, Pennuto M, Vercelli A, Poletti A. Bicalutamide and Trehalose Ameliorate Spinal and Bulbar Muscular Atrophy Pathology in Mice. Neurotherapeutics 2023; 20:524-545. [PMID: 36717478 PMCID: PMC10121997 DOI: 10.1007/s13311-023-01343-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2023] [Indexed: 02/01/2023] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is characterized by motor neuron (MN) degeneration that leads to slowly progressive muscle weakness. It is considered a neuromuscular disease since muscle has a primary role in disease onset and progression. SBMA is caused by a CAG triplet repeat expansion in the androgen receptor (AR) gene. The translated poly-glutamine (polyQ) tract confers a toxic gain of function to the mutant AR altering its folding, causing its aggregation into intracellular inclusions, and impairing the autophagic flux. In an in vitro SBMA neuronal model, we previously showed that the antiandrogen bicalutamide and trehalose, a natural disaccharide stimulating autophagy, block ARpolyQ activation, reduce its nuclear translocation and toxicity and facilitate the autophagic degradation of cytoplasmic AR aggregates. Here, in a knock-in SBMA mouse model (KI AR113Q), we show that bicalutamide and trehalose ameliorated SBMA pathology. Bicalutamide reversed the formation of the AR insoluble forms in KI AR113Q muscle, preventing autophagic flux blockage. We demonstrated that apoptosis is activated in KI AR113Q muscle, and that both compounds prevented its activation. We detected a decrease of mtDNA and an increase of OXPHOS enzymes, already at early symptomatic stages; these alterations were reverted by trehalose. Overall, bicalutamide and/or trehalose led to a partial recovery of muscle morphology and function, and improved SBMA mouse motor behavior, inducing an extension of their survival. Thus, bicalutamide and trehalose, by counteracting ARpolyQ toxicity in skeletal muscle, are valuable candidates for future clinical trials in SBMA patients.
Collapse
Affiliation(s)
- Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy.
| | - Marco Meroni
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Marina Boido
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Francesco Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Maria Elena Cicardi
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Weinberg ALS Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Silvia Pedretti
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Anna Caretto
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Patrizia Risè
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Angelo Sala
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Maria Pennuto
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Alessandro Vercelli
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
10
|
Marchioretti C, Zanetti G, Pirazzini M, Gherardi G, Nogara L, Andreotti R, Martini P, Marcucci L, Canato M, Nath SR, Zuccaro E, Chivet M, Mammucari C, Pacifici M, Raffaello A, Rizzuto R, Mattarei A, Desbats MA, Salviati L, Megighian A, Sorarù G, Pegoraro E, Belluzzi E, Pozzuoli A, Biz C, Ruggieri P, Romualdi C, Lieberman AP, Babu GJ, Sandri M, Blaauw B, Basso M, Pennuto M. Defective excitation-contraction coupling and mitochondrial respiration precede mitochondrial Ca 2+ accumulation in spinobulbar muscular atrophy skeletal muscle. Nat Commun 2023; 14:602. [PMID: 36746942 PMCID: PMC9902403 DOI: 10.1038/s41467-023-36185-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Polyglutamine expansion in the androgen receptor (AR) causes spinobulbar muscular atrophy (SBMA). Skeletal muscle is a primary site of toxicity; however, the current understanding of the early pathological processes that occur and how they unfold during disease progression remains limited. Using transgenic and knock-in mice and patient-derived muscle biopsies, we show that SBMA mice in the presymptomatic stage develop a respiratory defect matching defective expression of genes involved in excitation-contraction coupling (ECC), altered contraction dynamics, and increased fatigue. These processes are followed by stimulus-dependent accumulation of calcium into mitochondria and structural disorganization of the muscle triads. Deregulation of expression of ECC genes is concomitant with sexual maturity and androgen raise in the serum. Consistent with the androgen-dependent nature of these alterations, surgical castration and AR silencing alleviate the early and late pathological processes. These observations show that ECC deregulation and defective mitochondrial respiration are early but reversible events followed by altered muscle force, calcium dyshomeostasis, and dismantling of triad structure.
Collapse
Affiliation(s)
- Caterina Marchioretti
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, 35100, Italy
- Padova Neuroscience Center (PNC), Padova, 35100, Italy
- Dulbecco Telethon Institute (DTI) at the Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Giulia Zanetti
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
| | - Marco Pirazzini
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- CIR-Myo, Centro Interdipartimentale di Ricerca di Miologia, University of Padova, 35131, Padova, Italy
| | - Gaia Gherardi
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
| | - Leonardo Nogara
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, 35100, Italy
| | - Roberta Andreotti
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, 35100, Italy
- Padova Neuroscience Center (PNC), Padova, 35100, Italy
| | - Paolo Martini
- Department of Molecular and Translational Medicine, University of Brescia, 25121, Brescia, Italy
| | - Lorenzo Marcucci
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
| | - Marta Canato
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
| | - Samir R Nath
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Emanuela Zuccaro
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, 35100, Italy
- Padova Neuroscience Center (PNC), Padova, 35100, Italy
| | - Mathilde Chivet
- Dulbecco Telethon Institute (DTI) at the Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Cristina Mammucari
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- CIR-Myo, Centro Interdipartimentale di Ricerca di Miologia, University of Padova, 35131, Padova, Italy
| | - Marco Pacifici
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
| | - Anna Raffaello
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- CIR-Myo, Centro Interdipartimentale di Ricerca di Miologia, University of Padova, 35131, Padova, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131, Padova, Italy
| | - Maria A Desbats
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, and Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Leonardo Salviati
- CIR-Myo, Centro Interdipartimentale di Ricerca di Miologia, University of Padova, 35131, Padova, Italy
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, and Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Aram Megighian
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- Padova Neuroscience Center (PNC), Padova, 35100, Italy
| | - Gianni Sorarù
- Padova Neuroscience Center (PNC), Padova, 35100, Italy
- Department of Neuroscience (DNS), University of Padova, 35128, Padova, Italy
| | - Elena Pegoraro
- Department of Neuroscience (DNS), University of Padova, 35128, Padova, Italy
| | - Elisa Belluzzi
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology, and Gastroenterology DiSCOG, University-Hospital of Padova, 35128, Padova, Italy
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128, Padova, Italy
| | - Assunta Pozzuoli
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology, and Gastroenterology DiSCOG, University-Hospital of Padova, 35128, Padova, Italy
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128, Padova, Italy
| | - Carlo Biz
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology, and Gastroenterology DiSCOG, University-Hospital of Padova, 35128, Padova, Italy
| | - Pietro Ruggieri
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology, and Gastroenterology DiSCOG, University-Hospital of Padova, 35128, Padova, Italy
| | - Chiara Romualdi
- Department of Biology, University of Padova, Padova, 35100, Italy
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gopal J Babu
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Marco Sandri
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, 35100, Italy
| | - Bert Blaauw
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, 35100, Italy
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Maria Pennuto
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy.
- Veneto Institute of Molecular Medicine (VIMM), Padova, 35100, Italy.
- Padova Neuroscience Center (PNC), Padova, 35100, Italy.
- Dulbecco Telethon Institute (DTI) at the Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
| |
Collapse
|
11
|
Prakasam R, Bonadiman A, Andreotti R, Zuccaro E, Dalfovo D, Marchioretti C, Tripathy D, Petris G, Anderson EN, Migazzi A, Tosatto L, Cereseto A, Battaglioli E, Sorarù G, Lim WF, Rinaldi C, Sambataro F, Pourshafie N, Grunseich C, Romanel A, Pandey UB, Contestabile A, Ronzitti G, Basso M, Pennuto M. LSD1/PRMT6-targeting gene therapy to attenuate androgen receptor toxic gain-of-function ameliorates spinobulbar muscular atrophy phenotypes in flies and mice. Nat Commun 2023; 14:603. [PMID: 36746939 PMCID: PMC9902531 DOI: 10.1038/s41467-023-36186-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Spinobulbar muscular atrophy (SBMA) is caused by CAG expansions in the androgen receptor gene. Androgen binding to polyQ-expanded androgen receptor triggers SBMA through a combination of toxic gain-of-function and loss-of-function mechanisms. Leveraging cell lines, mice, and patient-derived specimens, we show that androgen receptor co-regulators lysine-specific demethylase 1 (LSD1) and protein arginine methyltransferase 6 (PRMT6) are overexpressed in an androgen-dependent manner specifically in the skeletal muscle of SBMA patients and mice. LSD1 and PRMT6 cooperatively and synergistically transactivate androgen receptor, and their effect is enhanced by expanded polyQ. Pharmacological and genetic silencing of LSD1 and PRMT6 attenuates polyQ-expanded androgen receptor transactivation in SBMA cells and suppresses toxicity in SBMA flies, and a preclinical approach based on miRNA-mediated silencing of LSD1 and PRMT6 attenuates disease manifestations in SBMA mice. These observations suggest that targeting overexpressed co-regulators can attenuate androgen receptor toxic gain-of-function without exacerbating loss-of-function, highlighting a potential therapeutic strategy for patients with SBMA.
Collapse
Affiliation(s)
- Ramachandran Prakasam
- Dulbecco Telethon Institute at the Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Angela Bonadiman
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Roberta Andreotti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
- Padova Neuroscience Center, Padova, Italy
| | - Emanuela Zuccaro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
- Padova Neuroscience Center, Padova, Italy
| | - Davide Dalfovo
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Caterina Marchioretti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
- Padova Neuroscience Center, Padova, Italy
| | - Debasmita Tripathy
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Gianluca Petris
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Saffron Walden, UK
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Alice Migazzi
- Dulbecco Telethon Institute at the Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Laura Tosatto
- Dulbecco Telethon Institute at the Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Anna Cereseto
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Elena Battaglioli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Gianni Sorarù
- Padova Neuroscience Center, Padova, Italy
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Wooi Fang Lim
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Carlo Rinaldi
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Fabio Sambataro
- Padova Neuroscience Center, Padova, Italy
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Naemeh Pourshafie
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Grunseich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alessandro Romanel
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Giuseppe Ronzitti
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
- Genethon, 91000, Evry, France
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
| | - Maria Pennuto
- Dulbecco Telethon Institute at the Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Veneto Institute of Molecular Medicine, Padova, Italy.
- Padova Neuroscience Center, Padova, Italy.
| |
Collapse
|
12
|
Sestrin2 contributes to BRAF inhibitor resistance via reducing redox vulnerability of melanoma cells. J Dermatol Sci 2022; 109:52-60. [PMID: 36858850 DOI: 10.1016/j.jdermsci.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Treatment resistance often occurs with BRAF inhibitor (BRAFi) therapy for melanoma, bringing in a great challenge to the treatment of melanoma patients harboring mutant BRAF gene. Recent studies revealed redox vulnerability constitutes a novel opportunity to overcome BRAFi resistance. Previously we found Sestrin2 provided protection to metastatic melanoma cells by detoxifying reactive oxygen species (ROS) induced by anoikis, but its defensive role against redox stimuli elicited by BRAFi was unclear. OBJECTIVE In-depth explored the role of Sestrin2 in BRAFi-resistant melanoma. METHODS Vemurafenib-resistant melanoma cells were established using 451Lu and UACC62 cell lines carrying BRAFV600E mutation. Mechanistic studies were subsequently performed by transfection of lentiviral vectors encoding an shRNA against SESN2 or embedded with the coding sequences of SESN2 cDNA. RESULTS Elevated Sestrin2 expression was found in vemurafenib-resistance melanoma cells. Further mechanistic studies revealed that BRAFi-resistant melanoma cells employ Sestrin2 to adapt to higher oxidative stress under vemurafenib exposure. It was also demonstrated that mTOR signaling was significantly activated following Sestrin2 knockdown. Given the known promoting role of active mTOR signaling in melanoma proliferation and survival, the effects of mTOR blocker and Sestrin2 ablation on BRAFi-resistant melanoma cells were further tested, and the combination was found to result in enhanced inhibition of melanoma cell growth. CONCLUSIONS Our findings demonstrated the contribution of Sestrin2 to the development of BRAFi resistance and the fact that the combination of mTOR blocker assisted Sestrein2 ablation in eliminating BRAFi resistance of melanoma. Therefore, mTOR and Sestrin2 may be novel combinatorial therapeutic targets to overcome BRAFi resistance of melanoma.
Collapse
|
13
|
Sengupta M, Pluciennik A, Merry DE. The role of ubiquitination in spinal and bulbar muscular atrophy. Front Mol Neurosci 2022; 15:1020143. [PMID: 36277484 PMCID: PMC9583669 DOI: 10.3389/fnmol.2022.1020143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative and neuromuscular genetic disease caused by the expansion of a polyglutamine-encoding CAG tract in the androgen receptor (AR) gene. The AR is an important transcriptional regulator of the nuclear hormone receptor superfamily; its levels are regulated in many ways including by ubiquitin-dependent degradation. Ubiquitination is a post-translational modification (PTM) which plays a key role in both AR transcriptional activity and its degradation. Moreover, the ubiquitin-proteasome system (UPS) is a fundamental component of cellular functioning and has been implicated in diseases of protein misfolding and aggregation, including polyglutamine (polyQ) repeat expansion diseases such as Huntington's disease and SBMA. In this review, we discuss the details of the UPS system, its functions and regulation, and the role of AR ubiquitination and UPS components in SBMA. We also discuss aspects of the UPS that may be manipulated for therapeutic effect in SBMA.
Collapse
Affiliation(s)
| | | | - Diane E. Merry
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
14
|
McCluskey G, Donaghy C, Morrison KE, McConville J, Duddy W, Duguez S. The Role of Sphingomyelin and Ceramide in Motor Neuron Diseases. J Pers Med 2022; 12:jpm12091418. [PMID: 36143200 PMCID: PMC9501626 DOI: 10.3390/jpm12091418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS), Spinal Bulbar Muscular Atrophy (SBMA), and Spinal Muscular Atrophy (SMA) are motor neuron diseases (MNDs) characterised by progressive motor neuron degeneration, weakness and muscular atrophy. Lipid dysregulation is well recognised in each of these conditions and occurs prior to neurodegeneration. Several lipid markers have been shown to predict prognosis in ALS. Sphingolipids are complex lipids enriched in the central nervous system and are integral to key cellular functions including membrane stability and signalling pathways, as well as being mediators of neuroinflammation and neurodegeneration. This review highlights the metabolism of sphingomyelin (SM), the most abundant sphingolipid, and of its metabolite ceramide, and its role in the pathophysiology of neurodegeneration, focusing on MNDs. We also review published lipidomic studies in MNDs. In the 13 studies of patients with ALS, 12 demonstrated upregulation of multiple SM species and 6 demonstrated upregulation of ceramides. SM species also correlated with markers of clinical progression in five of six studies. These data highlight the potential use of SM and ceramide as biomarkers in ALS. Finally, we review potential therapeutic strategies for targeting sphingolipid metabolism in neurodegeneration.
Collapse
Affiliation(s)
- Gavin McCluskey
- Personalised Medicine Center, School of Medicine, Ulster University, Derry BT47 6SB, UK
- Department of Neurology, Altnagelvin Hospital, Derry, BT47 6SB, UK
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
| | - Colette Donaghy
- Department of Neurology, Altnagelvin Hospital, Derry, BT47 6SB, UK
| | - Karen E. Morrison
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Faculty of Medicine, Health & Life Sciences, Queen’s University, Belfast BT9 6AG, UK
| | - John McConville
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Department of Neurology, Ulster Hospital, Dundonald, Belfast BT16 1RH, UK
| | - William Duddy
- Personalised Medicine Center, School of Medicine, Ulster University, Derry BT47 6SB, UK
| | - Stephanie Duguez
- Personalised Medicine Center, School of Medicine, Ulster University, Derry BT47 6SB, UK
- Correspondence:
| |
Collapse
|
15
|
Divvela SSK, Offei EB, Suerland F, Revuelta García D, Kwiatkowski J, Balakrishnan-Renuka A, Bohne P, Böing M, Morosan-Puopolo G, Mark MD, Brand-Saberi B. Atonal homolog 8/Math6 regulates differentiation and maintenance of skeletal muscle. Front Cell Dev Biol 2022; 10:950414. [PMID: 36060799 PMCID: PMC9438786 DOI: 10.3389/fcell.2022.950414] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/06/2022] [Indexed: 12/16/2022] Open
Abstract
Atonal Homolog 8 (Atoh8) belongs to a large superfamily of transcriptional regulators called basic helix-loop-helix (bHLH) transcription factors. Atoh8 (murine homolog “Math6”) has been shown to be involved in organogenesis during murine embryonic development. We have previously identified the expression of Atoh8 during skeletal myogenesis in chicken where we described its involvement in hypaxial myotome formation suggesting a regulatory role of Atoh8 in skeletal muscle development. Within the current study, we analyzed the effect of the loss of function of Atoh8 in murine primary myoblasts and during differentiation of pluripotent stem cells into myotubes, and the effect of its gain of function in C2C12 cells. Based on the observed results, we conclude that Atoh8 regulates myoblast proliferation via modulating myostatin signaling. Further, our data revealed a reduced muscle mass, strength and fiber size with significant changes to the muscle fiber type suggesting atrophy in skeletal muscle of Atoh8 mutants. We further report that Atoh8 knockout mice suffer from a condition similar to ambient hypoxia which may be the primary cause of the phenotype. Altogether, this study shows the significance of Atoh8 not only in myogenesis but also in the maintenance of skeletal muscle.
Collapse
Affiliation(s)
| | - Eric Bekoe Offei
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
- University of Ghana, School of Veterinary Medicine, Legon, Ghana
| | - Florian Suerland
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - David Revuelta García
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Julia Kwiatkowski
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Ajeesh Balakrishnan-Renuka
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Pauline Bohne
- Department of Behavioral Neuroscience, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Marion Böing
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Gabriela Morosan-Puopolo
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Melanie D. Mark
- Department of Behavioral Neuroscience, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
- *Correspondence: Beate Brand-Saberi,
| |
Collapse
|
16
|
Molotsky E, Liu Y, Lieberman AP, Merry DE. Neuromuscular junction pathology is correlated with differential motor unit vulnerability in spinal and bulbar muscular atrophy. Acta Neuropathol Commun 2022; 10:97. [PMID: 35791011 PMCID: PMC9258097 DOI: 10.1186/s40478-022-01402-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is an X-linked, neuromuscular neurodegenerative disease for which there is no cure. The disease is characterized by a selective decrease in fast-muscle power (e.g., tongue pressure, grip strength) accompanied by a selective loss of fast-twitch muscle fibers. However, the relationship between neuromuscular junction (NMJ) pathology and fast-twitch motor unit vulnerability has yet to be explored. In this study, we used a cross-model comparison of two mouse models of SBMA to evaluate neuromuscular junction pathology, glycolytic-to-oxidative fiber-type switching, and cytoskeletal alterations in pre- and postsynaptic termini of tibialis anterior (TA), gastrocnemius, and soleus hindlimb muscles. We observed significantly increased NMJ and myofiber pathology in fast-twitch, glycolytic motor units of the TA and gastrocnemius compared to slow-twitch, oxidative motor units of the soleus, as seen by decreased pre- and post-synaptic membrane area, decreased pre- and post-synaptic membrane colocalization, increased acetylcholine receptor compactness, a decrease in endplate area and complexity, and deficits in neurofilament heavy chain. Our data also show evidence for metabolic dysregulation and myofiber atrophy that correlate with severity of NMJ pathology. We propose a model in which the dynamic communicative relationship between the motor neuron and muscle, along with the developmental subtype of the muscle, promotes motor unit subtype specific vulnerability, metabolic alterations, and NMJ pathology.
Collapse
Affiliation(s)
- Elana Molotsky
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Jefferson Alumni Hall, Rm. 411E, Philadelphia, PA, 19107, USA
| | - Yuhong Liu
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Jefferson Alumni Hall, Rm. 411E, Philadelphia, PA, 19107, USA
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Diane E Merry
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Jefferson Alumni Hall, Rm. 411E, Philadelphia, PA, 19107, USA.
| |
Collapse
|
17
|
Marchioretti C, Zuccaro E, Pandey UB, Rosati J, Basso M, Pennuto M. Skeletal Muscle Pathogenesis in Polyglutamine Diseases. Cells 2022; 11:2105. [PMID: 35805189 PMCID: PMC9265456 DOI: 10.3390/cells11132105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Polyglutamine diseases are characterized by selective dysfunction and degeneration of specific types of neurons in the central nervous system. In addition, nonneuronal cells can also be affected as a consequence of primary degeneration or due to neuronal dysfunction. Skeletal muscle is a primary site of toxicity of polyglutamine-expanded androgen receptor, but it is also affected in other polyglutamine diseases, more likely due to neuronal dysfunction and death. Nonetheless, pathological processes occurring in skeletal muscle atrophy impact the entire body metabolism, thus actively contributing to the inexorable progression towards the late and final stages of disease. Skeletal muscle atrophy is well recapitulated in animal models of polyglutamine disease. In this review, we discuss the impact and relevance of skeletal muscle in patients affected by polyglutamine diseases and we review evidence obtained in animal models and patient-derived cells modeling skeletal muscle.
Collapse
Affiliation(s)
- Caterina Marchioretti
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (E.Z.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Emanuela Zuccaro
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (E.Z.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Udai Bhan Pandey
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15100, USA;
| | - Jessica Rosati
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71100 Foggia, Italy;
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38100 Trento, Italy;
| | - Maria Pennuto
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (E.Z.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| |
Collapse
|
18
|
Forouhan M, Lim WF, Zanetti-Domingues LC, Tynan CJ, Roberts TC, Malik B, Manzano R, Speciale AA, Ellerington R, Garcia-Guerra A, Fratta P, Sorarú G, Greensmith L, Pennuto M, Wood MJA, Rinaldi C. AR cooperates with SMAD4 to maintain skeletal muscle homeostasis. Acta Neuropathol 2022; 143:713-731. [PMID: 35522298 PMCID: PMC9107400 DOI: 10.1007/s00401-022-02428-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/10/2022] [Accepted: 04/27/2022] [Indexed: 12/27/2022]
Abstract
Androgens and androgen-related molecules exert a plethora of functions across different tissues, mainly through binding to the transcription factor androgen receptor (AR). Despite widespread therapeutic use and misuse of androgens as potent anabolic agents, the molecular mechanisms of this effect on skeletal muscle are currently unknown. Muscle mass in adulthood is mainly regulated by the bone morphogenetic protein (BMP) axis of the transforming growth factor (TGF)-β pathway via recruitment of mothers against decapentaplegic homolog 4 (SMAD4) protein. Here we show that, upon activation, AR forms a transcriptional complex with SMAD4 to orchestrate a muscle hypertrophy programme by modulating SMAD4 chromatin binding dynamics and enhancing its transactivation activity. We challenged this mechanism of action using spinal and bulbar muscular atrophy (SBMA) as a model of study. This adult-onset neuromuscular disease is caused by a polyglutamine expansion (polyQ) in AR and is characterized by progressive muscle weakness and atrophy secondary to a combination of lower motor neuron degeneration and primary muscle atrophy. Here we found that the presence of an elongated polyQ tract impairs AR cooperativity with SMAD4, leading to an inability to mount an effective anti-atrophy gene expression programme in skeletal muscle in response to denervation. Furthermore, adeno-associated virus, serotype 9 (AAV9)-mediated muscle-restricted delivery of BMP7 is able to rescue the muscle atrophy in SBMA mice, supporting the development of treatments able to fine-tune AR-SMAD4 transcriptional cooperativity as a promising target for SBMA and other conditions associated with muscle loss.
Collapse
Affiliation(s)
- Mitra Forouhan
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Wooi Fang Lim
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Laura C Zanetti-Domingues
- Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| | - Christopher J Tynan
- Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| | - Thomas C Roberts
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Bilal Malik
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Raquel Manzano
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Alfina A Speciale
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Ruth Ellerington
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Antonio Garcia-Guerra
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Pietro Fratta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Gianni Sorarú
- Department of Neurosciences, Neurology Unit, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Linda Greensmith
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Maria Pennuto
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Matthew J A Wood
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Carlo Rinaldi
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
19
|
Sujkowski A, Hong L, Wessells RJ, Todi SV. The protective role of exercise against age-related neurodegeneration. Ageing Res Rev 2022; 74:101543. [PMID: 34923167 PMCID: PMC8761166 DOI: 10.1016/j.arr.2021.101543] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/01/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
Endurance exercise is a widely accessible, low-cost intervention with a variety of benefits to multiple organ systems. Exercise improves multiple indices of physical performance and stimulates pronounced health benefits reducing a range of pathologies including metabolic, cardiovascular, and neurodegenerative disorders. Endurance exercise delays brain aging, preserves memory and cognition, and improves symptoms of neurodegenerative pathologies like Amyotrophic Lateral Sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, and various ataxias. Potential mechanisms underlying the beneficial effects of exercise include neuronal survival and plasticity, neurogenesis, epigenetic modifications, angiogenesis, autophagy, and the synthesis and release of neurotrophins and cytokines. In this review, we discuss shared benefits and molecular pathways driving the protective effects of endurance exercise on various neurodegenerative diseases in animal models and in humans.
Collapse
Affiliation(s)
- Alyson Sujkowski
- Department of Physiology, Wayne State University School of Medicine, USA; Department of Pharmacology, Wayne State University School of Medicine, USA
| | - Luke Hong
- Department of Pharmacology, Wayne State University School of Medicine, USA; Department of Neurology, Wayne State University School of Medicine, USA
| | - R J Wessells
- Department of Physiology, Wayne State University School of Medicine, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, USA; Department of Neurology, Wayne State University School of Medicine, USA.
| |
Collapse
|
20
|
Traa A, Machiela E, Rudich PD, Soo SK, Senchuk MM, Van Raamsdonk JM. Identification of Novel Therapeutic Targets for Polyglutamine Diseases That Target Mitochondrial Fragmentation. Int J Mol Sci 2021; 22:ijms222413447. [PMID: 34948242 PMCID: PMC8703635 DOI: 10.3390/ijms222413447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022] Open
Abstract
Huntington’s disease (HD) is one of at least nine polyglutamine diseases caused by a trinucleotide CAG repeat expansion, all of which lead to age-onset neurodegeneration. Mitochondrial dynamics and function are disrupted in HD and other polyglutamine diseases. While multiple studies have found beneficial effects from decreasing mitochondrial fragmentation in HD models by disrupting the mitochondrial fission protein DRP1, disrupting DRP1 can also have detrimental consequences in wild-type animals and HD models. In this work, we examine the effect of decreasing mitochondrial fragmentation in a neuronal C. elegans model of polyglutamine toxicity called Neur-67Q. We find that Neur-67Q worms exhibit mitochondrial fragmentation in GABAergic neurons and decreased mitochondrial function. Disruption of drp-1 eliminates differences in mitochondrial morphology and rescues deficits in both movement and longevity in Neur-67Q worms. In testing twenty-four RNA interference (RNAi) clones that decrease mitochondrial fragmentation, we identified eleven clones—each targeting a different gene—that increase movement and extend lifespan in Neur-67Q worms. Overall, we show that decreasing mitochondrial fragmentation may be an effective approach to treating polyglutamine diseases and we identify multiple novel genetic targets that circumvent the potential negative side effects of disrupting the primary mitochondrial fission gene drp-1.
Collapse
Affiliation(s)
- Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada; (A.T.); (P.D.R.); (S.K.S.)
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Emily Machiela
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA; (E.M.); (M.M.S.)
| | - Paige D. Rudich
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada; (A.T.); (P.D.R.); (S.K.S.)
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Sonja K. Soo
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada; (A.T.); (P.D.R.); (S.K.S.)
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Megan M. Senchuk
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA; (E.M.); (M.M.S.)
| | - Jeremy M. Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada; (A.T.); (P.D.R.); (S.K.S.)
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA; (E.M.); (M.M.S.)
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
21
|
Rocchi A, Carminati E, De Fusco A, Kowalska JA, Floss T, Benfenati F. REST/NRSF deficiency impairs autophagy and leads to cellular senescence in neurons. Aging Cell 2021; 20:e13471. [PMID: 34520100 PMCID: PMC8520714 DOI: 10.1111/acel.13471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 07/14/2021] [Accepted: 08/05/2021] [Indexed: 01/27/2023] Open
Abstract
During aging, brain performances decline. Cellular senescence is one of the aging drivers and a key feature of a variety of human age‐related disorders. The transcriptional repressor RE1‐silencing transcription factor (REST) has been associated with aging and higher risk of neurodegenerative disorders. However, how REST contributes to the senescence program and functional impairment remains largely unknown. Here, we report that REST is essential to prevent the senescence phenotype in primary mouse neurons. REST deficiency causes failure of autophagy and loss of proteostasis, increased oxidative stress, and higher rate of cell death. Re‐establishment of autophagy reverses the main hallmarks of senescence. Our data indicate that REST has a protective role in physiological aging by regulating the autophagic flux and the senescence program in neurons, with implications for neurological disorders associated with aging.
Collapse
Affiliation(s)
- Anna Rocchi
- Center for Synaptic Neuroscience and Technology Istituto Italiano di Tecnologia Genova Italy
- IRCCS Ospedale Policlinico San Martino Genova Italy
| | - Emanuele Carminati
- Center for Synaptic Neuroscience and Technology Istituto Italiano di Tecnologia Genova Italy
- Department of Experimental Medicine University of Genova Genova Italy
| | - Antonio De Fusco
- Center for Synaptic Neuroscience and Technology Istituto Italiano di Tecnologia Genova Italy
- IRCCS Ospedale Policlinico San Martino Genova Italy
| | | | - Thomas Floss
- Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Neuherberg Germany
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology Istituto Italiano di Tecnologia Genova Italy
- IRCCS Ospedale Policlinico San Martino Genova Italy
| |
Collapse
|
22
|
Corso D, Chemello F, Alessio E, Urso I, Ferrarese G, Bazzega M, Romualdi C, Lanfranchi G, Sales G, Cagnin S. MyoData: An expression knowledgebase at single cell/nucleus level for the discovery of coding-noncoding RNA functional interactions in skeletal muscle. Comput Struct Biotechnol J 2021; 19:4142-4155. [PMID: 34527188 PMCID: PMC8342900 DOI: 10.1016/j.csbj.2021.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
Regulation of gene expression through non-coding RNAs at single myofiber and nucleus resolution. Reinterpretation of KEGG pathways with microRNA and long non-coding RNA activities. miR-149, -214, and let-7e alter mitochondrial shape. The long non-coding RNA Pvt1 is a sponge for miR-27a. miR-208b regulates Sox6; miR-214 regulates both Sox6 and Slc16a3.
Non-coding RNAs represent the largest part of transcribed mammalian genomes and prevalently exert regulatory functions. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) can modulate the activity of each other. Skeletal muscle is the most abundant tissue in mammals. It is composed of different cell types with myofibers that represent the smallest complete contractile system. Considering that lncRNAs and miRNAs are more cell type-specific than coding RNAs, to understand their function it is imperative to evaluate their expression and action within single myofibers. In this database, we collected gene expression data for coding and non-coding genes in single myofibers and used them to produce interaction networks based on expression correlations. Since biological pathways are more informative than networks based on gene expression correlation, to understand how altered genes participate in the studied phenotype, we integrated KEGG pathways with miRNAs and lncRNAs. The database also integrates single nucleus gene expression data on skeletal muscle in different patho-physiological conditions. We demonstrated that these networks can serve as a framework from which to dissect new miRNA and lncRNA functions to experimentally validate. Some interactions included in the database have been previously experimentally validated using high throughput methods. These can be the basis for further functional studies. Using database information, we demonstrate the involvement of miR-149, -214 and let-7e in mitochondria shaping; the ability of the lncRNA Pvt1 to mitigate the action of miR-27a via sponging; and the regulatory activity of miR-214 on Sox6 and Slc16a3. The MyoData is available at https://myodata.bio.unipd.it.
Collapse
Affiliation(s)
- Davide Corso
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Francesco Chemello
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Enrico Alessio
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Ilenia Urso
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Giulia Ferrarese
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Martina Bazzega
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Chiara Romualdi
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Gerolamo Lanfranchi
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.,CRIBI Biotechnology Centre, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.,CIR-Myo Myology Center, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Gabriele Sales
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.,CRIBI Biotechnology Centre, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.,CIR-Myo Myology Center, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| |
Collapse
|
23
|
Lim WF, Forouhan M, Roberts TC, Dabney J, Ellerington R, Speciale AA, Manzano R, Lieto M, Sangha G, Banerjee S, Conceição M, Cravo L, Biscans A, Roux L, Pourshafie N, Grunseich C, Duguez S, Khvorova A, Pennuto M, Cortes CJ, La Spada AR, Fischbeck KH, Wood MJA, Rinaldi C. Gene therapy with AR isoform 2 rescues spinal and bulbar muscular atrophy phenotype by modulating AR transcriptional activity. SCIENCE ADVANCES 2021; 7:7/34/eabi6896. [PMID: 34417184 PMCID: PMC8378820 DOI: 10.1126/sciadv.abi6896] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Spinal and bulbar muscular atrophy (SBMA) is an X-linked, adult-onset neuromuscular condition caused by an abnormal polyglutamine (polyQ) tract expansion in androgen receptor (AR) protein. SBMA is a disease with high unmet clinical need. Recent studies have shown that mutant AR-altered transcriptional activity is key to disease pathogenesis. Restoring the transcriptional dysregulation without affecting other AR critical functions holds great promise for the treatment of SBMA and other AR-related conditions; however, how this targeted approach can be achieved and translated into a clinical application remains to be understood. Here, we characterized the role of AR isoform 2, a naturally occurring variant encoding a truncated AR lacking the polyQ-harboring domain, as a regulatory switch of AR genomic functions in androgen-responsive tissues. Delivery of this isoform using a recombinant adeno-associated virus vector type 9 resulted in amelioration of the disease phenotype in SBMA mice by restoring polyQ AR-dysregulated transcriptional activity.
Collapse
Affiliation(s)
- Wooi F Lim
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Mitra Forouhan
- Department of Paediatrics, University of Oxford, Oxford, UK
| | | | - Jesse Dabney
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | - Raquel Manzano
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Maria Lieto
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Gavinda Sangha
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Subhashis Banerjee
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Lara Cravo
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Loïc Roux
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Naemeh Pourshafie
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Christopher Grunseich
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Stephanie Duguez
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Londonderry, UK
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Maria Pennuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Constanza J Cortes
- Department of Neurology, Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC, USA
| | - Albert R La Spada
- Departments of Pathology and Laboratory Medicine, Neurology, and Biological Chemistry and the UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Matthew J A Wood
- Department of Paediatrics, University of Oxford, Oxford, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Carlo Rinaldi
- Department of Paediatrics, University of Oxford, Oxford, UK.
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Metabolic Dysfunction in Spinal Muscular Atrophy. Int J Mol Sci 2021; 22:ijms22115913. [PMID: 34072857 PMCID: PMC8198411 DOI: 10.3390/ijms22115913] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/11/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive genetic disorder leading to paralysis, muscle atrophy, and death. Significant advances in antisense oligonucleotide treatment and gene therapy have made it possible for SMA patients to benefit from improvements in many aspects of the once devastating natural history of the disease. How the depletion of survival motor neuron (SMN) protein, the product of the gene implicated in the disease, leads to the consequent pathogenic changes remains unresolved. Over the past few years, evidence toward a potential contribution of gastrointestinal, metabolic, and endocrine defects to disease phenotype has surfaced. These findings ranged from disrupted body composition, gastrointestinal tract, fatty acid, glucose, amino acid, and hormonal regulation. Together, these changes could have a meaningful clinical impact on disease traits. However, it is currently unclear whether these findings are secondary to widespread denervation or unique to the SMA phenotype. This review provides an in-depth account of metabolism-related research available to date, with a discussion of unique features compared to other motor neuron and related disorders.
Collapse
|
25
|
Manzano R, Toivonen JM, Moreno-Martínez L, de la Torre M, Moreno-García L, López-Royo T, Molina N, Zaragoza P, Calvo AC, Osta R. What skeletal muscle has to say in amyotrophic lateral sclerosis: Implications for therapy. Br J Pharmacol 2020; 178:1279-1297. [PMID: 32986860 DOI: 10.1111/bph.15276] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/03/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult onset disorder characterized by progressive neuromuscular junction (NMJ) dismantling and degeneration of motor neurons leading to atrophy and paralysis of voluntary muscles responsible for motion and breathing. Except for a minority of patients harbouring genetic mutations, the origin of most ALS cases remains elusive. Peripheral tissues, and particularly skeletal muscle, have lately demonstrated an active contribution to disease pathology attracting a growing interest for these tissues as therapeutic targets in ALS. In this sense, molecular mechanisms essential for cell and tissue homeostasis have been shown to be deregulated in the disease. These include muscle metabolism and mitochondrial activity, RNA processing, tissue-resident stem cell function responsible for muscle regeneration, and proteostasis that regulates muscle mass in adulthood. This review aims to compile scientific evidence that demonstrates the role of skeletal muscle in ALS pathology and serves as reference for development of novel therapeutic strategies targeting this tissue to delay disease onset and progression. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Collapse
Affiliation(s)
- Raquel Manzano
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Janne Markus Toivonen
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Laura Moreno-Martínez
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Miriam de la Torre
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Leticia Moreno-García
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Tresa López-Royo
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Nora Molina
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain.,Geriatrics Service, Hospital Nuestra Señora de Gracia, Zaragoza, Spain
| | - Pilar Zaragoza
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Ana Cristina Calvo
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Rosario Osta
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| |
Collapse
|
26
|
Hashizume A, Fischbeck KH, Pennuto M, Fratta P, Katsuno M. Disease mechanism, biomarker and therapeutics for spinal and bulbar muscular atrophy (SBMA). J Neurol Neurosurg Psychiatry 2020; 91:1085-1091. [PMID: 32934110 DOI: 10.1136/jnnp-2020-322949] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/10/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a hereditary neuromuscular disorder caused by CAG trinucleotide expansion in the gene encoding the androgen receptor (AR). In the central nervous system, lower motor neurons are selectively affected, whereas pathology of patients and animal models also indicates involvement of skeletal muscle including loss of fast-twitch type 2 fibres and increased slow-twitch type 1 fibres, together with a glycolytic-to-oxidative metabolic switch. Evaluation of muscle and fat using MRI, in addition to biochemical indices such as serum creatinine level, are promising biomarkers to track the disease progression. The serum level of creatinine starts to decrease before the onset of muscle weakness, followed by the emergence of hand tremor, a prodromal sign of the disease. Androgen-dependent nuclear accumulation of the polyglutamine-expanded AR is an essential step in the pathogenesis, providing therapeutic opportunities via hormonal manipulation and gene silencing with antisense oligonucleotides. Animal studies also suggest that hyperactivation of Src, alteration of autophagy and a mitochondrial deficit underlie the neuromuscular degeneration in SBMA and provide alternative therapeutic targets.
Collapse
MESH Headings
- 5-alpha Reductase Inhibitors/therapeutic use
- Adipose Tissue/diagnostic imaging
- Adrenergic beta-Agonists/therapeutic use
- Autophagy
- Biomarkers
- Bulbo-Spinal Atrophy, X-Linked/diagnostic imaging
- Bulbo-Spinal Atrophy, X-Linked/metabolism
- Bulbo-Spinal Atrophy, X-Linked/physiopathology
- Bulbo-Spinal Atrophy, X-Linked/therapy
- Clenbuterol/therapeutic use
- Creatinine/metabolism
- Dutasteride/therapeutic use
- Glycolysis
- Humans
- Insulin-Like Growth Factor I/analogs & derivatives
- Leuprolide/therapeutic use
- Magnetic Resonance Imaging
- Mitochondria/metabolism
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/pathology
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/pathology
- Muscle, Skeletal/diagnostic imaging
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Oligonucleotides, Antisense/therapeutic use
- Oxidation-Reduction
- RNAi Therapeutics
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Trinucleotide Repeat Expansion
Collapse
Affiliation(s)
- Atsushi Hashizume
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria Pennuto
- Department of Biomedical Sciences (DBS), University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Pietro Fratta
- Depatment of Neuromuscular Diseases, University College London Institute of Neurology, London, UK
- MRC Centre for Neuromuscular Diseases, University College London Institute of Neurology, London, UK
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
27
|
De Paola E, Forcina L, Pelosi L, Pisu S, La Rosa P, Cesari E, Nicoletti C, Madaro L, Mercatelli N, Biamonte F, Nobili A, D'Amelio M, De Bardi M, Volpe E, Caporossi D, Sette C, Musarò A, Paronetto MP. Sam68 splicing regulation contributes to motor unit establishment in the postnatal skeletal muscle. Life Sci Alliance 2020; 3:3/10/e201900637. [PMID: 32753528 PMCID: PMC7409371 DOI: 10.26508/lsa.201900637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 01/08/2023] Open
Abstract
Sam68 ensures the establishment of neuromuscular junctions (NMJs) and motor unit integrity by orchestrating a neuronal splicing program. RNA-binding proteins orchestrate the composite life of RNA molecules and impact most physiological processes, thus underlying complex phenotypes. The RNA-binding protein Sam68 regulates differentiation processes by modulating splicing, polyadenylation, and stability of select transcripts. Herein, we found that Sam68−/− mice display altered regulation of alternative splicing in the spinal cord of key target genes involved in synaptic functions. Analysis of the motor units revealed that Sam68 ablation impairs the establishment of neuromuscular junctions and causes progressive loss of motor neurons in the spinal cord. Importantly, alterations of neuromuscular junction morphology and properties in Sam68−/− mice correlate with defects in muscle and motor unit integrity. Sam68−/− muscles display defects in postnatal development, with manifest signs of atrophy. Furthermore, fast-twitch muscles in Sam68−/− mice show structural features typical of slow-twitch muscles, suggesting alterations in the metabolic and functional properties of myofibers. Collectively, our data identify a key role for Sam68 in muscle development and suggest that proper establishment of motor units requires timely expression of synaptic splice variants.
Collapse
Affiliation(s)
- Elisa De Paola
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Rome, Italy.,IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy
| | - Laura Forcina
- Laboratory Affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Laura Pelosi
- Laboratory Affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Simona Pisu
- Laboratory Affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Piergiorgio La Rosa
- IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy
| | - Eleonora Cesari
- IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy.,Institute of Human Anatomy and Cell Biology, Catholic University of the Sacred Heart, Rome, Italy
| | - Carmine Nicoletti
- Laboratory Affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Luca Madaro
- Institute of Human Anatomy and Cell Biology, Catholic University of the Sacred Heart, Rome, Italy
| | - Neri Mercatelli
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Rome, Italy.,IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy
| | - Filippo Biamonte
- Institute of Biochemistry and Clinical Biochemistry, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Annalisa Nobili
- IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy.,Department of Medicine, University Campus-Biomedico, Rome, Italy
| | - Marcello D'Amelio
- IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy.,Department of Medicine, University Campus-Biomedico, Rome, Italy
| | - Marco De Bardi
- IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy
| | - Elisabetta Volpe
- IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Rome, Italy
| | - Claudio Sette
- IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy .,Institute of Human Anatomy and Cell Biology, Catholic University of the Sacred Heart, Rome, Italy
| | - Antonio Musarò
- Laboratory Affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Rome, Italy .,IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
28
|
Guo H, Lu M, Ma Y, Liu X. Myoglobin: a new biomarker for spinal and bulbar muscular atrophy? Int J Neurosci 2020; 131:1209-1214. [PMID: 32729750 DOI: 10.1080/00207454.2020.1796660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES There is a primary muscular affection in spinal and bulbar muscular atrophy (SBMA). Myoglobin (Myo) is mainly distributed in the myocardium and skeletal muscle. The purpose of the study was to explore the significance of serum Myo detection in the diagnosis and clinical evaluation of SBMA. MATERIALS AND METHODS In this study, serum creatine kinase (CK), Myo, and Troponin T (cTNT) levels were assessed in 80 patients with SBMA and were compared with those of 60 patients with amyotrophic lateral sclerosis (ALS). All measurement data were analyzed using the t-test and enumeration data using the χ2-test. RESULTS The rate of abnormal Myo levels in the SBMA group was 100%, however, none of the patients with ALS had an abnormal Myo level. There was no overlap between the two groups. The Myo levels in patients with SBMA were correlated with the course of the disease. Further, their CK level was significantly elevated compared with that in patients with ALS, however, there was an overlap between the two groups. The serum cTNT level in patients with SBMA was not significantly different from that in patients with ALS. CONCLUSION Myo, as a simple, inexpensive, and readily available biochemical indicator, is likely to be used for the differentiation between SBMA and ALS, and used as a new biomarker for the clinical evaluation of SBMA.
Collapse
Affiliation(s)
- Haixiao Guo
- Department of Neurology, Civil Aviation General Hospital, Beijing, China
| | - Ming Lu
- Department of Neurology, Beijing United Family Hospital and Clinics, Beijing, China
| | - Yan Ma
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Xiaolu Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
29
|
Pourshafie N, Masati E, Bunker E, Nickolls AR, Thepmankorn P, Johnson K, Feng X, Ekins T, Grunseich C, Fischbeck KH. Linking epigenetic dysregulation, mitochondrial impairment, and metabolic dysfunction in SBMA motor neurons. JCI Insight 2020; 5:136539. [PMID: 32641584 PMCID: PMC7406250 DOI: 10.1172/jci.insight.136539] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/21/2020] [Indexed: 12/19/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disorder caused by a polyglutamine expansion in the androgen receptor (AR). Using gene expression analysis and ChIP sequencing, we mapped transcriptional changes in genetically engineered patient stem cell-derived motor neurons. We found that transcriptional dysregulation in SBMA can occur through AR-mediated histone modification. We detected reduced histone acetylation, along with decreased expression of genes encoding compensatory metabolic proteins and reduced substrate availability for mitochondrial function. Furthermore, we found that pyruvate supplementation corrected this deficiency and improved mitochondrial function and SBMA motor neuron viability. We propose that epigenetic dysregulation of metabolic genes contributes to reduced mitochondrial ATP production. Our results show a molecular link between altered epigenetic regulation and mitochondrial metabolism that contributes to neurodegeneration.
Collapse
Affiliation(s)
- Naemeh Pourshafie
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
- George Washington University, Institute of Biomedical Sciences, Washington, DC, USA
| | - Ester Masati
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Eric Bunker
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Alec R. Nickolls
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
- Brown University, Department of Neuroscience, Providence, Rhode Island, USA
- National Center for Complementary and Integrative Health, NIH, Bethesda, Maryland, USA
| | - Parisorn Thepmankorn
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Kory Johnson
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Xia Feng
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
- Johns Hopkins University, Department of Psychiatry and Behavioral Sciences, Baltimore, Maryland, USA
| | - Tyler Ekins
- Brown University, Department of Neuroscience, Providence, Rhode Island, USA
- Program in Developmental Neuroscience, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Christopher Grunseich
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Kenneth H. Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| |
Collapse
|
30
|
Nath SR, Lieberman ML, Yu Z, Marchioretti C, Jones ST, Danby ECE, Van Pelt KM, Sorarù G, Robins DM, Bates GP, Pennuto M, Lieberman AP. MEF2 impairment underlies skeletal muscle atrophy in polyglutamine disease. Acta Neuropathol 2020; 140:63-80. [PMID: 32306066 PMCID: PMC7166004 DOI: 10.1007/s00401-020-02156-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
Polyglutamine (polyQ) tract expansion leads to proteotoxic misfolding and drives a family of nine diseases. We study spinal and bulbar muscular atrophy (SBMA), a progressive degenerative disorder of the neuromuscular system caused by the polyQ androgen receptor (AR). Using a knock-in mouse model of SBMA, AR113Q mice, we show that E3 ubiquitin ligases which are a hallmark of the canonical muscle atrophy machinery are not induced in AR113Q muscle. Similarly, we find no evidence to suggest dysfunction of signaling pathways that trigger muscle hypertrophy or impairment of the muscle stem cell niche. Instead, we find that skeletal muscle atrophy is characterized by diminished function of the transcriptional regulator Myocyte Enhancer Factor 2 (MEF2), a regulator of myofiber homeostasis. Decreased expression of MEF2 target genes is age- and glutamine tract length-dependent, occurs due to polyQ AR proteotoxicity, and is associated with sequestration of MEF2 into intranuclear inclusions in muscle. Skeletal muscle from R6/2 mice, a model of Huntington disease which develops progressive atrophy, also sequesters MEF2 into inclusions and displays age-dependent loss of MEF2 target genes. Similarly, SBMA patient muscle shows loss of MEF2 target gene expression, and restoring MEF2 activity in AR113Q muscle rescues fiber size and MEF2-regulated gene expression. This work establishes MEF2 impairment as a novel mechanism of skeletal muscle atrophy downstream of toxic polyglutamine proteins and as a therapeutic target for muscle atrophy in these disorders.
Collapse
|
31
|
Halievski K, Xu Y, Haddad YW, Tang YP, Yamada S, Katsuno M, Adachi H, Sobue G, Breedlove SM, Jordan CL. Muscle BDNF improves synaptic and contractile muscle strength in Kennedy's disease mice in a muscle-type specific manner. J Physiol 2020; 598:2719-2739. [PMID: 32306402 DOI: 10.1113/jp279208] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Muscle-derived neurotrophic factors may offer therapeutic promise for treating neuromuscular diseases. We report that a muscle-derived neurotrophic factor, BDNF, rescues synaptic and muscle function in a muscle-type specific manner in mice modelling Kennedy's disease (KD). We also find that BDNF rescues select molecular mechanisms in slow and fast muscle that may underlie the improved cellular function. We also report for the first time that expression of BDNF, but not other members of the neurotrophin family, is perturbed in muscle from patients with KD. Given that muscle BDNF had divergent therapeutic effects that depended on muscle type, a combination of neurotrophic factors may optimally rescue neuromuscular function via effects on both pre- and postsynaptic function, in the face of disease. ABSTRACT Deficits in muscle brain-derived neurotrophic factor (BDNF) correlate with neuromuscular deficits in mouse models of Kennedy's disease (KD), suggesting that restoring muscle BDNF might restore function. To test this possibility, transgenic mice expressing human BDNF in skeletal muscle were crossed with '97Q' KD mice. We found that muscle BDNF slowed disease, doubling the time between symptom onset and endstage. BDNF also improved expression of genes in muscle known to play key roles in neuromuscular function, including counteracting the expression of neonatal isoforms induced by disease. Intriguingly, BDNF's ameliorative effects differed between muscle types: synaptic strength was rescued only in slow-twitch muscle, while contractile strength was improved only in fast-twitch muscle. In sum, muscle BDNF slows disease progression, rescuing select cellular and molecular mechanisms that depend on fibre type. Muscle BDNF expression was also affected in KD patients, reinforcing its translational and therapeutic potential for treating this disorder.
Collapse
Affiliation(s)
- Katherine Halievski
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI, 48824-1115, USA.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada
| | - Youfen Xu
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI, 48824-1115, USA
| | - Yazeed W Haddad
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI, 48824-1115, USA
| | - Yu Ping Tang
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI, 48824-1115, USA
| | - Shinichiro Yamada
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiroaki Adachi
- Department of Neurology, University of Occupational and Environment Health School of Medicine, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - S Marc Breedlove
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI, 48824-1115, USA
| | - Cynthia L Jordan
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI, 48824-1115, USA.,Physiology Department, Michigan State University, 108 Giltner Hall, East Lansing, MI, 48824-1115, USA
| |
Collapse
|
32
|
Gray AL, Annan L, Dick JRT, La Spada AR, Hanna MG, Greensmith L, Malik B. Deterioration of muscle force and contractile characteristics are early pathological events in spinal and bulbar muscular atrophy mice. Dis Model Mech 2020; 13:dmm042424. [PMID: 32152060 PMCID: PMC7272358 DOI: 10.1242/dmm.042424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA), also known as Kennedy's Disease, is a late-onset X-linked progressive neuromuscular disease, which predominantly affects males. The pathological hallmarks of the disease are selective loss of spinal and bulbar motor neurons, accompanied by weakness, atrophy and fasciculations of bulbar and limb muscles. SBMA is caused by a CAG repeat expansion in the gene that encodes the androgen receptor (AR) protein. Disease manifestation is androgen dependent and results principally from a toxic gain of AR function. There are currently no effective treatments for this debilitating disease. It is important to understand the course of the disease in order to target therapeutics to key pathological stages. This is especially relevant in disorders such as SBMA, for which disease can be identified before symptom onset, through family history and genetic testing. To fully characterise the role of muscle in SBMA, we undertook a longitudinal physiological and histological characterisation of disease progression in the AR100 mouse model of SBMA. Our results show that the disease first manifests in skeletal muscle, before any motor neuron degeneration, which only occurs in late-stage disease. These findings reveal that alterations in muscle function, including reduced muscle force and changes in contractile characteristics, are early pathological events in SBMA mice and suggest that muscle-targeted therapeutics may be effective in SBMA.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Anna L Gray
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Leonette Annan
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - James R T Dick
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Albert R La Spada
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Neuroscience, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- UCL MRC International Centre for Genomic Medicine in Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Linda Greensmith
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Bilal Malik
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
33
|
Autophagy in motor neuron diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:157-202. [PMID: 32620242 DOI: 10.1016/bs.pmbts.2020.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Motor neuron diseases (MNDs) are a wide group of neurodegenerative disorders characterized by the degeneration of a specific neuronal type located in the central nervous system, the motor neuron (MN). There are two main types of MNs, spinal and cortical MNs and depending on the type of MND, one or both types are affected. Cortical MNs innervate spinal MNs and these control a variety of cellular targets, being skeletal muscle their main one which is also affected in MNDs. A correct functionality of autophagy is necessary for the survival of all cellular types and it is particularly crucial for neurons, given their postmitotic and highly specialized nature. Numerous studies have identified alterations of autophagy activity in multiple MNDs. The scientific community has been particularly prolific in reporting the role that autophagy plays in the most common adult MND, amyotrophic lateral sclerosis, although many studies have started to identify physiological and pathological functions of this catabolic system in other MNDs, such as spinal muscular atrophy and spinal and bulbar muscular atrophy. The degradation of selective cargo by autophagy and how this process is altered upon the presence of MND-causing mutations is currently also a matter of intense investigation, particularly regarding the selective autophagic clearance of mitochondria. Thorough reviews on this field have been recently published. This chapter will cover the current knowledge on the functionality of autophagy and lysosomal homeostasis in the main MNDs and other autophagy-related topics in the MND field that have risen special interest in the research community.
Collapse
|
34
|
Pennuto M, Pandey UB, Polanco MJ. Insulin-like growth factor 1 signaling in motor neuron and polyglutamine diseases: From molecular pathogenesis to therapeutic perspectives. Front Neuroendocrinol 2020; 57:100821. [PMID: 32006533 DOI: 10.1016/j.yfrne.2020.100821] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 11/19/2022]
Abstract
The pleiotropic peptide insulin-like growth factor 1 (IGF-I) regulates human body homeostasis and cell growth. IGF-I activates two major signaling pathways, namely phosphoinositide-3-kinase (PI3K)/protein kinase B (PKB/Akt) and Ras/extracellular signal-regulated kinase (ERK), which contribute to brain development, metabolism and function as well as to neuronal maintenance and survival. In this review, we discuss the general and tissue-specific effects of the IGF-I pathways. In addition, we present a comprehensive overview examining the role of IGF-I in neurodegenerative diseases, such as spinal and muscular atrophy, amyotrophic lateral sclerosis, and polyglutamine diseases. In each disease, we analyze the disturbances of the IGF-I pathway, the modification of the disease protein by IGF-I signaling, and the therapeutic strategies based on the use of IGF-I developed to date. Lastly, we highlight present and future considerations in the use of IGF-I for the treatment of these disorders.
Collapse
Affiliation(s)
- Maria Pennuto
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; Veneto Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padova, Italy; Padova Neuroscience Center (PNC), 35131 Padova, Italy; Myology Center (CIR-Myo), 35131 Padova, Italy.
| | - Udai Bhan Pandey
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA; Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - María José Polanco
- Department of Pharmaceutic and Health Science, University San Pablo CEU, Campus Montepríncipe, 28925 Alcorcón, Madrid, Spain.
| |
Collapse
|
35
|
Ravi B, Antonellis A, Sumner CJ, Lieberman AP. Genetic approaches to the treatment of inherited neuromuscular diseases. Hum Mol Genet 2020; 28:R55-R64. [PMID: 31227836 DOI: 10.1093/hmg/ddz131] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 04/29/2019] [Accepted: 06/07/2019] [Indexed: 12/17/2022] Open
Abstract
Inherited neuromuscular diseases are a heterogeneous group of developmental and degenerative disorders that affect motor unit function. Major challenges toward developing therapies for these diseases include heterogeneity with respect to clinical severity, age of onset and the primary cell type that is affected (e.g. motor neurons, skeletal muscle and Schwann cells). Here, we review recent progress toward the establishment of genetic therapies to treat inherited neuromuscular disorders that affect both children and adults with a focus on spinal muscular atrophy, Charcot-Marie-Tooth disease and spinal and bulbar muscular atrophy. We discuss clinical features, causative mutations and emerging approaches that are undergoing testing in preclinical models and in patients or that have received recent approval for clinical use. Many of these efforts employ antisense oligonucleotides to alter pre-mRNA splicing or diminish target gene expression and use viral vectors to replace expression of mutant genes. Finally, we discuss remaining challenges for optimizing the delivery and effectiveness of these approaches. In sum, therapeutic strategies for neuromuscular diseases have shown encouraging results, raising hope that recent strides will translate into significant clinical benefits for patients with these disorders.
Collapse
Affiliation(s)
- Bhavya Ravi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
36
|
Baraldo M, Geremia A, Pirazzini M, Nogara L, Solagna F, Türk C, Nolte H, Romanello V, Megighian A, Boncompagni S, Kruger M, Sandri M, Blaauw B. Skeletal muscle mTORC1 regulates neuromuscular junction stability. J Cachexia Sarcopenia Muscle 2020; 11:208-225. [PMID: 31651100 PMCID: PMC7015238 DOI: 10.1002/jcsm.12496] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/12/2019] [Accepted: 08/25/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Skeletal muscle is a plastic tissue that can adapt to different stimuli. It is well established that Mammalian Target of Rapamycin Complex 1 (mTORC1) signalling is a key modulator in mediating increases in skeletal muscle mass and function. However, the role of mTORC1 signalling in adult skeletal muscle homeostasis is still not well defined. METHODS Inducible, muscle-specific Raptor and mTOR k.o. mice were generated. Muscles at 1 and 7 months after deletion were analysed to assess muscle histology and muscle force. RESULTS We found no change in muscle size or contractile properties 1 month after deletion. Prolonging deletion of Raptor to 7 months, however, leads to a very marked phenotype characterized by weakness, muscle regeneration, mitochondrial dysfunction, and autophagy impairment. Unexpectedly, reduced mTOR signalling in muscle fibres is accompanied by the appearance of markers of fibre denervation, like the increased expression of the neural cell adhesion molecule (NCAM). Both muscle-specific deletion of mTOR or Raptor, or the use of rapamycin, was sufficient to induce 3-8% of NCAM-positive fibres (P < 0.01), muscle fibrillation, and neuromuscular junction (NMJ) fragmentation in 24% of examined fibres (P < 0.001). Mechanistically, reactivation of autophagy with the small peptide Tat-beclin1 is sufficient to prevent mitochondrial dysfunction and the appearance of NCAM-positive fibres in Raptor k.o. muscles. CONCLUSIONS Our study shows that mTOR signalling in skeletal muscle fibres is critical for maintaining proper fibre innervation, preserving the NMJ structure in both the muscle fibre and the motor neuron. In addition, considering the beneficial effects of exercise in most pathologies affecting the NMJ, our findings suggest that part of these beneficial effects of exercise are through the well-established activation of mTORC1 in skeletal muscle during and after exercise.
Collapse
Affiliation(s)
- Martina Baraldo
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Alessia Geremia
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Leonardo Nogara
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Francesca Solagna
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Clara Türk
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Hendrik Nolte
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Vanina Romanello
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Aram Megighian
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Simona Boncompagni
- CeSI-Met-Center for Research on Ageing and Translational Medicine and DNICS, Department of Neuroscience, Imaging and Clinical Sciences, University G. d' Annunzio, Chieti, Italy
| | - Marcus Kruger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Marco Sandri
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
37
|
Chivet M, Marchioretti C, Pirazzini M, Piol D, Scaramuzzino C, Polanco MJ, Romanello V, Zuccaro E, Parodi S, D’Antonio M, Rinaldi C, Sambataro F, Pegoraro E, Soraru G, Pandey UB, Sandri M, Basso M, Pennuto M. Polyglutamine-Expanded Androgen Receptor Alteration of Skeletal Muscle Homeostasis and Myonuclear Aggregation Are Affected by Sex, Age and Muscle Metabolism. Cells 2020; 9:cells9020325. [PMID: 32019272 PMCID: PMC7072234 DOI: 10.3390/cells9020325] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/18/2022] Open
Abstract
Polyglutamine (polyQ) expansions in the androgen receptor (AR) gene cause spinal and bulbar muscular atrophy (SBMA), a neuromuscular disease characterized by lower motor neuron (MN) loss and skeletal muscle atrophy, with an unknown mechanism. We generated new mouse models of SBMA for constitutive and inducible expression of mutant AR and performed biochemical, histological and functional analyses of phenotype. We show that polyQ-expanded AR causes motor dysfunction, premature death, IIb-to-IIa/IIx fiber-type change, glycolytic-to-oxidative fiber-type switching, upregulation of atrogenes and autophagy genes and mitochondrial dysfunction in skeletal muscle, together with signs of muscle denervation at late stage of disease. PolyQ expansions in the AR resulted in nuclear enrichment. Within the nucleus, mutant AR formed 2% sodium dodecyl sulfate (SDS)-resistant aggregates and inclusion bodies in myofibers, but not spinal cord and brainstem, in a process exacerbated by age and sex. Finally, we found that two-week induction of expression of polyQ-expanded AR in adult mice was sufficient to cause premature death, body weight loss and muscle atrophy, but not aggregation, metabolic alterations, motor coordination and fiber-type switch, indicating that expression of the disease protein in the adulthood is sufficient to recapitulate several, but not all SBMA manifestations in mice. These results imply that chronic expression of polyQ-expanded AR, i.e. during development and prepuberty, is key to induce the full SBMA muscle pathology observed in patients. Our data support a model whereby chronic expression of polyQ-expanded AR triggers muscle atrophy through toxic (neomorphic) gain of function mechanisms distinct from normal (hypermorphic) gain of function mechanisms.
Collapse
Affiliation(s)
- Mathilde Chivet
- Dulbecco Telethon Institute, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy; (M.C.); (D.P.); (M.J.P.)
| | - Caterina Marchioretti
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (M.P.); (V.R.); (E.Z.); (M.S.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Marco Pirazzini
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (M.P.); (V.R.); (E.Z.); (M.S.)
- Myology Center (Cir-Myo), University of Padova, 35129 Padova, Italy; (E.P.); (G.S.)
| | - Diana Piol
- Dulbecco Telethon Institute, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy; (M.C.); (D.P.); (M.J.P.)
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (M.P.); (V.R.); (E.Z.); (M.S.)
| | - Chiara Scaramuzzino
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy; (C.S.); (S.P.)
| | - Maria Josè Polanco
- Dulbecco Telethon Institute, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy; (M.C.); (D.P.); (M.J.P.)
| | - Vanina Romanello
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (M.P.); (V.R.); (E.Z.); (M.S.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
- Myology Center (Cir-Myo), University of Padova, 35129 Padova, Italy; (E.P.); (G.S.)
| | - Emanuela Zuccaro
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (M.P.); (V.R.); (E.Z.); (M.S.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Sara Parodi
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy; (C.S.); (S.P.)
| | - Maurizio D’Antonio
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Carlo Rinaldi
- Department of Paediatrics, University of Oxford, OX1 3QX Oxford, UK;
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, 35128 Padova, Italy;
- Padova Neuroscience Center (PNC), 35100 Padova, Italy
| | - Elena Pegoraro
- Myology Center (Cir-Myo), University of Padova, 35129 Padova, Italy; (E.P.); (G.S.)
- Department of Neuroscience (DNS), University of Padova, 35128 Padova, Italy;
- Padova Neuroscience Center (PNC), 35100 Padova, Italy
| | - Gianni Soraru
- Myology Center (Cir-Myo), University of Padova, 35129 Padova, Italy; (E.P.); (G.S.)
- Department of Neuroscience (DNS), University of Padova, 35128 Padova, Italy;
- Padova Neuroscience Center (PNC), 35100 Padova, Italy
| | - Udai Bhan Pandey
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA;
- Division of Child Neurology, Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Marco Sandri
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (M.P.); (V.R.); (E.Z.); (M.S.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
- Myology Center (Cir-Myo), University of Padova, 35129 Padova, Italy; (E.P.); (G.S.)
| | - Manuela Basso
- Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy;
| | - Maria Pennuto
- Dulbecco Telethon Institute, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy; (M.C.); (D.P.); (M.J.P.)
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (M.P.); (V.R.); (E.Z.); (M.S.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
- Myology Center (Cir-Myo), University of Padova, 35129 Padova, Italy; (E.P.); (G.S.)
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy; (C.S.); (S.P.)
- Padova Neuroscience Center (PNC), 35100 Padova, Italy
- Correspondence: ; Tel.: +39 049 8276069
| |
Collapse
|
38
|
Attems J. The first year. Acta Neuropathol 2020; 139:1-2. [PMID: 31832772 DOI: 10.1007/s00401-019-02113-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 12/07/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Johannes Attems
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK.
| |
Collapse
|
39
|
Maiole F, Giachero S, Fossati SM, Rocchi A, Zullo L. mTOR as a Marker of Exercise and Fatigue in Octopus vulgaris Arm. Front Physiol 2019; 10:1161. [PMID: 31572212 PMCID: PMC6749024 DOI: 10.3389/fphys.2019.01161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/28/2019] [Indexed: 01/07/2023] Open
Abstract
Cephalopods are highly evolved marine invertebrates that colonized almost all the oceans of the world at all depths. This imposed the occurrence of several modifications of their brain and body whose muscle component represents the major constituent. Hence, studying their muscle physiology may give important hints in the context of animal biology and environmental adaptability. One major pathway involved in muscle metabolism in vertebrates is the evolutionary conserved mTOR-signaling cascade; however, its role in cephalopods has never been elucidated. mTOR is regulating cell growth and homeostasis in response to a wide range of cues such as nutrient availability, body temperature and locomotion. It forms two functionally heteromeric complexes, mTORC1 and mTORC2. mTORC1 regulates protein synthesis and degradation and, in skeletal muscles, its activation upon exercise induces muscle growth. In this work, we characterized Octopus vulgaris mTOR full sequence and functional domains; we found a high level of homology with vertebrates’ mTOR and the conservation of Ser2448 phosphorylation site required for mTORC1 activation. We then designed and tested an in vitro protocol of resistance exercise (RE) inducing fatigue in arm samples. We showed that, upon the establishment of fatigue, a transient increase in mTORC1 phosphorylation reaching a pick 30 min after exercise was induced. Our data indicate the activation of mTORC1 pathway in exercise paradigm and possibly in the regulation of energy homeostasis in octopus and suggest that mTORC1 activity can be used to monitor animal response to changes in physiological and ecological conditions and, more in general, the animal welfare.
Collapse
Affiliation(s)
- Federica Maiole
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Sarah Giachero
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Sara Maria Fossati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Anna Rocchi
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.,IRCSS Ospedale Policlinico San Martino, Genoa, Italy
| | - Letizia Zullo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.,IRCSS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
40
|
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by a polyglutamine (polyQ) expansion in the androgen receptor (AR). Despite the fact that the monogenic cause of SBMA has been known for nearly 3 decades, there is no effective treatment for this disease, underscoring the complexity of the pathogenic mechanisms that lead to a loss of motor neurons and muscle in SBMA patients. In the current review, we provide an overview of the system-wide clinical features of SBMA, summarize the structure and function of the AR, discuss both gain-of-function and loss-of-function mechanisms of toxicity caused by polyQ-expanded AR, and describe the cell and animal models utilized in the study of SBMA. Additionally, we summarize previously conducted clinical trials which, despite being based on positive results from preclinical studies, proved to be largely ineffective in the treatment of SBMA; nonetheless, these studies provide important insights as researchers develop the next generation of therapies.
Collapse
Affiliation(s)
- Frederick J Arnold
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 411E Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, Pennsylvania, 19107, USA
| | - Diane E Merry
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 411E Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, Pennsylvania, 19107, USA.
| |
Collapse
|
41
|
Ito D, Hashizume A, Hijikata Y, Yamada S, Iguchi Y, Iida M, Kishimoto Y, Moriyoshi H, Hirakawa A, Katsuno M. Elevated serum creatine kinase in the early stage of sporadic amyotrophic lateral sclerosis. J Neurol 2019; 266:2952-2961. [PMID: 31456060 DOI: 10.1007/s00415-019-09507-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To assess the changes of muscle-related biomarkers at the early stage of amyotrophic lateral sclerosis, and to confirm these findings in an experimental animal model. METHODS Thirty-nine subjects with sporadic amyotrophic lateral sclerosis and 20 healthy controls were enrolled and longitudinally evaluated. We evaluated serum creatine kinase and creatinine levels and appendicular lean soft-tissue mass using dual X-ray absorptiometry. The levels of biomarkers at early ALS stages were estimated using linear mixed models with unstructured correlation and random intercepts. We also analyzed the longitudinal changes of serum creatine kinase and creatinine, together with the mRNA levels of acetylcholine receptor subunit γ (Chrng) and muscle-associated receptor tyrosine kinase, markers of denervation, in the gastrocnemius muscle of superoxide dismutase 1 (SOD1)G93A transgenic mice, an animal model of amyotrophic lateral sclerosis. RESULTS The estimated levels of creatine kinase were higher in subjects with amyotrophic lateral sclerosis at the early stage than in healthy controls, although the estimated appendicular lean soft-tissue mass and creatinine levels were equivalent between both groups, suggesting that the elevation of creatine kinase precedes both muscular atrophy and subjective motor symptoms in sporadic amyotrophic lateral sclerosis. In SOD1G93A mice, the serum levels of creatine kinase were elevated at 9 weeks of age (peri-onset) when Chrng started to be up-regulated, and were then down-regulated at 15 weeks of age, consistent with the clinical data from patients with sporadic amyotrophic lateral sclerosis. INTERPRETATION Creatine kinase elevation precedes muscular atrophy and reflects muscle denervation at the early stage.
Collapse
Affiliation(s)
- Daisuke Ito
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Atsushi Hashizume
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| | - Yasuhiro Hijikata
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Shinichiro Yamada
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yohei Iguchi
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Madoka Iida
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yoshiyuki Kishimoto
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Hideyuki Moriyoshi
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Akihiro Hirakawa
- Department of Biostatistics and Bioinformatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| |
Collapse
|
42
|
Longitudinal time course of muscle impairments during partial weight-bearing in rats. NPJ Microgravity 2019; 5:20. [PMID: 31453318 PMCID: PMC6706399 DOI: 10.1038/s41526-019-0080-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 07/31/2019] [Indexed: 01/14/2023] Open
Abstract
In the near future, space agencies plan to send the first crews for extended stays on the Moon and Mars, where gravity is significantly reduced compared to Earth (0.16×g and 0.38×g, respectively). However, the long-term effects of partial gravity have not yet been elucidated, and ensuring astronauts' health and performance is crucial to the success of these missions. Using a quadrupedal partial weight-bearing (PWB) model in rats that we designed, we investigated the longitudinal time course of muscle function at three different PWB levels. We demonstrated that both muscle mass and muscle function are significantly impaired in reduced weight-bearing environments as early as after 7 days of suspension. Moreover, we showed that muscular alterations are correlated to the PWB level and do not reach a plateau during a 1-month exposure to reduced weight-bearing, emphasizing the need for mitigating countermeasures for safe and successful extraterrestrial exploration.
Collapse
|
43
|
241st ENMC international workshop: Towards a European unifying lab for Kennedy's disease. 15-17th February, 2019 Hoofddorp, The Netherlands. Neuromuscul Disord 2019; 29:716-724. [PMID: 31488386 DOI: 10.1016/j.nmd.2019.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2019] [Indexed: 01/18/2023]
|
44
|
Cristofani R, Rusmini P, Galbiati M, Cicardi ME, Ferrari V, Tedesco B, Casarotto E, Chierichetti M, Messi E, Piccolella M, Carra S, Crippa V, Poletti A. The Regulation of the Small Heat Shock Protein B8 in Misfolding Protein Diseases Causing Motoneuronal and Muscle Cell Death. Front Neurosci 2019; 13:796. [PMID: 31427919 PMCID: PMC6688727 DOI: 10.3389/fnins.2019.00796] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022] Open
Abstract
Misfolding protein diseases are a wide class of disorders in which the aberrantly folded protein aggregates accumulate in affected cells. In the brain and in the skeletal muscle, misfolded protein accumulation induces a variety of cell dysfunctions that frequently lead to cell death. In motoneuron diseases (MNDs), misfolded proteins accumulate primarily in motoneurons, glial cells and/or skeletal muscle cells, altering motor function. The deleterious effects of misfolded proteins can be counteracted by the activity of the protein quality control (PQC) system, composed of chaperone proteins and degradative systems. Here, we focus on a PQC system component: heat shock protein family B (small) member 8 (HSPB8), a chaperone induced by harmful stressful events, including proteotoxicity. In motoneuron and muscle cells, misfolded proteins activate HSPB8 transcription and enhance HSPB8 levels, which contributes to prevent aggregate formation and their harmful effects. HSPB8 acts not only as a chaperone, but also facilitates the autophagy process, to enable the efficient clearance of the misfolded proteins. HSPB8 acts as a dimer bound to the HSP70 co-chaperone BAG3, a scaffold protein that is also capable of binding to HSP70 (associated with the E3-ligase CHIP) and dynein. When this complex is formed, it is transported by dynein to the microtubule organization center (MTOC), where aggresomes are formed. Here, misfolded proteins are engulfed into nascent autophagosomes to be degraded via the chaperone-assisted selective autophagy (CASA). When CASA is insufficient or impaired, HSP70 and CHIP associate with an alternative co-chaperone, BAG1, which routes misfolded proteins to the proteasome for degradation. The finely tuned equilibrium between proteasome and CASA activity is thought to be crucial for maintaining the functional cell homeostasis during proteotoxic stresses, which in turn is essential for cell survival. This fine equilibrium seems to be altered in MNDs, like Amyotrophic lateral sclerosis (ALS) and spinal and bulbar muscular atrophy (SBMA), contributing to the onset and the progression of disease. Here, we will review how misfolded proteins may affect the PQC system and how the proper activity of this system can be restored by boosting or regulating HSPB8 activity, with the aim to ameliorate disease progression in these two fatal MNDs.
Collapse
Affiliation(s)
- Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Maria Elena Cicardi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Elio Messi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Serena Carra
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Modena, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy.,Centro Interuniversitario Sulle Malattie Neurodegenerative, Università degli Studi di Firenze, Roma Tor Vergata, Milan, Italy
| |
Collapse
|
45
|
Zhao L, Pascual F, Bacudio L, Suchanek AL, Young PA, Li LO, Martin SA, Camporez JP, Perry RJ, Shulman GI, Klett EL, Coleman RA. Defective fatty acid oxidation in mice with muscle-specific acyl-CoA synthetase 1 deficiency increases amino acid use and impairs muscle function. J Biol Chem 2019; 294:8819-8833. [PMID: 30975900 DOI: 10.1074/jbc.ra118.006790] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/21/2019] [Indexed: 01/07/2023] Open
Abstract
Loss of long-chain acyl-CoA synthetase isoform-1 (ACSL1) in mouse skeletal muscle (Acsl1M -/-) severely reduces acyl-CoA synthetase activity and fatty acid oxidation. However, the effects of decreased fatty acid oxidation on skeletal muscle function, histology, use of alternative fuels, and mitochondrial function and morphology are unclear. We observed that Acsl1M -/- mice have impaired voluntary running capacity and muscle grip strength and that their gastrocnemius muscle contains myocytes with central nuclei, indicating muscle regeneration. We also found that plasma creatine kinase and aspartate aminotransferase levels in Acsl1M -/- mice are 3.4- and 1.5-fold greater, respectively, than in control mice (Acsl1flox/flox ), indicating muscle damage, even without exercise, in the Acsl1M -/- mice. Moreover, caspase-3 protein expression exclusively in Acsl1M -/- skeletal muscle and the presence of cleaved caspase-3 suggested myocyte apoptosis. Mitochondria in Acsl1M -/- skeletal muscle were swollen with abnormal cristae, and mitochondrial biogenesis was increased. Glucose uptake did not increase in Acsl1M -/- skeletal muscle, and pyruvate oxidation was similar in gastrocnemius homogenates from Acsl1M -/- and control mice. The rate of protein synthesis in Acsl1M -/- glycolytic muscle was 2.1-fold greater 30 min after exercise than in the controls, suggesting resynthesis of proteins catabolized for fuel during the exercise. At this time, mTOR complex 1 was activated, and autophagy was blocked. These results suggest that fatty acid oxidation is critical for normal skeletal muscle homeostasis during both rest and exercise. We conclude that ACSL1 deficiency produces an overall defect in muscle fuel metabolism that increases protein catabolism, resulting in exercise intolerance, muscle weakness, and myocyte apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei O Li
- From the Departments of Nutrition and
| | - Sarah A Martin
- the Department of Molecular Genetics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | | | - Rachel J Perry
- the Departments of Internal Medicine and.,Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Gerald I Shulman
- the Departments of Internal Medicine and.,Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Eric L Klett
- Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | | |
Collapse
|
46
|
Dahlqvist JR, Oestergaard ST, Poulsen NS, Knak KL, Thomsen C, Vissing J. Muscle contractility in spinobulbar muscular atrophy. Sci Rep 2019; 9:4680. [PMID: 30886222 PMCID: PMC6423126 DOI: 10.1038/s41598-019-41240-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/05/2019] [Indexed: 12/12/2022] Open
Abstract
Spinobulbar muscular atrophy (SBMA) is caused by a trinucleotide repeat expansion in the androgen receptor gene on the X chromosome. There is a toxic effect of the mutant receptor on muscle and neurons resulting in muscle weakness and atrophy. The weakness can be explained by wasting due to loss of muscle cells, but it is unknown whether weakness also relates to poor muscle contractility of the remaining musculature. In this study, we investigated the muscle contractility in SBMA. We used stationary dynamometry and quantitative MRI to assess muscle strength and absolute and fat-free, cross-sectional areas. Specific muscle force (strength per cross-sectional area) and contractility (strength per fat-free cross-sectional area) were compared with healthy controls and their relation to walking distance and disease severity was investigated. Specific force was reduced by 14-49% in SBMA patients compared to healthy controls. Contractility was reduced by 22-39% in elbow flexion, knee extension, ankle dorsi- and plantarflexion in SBMA patients. The contractility decreased with increasing muscle fat content in muscles with affected contractility in SBMA. The decreased muscle contractility in SBMA may relate to motor neuron degeneration and changed fibre type distribution and muscle architecture.
Collapse
Affiliation(s)
- Julia R Dahlqvist
- Copenhagen Neuromuscular Center, section 3342 Department of Neurology, Rigshospitalet, University of Copenhagen Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - Sofie T Oestergaard
- Copenhagen Neuromuscular Center, section 3342 Department of Neurology, Rigshospitalet, University of Copenhagen Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Nanna S Poulsen
- Copenhagen Neuromuscular Center, section 3342 Department of Neurology, Rigshospitalet, University of Copenhagen Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Kirsten Lykke Knak
- Copenhagen Neuromuscular Center, section 3342 Department of Neurology, Rigshospitalet, University of Copenhagen Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Carsten Thomsen
- Department of Radiology, Rigshospitalet, University of Copenhagen Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, section 3342 Department of Neurology, Rigshospitalet, University of Copenhagen Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
47
|
Halievski K, Nath SR, Katsuno M, Adachi H, Sobue G, Breedlove SM, Lieberman AP, Jordan CL. Disease Affects Bdnf Expression in Synaptic and Extrasynaptic Regions of Skeletal Muscle of Three SBMA Mouse Models. Int J Mol Sci 2019; 20:ijms20061314. [PMID: 30875922 PMCID: PMC6470984 DOI: 10.3390/ijms20061314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 01/01/2023] Open
Abstract
Spinal bulbar muscular atrophy (SBMA) is a slowly progressive, androgen-dependent neuromuscular disease in men that is characterized by both muscle and synaptic dysfunction. Because gene expression in muscle is heterogeneous, with synaptic myonuclei expressing genes that regulate synaptic function and extrasynaptic myonuclei expressing genes to regulate contractile function, we used quantitative PCR to compare gene expression in these two domains of muscle from three different mouse models of SBMA: the "97Q" model that ubiquitously expresses mutant human androgen receptor (AR), the 113Q knock-in (KI) model that expresses humanized mouse AR with an expanded glutamine tract, and the "myogenic" model that overexpresses wild-type rat AR only in skeletal muscle. We were particularly interested in neurotrophic factors because of their role in maintaining neuromuscular function via effects on both muscle and synaptic function, and their implicated role in SBMA. We confirmed previous reports of the enriched expression of select genes (e.g., the acetylcholine receptor) in the synaptic region of muscle, and are the first to report the synaptic enrichment of others (e.g., glial cell line-derived neurotrophic factor). Interestingly, all three models displayed comparably dysregulated expression of most genes examined in both the synaptic and extrasynaptic domains of muscle, with only modest differences between regions and models. These findings of comprehensive gene dysregulation in muscle support the emerging view that skeletal muscle may be a prime therapeutic target for restoring function of both muscles and motoneurons in SBMA.
Collapse
Affiliation(s)
- Katherine Halievski
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824-1115, USA.
| | - Samir R Nath
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Hiroaki Adachi
- Department of Neurology, University of Occupational and Environment Health School of Medicine, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu Fukuoka 807-8555, Japan.
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - S Marc Breedlove
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824-1115, USA.
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Cynthia L Jordan
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824-1115, USA.
- Physiology Department, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824-1115, USA.
| |
Collapse
|
48
|
Gene expression analysis reveals early dysregulation of disease pathways and links Chmp7 to pathogenesis of spinal and bulbar muscular atrophy. Sci Rep 2019; 9:3539. [PMID: 30837566 PMCID: PMC6401132 DOI: 10.1038/s41598-019-40118-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/04/2019] [Indexed: 01/09/2023] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) results from a CAG repeat expansion within the androgen receptor gene (AR). It is unclear why motor neurons selectively degenerate and there are currently no treatments for this debilitating disease. To uncover the causative genes and pathways involved in motor neuron dysfunction, we undertook transcriptomic profiling of primary embryonic motor neurons from SBMA mice. We show that transcriptional dysregulation occurs early during development in SBMA motor neurons. One gene found to be dysregulated, Chmp7, was also altered in vivo in spinal cord before symptom onset in SBMA mice, and crucially in motor neuron precursor cells derived from SBMA patient stem cells, suggesting that Chmp7 may play a causal role in disease pathogenesis by disrupting the endosome-lysosome system. Furthermore, genes were enriched in SBMA motor neurons in several key pathways including p53, DNA repair, WNT and mitochondrial function. SBMA embryonic motor neurons also displayed dysfunctional mitochondria along with DNA damage, possibly resulting from DNA repair gene dysregulation and/or mitochondrial dysfunction. This indicates that a coordinated dysregulation of multiple pathways leads to development of SBMA. Importantly, our findings suggest that the identified pathways and genes, in particular Chmp7, may serve as potential therapeutic targets in SBMA.
Collapse
|
49
|
Abstract
Polyglutamine (polyQ) diseases are a group of hereditary neurodegenerative disorders caused by expansion of unstable polyQ repeats in their associated disease proteins. To date, the pathogenesis of each disease remains poorly understood, and there are no effective treatments. Growing evidence has indicated that, in addition to neurodegeneration, polyQ-expanded proteins can cause a wide array of abnormalities in peripheral tissues. Indeed, polyQ-expanded proteins are ubiquitously expressed throughout the body and can affect the function of both the central nervous system (CNS) and peripheral tissues. The peripheral effects of polyQ disease proteins include muscle wasting and reduced muscle strength in patients or animal models of spinal and bulbar muscular atrophy (SBMA), Huntington's disease (HD), dentatorubral-pallidoluysian atrophy (DRPLA), and spinocerebellar ataxia type 17 (SCA17). Since skeletal muscle pathology can reflect disease progression and is more accessible for treatment than neurodegeneration in the CNS, understanding how polyQ disease proteins affect skeletal muscle will help elucidate disease mechanisms and the development of new therapeutics. In this review, we focus on important findings in terms of skeletal muscle pathology in polyQ diseases and also discuss the potential mechanisms underlying the major peripheral effects of polyQ disease proteins, as well as their therapeutic implications.
Collapse
Affiliation(s)
- Shanshan Huang
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Suiqiang Zhu
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Jiang Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Shihua Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
50
|
Cicardi ME, Cristofani R, Crippa V, Ferrari V, Tedesco B, Casarotto E, Chierichetti M, Galbiati M, Piccolella M, Messi E, Carra S, Pennuto M, Rusmini P, Poletti A. Autophagic and Proteasomal Mediated Removal of Mutant Androgen Receptor in Muscle Models of Spinal and Bulbar Muscular Atrophy. Front Endocrinol (Lausanne) 2019; 10:569. [PMID: 31481932 PMCID: PMC6710630 DOI: 10.3389/fendo.2019.00569] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/05/2019] [Indexed: 12/25/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is an X-linked motoneuron disease (MND) caused by a mutant androgen receptor (AR) containing an elongated polyglutamine (polyQ) tract. ARpolyQ toxicity is triggered by androgenic AR ligands, which induce aberrant conformations (misfolding) of the ARpolyQ protein that aggregates. Misfolded proteins perturb the protein quality control (PQC) system leading to cell dysfunction and death. Spinal cord motoneurons, dorsal root ganglia neurons and skeletal muscle cells are affected by ARpolyQ toxicity. Here, we found that, in stabilized skeletal myoblasts (s-myoblasts), ARpolyQ formed testosterone-inducible aggregates resistant to NP-40 solubilization; these aggregates did not affect s-myoblasts survival or viability. Both wild type AR and ARpolyQ were processed via proteasome, but ARpolyQ triggered (and it was also cleared via) autophagy. ARpolyQ reduced two pro-autophagic proteins expression (BAG3 and VCP), leading to decreased autophagic response in ARpolyQ s-myoblasts. Overexpression of two components of the chaperone assisted selective autophagy (CASA) complex (BAG3 and HSPB8), enhanced ARpolyQ clearance, while the treatment with the mTOR independent autophagy activator trehalose induced complete ARpolyQ degradation. Thus, trehalose has beneficial effects in SBMA skeletal muscle models even when autophagy is impaired, possibly by stimulating CASA to assist the removal of ARpolyQ misfolded species/aggregates.
Collapse
Affiliation(s)
- Maria Elena Cicardi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Elio Messi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Serena Carra
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Centro Interdipartimentale di Neuroscienze e Neurotecnologie (CfNN), Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Maria Pennuto
- Department of Neurosciences, Neuromuscular Center, University of Padova, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Dulbecco Telethon Institute, Centre for Integrative Biology (CIBIO), University of Trento, Povo, Italy
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
- Centro InterUniversitario sulle Malattie Neurodegenerative, Università degli Studi di Firenze, Milan, Italy
- *Correspondence: Angelo Poletti
| |
Collapse
|