1
|
Cohen LRZ, Meshorer E. The many faces of H3.3 in regulating chromatin in embryonic stem cells and beyond. Trends Cell Biol 2024; 34:1044-1055. [PMID: 38614918 DOI: 10.1016/j.tcb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/15/2024]
Abstract
H3.3 is a highly conserved nonreplicative histone variant. H3.3 is enriched in promoters and enhancers of active genes, but it is also found within suppressed heterochromatin, mostly around telomeres. Accordingly, H3.3 is associated with seemingly contradicting functions: It is involved in development, differentiation, reprogramming, and cell fate, as well as in heterochromatin formation and maintenance, and the silencing of developmental genes. The emerging view is that different cellular contexts and histone modifications can promote opposing functions for H3.3. Here, we aim to provide an update with a focus on H3.3 functions in early mammalian development, considering the context of embryonic stem cell maintenance and differentiation, to finally conclude with emerging roles in cancer development and cell fate transition and maintenance.
Collapse
Affiliation(s)
- Lea R Z Cohen
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
2
|
Johnston MJ, Lee JJY, Hu B, Nikolic A, Hasheminasabgorji E, Baguette A, Paik S, Chen H, Kumar S, Chen CCL, Jessa S, Balin P, Fong V, Zwaig M, Michealraj KA, Chen X, Zhang Y, Varadharajan S, Billon P, Juretic N, Daniels C, Rao AN, Giannini C, Thompson EM, Garami M, Hauser P, Pocza T, Ra YS, Cho BK, Kim SK, Wang KC, Lee JY, Grajkowska W, Perek-Polnik M, Agnihotri S, Mack S, Ellezam B, Weil A, Rich J, Bourque G, Chan JA, Yong VW, Lupien M, Ragoussis J, Kleinman C, Majewski J, Blanchette M, Jabado N, Taylor MD, Gallo M. TULIPs decorate the three-dimensional genome of PFA ependymoma. Cell 2024; 187:4926-4945.e22. [PMID: 38986619 DOI: 10.1016/j.cell.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/26/2022] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Posterior fossa group A (PFA) ependymoma is a lethal brain cancer diagnosed in infants and young children. The lack of driver events in the PFA linear genome led us to search its 3D genome for characteristic features. Here, we reconstructed 3D genomes from diverse childhood tumor types and uncovered a global topology in PFA that is highly reminiscent of stem and progenitor cells in a variety of human tissues. A remarkable feature exclusively present in PFA are type B ultra long-range interactions in PFAs (TULIPs), regions separated by great distances along the linear genome that interact with each other in the 3D nuclear space with surprising strength. TULIPs occur in all PFA samples and recur at predictable genomic coordinates, and their formation is induced by expression of EZHIP. The universality of TULIPs across PFA samples suggests a conservation of molecular principles that could be exploited therapeutically.
Collapse
Affiliation(s)
- Michael J Johnston
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - John J Y Lee
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Bo Hu
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada; Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ana Nikolic
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Elham Hasheminasabgorji
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Audrey Baguette
- Quantitative Life Sciences, McGill University, Montreal, QC H3A 1B9, Canada
| | - Seungil Paik
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Haifen Chen
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada
| | - Sachin Kumar
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Carol C L Chen
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada
| | - Selin Jessa
- Quantitative Life Sciences, McGill University, Montreal, QC H3A 1B9, Canada
| | - Polina Balin
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Vernon Fong
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Melissa Zwaig
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada
| | | | - Xun Chen
- Department of Anatomy and Cell Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Yanlin Zhang
- School of Computer Science, McGill University, Montreal, QC H3A 2A7, Canada
| | - Srinidhi Varadharajan
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Pierre Billon
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Nikoleta Juretic
- Department of Pediatrics, McGill University and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Craig Daniels
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | | | - Caterina Giannini
- Pediatric Hematology-Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Eric M Thompson
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Miklos Garami
- Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
| | - Peter Hauser
- Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
| | - Timea Pocza
- Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
| | - Young Shin Ra
- Department of Neurosurgery, University of Ulsan, Asan Medical Center, Seoul 05505, South Korea
| | - Byung-Kyu Cho
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul 30322, South Korea
| | - Seung-Ki Kim
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul 30322, South Korea
| | - Kyu-Chang Wang
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul 30322, South Korea
| | - Ji Yeoun Lee
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul 30322, South Korea
| | - Wieslawa Grajkowska
- Department of Pathology, The Children's Memorial Health Institute, University of Warsaw, 04-730 Warsaw, Poland
| | - Marta Perek-Polnik
- Department of Oncology, The Children's Memorial Health Institute, University of Warsaw, 04-730 Warsaw, Poland
| | - Sameer Agnihotri
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States of America
| | - Stephen Mack
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Benjamin Ellezam
- Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Alex Weil
- Department of Pediatric Neurosurgery, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Jeremy Rich
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada; McGill Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Jennifer A Chan
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - V Wee Yong
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada; McGill Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Claudia Kleinman
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada; Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada
| | - Mathieu Blanchette
- Quantitative Life Sciences, McGill University, Montreal, QC H3A 1B9, Canada; School of Computer Science, McGill University, Montreal, QC H3A 2A7, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada; Department of Pediatrics, McGill University and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H3A 3J1, Canada.
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Cancer and Hematology Center, Texas Children's Hospital, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Marco Gallo
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Cancer and Hematology Center, Texas Children's Hospital, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Wang B, Yan M, Han B, Liu X, Liu P. Impact of Molecular Subgroups on Prognosis and Survival Outcomes in Posterior Fossa Ependymomas: A Retrospective Study of 412 Cases. Neurosurgery 2024; 95:651-659. [PMID: 38529997 DOI: 10.1227/neu.0000000000002923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/25/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Posterior fossa ependymomas (PFEs) are rare brain tumors classified as PF-EPN-A (PFA) and PF-EPN-B (PFB) subgroups. The study aimed to evaluate the prognosis and survival outcomes in PFEs, with a focus on the impact of molecular subgroups. METHODS A retrospective study was conducted on 412 patients with PFEs. Kaplan-Meier survival analyses were conducted to evaluate the overall survival (OS) and progression-free survival. Cox regression analyses were conducted to assess the prognostic factors. A nomogram was developed to predict the OS rates of PFEs. RESULTS The study revealed significant differences between PFA and PFB in patient and tumor characteristics. PFAs were associated with poorer OS (hazard ratios [HR] 3.252, 95% CI 1.777-5.950, P < .001) and progression-free survival (HR 4.144, 95% CI 2.869-5.985, P < .001). World Health Organization grade 3 was associated with poorer OS (HR 2.389, 95% CI 1.236-4.617, P = .010). As for treatment patterns, gross total resection followed by radiotherapy or the combination of radiotherapy and chemotherapy yielded the most favorable OS for PFA ( P = .025 for both), whereas gross total resection followed by radiotherapy rather than observation showed improved OS for PFB ( P = .046). The nomogram demonstrated a high degree of accuracy and discrimination capacity for the prediction of OS rates for up to 10 years. In addition, 6 cases of PFA (3.51%) with H3K27M mutations were identified. CONCLUSION PFAs demonstrate worse prognosis and survival outcomes compared with PFBs. Both PFAs and PFBs necessitate maximal resection followed by intensive adjuvant therapies in long-term effects.
Collapse
Affiliation(s)
- Bo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
| | - Minjun Yan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
| | - Bo Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
| | - Xing Liu
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing , China
| | - Pinan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
| |
Collapse
|
4
|
Shintaku M, Hashiba T, Nonaka M, Asai A, Tsuta K. H3 K27-altered diffuse midline glioma of the thalamus with formation of glio-fibrillary globular structures. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2024; 17:227-233. [PMID: 39114504 PMCID: PMC11301414 DOI: 10.62347/srzr7392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/11/2024] [Indexed: 08/10/2024]
Abstract
A case of diffuse midline glioma (DMG), H3 K27-altered, that arose in the right thalamus of a 14-year-old boy is reported. The patient died of tumor spread after a progressive clinical course of approximately 13 months. Histopathologically, the tumor consisted of a mixture of loose proliferation of stellate cells and compact fascicular growth of spindle cells showing a "piloid" feature. Aggregates of globular structures composed of entangled fine glial fibrils ("glio-fibrillary globules, GFGs") were observed. Tumor cells were immunoreactive for S-100 protein and glial fibrillary acidic protein (GFAP), and showed nuclear immunoreactivity for histone H3 K27M and loss of expression of H3 K27me3. Tumor cell nuclei were also negative for alpha-thalassemia/mental retardation syndrome X-linked protein (ATRX) and p16. Although GFGs morphologically resembled "neuropil-like islands" or "neurocytic rosettes" seen in glial or glio-neuronal tumors, they showed immunoreactivity for GFAP, but not for synaptophysin. A GFG is a unique structure that has been described in DMG, H3 K27-altered, by a few investigators. To the best of our knowledge, this structure has not previously been reported in other glial or glio-neuronal tumors. It could be added as a new feature in the histopathological variations of DMG, extending its morphological spectrum. Familiarity with this feature can help prevent misdiagnosis of DMG.
Collapse
Affiliation(s)
- Masayuki Shintaku
- Department of Pathology, Kansai Medical University HospitalHirakata, Osaka, Japan
| | - Tetsuo Hashiba
- Department of Neurosurgery, Kansai Medical University HospitalHirakata, Osaka, Japan
| | - Masahiro Nonaka
- Department of Neurosurgery, Kansai Medical University HospitalHirakata, Osaka, Japan
| | - Akio Asai
- Department of Neurosurgery, Kansai Medical University HospitalHirakata, Osaka, Japan
| | - Koji Tsuta
- Department of Pathology, Kansai Medical University HospitalHirakata, Osaka, Japan
| |
Collapse
|
5
|
d’Amati A, Bargiacchi L, Rossi S, Carai A, Bertero L, Barresi V, Errico ME, Buccoliero AM, Asioli S, Marucci G, Del Baldo G, Mastronuzzi A, Miele E, D’Antonio F, Schiavello E, Biassoni V, Massimino M, Gessi M, Antonelli M, Gianno F. Pediatric CNS tumors and 2021 WHO classification: what do oncologists need from pathologists? Front Mol Neurosci 2024; 17:1268038. [PMID: 38544524 PMCID: PMC10966132 DOI: 10.3389/fnmol.2024.1268038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/23/2024] [Indexed: 05/14/2024] Open
Abstract
The fifth edition of the WHO Classification of Tumors of the Central Nervous System (CNS), published in 2021, established new approaches to both CNS tumor nomenclature and grading, emphasizing the importance of integrated diagnoses and layered reports. This edition increased the role of molecular diagnostics in CNS tumor classification while still relying on other established approaches such as histology and immunohistochemistry. Moreover, it introduced new tumor types and subtypes based on novel diagnostic technologies such as DNA methylome profiling. Over the past decade, molecular techniques identified numerous key genetic alterations in CSN tumors, with important implications regarding the understanding of pathogenesis but also for prognosis and the development and application of effective molecularly targeted therapies. This review summarizes the major changes in the 2021 fifth edition classification of pediatric CNS tumors, highlighting for each entity the molecular alterations and other information that are relevant for diagnostic, prognostic, or therapeutic purposes and that patients' and oncologists' need from a pathology report.
Collapse
Affiliation(s)
- Antonio d’Amati
- Unit of Anatomical Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, Bari, Italy
- Unit of Human Anatomy and Histology, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari “Aldo Moro”, Bari, Italy
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
- Neuropathology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Lavinia Bargiacchi
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Andrea Carai
- Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Valeria Barresi
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Maria Elena Errico
- Department of Pathology, AORN Santobono Pausilipon, Pediatric Hospital, Naples, Italy
| | | | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gianluca Marucci
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giada Del Baldo
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Angela Mastronuzzi
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Evelina Miele
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Federica D’Antonio
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Elisabetta Schiavello
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Veronica Biassoni
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maura Massimino
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco Gessi
- Neuropathology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Manila Antonelli
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Francesca Gianno
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| |
Collapse
|
6
|
Jünger ST, Zschernack V, Messing-Jünger M, Timmermann B, Pietsch T. Ependymoma from Benign to Highly Aggressive Diseases: A Review. Adv Tech Stand Neurosurg 2024; 50:31-62. [PMID: 38592527 DOI: 10.1007/978-3-031-53578-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Ependymomas comprise biologically distinct tumor types with respect to age distribution, (epi)genetics, localization, and prognosis. Multimodal risk-stratification, including histopathological and molecular features, is essential in these biologically defined tumor types. Gross total resection (GTR), achieved with intraoperative monitoring and neuronavigation, and if necessary, second-look surgery, is the most effective treatment. Adjuvant radiation therapy is mandatory in high-risk tumors and in case of residual tumor. There is yet growing evidence that some ependymal tumors may be cured by surgery alone. To date, the role of chemotherapy is unclear and subject of current studies.Even though standard therapy can achieve reasonable survival rates for the majority of ependymoma patients, long-term follow-up still reveals a high probability of relapse in certain biological entities.With increasing knowledge of biologically distinct tumor types, risk-adapted adjuvant therapy gains importance. Beyond initial tumor control, and avoidance of therapy-induced morbidity for low-risk patients, intensified treatment for high-risk patients comprises another challenge. With identification of specific risk features regarding molecular alterations, targeted therapy may represent an option for individualized treatment modalities in the future.
Collapse
Affiliation(s)
- Stephanie T Jünger
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany.
- Center for Neurosurgery, Department of General Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Valentina Zschernack
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany
| | | | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Center Essen (WPE), West German Cancer Center (WTZ), Germany, German Cancer Consortium, Essen, Germany
| | - Torsten Pietsch
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
7
|
Serdyukova K, Swearingen AR, Coradin M, Nevo M, Tran H, Bajric E, Brumbaugh J. Leveraging dominant-negative histone H3 K-to-M mutations to study chromatin during differentiation and development. Development 2023; 150:dev202169. [PMID: 37846748 PMCID: PMC10617616 DOI: 10.1242/dev.202169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Histone modifications are associated with regulation of gene expression that controls a vast array of biological processes. Often, these associations are drawn by correlating the genomic location of a particular histone modification with gene expression or phenotype; however, establishing a causal relationship between histone marks and biological processes remains challenging. Consequently, there is a strong need for experimental approaches to directly manipulate histone modifications. A class of mutations on the N-terminal tail of histone H3, lysine-to-methionine (K-to-M) mutations, was identified as dominant-negative inhibitors of histone methylation at their respective and specific residues. The dominant-negative nature of K-to-M mutants makes them a valuable tool for studying the function of specific methylation marks on histone H3. Here, we review recent applications of K-to-M mutations to understand the role of histone methylation during development and homeostasis. We highlight important advantages and limitations that require consideration when using K-to-M mutants, particularly in a developmental context.
Collapse
Affiliation(s)
- Ksenia Serdyukova
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Alison R. Swearingen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mariel Coradin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mika Nevo
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Huong Tran
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emir Bajric
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Justin Brumbaugh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
8
|
Hansford JR, Eisenstat DD. No safe harbors for recurrent posterior fossa group A ependymoma: A time for change in risk assignment? Neuro Oncol 2023; 25:1868-1870. [PMID: 37487035 PMCID: PMC10547506 DOI: 10.1093/neuonc/noad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Indexed: 07/26/2023] Open
Affiliation(s)
- Jordan R Hansford
- Michael Rice Cancer Centre, Women’s and Children’s Hospital, North Adelaide, South Australia, Australia
- Precision Cancer Medicine, South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
- South Australia Immunogenomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - David D Eisenstat
- Children’s Cancer Centre, Royal Children’s Hospital, Parkville, Victoria, Australia
- Stem Cell Biology, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Ocasio JK, Budd KM, Roach JT, Andrews JM, Baker SJ. Oncohistones and disrupted development in pediatric-type diffuse high-grade glioma. Cancer Metastasis Rev 2023; 42:367-388. [PMID: 37119408 PMCID: PMC10441521 DOI: 10.1007/s10555-023-10105-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Abstract
Recurrent, clonal somatic mutations in histone H3 are molecular hallmarks that distinguish the genetic mechanisms underlying pediatric and adult high-grade glioma (HGG), define biological subgroups of diffuse glioma, and highlight connections between cancer, development, and epigenetics. These oncogenic mutations in histones, now termed "oncohistones", were discovered through genome-wide sequencing of pediatric diffuse high-grade glioma. Up to 80% of diffuse midline glioma (DMG), including diffuse intrinsic pontine glioma (DIPG) and diffuse glioma arising in other midline structures including thalamus or spinal cord, contain histone H3 lysine 27 to methionine (K27M) mutations or, rarely, other alterations that result in a depletion of H3K27me3 similar to that induced by H3 K27M. This subgroup of glioma is now defined as diffuse midline glioma, H3K27-altered. In contrast, histone H3 Gly34Arg/Val (G34R/V) mutations are found in approximately 30% of diffuse glioma arising in the cerebral hemispheres of older adolescents and young adults, now classified as diffuse hemispheric glioma, H3G34-mutant. Here, we review how oncohistones modulate the epigenome and discuss the mutational landscape and invasive properties of histone mutant HGGs of childhood. The distinct mechanisms through which oncohistones and other mutations rewrite the epigenetic landscape provide novel insights into development and tumorigenesis and may present unique vulnerabilities for pHGGs. Lessons learned from these rare incurable brain tumors of childhood may have broader implications for cancer, as additional high- and low-frequency oncohistone mutations have been identified in other tumor types.
Collapse
Affiliation(s)
- Jennifer K Ocasio
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kaitlin M Budd
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, USA
| | - Jordan T Roach
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, USA
- College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Jared M Andrews
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, USA.
| |
Collapse
|
10
|
Andrade AF, Chen CCL, Jabado N. Oncohistones in brain tumors: the soil and seed. Trends Cancer 2023; 9:444-455. [PMID: 36933956 PMCID: PMC11075889 DOI: 10.1016/j.trecan.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023]
Abstract
Recurrent somatic mutations in histone 3 (H3) variants (termed 'oncohistones') have been identified in high-grade gliomas (HGGs) in children and young adults and induce tumorigenesis through disruption of chromatin states. Oncohistones occur with exquisite neuroanatomical specificity and are associated with specific age distribution and epigenome landscapes. Here, we review the known intrinsic ('seed') and the extrinsic ('soil') factors needed for their optimal oncogenic effect and highlight the many unresolved questions regarding their effects on development and crosstalk with the tumor microenvironment. The 'seed and soil' analogy, used to explain tumor metastatic niches, also applies to oncohistones, which mainly thrive and flourish in specific chromatin states during very narrow windows of development, creating exquisite vulnerabilities, which could provide effective therapies for these deadly cancers.
Collapse
Affiliation(s)
| | - Carol C L Chen
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada; Department of Pediatrics, McGill University, Montreal, QC, H3A 0C7, Canada; The Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
11
|
Cohen LRZ, Kaffe B, Deri E, Leibson C, Nissim-Rafinia M, Maman M, Harpaz N, Ron G, Shema E, Meshorer E. PRC2-independent actions of H3.3K27M in embryonic stem cell differentiation. Nucleic Acids Res 2023; 51:1662-1673. [PMID: 36156096 PMCID: PMC9976889 DOI: 10.1093/nar/gkac800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 01/11/2023] Open
Abstract
The histone H3 variant, H3.3, is localized at specific regions in the genome, especially promoters and active enhancers, and has been shown to play important roles in development. A lysine to methionine substitution in position 27 (H3.3K27M) is a main cause of Diffuse Intrinsic Pontine Glioma (specifically Diffuse Midline Glioma, K27M-mutant), a lethal type of pediatric cancer. H3.3K27M has a dominant-negative effect by inhibiting the Polycomb Repressor Complex 2 (PRC2) activity. Here, we studied the immediate, genome-wide, consequences of the H3.3K27M mutation independent of PRC2 activity. We developed Doxycycline (Dox)-inducible mouse embryonic stem cells (ESCs) carrying a single extra copy of WT-H3.3, H3.3K27M and H3.3K27L, all fused to HA. We performed RNA-Seq and ChIP-Seq at different times following Dox induction in undifferentiated and differentiated ESCs. We find increased binding of H3.3 around transcription start sites in cells expressing both H3.3K27M and H3.3K27L compared with WT, but not in cells treated with PRC2 inhibitors. Differentiated cells carrying either H3.3K27M or H3.3K27L retain expression of ESC-active genes, in expense of expression of genes related to neuronal differentiation. Taken together, our data suggest that a modifiable H3.3K27 is required for proper histone incorporation and cellular maturation, independent of PRC2 activity.
Collapse
Affiliation(s)
- Lea R Z Cohen
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.,The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Binyamin Kaffe
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Eden Deri
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.,The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Chen Leibson
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Malka Nissim-Rafinia
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Moria Maman
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nofar Harpaz
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Guy Ron
- The Racah Institute of Physics, The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| | - Efrat Shema
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.,The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
12
|
Ahmad Z, Rahim S, Abdul-Ghafar J, Chundriger Q, Ud Din N. Events in CNS Tumor Pathology Post-2016 WHO CNS: cIMPACT-NOW Updates and Other Advancements: A Comprehensive Review Plus a Summary of the Salient Features of 2021 WHO CNS 5. Int J Gen Med 2023; 16:107-127. [PMID: 36644568 PMCID: PMC9833325 DOI: 10.2147/ijgm.s394872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction The 2016 World Health Organization Classification (WHO) of Tumors of the Central Nervous System (CNS) represented a major change. It recommended an "integrated diagnosis" comprising histologic and molecular information facilitating a more precise diagnosis of specific CNS tumors. Its goal was to provide greater diagnostic precision and reproducibility resulting in more clinical relevance and predictive value, ultimately leading to better patient care. Advances in molecular classification, mostly resulting from DNA methylation array profiling of CNS tumors, were occurring at a very rapid pace and required more rapid integration into clinical practice. Methods cIMPACT-NOW updates and other recent papers plus salient features of 2021 WHO CNS5 in this comprehensive write-up were reviewed. Results CNS tumor classification needs to be updated at a rapid pace and mechanisms put into place to guide diagnosticians and clinicians in the interim period if major changes in the classification of tumor types came to light. Recognizing the need to integrate these into clinical practice more rapidly and without inordinate delay, the International Society of Neuropathology (ISN) 2016 sponsored an initiative called cIMPACT-NOW. Discussion and/or Conclusion Goal of cIMPACT-NOW was to provide clarification regarding contentious issues arising in the wake of the 2016 WHO CNS update as well as report new advancements in molecular classification of CNS tumors and new tumor entities emerging as a result of these advancements. cIMPACT-NOW updates: It thus laid the foundation for the 5th edition of the WHO Classification of CNS tumors (2021 WHO CNS 5). We have discussed cIMPACT updates in detail in this review. In addition, molecular diagnostics including DNA methylation-based classification of CNS tumors and the practical use of molecular classification in the prognostication and treatment of CNS tumors is discussed. Finally, the salient features of the new CNS tumor classification are summarized.
Collapse
Affiliation(s)
- Zubair Ahmad
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Shabina Rahim
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Jamshid Abdul-Ghafar
- Department of Pathology and Clinical Laboratory, French Medical Institute for Mothers and Children (FMIC), Kabul, Afghanistan,Correspondence: Jamshid Abdul-Ghafar, Department of Pathology and Clinical Laboratory, French Medical Institute for Mothers and Children (FMIC), Kabul, Afghanistan, Tel +93 792 827 287, Email
| | - Qurratulain Chundriger
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Nasir Ud Din
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| |
Collapse
|
13
|
Sun Z, Zhu Y, Feng X, Liu X, Zhou K, Wang Q, Zhang H, Shi H. H3F3A K27M Mutation Promotes the Infiltrative Growth of High-Grade Glioma in Adults by Activating β-Catenin/USP1 Signaling. Cancers (Basel) 2022; 14:cancers14194836. [PMID: 36230759 PMCID: PMC9563249 DOI: 10.3390/cancers14194836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Gliomas is a primary type of tumor in the central nervous system. High-grade glioma is a malignant cancerous disease and grows rapidly. This study reports the expression of H3.3K27M in high-grade glioma tissues and the association with malignant glioma cell behavior. Moreover, the results suggested that a high expression of H3.3K27M promotes the migration and invasion of glioma cells, leading to a poor prognosis by promoting the infiltration of glioma through aggravating aberrant activation of β-catenin signaling-driven pathway. Abstract H3F3A K27M (H3.3K27M) is a newly identified molecular pathological marker in glioma and is strongly correlated with the malignancy of diffuse intrinsic pontine glioma (DIPG). In recent years, accumulating evidence has revealed that other types of glioma also contain the H3.3K27M mutation. However, the role of H3.3K27M in high-grade adult glioma, the most malignant glioma, has not been investigated. In this study, we focused on exploring the expression and function of H3.3K27M in high-grade glioma in adults. We found that H3.3K27M was highly expressed at high levels in some high-grade glioma tissues. Then, we introduced H3.3K27M into H3.3 wild-type glioma cells, U87 cells and LN229 cells. We found that H3.3K27M did not affect the growth of glioma cells in vitro and in vivo; however, the survival of mice with transplanted tumors was significantly reduced. Further investigation revealed that H3.3K27M expression mainly promoted the migration and invasion of glioma cells. Moreover, we confirmed that H3.3K27M overexpression increased the levels of the β-catenin and p-β-catenin (Ser675) proteins, the ubiquitin-specific protease 1 (USP1) mRNA and protein levels, and the enhancer of zeste homolog 2 (EZH2) protein level. In addition, the β-catenin inhibitor XAV-939 significantly attenuated the upregulation of the aforementioned proteins and inhibited the increased migration and invasion caused by the H3.3K27M mutation. Overall, the H3.3K27M mutation in high-grade glioma is a potential biomarker for poor prognosis mainly due to the infiltration of glioma cells that is at least partially mediated by the β-catenin/USP1/EZH2 pathway.
Collapse
Affiliation(s)
- Zhiyuan Sun
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou 221002, China
| | - Yufu Zhu
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou 221002, China
| | - Xia Feng
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Xiaoyun Liu
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Kunlin Zhou
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou 221002, China
| | - Qing Wang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Hengzhu Zhang
- Department of Neurosurgery, The Affiliated Wuxi Second Hospital, Nanjing Medical University, Wuxi 214002, China
| | - Hengliang Shi
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou 221002, China
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-516-85587335
| |
Collapse
|
14
|
Mariet C, Castel D, Grill J, Saffroy R, Dangouloff-Ros V, Boddaert N, Llamas-Guttierrez F, Chappé C, Puget S, Hasty L, Chrétien F, Métais A, Varlet P, Tauziède-Espariat A. Posterior fossa ependymoma H3 K27-mutant: an integrated radiological and histomolecular tumor analysis. Acta Neuropathol Commun 2022; 10:137. [PMID: 36104744 PMCID: PMC9476256 DOI: 10.1186/s40478-022-01442-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractPosterior fossa group A ependymomas (EPN_PFA) are characterized by a loss of H3 K27 trimethylation due to either EZHIP overexpression or H3 p.K27M mutation, similar to H3 K27-altered diffuse midline gliomas (DMG), but in reverse proportions. Very little data is available in the literature concerning H3 K27M-mutant EPN_PFA. Here, we retrospectively studied a series of nine pediatric tumors initially diagnosed as H3 K27M-mutant EPN_PFA to compare them to EZHIP-overexpressing EPN_PFA in terms of radiology, follow-up, histopathology, and molecular biology (including DNA-methylation profiling). Seven tumors clustered within EPN_PFA by DNA-methylation analysis and t-distributed stochastic neighbor embedding. Among the two remaining cases, one was reclassified as a DMG and the last was unclassified. H3 K27M-mutant EPN_PFA cases were significantly older than their counterparts with an EZHIP overexpression. Radiological and histopathological central review of our seven H3 K27M-mutant EPN_PFA cases found them to be similar to their counterparts with an EZHIP overexpression. Sequencing analyses revealed HIST1H3B (n = 2), HIST1H3C (n = 2), H3F3A (n = 1), and HIST1H3D (n = 1) K27M mutations (no sequencing analysis available for the last case which was immunopositive for H3K27M). Consequently, HIST1H3C/D mutations are more frequently observed in EPN_PFA than in classic pontine DMG, H3K27-mutant. Overall survival and event-free survival of EZHIP-overexpressing and H3 K27M-mutant EPN_PFA were similar. After surgery and radiation therapy, 5/7 patients were alive at the end of the follow-up. In summary, the diagnosis of EPN_PFA must include tumor location, growth pattern, Olig2 expression, and DNA-methylation profiling before it can be differentiated from DMG, H3 K27-altered.
Collapse
|
15
|
Pratt D, Lucas CHG, Selvam PP, Abdullaev Z, Ketchum C, Quezado M, Armstrong TS, Gilbert MR, Papanicolau-Sengos A, Raffeld M, Choo-Wosoba H, Chan P, Whipple N, Nasrallah M, Santi M, Ramaswamy V, Giannini C, Ritzmann TA, Grundy RG, Burford A, Jones C, Hawkins C, Venneti S, Solomon DA, Aldape K. Recurrent ACVR1 mutations in posterior fossa ependymoma. Acta Neuropathol 2022; 144:373-376. [PMID: 35587280 DOI: 10.1007/s00401-022-02435-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 11/01/2022]
Affiliation(s)
- Drew Pratt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20814, USA.
| | | | - Pavalan Panneer Selvam
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20814, USA
| | - Zied Abdullaev
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20814, USA
| | - Courtney Ketchum
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20814, USA
| | - Martha Quezado
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20814, USA
| | - Terri S Armstrong
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Mark Raffeld
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20814, USA
| | - Hyoyoung Choo-Wosoba
- Biostatistics and Data Management Section, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, MD, USA
| | - Priya Chan
- Division of Pediatric Hematology/Oncology, Department of Pediatrics (NW), and, Department of Neurosurgery (SC), University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Nicholas Whipple
- Division of Pediatric Hematology/Oncology, Department of Pediatrics (NW), and, Department of Neurosurgery (SC), University of Utah School of Medicine, Salt Lake City, UT, USA
| | - MacLean Nasrallah
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Vijay Ramaswamy
- Division of Haematology and Oncology, Hospital for Sick Children, Toronto, ON, Canada
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN , USA
| | - Timothy A Ritzmann
- The Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
| | - Richard G Grundy
- The Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
| | - Anna Burford
- Division of Molecular Pathology, Institute of Cancer Research, Sutton, UK
| | - Chris Jones
- Division of Molecular Pathology, Institute of Cancer Research, Sutton, UK
| | - Cynthia Hawkins
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sriram Venneti
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David A Solomon
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20814, USA.
| |
Collapse
|
16
|
The epigenetic dysfunction underlying malignant glioma pathogenesis. J Transl Med 2022; 102:682-690. [PMID: 35152274 DOI: 10.1038/s41374-022-00741-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/12/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Comprehensive molecular profiling has dramatically transformed the diagnostic neuropathology of brain tumors. Diffuse gliomas, the most common and deadly brain tumor variants, are now classified by highly recurrent biomarkers instead of histomorphological characteristics. Several of the key molecular alterations driving glioma classification involve epigenetic dysregulation at a fundamental level, implicating fields of biology not previously thought to play major roles glioma pathogenesis. This article will review the major epigenetic alterations underlying malignant gliomas, their likely mechanisms of action, and potential strategies for their therapeutic targeting.
Collapse
|
17
|
Chinnam D, Gupta K, Kiran T, Saraswati A, Salunke P, Madan R, Kumar N, Radotra BD. Molecular subgrouping of ependymoma across three anatomic sites and their prognostic implications. Brain Tumor Pathol 2022; 39:151-161. [PMID: 35348910 DOI: 10.1007/s10014-022-00429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/17/2022] [Indexed: 11/02/2022]
Abstract
The 2021 WHO classification stratifies ependymoma (EPN) into nine molecular subgroups according to the anatomic locations which outperforms histological grading. We aimed at molecularly reclassifying 200 EPN using immunohistochemistry (IHC) and sequencing for ZFTA fusions in supratentorial (ST) EPN. Further, we assessed the utility of L1CAM, cyclinD1, and p65 markers in identifying ZFTA fusion. Demographic profiles, histologic features, molecular subgroups and clinical outcome were retrospectively analyzed. IHC for L1CAM, cyclinD1, p65, H3K27me3, and H3K27M and sequencing for ZFTA fusion were performed. ZFTA fusions were identified in 44.8% ST EPN. p65 displayed the highest specificity (93.8%), while L1CAM had the highest sensitivity (92.3%) in detecting ZFTA fusions. The negative predictive value approached 96.6% and sensitivity improved to 96.2% with combinatorial IHC (L1CAM, cyclinD1, p65). H3K27me3 loss (PF-A) was noted in 65% PF EPN. Our results provide evidence that a combination of two of three (L1CAM, p65, and cyclinD1) can be used as surrogate markers for predicting fusion. ZFTA fusion, and its surrogate markers in ST, and H3K27me3 and younger age (< 5 years) in PF showed significant correlation with PFS and OS on univariate and Kaplan-Meier analysis. On multivariate analysis, H3K27me3 loss and younger age group are associated with poor clinical outcome.
Collapse
Affiliation(s)
- Dheeraj Chinnam
- Department of Pathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kirti Gupta
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Tanvi Kiran
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Aastha Saraswati
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pravin Salunke
- Department of Neurosurgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Renu Madan
- Department of Radiotherapy, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Narendra Kumar
- Department of Radiotherapy, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Bishan Dass Radotra
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
18
|
Deshmukh S, Ptack A, Krug B, Jabado N. Oncohistones: a roadmap to stalled development. FEBS J 2022; 289:1315-1328. [PMID: 33969633 PMCID: PMC9990449 DOI: 10.1111/febs.15963] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/17/2021] [Accepted: 05/07/2021] [Indexed: 01/18/2023]
Abstract
Since the discovery of recurrent mutations in histone H3 variants in paediatric brain tumours, so-called 'oncohistones' have been identified in various cancers. While their mechanism of action remains under active investigation, several studies have shed light on how they promote genome-wide epigenetic perturbations. These findings converge on altered post-translational modifications on two key lysine (K) residues of the H3 tail, K27 and K36, which regulate several cellular processes, including those linked to cell differentiation during development. We will review how these oncohistones affect the methylation of cognate residues, but also disrupt the distribution of opposing chromatin marks, creating genome-wide epigenetic changes which participate in the oncogenic process. Ultimately, tumorigenesis is promoted through the maintenance of a progenitor state at the expense of differentiation in defined cellular and developmental contexts. As these epigenetic disruptions are reversible, improved understanding of oncohistone pathogenicity can result in needed alternative therapies.
Collapse
Affiliation(s)
- Shriya Deshmukh
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Adam Ptack
- Department of Pediatrics, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Brian Krug
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Nada Jabado
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Department of Pediatrics, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| |
Collapse
|
19
|
Epigenetic mechanisms in paediatric brain tumours: regulators lose control. Biochem Soc Trans 2022; 50:167-185. [PMID: 35076654 DOI: 10.1042/bst20201227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/28/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022]
Abstract
Epigenetic mechanisms are essential to regulate gene expression during normal development. However, they are often disrupted in pathological conditions including tumours, where they contribute to their formation and maintenance through altered gene expression. In recent years, next generation genomic techniques has allowed a remarkable advancement of our knowledge of the genetic and molecular landscape of paediatric brain tumours and have highlighted epigenetic deregulation as a common hallmark in their pathogenesis. This review describes the main epigenetic dysregulations found in paediatric brain tumours, including at DNA methylation and histone modifications level, in the activity of chromatin-modifying enzymes and in the expression of non-coding RNAs. How these altered processes influence tumour biology and how they can be leveraged to dissect the molecular heterogeneity of these tumours and contribute to their classification is also addressed. Finally, the availability and value of preclinical models as well as the current clinical trials exploring targeting key epigenetic mediators in paediatric brain tumours are discussed.
Collapse
|
20
|
Zabrodskaya YM, Sidorin VS, Nikolaenko MS, Samochernikh KA. [Tumor progression of diffuse median glioma with H3 K27 alteration from pilocytic astrocytoma to glioblastoma]. Arkh Patol 2022; 84:40-46. [PMID: 36469716 DOI: 10.17116/patol20228406140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the latest revisions of the WHO Classification of CNS Tumors, carried out in 2016 and 2021, the traditional histogenetic classification of gliomas is rebuilt on a new molecular genetic basis, according to which diffuse midline glioma with alteration of histone H3 K27 is distinguished as a specific pediatric oncosyndrome. The rationale was the association of this feature of midline gliomas in children with a worse prognosis and the prospective possibilities of targeted therapy. A thematic review of the literature and our own observation of H3 K27M-positive glioma in the area of the right thalamus in a 6-year-old child, which initially had the appearance of pilocytic astrocytoma, recurred three times (within 1.5 years) and underwent tumor progression with anaplastic transformation into diffuse glioma of the glioblastoma type, are presented. The authors are inclined to believe that although the determination of the molecular genetic status of H3 K27 provides important information regarding the probable prognosis, at the same time there is no reason to doubt that histological verification should continue to be the basis of oncological diagnosis.
Collapse
Affiliation(s)
- Yu M Zabrodskaya
- Polenov Neurosurgical Institute - the branch of Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - V S Sidorin
- Polenov Neurosurgical Institute - the branch of Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - M S Nikolaenko
- Polenov Neurosurgical Institute - the branch of Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - K A Samochernikh
- Polenov Neurosurgical Institute - the branch of Almazov National Medical Research Centre, Saint Petersburg, Russia
| |
Collapse
|
21
|
Cell-of-Origin and Genetic, Epigenetic, and Microenvironmental Factors Contribute to the Intra-Tumoral Heterogeneity of Pediatric Intracranial Ependymoma. Cancers (Basel) 2021; 13:cancers13236100. [PMID: 34885210 PMCID: PMC8657076 DOI: 10.3390/cancers13236100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Intra-tumoral heterogeneity (ITH) is a complex multifaceted phenomenon that posits major challenges for the clinical management of cancer patients. Genetic, epigenetic, and microenvironmental factors are concurrent drivers of diversity among the distinct populations of cancer cells. ITH may also be installed by cancer stem cells (CSCs), that foster unidirectional hierarchy of cellular phenotypes or, alternatively, shift dynamically between distinct cellular states. Ependymoma (EPN), a molecularly heterogeneous group of tumors, shows a specific spatiotemporal distribution that suggests a link between ependymomagenesis and alterations of the biological processes involved in embryonic brain development. In children, EPN most often arises intra-cranially and is associated with an adverse outcome. Emerging evidence shows that EPN displays large intra-patient heterogeneity. In this review, after touching on EPN inter-tumoral heterogeneity, we focus on the sources of ITH in pediatric intra-cranial EPN in the framework of the CSC paradigm. We also examine how single-cell technology has shed new light on the complexity and developmental origins of EPN and the potential impact that this understanding may have on the therapeutic strategies against this deadly pediatric malignancy.
Collapse
|
22
|
Perez A, Huse JT. The Evolving Classification of Diffuse Gliomas: World Health Organization Updates for 2021. Curr Neurol Neurosci Rep 2021; 21:67. [PMID: 34817712 DOI: 10.1007/s11910-021-01153-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The upcoming 2021 World Health Organization (WHO) Classification of Tumours of the Central Nervous System will feature numerous changes in classification, diagnostic criteria, nomenclature, and grading of diffuse gliomas. This article reviews these changes and the clinical and molecular findings underlying them. RECENT FINDINGS Since the publication of the 2016 World Health Organization (WHO) Classification of Tumours of the Central Nervous System, research has led to new insights into how molecular changes impact both the classification and grading of CNS tumors. The continued integration of molecular and histopathological features has led to changes in diagnostic criteria and grading for various tumors. In the new 2021 WHO CNS tumor classification scheme, diffuse gliomas will be classified as either adult-type diffuse gliomas, pediatric-type diffuse high-grade gliomas, or pediatric-type diffuse low-grade gliomas. The upcoming changes in the classification of adult-type and pediatric-type diffuse gliomas allow for more effective communication of both diagnostic and prognostic information, and-particularly in the case of pediatric-type diffuse gliomas-may suggest possible targeted strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Alejandro Perez
- Department of Pathology, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 2130 W Holcombe Blvd, LSP9.4009, Unit 2951, Houston, TX, USA.
| |
Collapse
|
23
|
Dottermusch M, Uksul N, Knappe UJ, Erdlenbruch B, Wefers AK. An H3F3A K27M-mutation in a sonic hedgehog medulloblastoma. Brain Pathol 2021; 32:e13024. [PMID: 34747078 PMCID: PMC9048514 DOI: 10.1111/bpa.13024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
- Matthias Dottermusch
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nesrin Uksul
- Department of Neurosurgery, Johannes Wesling Klinikum, University Hospital of Ruhruniversität Bochum, Minden, Germany
| | - Ulrich J Knappe
- Department of Neurosurgery, Johannes Wesling Klinikum, University Hospital of Ruhruniversität Bochum, Minden, Germany
| | - Bernhard Erdlenbruch
- Johannes Wesling Klinikum Minden, University Department for Children and Adolescents, Ruhr University Hospital, Bochum, Germany
| | - Annika K Wefers
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
24
|
Abstract
ABSTRACT The classification, diagnosis, and biological understanding of high-grade gliomas has been transformed by an evolving understanding of glioma biology. High-grade gliomas, in particular, have exemplified the impact of molecular alterations in pathology. The discovery of mutations in a key metabolic enzyme (IDH), histone genes (H3-3A), and large-scale chromosome changes (+7/-10, 1p/19q) are examples of specific alterations that now supplant traditional histologic interpretation. Here, we review established and recently defined types of adult and pediatric high-grade gliomas with discussion of key molecular alterations that have been leveraged for subclassification, grading, or prognosis.
Collapse
|
25
|
Banan R, Akbarian A, Samii M, Samii A, Bertalanffy H, Lehmann U, Hartmann C, Brüning R. Diffuse midline gliomas, H3 K27M-mutant are associated with less peritumoral edema and contrast enhancement in comparison to glioblastomas, H3 K27M-wildtype of midline structures. PLoS One 2021; 16:e0249647. [PMID: 34347774 PMCID: PMC8336828 DOI: 10.1371/journal.pone.0249647] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose The entity ‘diffuse midline glioma, H3 K27M-mutant (DMG)’ was introduced in the revised 4th edition of the 2016 WHO classification of brain tumors. However, there are only a few reports on magnetic resonance imaging (MRI) of these tumors. Thus, we conducted a retrospective survey focused on MRI features of DMG compared to midline glioblastomas H3 K27M-wildtype (mGBM-H3wt). Methods We identified 24 DMG cases and 19 mGBM-H3wt patients as controls. After being retrospectively evaluated for microscopic evidence of microvascular proliferations (MVP) and tumor necrosis by two experienced neuropathologists to identify the defining histological criteria of mGBM-H3wt, the samples were further analyzed by two experienced readers regarding imaging features such as shape, peritumoral edema and contrast enhancement. Results The DMG were found in the thalamus in 37.5% of cases (controls 63%), in the brainstem in 50% (vs. 32%) and spinal cord in 12.5% (vs. 5%). In MRI and considering MVP, DMG were found to be by far less likely to develop peritumoral edema (OR: 0.13; 95%-CL: 0.02–0.62) (p = 0.010). They, similarly, were associated with a significantly lower probability of developing strong contrast enhancement compared to mGBM-H3wt (OR: 0.10; 95%-CL: 0.02–0.47) (P = 0.003). Conclusion Despite having highly variable imaging features, DMG exhibited markedly less edema and lower contrast enhancement in MRI compared to mGBM-H3wt. Of these features, the enhancement level was associated with evidence of MVP.
Collapse
Affiliation(s)
- Rouzbeh Banan
- Department of Neuropathology, University of Heidelberg, Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Arash Akbarian
- Department of Neuroradiology, INI-Hannover, Hannover, Germany
| | - Majid Samii
- Department of Neurosurgery, INI-Hannover, Hannover, Germany
| | - Amir Samii
- Department of Neurosurgery, INI-Hannover, Hannover, Germany
| | | | - Ulrich Lehmann
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Christian Hartmann
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Roland Brüning
- Radiology and Neuroradiology, Asklepios Klinik Barmbek, Hamburg, Germany
- * E-mail:
| |
Collapse
|
26
|
Ryzhova MV, Galstyan SA, Starovoitov DV, Snigireva GP, Zubova IV, Golanov AV, Pronin IN, Pavlova GV, Mertsalova MP, Belov AI, Kalinin PL, Serova NK. [Intraosseous metastasis of K27-mutant glioma]. Arkh Patol 2021; 83:40-44. [PMID: 34041895 DOI: 10.17116/patol20218303140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glioma metastasis outside the central nervous system is a quite rare phenomenon. The disease in a young woman manifested itself as back pain and loss of vision in the left eye. Magnetic resonance imaging (MRI) revealed a tumor of the optic nerve; positron emission tomography showed multiple secondary bone changes. At the same time, MRI detected no signs of neoplasm in the midline brain structures (the brain stem and subcortical nuclei) and spinal cord. Two biopsies (superior iliac spine trephine biopsy and optic nerve tumor biopsy) were performed. There were similar histological tumors; the optic nerve tumor was found to have K27M mutation in the H3F3A gene, whereas the metastatic tumor lacked this mutation (possibly due to the quality and quantity of DNA isolated from the tumor cells). The interesting features of this case are the simultaneous detection of primary and metastatic tumors before receiving any treatment and the absence of the K27M mutation in the H3F3A gene in the metastasis.
Collapse
Affiliation(s)
- M V Ryzhova
- Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - S A Galstyan
- Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - D V Starovoitov
- Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - G P Snigireva
- Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - I V Zubova
- Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - A V Golanov
- Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - I N Pronin
- Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - G V Pavlova
- Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - M P Mertsalova
- Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - A I Belov
- Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - P L Kalinin
- Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - N K Serova
- Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| |
Collapse
|
27
|
Amatori S, Tavolaro S, Gambardella S, Fanelli M. The dark side of histones: genomic organization and role of oncohistones in cancer. Clin Epigenetics 2021; 13:71. [PMID: 33827674 PMCID: PMC8025322 DOI: 10.1186/s13148-021-01057-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Background The oncogenic role of histone mutations is one of the most relevant discovery in cancer epigenetics. Recurrent mutations targeting histone genes have been described in pediatric brain tumors, chondroblastoma, giant cell tumor of bone and other tumor types. The demonstration that mutant histones can be oncogenic and drive the tumorigenesis in pediatric tumors, led to the coining of the term “oncohistones.” The first identified histone mutations were localized at or near residues normally targeted by post-translational modifications (PTMs) in the histone N-terminal tails and suggested a possible interference with histone PTMs regulation and reading. Main body In this review, we describe the peculiar organization of the multiple genes that encode histone proteins, and the latter advances in both the identification and the biological role of histone mutations in cancer. Recent works show that recurrent somatic mutations target both N-terminal tails and globular histone fold domain in diverse tumor types. Oncohistones are often dominant-negative and occur at higher frequencies in tumors affecting children and adolescents. Notably, in many cases the mutations target selectively only some of the genes coding the same histone protein and are frequently associated with specific tumor types or, as documented for histone variant H3.3 in pediatric glioma, with peculiar tumors arising from specific anatomic locations. Conclusion The overview of the most recent advances suggests that the oncogenic potential of histone mutations can be exerted, together with the alteration of histone PTMs, through the destabilization of nucleosome and DNA–nucleosome interactions, as well as through the disruption of higher-order chromatin structure. However, further studies are necessary to fully elucidate the mechanism of action of oncohistones, as well as to evaluate their possible application to cancer classification, prognosis and to the identification of new therapies.
Collapse
Affiliation(s)
- Stefano Amatori
- Department of Biomolecular Sciences, Molecular Pathology Laboratory "PaoLa", University of Urbino Carlo Bo, Via Arco d'Augusto 2, 61032, Fano, PU, Italy.
| | - Simona Tavolaro
- Fredis Associazione, Via Edoardo Jenner 30, 00151, Rome, Italy
| | - Stefano Gambardella
- Department of Biomolecular Sciences, Molecular Pathology Laboratory "PaoLa", University of Urbino Carlo Bo, Via Arco d'Augusto 2, 61032, Fano, PU, Italy.,IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli, IS, Italy
| | - Mirco Fanelli
- Department of Biomolecular Sciences, Molecular Pathology Laboratory "PaoLa", University of Urbino Carlo Bo, Via Arco d'Augusto 2, 61032, Fano, PU, Italy.
| |
Collapse
|
28
|
Abstract
Pediatric gliomas are biologically distinct from adult gliomas. Although recent literature uncovered new genetic alterations, the prognostic implications of these discoveries are still unclear. This article provides an update on the histologic and molecular features with prognostic and/or therapeutic implications in pediatric gliomas.
Collapse
Affiliation(s)
- Jared Ahrendsen
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02115, USA
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Bader 104, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Li H, Shan C, Wu S, Cheng B, Fan C, Cai L, Chen Y, Shi Y, Liu K, Shao Y, Zhu D, Li Z. Genomic Profiling Identified Novel Prognostic Biomarkers in Chinese Midline Glioma Patients. Front Oncol 2021; 10:607429. [PMID: 33747896 PMCID: PMC7968371 DOI: 10.3389/fonc.2020.607429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/26/2020] [Indexed: 12/21/2022] Open
Abstract
Background Molecular characteristics are essential for the classification and grading of gliomas. However, diagnostic classification of midline glioma is still debatable and substantial molecular and clinical heterogeneity within each subgroup suggested that they should be further stratified. Here, we studied the mutation landscape of Chinese midline glioma patients in hope to provide new insights for glioma prognosis and treatment. Methods Tissue samples from 112 midline glioma patients underwent next-generation sequencing targeting 425 cancer-relevant genes. Gene mutations and copy number variations were investigated for their somatic interactions and prognostic effect using overall survival data. Pathway-based survival analysis was performed for ten canonical oncogenic pathways. Results We identified several currently established diagnostic and prognostic biomarkers of glioma, including TP53 (33%), EGFR (26%), TERT (24%), PTEN (21%), PIK3CA (14%), ATRX (14%), BRAF (13%), and IDH1/2 (6%). Among all genetic aberrations with more than 5% occurrence rate, six mutations and three copy number gains were greatly associated with poor overall survival (univariate, P < 0.1). Of these, TERT mutations (hazard ratio [HR], 3.00; 95% confidence interval [CI], 1.37–6.61; P = 0.01) and PIK3CA mutations (HR, 2.04; 95% CI, 1.08–3.84; P = 0.02) remained significant in multivariate analyses. Additionally, we have also identified a novel MCL1 amplification (found in 31% patients) as a potential independent biomarker for glioma (multivariate HR, 2.78; 95% CI, 1.53–5.08; P < 0.001), which was seldom reported in public databases. Pathway analyses revealed significantly worse prognosis with abnormal PI3K (HR, 1.81; 95% CI, 1.12–2.95; P = 0.01) and cell cycle pathways (HR, 1.97; 95% CI, 1.15–3.37; P = 0.01), both of which stayed meaningful after multivariate adjustment. Conclusions In this study, we discovered shorter survival in midline glioma patients with PIK3CA and TERT mutations and with abnormal PI3K and cell cycle pathways. We also revealed a novel prognostic marker, MCL1 amplification that collectively provided new insights and opportunities in understanding and treating midline gliomas.
Collapse
Affiliation(s)
- Hainan Li
- Department of Pathology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Changguo Shan
- Department of Pathology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Shengnan Wu
- Department of Pathology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Baijie Cheng
- Department of Pathology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Chongzu Fan
- Department of Pathology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Linbo Cai
- Department of Pathology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Yedan Chen
- Medical Department, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Yuqian Shi
- Medical Department, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Kaihua Liu
- Medical Department, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Yang Shao
- Medical Department, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Dan Zhu
- Department of Pathology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Zhi Li
- Department of Pathology, Guangdong Provincial People's Hospital, Guangzhou, China
| |
Collapse
|
30
|
Levine AB, Wong D, Fatehi M, Yip S. Ependymoma and Chordoma. Neurosurgery 2021; 87:860-870. [PMID: 33057707 DOI: 10.1093/neuros/nyaa329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/31/2020] [Indexed: 11/14/2022] Open
Abstract
Ependymoma and chordoma are 2 tumors that occur throughout the craniospinal axis, and for which the extent of neurosurgical resection has a key prognostic role. Both tumors have distinctive pathologic features, yet can present significant diagnostic challenges to pathologists in cases without classical histology. The molecular understanding of ependymoma has had significant advances in the past decade, with the identification of 9 molecular groups with significant prognostic and clinical implications, while a comprehensive study of chordoma further emphasized the key role of brachyury overexpression in its pathogenesis. In this review, we discuss the pathogenesis, radiology and gross pathology, histology, and molecular features of these 2 tumors, as well as active research into targeted therapies, with an emphasis on practical diagnostic challenges, and the use of immunohistochemical and molecular tests in routine diagnostic practice.
Collapse
Affiliation(s)
- Adrian B Levine
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Derek Wong
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mostafa Fatehi
- Department of Neurosurgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
31
|
Haase S, Nuñez FM, Gauss JC, Thompson S, Brumley E, Lowenstein P, Castro MG. Hemispherical Pediatric High-Grade Glioma: Molecular Basis and Therapeutic Opportunities. Int J Mol Sci 2020; 21:ijms21249654. [PMID: 33348922 PMCID: PMC7766684 DOI: 10.3390/ijms21249654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
In this review, we discuss the molecular characteristics, development, evolution, and therapeutic perspectives for pediatric high-grade glioma (pHGG) arising in cerebral hemispheres. Recently, the understanding of biology of pHGG experienced a revolution with discoveries arising from genomic and epigenomic high-throughput profiling techniques. These findings led to identification of prevalent molecular alterations in pHGG and revealed a strong connection between epigenetic dysregulation and pHGG development. Although we are only beginning to unravel the molecular biology underlying pHGG, there is a desperate need to develop therapies that would improve the outcome of pHGG patients, as current therapies do not elicit significant improvement in median survival for this patient population. We explore the molecular and cell biology and clinical state-of-the-art of pediatric high-grade gliomas (pHGGs) arising in cerebral hemispheres. We discuss the role of driving mutations, with a special consideration of the role of epigenetic-disrupting mutations. We will also discuss the possibilities of targeting unique molecular vulnerabilities of hemispherical pHGG to design innovative tailored therapies.
Collapse
Affiliation(s)
- Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (S.H.); (F.M.N.); (J.C.G.); (S.T.); (E.B.); (P.L.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Fernando M. Nuñez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (S.H.); (F.M.N.); (J.C.G.); (S.T.); (E.B.); (P.L.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jessica C. Gauss
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (S.H.); (F.M.N.); (J.C.G.); (S.T.); (E.B.); (P.L.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sarah Thompson
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (S.H.); (F.M.N.); (J.C.G.); (S.T.); (E.B.); (P.L.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emily Brumley
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (S.H.); (F.M.N.); (J.C.G.); (S.T.); (E.B.); (P.L.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pedro Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (S.H.); (F.M.N.); (J.C.G.); (S.T.); (E.B.); (P.L.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (S.H.); (F.M.N.); (J.C.G.); (S.T.); (E.B.); (P.L.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Correspondence:
| |
Collapse
|
32
|
Nambirajan A, Sharma A, Rajeshwari M, Boorgula MT, Doddamani R, Garg A, Suri V, Sarkar C, Sharma MC. EZH2 inhibitory protein (EZHIP/Cxorf67) expression correlates strongly with H3K27me3 loss in posterior fossa ependymomas and is mutually exclusive with H3K27M mutations. Brain Tumor Pathol 2020; 38:30-40. [PMID: 33130928 DOI: 10.1007/s10014-020-00385-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/06/2020] [Indexed: 11/30/2022]
Abstract
The PFA molecular subgroup of posterior fossa ependymomas (PF-EPNs) shows poor outcome. H3K27me3 (me3) loss by immunohistochemistry (IHC) is a surrogate marker for PFA wherein its loss is attributed to overexpression of Cxorf67/EZH2 inhibitory protein (EZHIP), C17orf96, and ATRX loss. We aimed to subgroup PF-EPNs using me3 IHC and study correlations of the molecular subgroups with other histone related proteins, 1q gain, Tenascin C and outcome. IHC for me3, acetyl-H3K27, H3K27M, ATRX, EZH2, EZHIP, C17orf96, Tenascin-C, and fluorescence in-situ hybridisation for chromosome 1q25 locus were performed on an ambispective PF-EPN cohort (2003-2019). H3K27M-mutant gliomas were included for comparison. Among 69 patients, PFA (me3 loss) constituted 64%. EZHIP overexpression and 1q gain were exclusive to PFA seen in 72% and 19%, respectively. Tenascin C was more frequently positive in PFA (p = 0.02). H3K27M expression and ATRX loss were noted in one case of PFA-EPN each. All H3K27M-mutant gliomas (n = 8) and PFA-EPN (n = 1) were EZHIP negative. C17orf96 and acetyl-H3K27 expression did not correlate with me3 loss. H3K27me3 is a robust surrogate for PF-EPN molecular subgrouping. EZHIP overexpression was exclusive to PFA EPNs and was characteristically absent in midline gliomas and the rare PFA harbouring H3K27M mutations representing mutually exclusive pathways leading to me3 loss.
Collapse
Affiliation(s)
- Aruna Nambirajan
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Agrima Sharma
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Madhu Rajeshwari
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Meher Tej Boorgula
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Ramesh Doddamani
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Ajay Garg
- Department of Neuroradiology, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Mehar Chand Sharma
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
33
|
Abstract
Gliomas are a diverse group of primary central nervous system tumors with astrocytic, oligodendroglial, and/or ependymal features and are an important cause of morbidity/mortality in pediatric patients. Glioma classification relies on integrating tumor histology with key molecular alterations. This approach can help establish a diagnosis, guide treatment, and determine prognosis. New categories of pediatric glioma have been recognized in recent years, due to increasing application of molecular profiling in brain tumors. The aim of this review is to alert pediatric pathologists to emerging diagnostic concepts in pediatric glioma neuropathology, emphasizing the incorporation of molecular features into diagnostic practice.
Collapse
Affiliation(s)
- Melanie H Hakar
- Department of Pathology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, L-113, Portland, OR 97239, USA
| | - Matthew D Wood
- Department of Pathology, Oregon Health & Science University and Knight Cancer Institute, 3181 Southwest Sam Jackson Park Road, L-113, Portland, OR 97239, USA.
| |
Collapse
|
34
|
Hübner JM, Müller T, Papageorgiou DN, Mauermann M, Krijgsveld J, Russell RB, Ellison DW, Pfister SM, Pajtler KW, Kool M. EZHIP/CXorf67 mimics K27M mutated oncohistones and functions as an intrinsic inhibitor of PRC2 function in aggressive posterior fossa ependymoma. Neuro Oncol 2020; 21:878-889. [PMID: 30923826 DOI: 10.1093/neuonc/noz058] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Posterior fossa A (PFA) ependymomas are one of 9 molecular groups of ependymoma. PFA tumors are mainly diagnosed in infants and young children, show a poor prognosis, and are characterized by a lack of the repressive histone H3 lysine 27 trimethylation (H3K27me3) mark. Recently, we reported overexpression of chromosome X open reading frame 67 (CXorf67) as a hallmark of PFA ependymoma and showed that CXorf67 can interact with enhancer of zeste homolog 2 (EZH2), thereby inhibiting polycomb repressive complex 2 (PRC2), but the mechanism of action remained unclear. METHODS We performed mass spectrometry and peptide modeling analyses to identify the functional domain of CXorf67 responsible for binding and inhibition of EZH2. Our findings were validated by immunocytochemistry, western blot, and methyltransferase assays. RESULTS We find that the inhibitory mechanism of CXorf67 is similar to diffuse midline gliomas harboring H3K27M mutations. A small, highly conserved peptide sequence located in the C-terminal region of CXorf67 mimics the sequence of K27M mutated histones and binds to the SET domain (Su(var)3-9/enhancer-of-zeste/trithorax) of EZH2. This interaction blocks EZH2 methyltransferase activity and inhibits PRC2 function, causing de-repression of PRC2 target genes, including genes involved in neurodevelopment. CONCLUSIONS Expression of CXorf67 is an oncogenic mechanism that drives H3K27 hypomethylation in PFA tumors by mimicking K27M mutated histones. Disrupting the interaction between CXorf67 and EZH2 may serve as a novel targeted therapy for PFA tumors but also for other tumors that overexpress CXorf67. Based on its function, we have renamed CXorf67 as "EZH Inhibitory Protein" (EZHIP).
Collapse
Affiliation(s)
- Jens-Martin Hübner
- Division of Pediatric Neurooncology, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Torsten Müller
- Division of Proteomics of Stem Cells and Cancer, DKFZ, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Dimitris N Papageorgiou
- Division of Pediatric Neurooncology, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Monika Mauermann
- Division of Pediatric Neurooncology, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center, Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, DKFZ, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Robert B Russell
- Heidelberg University Biochemistry Center, Heidelberg, Germany.,Bioquant, Heidelberg University, Heidelberg, Germany
| | - David W Ellison
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University Hospital, Heidelberg, Germany
| | - Kristian W Pajtler
- Division of Pediatric Neurooncology, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University Hospital, Heidelberg, Germany
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center, Heidelberg, Germany
| |
Collapse
|
35
|
Is H3K27me3 status really a strong prognostic indicator for pediatric posterior fossa ependymomas? A single surgeon, single center experience. Childs Nerv Syst 2020; 36:941-949. [PMID: 32025869 DOI: 10.1007/s00381-020-04518-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/22/2020] [Indexed: 01/19/2023]
Abstract
PURPOSE Posterior fossa ependymomas (PFE) are among the most frequently occurring solid tumors in children. Their definitive treatment is surgical excision and adjuvant radio-chemotherapy. This study aimed to investigate prognostic effects of age, H3K27me3 status, extent of resection, radiation treatment (RT), Ki67 index, WHO grade, and ATRX and H3K27M mutations in PFE patients. METHODS This retrospective study included 42 pediatric patients with PFE who had undergone operation at our institution between 1996 and 2018. Patient demographics and treatment information were obtained from patient notes. Information on radiological location of tumors (median vs paramedian), extent of tumor resection, and recurrence was obtained from preoperative and postoperative magnetic resonance imaging. Formalin-fixed paraffin-embedded tumor samples were evaluated for H3K27me3 immunostaining, Ki67 index, WHO grades, and ATRX and H3K27M mutations. Tumor samples with global reduction in H3K27me3 were grouped as posterior fossa ependymoma group A (PFA) and those with H3K27me3 nuclear immunopositivity as posterior fossa ependymoma group B (PFB). We evaluated the cohort's 5-year progression-free survival (PFS) and overall survival (OS). RESULTS There were 20 (47.6%) female and 22 (52.4%) male patients in the cohort. The mean age of patients was 4.4 (range, 0.71-14.51) years. Overall, tumors in 31 (73.8%) and 11 (26.2%) patients were found to be PFA and PFB, respectively. There was no statistically significant age or sex difference between PFA and PFB. All patients received chemotherapy, whereas only 28 (66.6%) received RT. The WHO grades of PFA were statistically higher than those of PFB. There was no significant difference between PFA and PFB in terms of extent of resection, disease recurrence, and survival parameters. Nine of 42 tumor samples had ATRX mutations. One patient with PFA showed H3K27M mutation. Age, WHO grade, H3K27me3 status, and RT had no effect on patients' PFS and OS. Patients with total surgical excisions had significantly better PFS and OS rates. Those with Ki67 < 50% also had better OS rates. CONCLUSIONS Determining H3K27me3 status by immunohistochemistry is a widely accepted method for molecular subgrouping of PFEs. Most of the reports in the literature state that molecular subgroups of PFEs have significantly different clinical outcomes. However, in our present series, we have shown that the extent of surgical excision is still the most important prognostic indicator in PFEs. We also conclude that the prognostic effect of H3K27me3 status-based molecular subgrouping may be minimized with a more aggressive surgical strategy followed in PFAs.
Collapse
|
36
|
Meredith DM. Advances in Diagnostic Immunohistochemistry for Primary Tumors of the Central Nervous System. Adv Anat Pathol 2020; 27:206-219. [PMID: 30720470 DOI: 10.1097/pap.0000000000000225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As genomic characterization becomes increasingly necessary for accurate diagnosis of tumors of the central nervous system, identification of rapidly assessible biomarkers is equally important to avoid excessive cost and delay in initiation of therapy. This article reviews novel immunohistochemical markers that may be used to determine mutation status, activation of signaling pathways, druggable targets, and cell lineage in many diverse tumor types. In particular, recently added entities to the 2016 WHO classification of central nervous system tumors will be addressed, including IDH-mutant gliomas, diffuse midline glioma, epithelioid glioblastoma, angiocentric glioma, RELA-rearranged ependymoma, embryonal tumors (medulloblastoma, atypical teratoid/rhabdoid tumor, pineoblastoma, embryonal tumor with multilayered rosettes, and other genetically defined high-grade neuroepithelial tumors), and meningiomas associated with germline alterations.
Collapse
|
37
|
Fomchenko EI, Erson-Omay EZ, Kundishora AJ, Hong CS, Daniel AA, Allocco A, Duy PQ, Darbinyan A, Marks AM, DiLuna ML, Kahle KT, Huttner A. Genomic alterations underlying spinal metastases in pediatric H3K27M-mutant pineal parenchymal tumor of intermediate differentiation: case report. J Neurosurg Pediatr 2020; 25:121-130. [PMID: 31653819 DOI: 10.3171/2019.8.peds18664] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 08/21/2019] [Indexed: 11/06/2022]
Abstract
Pediatric midline tumors are devastating high-grade lesions with a dismal prognosis and no curative surgical options. Here, the authors report the clinical presentation, surgical management, whole-exome sequencing (WES), and clonality analysis of a patient with a radically resected H3K27M-mutant pineal parenchymal tumor (PPT) and spine metastases consistent with PPT of intermediate differentiation (PPTID). They identified somatic mutations in H3F3A (H3K27M), FGFR1, and NF1 both in the original PPT and in the PPTID metastases. They also found 12q amplification containing CDK4/MDM2 and chromosome 17 loss of heterozygosity overlapping with NF1 that resulted in biallelic NF1 loss. They noted a hypermutated phenotype with increased C>T transitions within the PPTID metastases and 2p amplification overlapping with the MYCN locus. Clonality analysis detected three founder clones maintained during progression and metastasis. Tumor clones present within the PPTID metastases but not the pineal midline tumor harbored mutations in APC and TIMP2.While the majority of H3K27M mutations are found in pediatric midline gliomas, it is increasingly recognized that this mutation is present in a wider range of lesions with a varied morphological appearance. The present case appears to be the first description of H3K27M mutation in PPTID. Somatic mutations in H3F3A, FGFR1, and NF1 have been suggested to be driver mutations in pediatric midline gliomas. Their clonality and presence in over 80% of tumor cells in our patient's PPTID are consistent with similarly crucial roles in early tumorigenesis, with progression mediated by copy number variations and chromosomal aberrations involving known oncogenes and tumor suppressors. The roles of APC and TIMP2 mutations in progression and metastasis remain to be investigated.
Collapse
Affiliation(s)
| | | | | | | | - Ava A Daniel
- 8Yale College, Yale University, New Haven, Connecticut
| | | | | | | | | | | | - Kristopher T Kahle
- Departments of1Neurosurgery
- 4Centers for Mendelian Genomics and Yale Program on Neurogenetics, Yale School of Medicine; and
- 5Pediatrics
- 6Cellular & Molecular Physiology, and
| | | |
Collapse
|
38
|
Lester A, McDonald KL. Intracranial ependymomas: molecular insights and translation to treatment. Brain Pathol 2020; 30:3-12. [PMID: 31433520 PMCID: PMC8018002 DOI: 10.1111/bpa.12781] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022] Open
Abstract
Ependymomas are primary central nervous system tumors (CNS), arising within the posterior fossa and supratentorial regions of the brain, and in the spine. Over the last decade, research has resulted in substantial insights into the molecular characteristics of ependymomas, and significant advances have been made in the establishment of a molecular classification system. Ependymomas both within and between the three CNS regions in which they arise, have been shown to contain distinct genetic, epigenetic and cytogenic aberrations, with at least three molecularly distinct subgroups identified within each region. However, these advances in molecular characterization have yet to be translated into clinical practice, with the standard treatment for ependymoma patients largely unchanged. This review summarizes the advances made in the molecular characterization of intracranial ependymomas, outlines the progress made in establishing preclinical models and proposes strategies for moving toward subgroup-specific preclinical investigations and treatment.
Collapse
Affiliation(s)
- Ashleigh Lester
- Adult Cancer Program, Lowy Cancer Research CentreUniversity of NSWSydneyAustralia
| | - Kerrie L. McDonald
- Adult Cancer Program, Lowy Cancer Research CentreUniversity of NSWSydneyAustralia
| |
Collapse
|
39
|
Fujioka Y, Hata N, Hatae R, Suzuki SO, Sangatsuda Y, Nakahara Y, Mizoguchi M, Iihara K. A case of diffuse midline glioma, H3 K27M mutant mimicking a hemispheric malignant glioma in an elderly patient. Neuropathology 2019; 40:99-103. [PMID: 31762138 DOI: 10.1111/neup.12609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/31/2019] [Accepted: 08/31/2019] [Indexed: 11/27/2022]
Abstract
Diffuse midline glioma, H3 K27M mutant arises from midline structures of the central nervous system and predominately affects pediatric patients. However, this disease entity was only recently established, and the clinical phenotypic spectrum remains largely unclear. We herein report a rare case of diffuse midline glioma, H3 K27M mutant with an unusual distribution in an elderly woman who presented with a diffuse glioma that invaded both sides of the thalami, and left hippocampus and frontoparietal lobes, thus mimicking a hemispheric malignant glioma. A biopsy of the lobular lesion led to a molecular diagnostic confirmation of diffuse midline glioma, H3 K27M mutant. The patient received concurrent bevacizumab and temozolomide therapy with radiation therapy and survived for 30 months. This case highlights the possibility that a glioma with cerebral hemispheric spread in an elderly patient may harbor the H3 K27M mutation.
Collapse
Affiliation(s)
- Yutaka Fujioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Neurosurgery, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Neurosurgery, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Ryusuke Hatae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi O Suzuki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Neurosurgery, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Yukiko Nakahara
- Department of Neurosurgery, School of Medicine, Saga University, Saga, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Iihara
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
40
|
Kristensen BW, Priesterbach-Ackley LP, Petersen JK, Wesseling P. Molecular pathology of tumors of the central nervous system. Ann Oncol 2019; 30:1265-1278. [PMID: 31124566 PMCID: PMC6683853 DOI: 10.1093/annonc/mdz164] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Since the update of the 4th edition of the WHO Classification of Central Nervous System (CNS) Tumors published in 2016, particular molecular characteristics are part of the definition of a subset of these neoplasms. This combined 'histo-molecular' approach allows for a much more precise diagnosis of especially diffuse gliomas and embryonal CNS tumors. This review provides an update of the most important diagnostic and prognostic markers for state-of-the-art diagnosis of primary CNS tumors. Defining molecular markers for diffuse gliomas are IDH1/IDH2 mutations, 1p/19q codeletion and mutations in histone H3 genes. Medulloblastomas, the most frequent embryonal CNS tumors, are divided into four molecularly defined groups according to the WHO 2016 Classification: wingless/integrated (WNT) signaling pathway activated, sonic hedgehog (SHH) signaling pathway activated and tumor protein p53 gene (TP53)-mutant, SHH-activated and TP53-wildtype, and non-WNT/non-SHH-activated. Molecular characteristics are also important for the diagnosis of several other CNS tumors, such as RELA fusion-positive subtype of ependymoma, atypical teratoid rhabdoid tumor (AT/RT), embryonal tumor with multilayered rosettes, and solitary fibrous tumor/hemangiopericytoma. Immunohistochemistry is a helpful alternative for further molecular characterization of several of these tumors. Additionally, genome-wide methylation profiling is a very promising new tool in CNS tumor diagnostics. Much progress has thus been made by translating the most relevant molecular knowledge into a more precise clinical diagnosis of CNS tumors. Hopefully, this will enable more specific and more effective therapeutic approaches for the patients suffering from these tumors.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Brain/pathology
- Brain Neoplasms/diagnosis
- Brain Neoplasms/drug therapy
- Brain Neoplasms/genetics
- Brain Neoplasms/mortality
- DNA Methylation
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Glioma/diagnosis
- Glioma/drug therapy
- Glioma/genetics
- Glioma/mortality
- Humans
- Immunohistochemistry
- Molecular Targeted Therapy/methods
- Mutation
- Neoplasms, Germ Cell and Embryonal/diagnosis
- Neoplasms, Germ Cell and Embryonal/drug therapy
- Neoplasms, Germ Cell and Embryonal/genetics
- Neoplasms, Germ Cell and Embryonal/mortality
- Prognosis
- Survival Rate
- Treatment Outcome
Collapse
Affiliation(s)
- B W Kristensen
- Department of Pathology, Odense University Hospital, Odense; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | | | - J K Petersen
- Department of Pathology, Odense University Hospital, Odense; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - P Wesseling
- Department of Pathology, University Medical Center Utrecht, Utrecht; Princess Máxima Center for Pediatric Oncology, Utrecht; Department of Pathology, Amsterdam University Medical Centers/VU Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
41
|
He P, Chen W, Qiu XX, Xi YB, Guan H, Xia J. A Rare High-Grade Glioma with a Histone H3 K27M Mutation in the Hypothalamus of an Adult Patient. World Neurosurg 2019; 128:527-531. [PMID: 31048046 DOI: 10.1016/j.wneu.2019.04.172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diffuse midline glioma H3 K27M mutant is a new tumor entity described in the revised 2016 World Health Organization classification. It is most frequently observed in children and develops in midline structures, including the brainstem, thalamus, and spine. We describe a rare diffuse midline glioma with an H3 K27M mutation arising in the hypothalamus of an adult. CASE DESCRIPTION A 27-year-old woman was admitted to our department complaining of amenorrhea, polydipsia, and diuresis for the previous 3 months, and headache and lethargy for approximately 10 days. Computed tomography scan showed an oval isodense solid mass extending from the pituitary toward the suprasellar cistern. A gadolinium-enhanced magnetic resonance imaging (MRI) showed a strongly heterogeneous enhanced solid lesion and nonenhanced cystic lesion. The patient underwent surgery and chemoradiotherapy with temozolomide. Histologic and immunohistochemical analyses revealed H3 K27M-mutant diffuse midline glioma. The patient underwent another resection for a recurrent tumor 5 months after the first surgery. Three months after the second operation, the patient relapsed, with MRI revealing spinal cord and meningeal metastases; she died shortly afterward. CONCLUSIONS Diffuse midline glioma with an H3 K27M mutation occurring in the hypothalamus of an adult is rare but should be considered in differential diagnoses. Because histone H3 K27M mutations are associated with aggressive clinical behavior and poor prognosis, molecular analyses should be used to determine the clinical and histopathologic features of such tumors. This will contribute to developing targeted drugs and gene therapy going forward.
Collapse
Affiliation(s)
- Pin He
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China; Shenzhen Second People's Hospital, Shenzhen, China
| | - Wei Chen
- Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China; Department of Radiology, Pingshan District People's Hospital, Hubei University of Medicine, Shenzhen, Guangdong, China
| | - Xi Xiong Qiu
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China; Shenzhen Second People's Hospital, Shenzhen, China
| | - Yi Bin Xi
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Hong Guan
- Department of Pathology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China; Shenzhen Second People's Hospital, Shenzhen, China
| | - Jun Xia
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China; Shenzhen Second People's Hospital, Shenzhen, China.
| |
Collapse
|
42
|
Jain SU, Do TJ, Lund PJ, Rashoff AQ, Diehl KL, Cieslik M, Bajic A, Juretic N, Deshmukh S, Venneti S, Muir TW, Garcia BA, Jabado N, Lewis PW. PFA ependymoma-associated protein EZHIP inhibits PRC2 activity through a H3 K27M-like mechanism. Nat Commun 2019; 10:2146. [PMID: 31086175 PMCID: PMC6513997 DOI: 10.1038/s41467-019-09981-6] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/08/2019] [Indexed: 01/06/2023] Open
Abstract
Posterior fossa type A (PFA) ependymomas exhibit very low H3K27 methylation and express high levels of EZHIP (Enhancer of Zeste Homologs Inhibitory Protein, also termed CXORF67). Here we find that a conserved sequence in EZHIP is necessary and sufficient to inhibit PRC2 catalytic activity in vitro and in vivo. EZHIP directly contacts the active site of the EZH2 subunit in a mechanism similar to the H3 K27M oncohistone. Furthermore, expression of H3 K27M or EZHIP in cells promotes similar chromatin profiles: loss of broad H3K27me3 domains, but retention of H3K27me3 at CpG islands. We find that H3K27me3-mediated allosteric activation of PRC2 substantially increases the inhibition potential of EZHIP and H3 K27M, providing a mechanism to explain the observed loss of H3K27me3 spreading in tumors. Our data indicate that PFA ependymoma and DIPG are driven in part by the action of peptidyl PRC2 inhibitors, the K27M oncohistone and the EZHIP 'oncohistone-mimic', that dysregulate gene silencing to promote tumorigenesis.
Collapse
Affiliation(s)
- Siddhant U Jain
- Department of Biomolecular Chemistry, School of Medicine and Public Health and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, 53715, USA
| | - Truman J Do
- Department of Biomolecular Chemistry, School of Medicine and Public Health and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, 53715, USA
| | - Peder J Lund
- Department of Biochemistry and Biophysics, and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrew Q Rashoff
- Department of Biomolecular Chemistry, School of Medicine and Public Health and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, 53715, USA
| | - Katharine L Diehl
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Marcin Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Andrea Bajic
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Nikoleta Juretic
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Shriya Deshmukh
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Sriram Venneti
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Peter W Lewis
- Department of Biomolecular Chemistry, School of Medicine and Public Health and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, 53715, USA.
| |
Collapse
|
43
|
Lowe BR, Maxham LA, Hamey JJ, Wilkins MR, Partridge JF. Histone H3 Mutations: An Updated View of Their Role in Chromatin Deregulation and Cancer. Cancers (Basel) 2019; 11:E660. [PMID: 31086012 PMCID: PMC6562757 DOI: 10.3390/cancers11050660] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/27/2023] Open
Abstract
In this review, we describe the attributes of histone H3 mutants identified in cancer. H3 mutants were first identified in genes encoding H3.3, in pediatric high-grade glioma, and subsequently in chondrosarcomas and giant cell tumors of bone (GCTB) in adolescents. The most heavily studied are the lysine to methionine mutants K27M and K36M, which perturb the target site for specific lysine methyltransferases and dominantly perturb methylation of corresponding lysines in other histone H3 proteins. We discuss recent progress in defining the consequences of these mutations on chromatin, including a newly emerging view of the central importance of the disruption of H3K36 modification in many distinct K to M histone mutant cancers. We also review new work exploring the role of H3.3 G34 mutants identified in pediatric glioma and GCTB. G34 is not itself post-translationally modified, but G34 mutation impinges on the modification of H3K36. Here, we ask if G34R mutation generates a new site for methylation on the histone tail. Finally, we consider evidence indicating that histone mutations might be more widespread in cancer than previously thought, and if the perceived bias towards mutation of H3.3 is real or reflects the biology of tumors in which the histone mutants were first identified.
Collapse
Affiliation(s)
- Brandon R Lowe
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38112, USA.
| | - Lily A Maxham
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38112, USA.
| | - Joshua J Hamey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia.
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia.
| | - Janet F Partridge
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38112, USA.
| |
Collapse
|
44
|
Butt E, Alyami S, Nageeti T, Saeed M, AlQuthami K, Bouazzaoui A, Athar M, Abduljaleel Z, Al-Allaf F, Taher M. Mutation profiling of anaplastic ependymoma grade III by Ion Proton next generation DNA sequencing. F1000Res 2019; 8:613. [PMID: 32612806 PMCID: PMC7317822 DOI: 10.12688/f1000research.18721.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Ependymomas are glial tumors derived from differentiated ependymal cells. In contrast to other types of brain tumors, histological grading is not a good prognostic marker for these tumors. In order to determine genomic changes in an anaplastic ependymoma, we analyzed its mutation patterns by next generation sequencing (NGS). Methods: Tumor DNA was sequenced using an Ion PI v3 chip on Ion Proton instrument and the data were analyzed by Ion Reporter 5.6. Results: NGS analysis identified 19 variants, of which four were previously reported missense variants; c.395G>A in IDH1, c.1173A>G in PIK3CA, c.1416A>T in KDR and c.215C>G in TP53. The frequencies of the three missense mutations ( PIK3CA c.1173A>G, KDR c.1416A>T, TP53, c.215C>G) were high, suggesting that these are germline variants, whereas the IDH1 variant frequency was low (4.81%). However, based on its FATHMM score of 0.94, only the IDH1 variant is pathogenic; other variants TP53, PIK3CA and KDR had FATHMM scores of 0.22, 0.56 and 0.07, respectively. Eight synonymous mutations were found in FGFR3, PDGFRA, EGFR, RET, HRAS, FLT3, APC and SMAD4 genes. The mutation in FLT3 p.(Val592Val) was the only novel variant found. Additionally, two known intronic variants in KDR were found and intronic variants were also found in ERBB4 and PIK3CA. A known splice site mutation at an acceptor site in FLT3, a 3'-UTR variant in the CSF1R gene and a 5'_UTR variant in the SMARCB1 gene were also identified. The p-values were below 0.00001 for all variants and the average coverage for all variants was around 2000x. Conclusions: In this grade III ependymoma, one novel synonymous mutation and one deleterious missense mutation is reported. Many of the variants reported here have not been detected in ependymal tumors by NGS analysis previously and we therefore report these variants in brain tissue for the first time.
Collapse
Affiliation(s)
- Ejaz Butt
- Histopathology Division, Al-Noor Specialty Hospital, Makkah, Makkah, Saudi Arabia
- Histopathology Department, Amna Inayat Medical College, Sheikhupura, Punjab, Pakistan
| | - Sabra Alyami
- Department of Medical Genetics, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| | - Tahani Nageeti
- Department of Radiation Oncology, King Abdullah Medical City, Makkah, Makkah, Saudi Arabia
| | - Muhammad Saeed
- Faculty of Medicine, Umm-Al-Qura University and Al-Noor Specialty Hospital, Makkah, Makkah, Saudi Arabia
| | - Khalid AlQuthami
- Department of Laboratory Medicine and Blood Bank, Al-Noor Specialty Hospital, Makkah, Makkah, Saudi Arabia
| | - Abdellatif Bouazzaoui
- Department of Medical Genetics and Science and Technology Unit, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| | - Mohammad Athar
- Department of Medical Genetics and Science and Technology Unit, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| | - Zainularifeen Abduljaleel
- Department of Medical Genetics and Science and Technology Unit, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| | - Faisal Al-Allaf
- Department of Medical Genetics and Science and Technology Unit, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| | - Mohiuddin Taher
- Department of Medical Genetics and Science and Technology Unit, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| |
Collapse
|
45
|
Butt E, Alyami S, Nageeti T, Saeed M, AlQuthami K, Bouazzaoui A, Athar M, Abduljaleel Z, Al-Allaf F, Taher M. Mutation profiling of anaplastic ependymoma grade III by Ion Proton next generation DNA sequencing. F1000Res 2019; 8:613. [PMID: 32612806 PMCID: PMC7317822 DOI: 10.12688/f1000research.18721.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2019] [Indexed: 03/30/2024] Open
Abstract
Background: Ependymomas are glial tumors derived from differentiated ependymal cells. In contrast to other types of brain tumors, histological grading is not a good prognostic marker for these tumors. In order to determine genomic changes in an anaplastic ependymoma, we analyzed its mutation patterns by next generation sequencing (NGS). Methods: Tumor DNA was sequenced using an Ion PI v3 chip on Ion Proton instrument and the data were analyzed by Ion Reporter 5.6. Results: NGS analysis identified 19 variants, of which four were previously reported missense variants; c.395G>A in IDH1, c.1173A>G in PIK3CA, c.1416A>T in KDR and c.215C>G in TP53. The frequencies of the three missense mutations ( PIK3CA c.1173A>G, KDR c.1416A>T, TP53, c.215C>G) were high, suggesting that these are germline variants, whereas the IDH1 variant frequency was low (4.81%). However, based on its FATHMM score of 0.94, only the IDH1 variant is pathogenic; other variants TP53, PIK3CA and KDR had FATHMM scores of 0.22, 0.56 and 0.07, respectively. Eight synonymous mutations were found in FGFR3, PDGFRA, EGFR, RET, HRAS, FLT3, APC and SMAD4 genes. The mutation in FLT3 p.(Val592Val) was the only novel variant found. Additionally, two known intronic variants in KDR were found and intronic variants were also found in ERBB4 and PIK3CA. A known splice site mutation at an acceptor site in FLT3, a 3'-UTR variant in the CSF1R gene and a 5'_UTR variant in the SMARCB1 gene were also identified. The p-values were below 0.00001 for all variants and the average coverage for all variants was around 2000x. Conclusions: In this grade III ependymoma, one novel synonymous mutation and one deleterious missense mutation is reported. Many of the variants reported here have not been detected in ependymal tumors by NGS analysis previously and we therefore report these variants in brain tissue for the first time.
Collapse
Affiliation(s)
- Ejaz Butt
- Histopathology Division, Al-Noor Specialty Hospital, Makkah, Makkah, Saudi Arabia
- Histopathology Department, Amna Inayat Medical College, Sheikhupura, Punjab, Pakistan
| | - Sabra Alyami
- Department of Medical Genetics, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| | - Tahani Nageeti
- Department of Radiation Oncology, King Abdullah Medical City, Makkah, Makkah, Saudi Arabia
| | - Muhammad Saeed
- Faculty of Medicine, Umm-Al-Qura University and Al-Noor Specialty Hospital, Makkah, Makkah, Saudi Arabia
| | - Khalid AlQuthami
- Department of Laboratory Medicine and Blood Bank, Al-Noor Specialty Hospital, Makkah, Makkah, Saudi Arabia
| | - Abdellatif Bouazzaoui
- Department of Medical Genetics and Science and Technology Unit, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| | - Mohammad Athar
- Department of Medical Genetics and Science and Technology Unit, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| | - Zainularifeen Abduljaleel
- Department of Medical Genetics and Science and Technology Unit, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| | - Faisal Al-Allaf
- Department of Medical Genetics and Science and Technology Unit, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| | - Mohiuddin Taher
- Department of Medical Genetics and Science and Technology Unit, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| |
Collapse
|
46
|
Yao K, Duan Z, Wang Y, Zhang M, Fan T, Wu B, Qi X. Detection of H3K27M mutation in cases of brain stem subependymoma. Hum Pathol 2019; 84:262-269. [DOI: 10.1016/j.humpath.2018.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/02/2018] [Accepted: 10/11/2018] [Indexed: 10/28/2022]
|
47
|
Karremann M, Gielen GH, Hoffmann M, Wiese M, Colditz N, Warmuth-Metz M, Bison B, Claviez A, van Vuurden DG, von Bueren AO, Gessi M, Kühnle I, Hans VH, Benesch M, Sturm D, Kortmann RD, Waha A, Pietsch T, Kramm CM. Diffuse high-grade gliomas with H3 K27M mutations carry a dismal prognosis independent of tumor location. Neuro Oncol 2019; 20:123-131. [PMID: 29016894 DOI: 10.1093/neuonc/nox149] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background The novel entity of "diffuse midline glioma, H3 K27M-mutant" has been defined in the 2016 revision of the World Health Organization (WHO) classification of tumors of the central nervous system (CNS). Tumors of this entity arise in CNS midline structures of predominantly pediatric patients and are associated with an overall dismal prognosis. They are defined by K27M mutations in H3F3A or HIST1H3B/C, encoding for histone 3 variants H3.3 and H3.1, respectively, which are considered hallmark events driving gliomagenesis. Methods Here, we characterized 85 centrally reviewed diffuse gliomas on midline locations enrolled in the nationwide pediatric German HIT-HGG registry regarding tumor site, histone 3 mutational status, WHO grade, age, sex, and extent of tumor resection. Results We found 56 H3.3 K27M-mutant tumors (66%), 6 H3.1 K27M-mutant tumors (7%), and 23 H3-wildtype tumors (27%). H3 K27M-mutant gliomas shared an aggressive clinical course independent of their anatomic location. Multivariate regression analysis confirmed the significant impact of the H3 K27M mutation as the only independent parameter predictive of overall survival (P = 0.009). In H3 K27M-mutant tumors, neither anatomic midline location nor histopathological grading nor extent of tumor resection had an influence on survival. Conclusion These results substantiate the clinical significance of considering diffuse midline glioma, H3 K27M-mutant, as a distinct entity corresponding to WHO grade IV, carrying a universally fatal prognosis.
Collapse
Affiliation(s)
- Michael Karremann
- Department of Pediatric and Adolescent Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gerrit H Gielen
- Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Marion Hoffmann
- Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany.,Department of Child and Adolescent Health, University Medical Center Goettingen, Goettingen, Germany
| | - Maria Wiese
- Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany.,Department of Child and Adolescent Health, University Medical Center Goettingen, Goettingen, Germany
| | - Niclas Colditz
- Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany.,Department of Child and Adolescent Health, University Medical Center Goettingen, Goettingen, Germany
| | - Monika Warmuth-Metz
- Department of Neuroradiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Brigitte Bison
- Department of Neuroradiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Alexander Claviez
- Department of Pediatrics, Schleswig-Holstein Medical University in Kiel, Kiel, Germany
| | - Dannis G van Vuurden
- Department of Pediatrics, VU University Medical Center, Amsterdam, Netherlands.,Division of Oncology/Hematology, VU University Medical Center, Amsterdam, Netherlands
| | - André O von Bueren
- Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany.,Department of Child and Adolescent Health, University Medical Center Goettingen, Goettingen, Germany.,Department of Pediatrics and Adolescent Medicine, University Hospital of Geneva, Geneva, Switzerland.,Division of Pediatric Hematology and Oncology, University Hospital of Geneva, Geneva, Switzerland
| | - Marco Gessi
- Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Ingrid Kühnle
- Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany.,Department of Child and Adolescent Health, University Medical Center Goettingen, Goettingen, Germany
| | - Volkmar H Hans
- Department of Pathology, Universitätsmedizin Greifswald, Greifswald, Germany.,Institute of Neuropathology, Evangelisches Krankenhaus Bielefeld, Bielefeld, Germany
| | - Martin Benesch
- Division of Pediatric Hematology and Oncology, Medical University Graz, Graz, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Dominik Sturm
- Division of Pediatric Neurooncology, German Cancer Research Center Heidelberg, Heidelberg, Germany
| | - Rolf-Dieter Kortmann
- Department of Radiotherapy and Radiation Oncology, University of Leipzig Medical Center, Leipzig, Germany
| | - Andreas Waha
- Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Torsten Pietsch
- Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Christof M Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany.,Department of Child and Adolescent Health, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
48
|
Abstract
Gliomas are the most frequent intrinsic tumours of the central nervous system and encompass two principle subgroups: diffuse gliomas and gliomas showing a more circumscribed growth pattern ('nondiffuse gliomas'). In the revised fourth edition of the WHO Classification of CNS tumours published in 2016, classification of especially diffuse gliomas has fundamentally changed: for the first time, a large subset of these tumours is now defined based on presence/absence of IDH mutation and 1p/19q codeletion. Following this approach, the diagnosis of (anaplastic) oligoastrocytoma can be expected to largely disappear. Furthermore, in the WHO 2016 Classification gliomatosis cerebri is not an entity anymore but is now considered as a growth pattern. The most important changes in the very diverse group of 'nondiffuse' gliomas and neuronal-glial tumours are the introduction of anaplastic pleomorphic xanthoastrocytoma, of diffuse leptomeningeal glioneuronal tumour and of RELA fusion-positive ependymoma as entities. In the last part of this review, after very briefly touching upon classification of neuronal, choroid plexus and pineal region tumours, some practical implications and challenges associated with the WHO 2016 Classification of gliomas are discussed.
Collapse
Affiliation(s)
- P Wesseling
- Department of Pathology, Brain Tumor Center Amsterdam/VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Princess Máxima Center for Pediatric Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - D Capper
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), Heidelberg, Germany.,Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neuropathology, Berlin, Germany
| |
Collapse
|
49
|
H3 K27M-mutant gliomas in adults vs. children share similar histological features and adverse prognosis. Clin Neuropathol 2018; 37 (2018):53-63. [PMID: 29393845 PMCID: PMC5822176 DOI: 10.5414/np301085] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2018] [Indexed: 12/17/2022] Open
Abstract
Background:H3 K27M mutation was originally described in pediatric diffuse intrinsic pontine gliomas (DIPGs), but has been recently recognized to occur also in adult midline diffuse gliomas, as well as midline tumors with other morphologies, including gangliogliomas (GGs), anaplastic GGs, pilocytic astrocytomas (PAs), and posterior fossa ependymomas. In a few patients with H3 K27M-mutant tumors with these alternate morphologies, longer survival has been reported, making grading difficult for the neuropathologist. Few series compare tumors in adult vs. pediatric cohorts; we report our 4-year experience. Materials and methods: Text Word database searches using “H3 K27M” in reports generated between January 2013 and November 10, 2017 were used to identify patients. Clinical and histological features as well as survival were evaluated for each case. Results: 28 H3 K27M-mutant tumors were identified, with equal numbers of adults (13) vs. children (15). For adults, mean and median age was 52 years (range = 27 – 81 years), 2 decades older than a recently-published adult series. Tumors involved thalamic (adult = 7; pediatric = 7), spinal cord (adult = 4; pediatric = 2), pons (adult = 1; pediatric = 6), and hypothalamic (n = 1) sites. Other morphologies at presentation included pure GG (n = 3, pediatric) and PA (n = 1, adult). One adult and 1 pediatric patient each presented with leptomeningeal dissemination or developed leptomeningeal dissemination within 1 year after diagnosis, with transformation from PA or GG histology to glioblastoma. Mean survival was 9.3 (adults) vs. 8.9 (pediatric) months. Patients with tumors of other morphologies (GG, PA) did not enjoy extended survival. Conclusion:H3 K27M-mutant tumors can affect patients at advanced ages, may show leptomeningeal dissemination at time of presentation, and “pure” GG or PA morphology is not rare. Regardless of patient age or tumor morphology, patients fare equally poorly.
Collapse
|
50
|
Pajtler KW, Wen J, Sill M, Lin T, Orisme W, Tang B, Hübner JM, Ramaswamy V, Jia S, Dalton JD, Haupfear K, Rogers HA, Punchihewa C, Lee R, Easton J, Wu G, Ritzmann TA, Chapman R, Chavez L, Boop FA, Klimo P, Sabin ND, Ogg R, Mack SC, Freibaum BD, Kim HJ, Witt H, Jones DTW, Vo B, Gajjar A, Pounds S, Onar-Thomas A, Roussel MF, Zhang J, Taylor JP, Merchant TE, Grundy R, Tatevossian RG, Taylor MD, Pfister SM, Korshunov A, Kool M, Ellison DW. Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. Acta Neuropathol 2018; 136:211-226. [PMID: 29909548 DOI: 10.1007/s00401-018-1877-0] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/10/2018] [Accepted: 06/10/2018] [Indexed: 12/21/2022]
Abstract
Of nine ependymoma molecular groups detected by DNA methylation profiling, the posterior fossa type A (PFA) is most prevalent. We used DNA methylation profiling to look for further molecular heterogeneity among 675 PFA ependymomas. Two major subgroups, PFA-1 and PFA-2, and nine minor subtypes were discovered. Transcriptome profiling suggested a distinct histogenesis for PFA-1 and PFA-2, but their clinical parameters were similar. In contrast, PFA subtypes differed with respect to age at diagnosis, gender ratio, outcome, and frequencies of genetic alterations. One subtype, PFA-1c, was enriched for 1q gain and had a relatively poor outcome, while patients with PFA-2c ependymomas showed an overall survival at 5 years of > 90%. Unlike other ependymomas, PFA-2c tumors express high levels of OTX2, a potential biomarker for this ependymoma subtype with a good prognosis. We also discovered recurrent mutations among PFA ependymomas. H3 K27M mutations were present in 4.2%, occurring only in PFA-1 tumors, and missense mutations in an uncharacterized gene, CXorf67, were found in 9.4% of PFA ependymomas, but not in other groups. We detected high levels of wildtype or mutant CXorf67 expression in all PFA subtypes except PFA-1f, which is enriched for H3 K27M mutations. PFA ependymomas are characterized by lack of H3 K27 trimethylation (H3 K27-me3), and we tested the hypothesis that CXorf67 binds to PRC2 and can modulate levels of H3 K27-me3. Immunoprecipitation/mass spectrometry detected EZH2, SUZ12, and EED, core components of the PRC2 complex, bound to CXorf67 in the Daoy cell line, which shows high levels of CXorf67 and no expression of H3 K27-me3. Enforced reduction of CXorf67 in Daoy cells restored H3 K27-me3 levels, while enforced expression of CXorf67 in HEK293T and neural stem cells reduced H3 K27-me3 levels. Our data suggest that heterogeneity among PFA ependymomas could have clinicopathologic utility and that CXorf67 may have a functional role in these tumors.
Collapse
Affiliation(s)
- Kristian W Pajtler
- Hopp-Children's Cancer Center at the NCT Heidelberg (KiTZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital, 69120, Heidelberg, Germany
| | - Ji Wen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Martin Sill
- Hopp-Children's Cancer Center at the NCT Heidelberg (KiTZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Tong Lin
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Wilda Orisme
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Bo Tang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jens-Martin Hübner
- Hopp-Children's Cancer Center at the NCT Heidelberg (KiTZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Vijay Ramaswamy
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Sujuan Jia
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - James D Dalton
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kelly Haupfear
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Hazel A Rogers
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
| | | | - Ryan Lee
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Gang Wu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Timothy A Ritzmann
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
| | - Rebecca Chapman
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
| | - Lukas Chavez
- Hopp-Children's Cancer Center at the NCT Heidelberg (KiTZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Fredrick A Boop
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Paul Klimo
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Noah D Sabin
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Robert Ogg
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Stephen C Mack
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Brian D Freibaum
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Hendrik Witt
- Hopp-Children's Cancer Center at the NCT Heidelberg (KiTZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital, 69120, Heidelberg, Germany
| | - David T W Jones
- Hopp-Children's Cancer Center at the NCT Heidelberg (KiTZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Baohan Vo
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Amar Gajjar
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Stan Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Thomas E Merchant
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Richard Grundy
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
| | - Ruth G Tatevossian
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael D Taylor
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Stefan M Pfister
- Hopp-Children's Cancer Center at the NCT Heidelberg (KiTZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital, 69120, Heidelberg, Germany
| | - Andrey Korshunov
- Department of Neuropathology, University of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcel Kool
- Hopp-Children's Cancer Center at the NCT Heidelberg (KiTZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - David W Ellison
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|