1
|
Richardson TE, Walker JM, Hambardzumyan D, Brem S, Hatanpaa KJ, Viapiano MS, Pai B, Umphlett M, Becher OJ, Snuderl M, McBrayer SK, Abdullah KG, Tsankova NM. Genetic and epigenetic instability as an underlying driver of progression and aggressive behavior in IDH-mutant astrocytoma. Acta Neuropathol 2024; 148:5. [PMID: 39012509 PMCID: PMC11252228 DOI: 10.1007/s00401-024-02761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024]
Abstract
In recent years, the classification of adult-type diffuse gliomas has undergone a revolution, wherein specific molecular features now represent defining diagnostic criteria of IDH-wild-type glioblastomas, IDH-mutant astrocytomas, and IDH-mutant 1p/19q-codeleted oligodendrogliomas. With the introduction of the 2021 WHO CNS classification, additional molecular alterations are now integrated into the grading of these tumors, given equal weight to traditional histologic features. However, there remains a great deal of heterogeneity in patient outcome even within these established tumor subclassifications that is unexplained by currently codified molecular alterations, particularly in the IDH-mutant astrocytoma category. There is also significant intercellular genetic and epigenetic heterogeneity and plasticity with resulting phenotypic heterogeneity, making these tumors remarkably adaptable and robust, and presenting a significant barrier to the design of effective therapeutics. Herein, we review the mechanisms and consequences of genetic and epigenetic instability, including chromosomal instability (CIN), microsatellite instability (MSI)/mismatch repair (MMR) deficits, and epigenetic instability, in the underlying biology, tumorigenesis, and progression of IDH-mutant astrocytomas. We also discuss the contribution of recent high-resolution transcriptomics studies toward defining tumor heterogeneity with single-cell resolution. While intratumoral heterogeneity is a well-known feature of diffuse gliomas, the contribution of these various processes has only recently been considered as a potential driver of tumor aggressiveness. CIN has an independent, adverse effect on patient survival, similar to the effect of histologic grade and homozygous CDKN2A deletion, while MMR mutation is only associated with poor overall survival in univariate analysis but is highly correlated with higher histologic/molecular grade and other aggressive features. These forms of genomic instability, which may significantly affect the natural progression of these tumors, response to therapy, and ultimately clinical outcome for patients, are potentially measurable features which could aid in diagnosis, grading, prognosis, and development of personalized therapeutics.
Collapse
Affiliation(s)
- Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA.
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
- Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kimmo J Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mariano S Viapiano
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Balagopal Pai
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Melissa Umphlett
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
| | - Oren J Becher
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA
| | - Samuel K McBrayer
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kalil G Abdullah
- Department of Neurosurgery, University of Pittsburgh School of Medicine, 200 Lothrop St, Pittsburgh, PA, 15213, USA
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Nadejda M Tsankova
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
2
|
Raveneau M, Guerrini-Rousseau L, Levy R, Roux CJ, Bolle S, Doz F, Bourdeaut F, Colas C, Blauwblomme T, Beccaria K, Tauziède-Espariat A, Varlet P, Dufour C, Grill J, Boddaert N, Dangouloff-Ros V. Specific brain MRI features of constitutional mismatch repair deficiency syndrome in children with high-grade gliomas. Eur Radiol 2024:10.1007/s00330-024-10885-3. [PMID: 38981890 DOI: 10.1007/s00330-024-10885-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/27/2024] [Accepted: 05/04/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Children with constitutional mismatch repair deficiency (CMMRD) syndrome have an increased risk of high-grade gliomas (HGG), and brain imaging abnormalities. This study analyzes brain imaging features in CMMRD syndrome children versus those with HGG without CMMRD. METHODS Retrospective comparative analysis of brain imaging in 30 CMMRD children (20 boys, median age eight years, 22 with HGG), seven with Lynch syndrome (7 HGG), 39 with type 1 neurofibromatosis (NF1) (four with HGG) and 50 with HGG without MMR or NF1 pathogenic variant ("no-predisposition" patients). RESULTS HGG in CMMRD and Lynch patients were predominantly hemispheric (versus midline) compared to NF1 and no-predisposition patients (91% and 86%, vs 25% and 54%, p = 0.004). CMMRD-associated tumors often had ill-defined boundaries (p = 0.008). All CMMRD patients exhibited at least one developmental venous anomaly (DVA), versus 14%, 10%, and 6% of Lynch, NF1, and no-predisposition patients (p < 0.0001). Multiple DVAs were observed in 83% of CMMRD patients, one NF1 patient (3%), and never in other groups (p < 0.0001). Cavernomas were discovered in 21% of CMMRD patients, never in other groups (p = 0.01). NF1-like focal areas of high T2-FLAIR signal intensity (FASI) were more prevalent in CMMRD patients than in Lynch or no-predisposition patients (50%, vs 20% and 0%, respectively, p < 0.0001). Subcortical and ill-limited FASI, possibly involving the cortex, were specific to CMMRD (p < 0.0001) and did not evolve in 93% of patients (13/14). CONCLUSION Diffuse hemispherically located HGG associated with multiple DVAs, cavernomas, and NF1-like or subcortical FASI strongly suggests CMMRD syndrome compared to children with HGG in other contexts. CLINICAL RELEVANCE STATEMENT The radiologic suggestion of CMMRD syndrome when confronted with HGGs in children may prompt genetic testing. This can influence therapeutic plans. Therefore, imaging features could potentially be incorporated into CMMRD testing recommendations. KEY POINTS Using imaging to detect CMMRD syndrome early may improve patient care. CMMRD features include: hemispheric HGG with multiple developmental venous anomalies and NF1-like or subcortical areas with high T2-FLAIR intensity. We propose novel imaging features to improve the identification of potential CMMRD patients.
Collapse
Affiliation(s)
- Magali Raveneau
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015, Paris, France
| | - Léa Guerrini-Rousseau
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Institute, 114 rue Edouard Vaillant, 94805, Villejuif, France
- Génomique et Oncogénèse des Tumeurs Cérébrales Pédiatriques, Gustave Roussy Cancer Center and Paris-Saclay University, INSERM U981, Villejuif, France
| | - Raphael Levy
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015, Paris, France
- INSERM U1299, F-75015, Paris, France
- UMR 1163, Institut Imagine, F-75015, Paris, France
| | - Charles-Joris Roux
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015, Paris, France
- INSERM U1299, F-75015, Paris, France
- UMR 1163, Institut Imagine, F-75015, Paris, France
| | - Stéphanie Bolle
- Radiation Therapy Department, Gustave Roussy Institute, 114 rue Edouard Vaillant, 94805, Villejuif, France
| | - François Doz
- 12 rue de l'École de Médecine, Université Paris Cité, Paris, France
- Oncology Center SIREDO (Care Innovation and Research for Children, Adolescents and Young Adults with Cancer), Institute Curie, 26 rue d'Ulm, 75005, Paris, France
| | - Franck Bourdeaut
- 12 rue de l'École de Médecine, Université Paris Cité, Paris, France
- Oncology Center SIREDO (Care Innovation and Research for Children, Adolescents and Young Adults with Cancer), Institute Curie, 26 rue d'Ulm, 75005, Paris, France
| | - Chrystelle Colas
- Clinical Genetics Unit, Institute Curie, 26 rue d'Ulm, 75005, Paris, France
| | - Thomas Blauwblomme
- 12 rue de l'École de Médecine, Université Paris Cité, Paris, France
- Pediatric Neurosurgery Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015, Paris, France
| | - Kevin Beccaria
- 12 rue de l'École de Médecine, Université Paris Cité, Paris, France
- Pediatric Neurosurgery Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015, Paris, France
| | - Arnault Tauziède-Espariat
- Department of Neuropathology, GHU Paris-Psychiatrie et Neurosciences, Hôpital Sainte-Anne, 75014, Paris, France
- Ima-Brain team, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université Paris Cité, 75014, Paris, France
| | - Pascale Varlet
- 12 rue de l'École de Médecine, Université Paris Cité, Paris, France
- Department of Neuropathology, GHU Paris-Psychiatrie et Neurosciences, Hôpital Sainte-Anne, 75014, Paris, France
- Ima-Brain team, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université Paris Cité, 75014, Paris, France
| | - Christelle Dufour
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Institute, 114 rue Edouard Vaillant, 94805, Villejuif, France
- Génomique et Oncogénèse des Tumeurs Cérébrales Pédiatriques, Gustave Roussy Cancer Center and Paris-Saclay University, INSERM U981, Villejuif, France
| | - Jacques Grill
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Institute, 114 rue Edouard Vaillant, 94805, Villejuif, France
- Génomique et Oncogénèse des Tumeurs Cérébrales Pédiatriques, Gustave Roussy Cancer Center and Paris-Saclay University, INSERM U981, Villejuif, France
| | - Nathalie Boddaert
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015, Paris, France
- INSERM U1299, F-75015, Paris, France
- UMR 1163, Institut Imagine, F-75015, Paris, France
- 12 rue de l'École de Médecine, Université Paris Cité, Paris, France
| | - Volodia Dangouloff-Ros
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015, Paris, France.
- INSERM U1299, F-75015, Paris, France.
- UMR 1163, Institut Imagine, F-75015, Paris, France.
- 12 rue de l'École de Médecine, Université Paris Cité, Paris, France.
| |
Collapse
|
3
|
Wang Y, Zhang Z. A case report: Gliosarcoma associated with a germline heterozygous mutation in MSH2. Front Neurol 2024; 15:1388263. [PMID: 38784900 PMCID: PMC11112698 DOI: 10.3389/fneur.2024.1388263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Gliosarcoma is a rare subtype of glioblastoma (GBM) with a shorter medical history and a worse prognosis compared to other Grade 4 gliomas. Most gliosarcomas are sporadic, but it is undeniable that a small percentage are linked to germline mutations and several inherited cancer susceptibility syndromes, including Lynch Syndrome (LS). The authors present a case of a primary mismatch repair-deficient gliosarcoma in LS. A 54-year-old Chinese male patient was admitted to the hospital with a history of facial asymmetry for over 1 month and right temporo-occipital pain for 5 days. Head MRI revealed a complex mass lesion in the right frontoparietal region, consisting of cystic and solid components. The patient's history of colon malignancy and family history of rectal carcinoma were noteworthy. Postoperative pathology indicated the presence of gliosarcoma with high-frequency microsatellite instability (MSI-H) and mismatch repair deficiency (MMRD). Further genetic testing results confirmed a germline heterozygous mutation in MSH2, which is considered the gold standard for diagnosing LS. This case report enriches the existing literature on germline MSH2 mutations and gliosarcomas. It highlights the importance for neurosurgeons to consider possible hereditary disorders when treating patients with a history of concurrent tumors outside the nervous system. Genetic testing is crucial for further identification of such disorders.
Collapse
Affiliation(s)
- Yuhan Wang
- Medical School, Nanjing University, Nanjing, China
| | - Zhiyuan Zhang
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Jovanović A, Tošić N, Marjanović I, Komazec J, Zukić B, Nikitović M, Ilić R, Grujičić D, Janić D, Pavlović S. Germline Variants in Cancer Predisposition Genes in Pediatric Patients with Central Nervous System Tumors. Int J Mol Sci 2023; 24:17387. [PMID: 38139220 PMCID: PMC10744041 DOI: 10.3390/ijms242417387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Central nervous system (CNS) tumors comprise around 20% of childhood malignancies. Germline variants in cancer predisposition genes (CPGs) are found in approximately 10% of pediatric patients with CNS tumors. This study aimed to characterize variants in CPGs in pediatric patients with CNS tumors and correlate these findings with clinically relevant data. Genomic DNA was isolated from the peripheral blood of 51 pediatric patients and further analyzed by the next-generation sequencing approach. Bioinformatic analysis was done using an "in-house" gene list panel, which included 144 genes related to pediatric brain tumors, and the gene list panel Neoplasm (HP:0002664). Our study found that 27% of pediatric patients with CNS tumors have a germline variant in some of the known CPGs, like ALK, APC, CHEK2, ELP1, MLH1, MSH2, NF1, NF2 and TP53. This study represents the first comprehensive evaluation of germline variants in pediatric patients with CNS tumors in the Western Balkans region. Our results indicate the necessity of genomic research to reveal the genetic basis of pediatric CNS tumors, as well as to define targets for the application and development of innovative therapeutics that form the basis of the upcoming era of personalized medicine.
Collapse
Affiliation(s)
- Aleksa Jovanović
- Pediatric Oncology Department, National Cancer Research Center, 11000 Belgrade, Serbia; (A.J.); (D.J.)
| | - Nataša Tošić
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Irena Marjanović
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Jovana Komazec
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Branka Zukić
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Marina Nikitović
- Pediatric Radiation Oncology Department, National Cancer Research Center, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.I.); (D.G.)
| | - Rosanda Ilić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.I.); (D.G.)
- Neurooncology Department, Neurosurgery Clinic, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Danica Grujičić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.I.); (D.G.)
- Neurooncology Department, Neurosurgery Clinic, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Dragana Janić
- Pediatric Oncology Department, National Cancer Research Center, 11000 Belgrade, Serbia; (A.J.); (D.J.)
| | - Sonja Pavlović
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| |
Collapse
|
5
|
Weber CAM, Krönke N, Volk V, Auber B, Förster A, Trost D, Geffers R, Esmaeilzadeh M, Lalk M, Nabavi A, Samii A, Krauss JK, Feuerhake F, Hartmann C, Wiese B, Brand F, Weber RG. Rare germline variants in POLE and POLD1 encoding the catalytic subunits of DNA polymerases ε and δ in glioma families. Acta Neuropathol Commun 2023; 11:184. [PMID: 37990341 PMCID: PMC10664377 DOI: 10.1186/s40478-023-01689-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/11/2023] [Indexed: 11/23/2023] Open
Abstract
Pathogenic germline variants in the DNA polymerase genes POLE and POLD1 cause polymerase proofreading-associated polyposis, a dominantly inherited disorder with increased risk of colorectal carcinomas and other tumors. POLE/POLD1 variants may result in high somatic mutation and neoantigen loads that confer susceptibility to immune checkpoint inhibitors (ICIs). To explore the role of POLE/POLD1 germline variants in glioma predisposition, whole-exome sequencing was applied to leukocyte DNA of glioma patients from 61 tumor families with at least one glioma case each. Rare heterozygous POLE/POLD1 missense variants predicted to be deleterious were identified in glioma patients from 10 (16%) families, co-segregating with the tumor phenotype in families with available DNA from several tumor patients. Glioblastoma patients carrying rare POLE variants had a mean overall survival of 21 months. Additionally, germline variants in POLD1, located at 19q13.33, were detected in 2/34 (6%) patients with 1p/19q-codeleted oligodendrogliomas, while POLE variants were identified in 2/4 (50%) glioblastoma patients with a spinal metastasis. In 13/15 (87%) gliomas from patients carrying POLE/POLD1 variants, features of defective polymerase proofreading, e.g. hypermutation, POLE/POLD1-associated mutational signatures, multinucleated cells, and increased intratumoral T cell response, were observed. In a CRISPR/Cas9-derived POLE-deficient LN-229 glioblastoma cell clone, a mutator phenotype and delayed S phase progression were detected compared to wildtype POLE cells. Our data provide evidence that rare POLE/POLD1 germline variants predispose to gliomas that may be susceptible to ICIs. Data compiled here suggest that glioma patients carrying POLE/POLD1 variants may be recognized by cutaneous manifestations, e.g. café-au-lait macules, and benefit from surveillance colonoscopy.
Collapse
Affiliation(s)
- Christine A M Weber
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Nicole Krönke
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Valery Volk
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Alisa Förster
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | | | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Michael Lalk
- Department of Neurosurgery, KRH Klinikum Nordstadt, Hannover, Germany
| | - Arya Nabavi
- Department of Neurosurgery, KRH Klinikum Nordstadt, Hannover, Germany
| | - Amir Samii
- Department of Neurosurgery, International Neuroscience Institute, Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Friedrich Feuerhake
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
- Institute for Neuropathology, University Clinic Freiburg, Freiburg, Germany
| | - Christian Hartmann
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Bettina Wiese
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
- Department of Neurology, Henriettenstift, Diakovere Krankenhaus gGmbH, Hannover, Germany
| | - Frank Brand
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Ruthild G Weber
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
6
|
van den Bent MJ, Geurts M, French PJ, Smits M, Capper D, Bromberg JEC, Chang SM. Primary brain tumours in adults. Lancet 2023; 402:1564-1579. [PMID: 37738997 DOI: 10.1016/s0140-6736(23)01054-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 09/24/2023]
Abstract
The most frequent adult-type primary CNS tumours are diffuse gliomas, but a large variety of rarer CNS tumour types exists. The classification of these tumours is increasingly based on molecular diagnostics, which is reflected in the extensive molecular foundation of the recent WHO 2021 classification of CNS tumours. Resection as extensive as is safely possible is the cornerstone of treatment in most gliomas, and is now also recommended early in the treatment of patients with radiological evidence of histologically low-grade tumours. For the adult-type diffuse glioma, standard of care is a combination of radiotherapy and chemotherapy. Although treatment with curative intent is not available, combined modality treatment has resulted in long-term survival (>10-20 years) for some patients with isocitrate dehydrogenase (IDH) mutant tumours. Other rarer tumours require tailored approaches, best delivered in specialised centres. Targeted treatments based on molecular alterations still only play a minor role in the treatment landscape of adult-type diffuse glioma, and today are mainly limited to patients with tumours with BRAFV600E (ie, Val600Glu) mutations. Immunotherapy for CNS tumours is still in its infancy, and so far, trials with checkpoint inhibitors and vaccination studies have not shown improvement in patient outcomes in glioblastoma. Current research is focused on improving our understanding of the immunosuppressive tumour environment, the molecular heterogeneity of tumours, and the role of tumour microtube network connections between cells in the tumour microenvironment. These factors all appear to play a role in treatment resistance, and indicate that novel approaches are needed to further improve outcomes of patients with CNS tumours.
Collapse
Affiliation(s)
- Martin J van den Bent
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Netherlands.
| | - Marjolein Geurts
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Netherlands
| | - Pim J French
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Netherlands
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Netherlands; Medical Delta, Delft, Netherlands
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium, Berlin, Germany; German Cancer Research Center, Heidelberg, Germany
| | - Jacoline E C Bromberg
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Netherlands
| | - Susan M Chang
- Brain Tumor Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Caroleo AM, Rotulo S, Agolini E, Macchiaiolo M, Boccuto L, Antonelli M, Colafati GS, Cacchione A, Megaro G, Carai A, De Ioris MA, Lodi M, Tornesello A, Simone V, Torroni F, Cinalli G, Mastronuzzi A. SHH medulloblastoma and very early onset of bowel polyps in a child with PTEN hamartoma tumor syndrome. Front Mol Neurosci 2023; 16:1228389. [PMID: 37692099 PMCID: PMC10483120 DOI: 10.3389/fnmol.2023.1228389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) hamartoma tumor syndrome (PHTS) is a cancer predisposition syndrome characterized by an increased risk of developing benign and malignant tumors, caused by germline pathogenic variants of the PTEN tumour suppressor gene. PTEN gene variants often present in childhood with macrocephaly, developmental delay, and/or autism spectrum disorder while tumors and intestinal polyps are commonly detected in adults. PHTS is rarely associated with childhood brain tumors with only two reported cases of medulloblastoma (MB). We report the exceptional case of an infant carrying a germline and somatic pathogenic variant of PTEN and a germline and somatic pathogenic variant of CHEK2 who developed a MB SHH in addition to intestinal polyposis.
Collapse
Affiliation(s)
- Anna Maria Caroleo
- Department of Onco-Hematology, Cell Therapy, Gene Therapy and Hemopoietic Transplant, Bambino Gesù Children’s Hospital (IRCCS), Rome, Italy
| | - Silvia Rotulo
- Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marina Macchiaiolo
- Rare Diseases and Medical Genetics Unit, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Luigi Boccuto
- School of Nursing, College of Behavioral, Social and Health Sciences Healthcare Genetics Interdisciplinary Doctoral Program, Clemson University, Clemson, SC, United States
| | - Manila Antonelli
- Faculty of Medicine and Dentistry, Department of Radiological, Oncological, and Pathological Anatomy Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Antonella Cacchione
- Department of Onco-Hematology, Cell Therapy, Gene Therapy and Hemopoietic Transplant, Bambino Gesù Children’s Hospital (IRCCS), Rome, Italy
| | - Giacomina Megaro
- Department of Onco-Hematology, Cell Therapy, Gene Therapy and Hemopoietic Transplant, Bambino Gesù Children’s Hospital (IRCCS), Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children’s Hospital (IRCCS), Rome, Italy
| | - Maria Antonietta De Ioris
- Department of Onco-Hematology, Cell Therapy, Gene Therapy and Hemopoietic Transplant, Bambino Gesù Children’s Hospital (IRCCS), Rome, Italy
| | - Mariachiara Lodi
- Department of Onco-Hematology, Cell Therapy, Gene Therapy and Hemopoietic Transplant, Bambino Gesù Children’s Hospital (IRCCS), Rome, Italy
| | | | - Valeria Simone
- Pediatric Oncology Unit, Ospedale Vito Fazzi, Lecce, Italy
| | - Filippo Torroni
- Digestive Endoscopy and Surgery Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Giuseppe Cinalli
- Pediatric Neurosurgery Unit, Department of Neuroscience, Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Angela Mastronuzzi
- Department of Onco-Hematology, Cell Therapy, Gene Therapy and Hemopoietic Transplant, Bambino Gesù Children’s Hospital (IRCCS), Rome, Italy
| |
Collapse
|
8
|
Prieto R, Hofecker V, Corbacho C. Coexisting lipomatous meningioma and glioblastoma in Cowden syndrome: A unique tumor association. Neuropathology 2023; 43:110-116. [PMID: 36003032 DOI: 10.1111/neup.12858] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023]
Abstract
Cowden syndrome (CS) is a rare hereditary hamartoma-cancer disorder related to germline mutations in the tumor suppressor phosphatase and tensin homolog (PTEN) gene. Association of CS with intracranial tumors, apart from Lhermitte-Duclos disease (LDD), is not well recognized. We present an exceptional instance of concomitant meningioma and glioblastoma in CS, the first case ever reported. Following a new-onset seizure, a 62-year-old male harboring the PTEN gene germline mutation c.334C > G was diagnosed with multiple brain tumors, which were erroneously thought to correspond to metastases. Because no primary cancer was found, an operation was proposed for histopathological diagnosis. Examination of surgical specimens obtained from the two lesions removed, one extra-axial and the other intracerebral, demonstrated a metaplastic meningioma with a lipomatous appearance and an isocitrate dehydrogenase wild-type glioblastoma, respectively. Loss of the PTEN gene expression was demonstrated immunohistochemically in both lesions, a finding that supports their relation to CS. A thorough literature review revealed only 25 additional CS patients with intracranial tumors other than LDD. All of them corresponded to primary lesions, with meningiomas accounting for 76% of the cases (19 patients), followed by pituitary tumors (three cases) and glioblastomas (two patients from the same family). Our report and literature review highlight the association between CS and primary brain tumors rather than metastasis. For judicious management of a CS patient with multiple intracranial tumors, different primary brain pathological entities should also be suspected first before considering metastasis. Close neurological monitoring and brain magnetic resonance imaging are advocated as part of the cancer screening in CS patients, particularly in cases with a family history of intracranial tumors.
Collapse
Affiliation(s)
- Ruth Prieto
- Department of Neurosurgery, Puerta de Hierro University Hospital, Madrid, Spain
| | - Verena Hofecker
- Pathologisch-anatomische Sammlung Im Narrenturm - NHM, Vienna, Austria
| | - Cesáreo Corbacho
- Department of Pathology, Puerta de Hierro University Hospital, Madrid, Spain
| |
Collapse
|
9
|
Spennato P, De Martino L, Russo C, Errico ME, Imperato A, Mazio F, Miccoli G, Quaglietta L, Abate M, Covelli E, Donofrio V, Cinalli G. Tumors of Choroid Plexus and Other Ventricular Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:175-223. [PMID: 37452939 DOI: 10.1007/978-3-031-23705-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Tumors arising inside the ventricular system are rare but represent a difficult diagnostic and therapeutic challenge. They usually are diagnosed when reaching a big volume and tend to affect young children. There is a wide broad of differential diagnoses with significant variability in anatomical aspects and tumor type. Differential diagnosis in tumor type includes choroid plexus tumors (papillomas and carcinomas), ependymomas, subependymomas, subependymal giant cell astrocytomas (SEGAs), central neurocytomas, meningiomas, and metastases. Choroid plexus tumors, ependymomas of the posterior fossa, and SEGAs are more likely to appear in childhood, whereas subependymomas, central neurocytomas, intraventricular meningiomas, and metastases are more frequent in adults. This chapter is predominantly focused on choroid plexus tumors and radiological and histological differential diagnosis. Treatment is discussed in the light of the modern acquisition in genetics and epigenetics of brain tumors.
Collapse
Affiliation(s)
- Pietro Spennato
- Department of Pediatric Neurosurgery, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy.
| | - Lucia De Martino
- Department of Pediatric Oncology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Carmela Russo
- Department of Neuroradiology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Maria Elena Errico
- Department of Pathology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Alessia Imperato
- Department of Pediatric Neurosurgery, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy
| | - Federica Mazio
- Department of Neuroradiology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Giovanni Miccoli
- Department of Pediatric Neurosurgery, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy
| | - Lucia Quaglietta
- Department of Pediatric Oncology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Massimo Abate
- Department of Pediatric Oncology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Eugenio Covelli
- Department of Neuroradiology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Vittoria Donofrio
- Department of Pathology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Giuseppe Cinalli
- Department of Pediatric Neurosurgery, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy
| |
Collapse
|
10
|
Richardson TE, Yokoda RT, Rashidipour O, Vij M, Snuderl M, Brem S, Hatanpaa KJ, McBrayer SK, Abdullah KG, Umphlett M, Walker JM, Tsankova NM. Mismatch repair protein mutations in isocitrate dehydrogenase (IDH)-mutant astrocytoma and IDH-wild-type glioblastoma. Neurooncol Adv 2023; 5:vdad085. [PMID: 37554222 PMCID: PMC10406418 DOI: 10.1093/noajnl/vdad085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Mutations in mismatch repair (MMR) genes (MSH2, MSH6, MLH1, and PMS2) are associated with microsatellite instability and a hypermutator phenotype in numerous systemic cancers, and germline MMR mutations have been implicated in multi-organ tumor syndromes. In gliomas, MMR mutations can function as an adaptive response to alkylating chemotherapy, although there are well-documented cases of germline and sporadic mutations, with detrimental effects on patient survival. METHODS The clinical, pathologic, and molecular features of 18 IDH-mutant astrocytomas and 20 IDH-wild-type glioblastomas with MMR mutations in the primary tumor were analyzed in comparison to 361 IDH-mutant and 906 IDH-wild-type tumors without MMR mutations. In addition, 12 IDH-mutant astrocytomas and 18 IDH-wild-type glioblastomas that developed MMR mutations between initial presentation and tumor recurrence were analyzed in comparison to 50 IDH-mutant and 104 IDH-wild-type cases that remained MMR-wild-type at recurrence. RESULTS In both IDH-mutant astrocytoma and IDH-wild-type glioblastoma cohorts, the presence of MMR mutation in primary tumors was associated with significantly higher tumor mutation burden (TMB) (P < .0001); however, MMR mutations only resulted in worse overall survival in the IDH-mutant astrocytomas (P = .0069). In addition, gain of MMR mutation between the primary and recurrent surgical specimen occurred more frequently with temozolomide therapy (P = .0073), and resulted in a substantial increase in TMB (P < .0001), higher grade (P = .0119), and worse post-recurrence survival (P = .0022) in the IDH-mutant astrocytoma cohort. CONCLUSIONS These results suggest that whether present initially or in response to therapy, MMR mutations significantly affect TMB but appear to only influence the clinical outcome in IDH-mutant astrocytoma subsets.
Collapse
Affiliation(s)
- Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Raquel T Yokoda
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Omid Rashidipour
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Meenakshi Vij
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York, New York, USA
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kimmo J Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Samuel K McBrayer
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kalil G Abdullah
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Melissa Umphlett
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nadejda M Tsankova
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
11
|
Richardson TE, Walker JM, Abdullah KG, McBrayer SK, Viapiano MS, Mussa ZM, Tsankova NM, Snuderl M, Hatanpaa KJ. Chromosomal instability in adult-type diffuse gliomas. Acta Neuropathol Commun 2022; 10:115. [PMID: 35978439 PMCID: PMC9386991 DOI: 10.1186/s40478-022-01420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/04/2022] [Indexed: 11/14/2022] Open
Abstract
Chromosomal instability (CIN) is a fundamental property of cancer and a key underlying mechanism of tumorigenesis and malignant progression, and has been documented in a wide variety of cancers, including colorectal carcinoma with mutations in genes such as APC. Recent reports have demonstrated that CIN, driven in part by mutations in genes maintaining overall genomic stability, is found in subsets of adult-type diffusely infiltrating gliomas of all histologic and molecular grades, with resulting elevated overall copy number burden, chromothripsis, and poor clinical outcome. Still, relatively few studies have examined the effect of this process, due in part to the difficulty of routinely measuring CIN clinically. Herein, we review the underlying mechanisms of CIN, the relationship between chromosomal instability and malignancy, the prognostic significance and treatment potential in various cancers, systemic disease, and more specifically, in diffusely infiltrating glioma subtypes. While still in the early stages of discovery compared to other solid tumor types in which CIN is a known driver of malignancy, the presence of CIN as an early factor in gliomas may in part explain the ability of these tumors to develop resistance to standard therapy, while also providing a potential molecular target for future therapies.
Collapse
Affiliation(s)
- Timothy E. Richardson
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15th Floor, 1468 Madison Avenue, New York, NY 10029 USA
| | - Jamie M. Walker
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15th Floor, 1468 Madison Avenue, New York, NY 10029 USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Kalil G. Abdullah
- Department of Neurosurgery, University of Pittsburgh School of Medicine, 200 Lothrop St, Pittsburgh, PA 15213 USA
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA 15232 USA
| | - Samuel K. McBrayer
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Mariano S. Viapiano
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY 13210 USA
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY 13210 USA
| | - Zarmeen M. Mussa
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15th Floor, 1468 Madison Avenue, New York, NY 10029 USA
| | - Nadejda M. Tsankova
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15th Floor, 1468 Madison Avenue, New York, NY 10029 USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York City, NY 10016 USA
| | - Kimmo J. Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| |
Collapse
|
12
|
Molecular landscape of pediatric type IDH wildtype, H3 wildtype hemispheric glioblastomas. J Transl Med 2022; 102:731-740. [PMID: 35332262 DOI: 10.1038/s41374-022-00769-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 11/08/2022] Open
Abstract
The WHO (2021) Classification classified a group of pediatric-type high-grade gliomas as IDH wildtype, H3 wildtype but as of currently, they are characterized only by negative molecular features of IDH and H3. We recruited 35 cases of pediatric IDH wildtype and H3 wildtype hemispheric glioblastomas. We evaluated them with genome-wide methylation profiling, targeted sequencing, RNAseq, TERT promoter sequencing, and FISH. The median survival of the cohort was 27.6 months. With Capper et al.'s36 methylation groups as a map, the cases were found to be epigenetically heterogeneous and were clustered in proximity or overlay of methylation groups PXA-like (n = 8), LGG-like (n = 10), GBM_MYCN (n = 9), GBM_midline (n = 5), and GBM_RTKIII (n = 3). Histology of the tumors in these groups was not different from regular glioblastomas. Methylation groups were not associated with OS. We were unable to identify groups specifically characterized by EGFR or PDGFRA amplification as proposed by other authors. EGFR, PDGFRA, and MYCN amplifications were not correlated with OS. 4/9 cases of the GBM_MYCN cluster did not show MYCN amplification; the group was also enriched for EGFR amplification (4/9 cases) and the two biomarkers overlapped in two cases. Overall, PDGFRA amplification was found in only four cases and they were not restricted to any groups. Cases in proximity to GBM_midline were all hemispheric and showed loss of H3K27me3 staining. Fusion genes ALK/NTRK/ROS1/MET characteristic of infantile glioblastomas were not identified in 17 cases successfully sequenced. BRAF V600E was only found in the PXA group but CDKN2A deletion could be found in other methylation groups. PXA-like cases did not show PXA histological features similar to findings by other authors. No case showed TERT promoter mutation. Mutations of mismatch repair (MMR) genes were poor prognosticators in single (p ≤ 0.001) but not in multivariate analyses (p = 0.229). MGMT had no survival significance in this cohort. Of the other common biomarkers, only TP53 and ATRX mutations were significant poor prognosticators and only TP53 mutation was significant after multivariate analyses (p = 0.024). We conclude that IDH wildtype, H3 wildtype pediatric hemispheric glioblastomas are molecularly heterogeneous and in routine practice, TP53, ATRX, and MMR status could profitably be screened for risk stratification in laboratories without ready access to methylation profiling.
Collapse
|
13
|
Cabezas-Camarero S, Pérez-Alfayate R, García-Barberán V, Polidura MC, Gómez-Ruiz MN, Casado-Fariñas I, Subhi-Issa IA, Hernández JCP, Garre P, Díaz-Millán I, Pérez-Segura P. Durable benefit and change in TCR clonality with nivolumab in a Lynch syndrome-associated glioma. Ther Adv Med Oncol 2022; 14:17588359221100863. [PMID: 35694191 PMCID: PMC9185004 DOI: 10.1177/17588359221100863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/28/2022] [Indexed: 11/15/2022] Open
Abstract
Germline replication-repair deficient (gRRD) gliomas are exceptional events, and only a few of them have been treated with immune checkpoint inhibitors (ICIs). Contrary to sporadic gliomas, where ICIs have failed to show any objective benefit, the very few patients with gRRD gliomas treated with ICIs to date seem to benefit from programmed-death-1 (PD-1) inhibitors, such as nivolumab or pembrolizumab, either in terms of durable responses or in terms of survival. T-cell immunohistochemistry (IHC) and T-cell receptor (TCR) repertoire using high-throughput next-generation sequencing (NGS) with the Oncomine TCR-Beta-SR assay (Thermo Fisher Scientific) were analyzed in pre- and post-nivolumab tumor biopsies obtained from a patient with a Lynch syndrome-associated glioma due to a germline pathogenic hMLH1 mutation. The aim was to describe changes in the T-cell quantity and clonality after treatment with nivolumab to better understand the role of acquired immunity in gRRD gliomas. The patient showed a slow disease progression and overall survival of 10 months since the start of anti-PD-1 therapy with excellent tolerance. A very scant T-cell infiltrate was observed both at initial diagnosis and after four cycles of nivolumab. The drastic change observed in TCR clonality in the post-nivolumab biopsy may be explained by the highly spatial and temporal heterogeneity of glioblastomas. Despite the durable benefit from nivolumab, the scant T-cell infiltrate possibly explains the lack of objective response to anti-PD-1 therapy. The major change in TCR clonality observed after nivolumab possibly reflects the evolving molecular heterogeneity in a highly pre-treated disease. An in-deep review of the available literature regarding the role of ICIs in both sporadic and gRRD gliomas was conducted.
Collapse
Affiliation(s)
- Santiago Cabezas-Camarero
- Medical Oncology Department, Hospital Clínico
Universitario San Carlos, Instituto de Investigación Sanitaria San Carlos
(IdISSC), Calle Profesor Martin Lagos S/N, 28040, Madrid, Spain
| | - Rebeca Pérez-Alfayate
- Department of Neurosurgery, Instituto de
Neurociencias, Hospital Clínico Universitario San Carlos, Madrid,
Spain
| | - Vanesa García-Barberán
- Molecular Oncology Laboratory, Medical Oncology
Department, Hospital Clínico Universitario San Carlos, Instituto de
Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | | | | | | | | | | | - Pilar Garre
- Molecular Diagnosis Unit, Clinical Chemistry
Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC),
Hospital Clinico Universitario San Carlos, Madrid, Spain
| | - Isabel Díaz-Millán
- Research Nurse, Medical Oncology Department,
Hospital Clínico Universitario San Carlos, Madrid, Spain
| | - Pedro Pérez-Segura
- Medical Oncology Department, Hospital Clínico
Universitario San Carlos, Instituto de Investigación Sanitaria San Carlos
(IdISSC), Madrid, Spain
| |
Collapse
|
14
|
Bedics G, Kotmayer L, Zajta E, Hegyi LL, Brückner EÁ, Rajnai H, Reiniger L, Bödör C, Garami M, Scheich B. Germline MUTYH mutations and high-grade gliomas: novel evidence for a potential association. Genes Chromosomes Cancer 2022; 61:622-628. [PMID: 35545820 PMCID: PMC9541377 DOI: 10.1002/gcc.23054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
There is growing body of evidence supporting the role of germline mutations in the pathogenesis of pediatric central nervous system (CNS) tumors, and the widespread use of next‐generation sequencing (NGS) panels facilitates their detection. Variants of the MUTYH gene are increasingly recognized as suspected germline background of various extraintestinal malignancies, besides their well‐characterized role in the polyposis syndrome associated with biallelic mutations. Using a multigene NGS panel (Illumina TruSight Oncology 500), we detected one H3 G34V‐ and one H3 K27M‐mutant pediatric high‐grade diffuse glioma, in association with c.1178G>A (p.G393D) and c.916C>T (p.R306C) MUTYH variants, respectively. Both MUTYH mutations were germline, heterozygous and inherited, according to the subsequent genetic testing of the patients and their first‐degree relatives. In the H3 K27M‐mutant glioma, amplifications affecting the 4q12 region were also detected, in association with KDR‐PDGFRA, KIT‐PDGFRA, and KDR‐CHIC2 fusions, previously unreported in this entity. Among 47 other CNS tumors of various histological types tested with the same NGS panel in our institution, only one adult glioblastoma harbored MUTYH mutation. Together with a single previous report, our data raises the possibility of an association between germline MUTYH mutations and CNS malignancies, particularly in pediatric histone H3‐mutant gliomas.
Collapse
Affiliation(s)
- Gábor Bedics
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, Hungary.,HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, Hungary
| | - Lili Kotmayer
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, Hungary.,HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, Hungary
| | - Erik Zajta
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, Hungary.,HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, Hungary
| | - Lajos László Hegyi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, Hungary.,HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, Hungary
| | - Edit Ágota Brückner
- 2nd Department of Pediatrics, Semmelweis University, Tűzoltó u. 7-9, Budapest, Hungary
| | - Hajnalka Rajnai
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, Hungary
| | - Lilla Reiniger
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, Hungary
| | - Csaba Bödör
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, Hungary.,HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, Hungary
| | - Miklós Garami
- 2nd Department of Pediatrics, Semmelweis University, Tűzoltó u. 7-9, Budapest, Hungary
| | - Bálint Scheich
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, Hungary
| |
Collapse
|
15
|
Comprehensive Pan-Cancer Analysis of IRAK Family Genes Identifies IRAK1 as a Novel Oncogene in Low-Grade Glioma. JOURNAL OF ONCOLOGY 2022; 2022:6497241. [PMID: 35211171 PMCID: PMC8863493 DOI: 10.1155/2022/6497241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 12/09/2022]
Abstract
Background The interleukin-1 receptor-associated kinases (IRAK) family genes, indispensable mediators of interleukin-1 receptor (IL1R) and Toll-like receptor (TLR)-inflammatory signaling, may be involved in the biological function of human cancers due to the crucial roles of inflammation in tumor development. Though a little research has demonstrated the function of individual IRAK family members in specific tumors, comprehensive analysis is still lacking in pan-cancer. Methods We analyzed the mRNA expression landscape, mutation, and prognosis value of IRAK genes based on The Cancer Genome Atlas (TCGA), cBioPortal, GlioVis, and Rembrandt databases. The correlation between the expression of IRAK genes and tumor microenvironment (TME), Stemness score, and immune subtypes was explored. Western blot, cell proliferation, apoptosis, migration assays, and xenograft models were utilized in this study. Results We found that the expression of IRAK genes extensively changed and was related to patient survival in pan-cancer. Besides, IRAK family genes were correlated with TME, Stemness score, and immune subtypes in most cases. Given that high expression of all IRAK family members predicted poor prognosis in low-grade glioma (LGG), the oncogenic function of the highest expressed IRAK1 in LGG has been confirmed in vitro and in vivo. IRAK1 was uncovered to inhibit cell apoptosis and augment malignancy of LGG in vitro and in vivo. Conclusion These findings revealed the potential targets of IRAK family genes in pan-cancer and provided insights for further investigation of IRAK1 as a novel oncogenic gene in LGG.
Collapse
|
16
|
Pehlivan KC, Paul MR, Crawford JR. Central Nervous System Tumors in Children. Pediatr Rev 2022; 43:3-15. [PMID: 34970690 DOI: 10.1542/pir.2020-004499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Katherine C Pehlivan
- Department of Pediatrics, Division of Hematology-Oncology, New York Medical College, Valhalla, NY
| | - Megan R Paul
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego and Rady Children's Hospital, San Diego, CA
| | - John R Crawford
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego and Rady Children's Hospital, San Diego, CA.,Department of Neurosciences, University of California and Rady Children's Hospital, San Diego, CA
| |
Collapse
|
17
|
Cole BL. Neuropathology of Pediatric Brain Tumors: A Concise Review. Neurosurgery 2022; 90:7-15. [PMID: 34114043 DOI: 10.1093/neuros/nyab182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/31/2021] [Indexed: 01/07/2023] Open
Abstract
Pediatric brain tumors are an incredibly diverse group of neoplasms and neuropathological tumor classification is an essential part of patient care. Classification of pediatric brain tumors has changed considerably in recent years as molecular diagnostics have become incorporated with routine histopathology in the diagnostic process. This article will focus on the fundamental major histologic, immunohistochemical, and molecular features that neuropathologists use to make an integrated diagnosis of pediatric brain tumors. This concise review will focus on tumors that are integral to the central nervous system in pediatric patients including: embryonal tumors, low and high grade gliomas, glioneuronal tumors, ependymomas, and choroid plexus tumors.
Collapse
Affiliation(s)
- Bonnie L Cole
- Department of Laboratories, Seattle Children's Hospital , Seattle , Washington , USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine , Seattle , Washington , USA
| |
Collapse
|
18
|
Hill RM, Plasschaert SLA, Timmermann B, Dufour C, Aquilina K, Avula S, Donovan L, Lequin M, Pietsch T, Thomale U, Tippelt S, Wesseling P, Rutkowski S, Clifford SC, Pfister SM, Bailey S, Fleischhack G. Relapsed Medulloblastoma in Pre-Irradiated Patients: Current Practice for Diagnostics and Treatment. Cancers (Basel) 2021; 14:126. [PMID: 35008290 PMCID: PMC8750207 DOI: 10.3390/cancers14010126] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023] Open
Abstract
Relapsed medulloblastoma (rMB) accounts for a considerable, and disproportionate amount of childhood cancer deaths. Recent advances have gone someway to characterising disease biology at relapse including second malignancies that often cannot be distinguished from relapse on imaging alone. Furthermore, there are now multiple international early-phase trials exploring drug-target matches across a range of high-risk/relapsed paediatric tumours. Despite these advances, treatment at relapse in pre-irradiated patients is typically non-curative and focuses on providing life-prolonging and symptom-modifying care that is tailored to the needs and wishes of the individual and their family. Here, we describe the current understanding of prognostic factors at disease relapse such as principal molecular group, adverse molecular biology, and timing of relapse. We provide an overview of the clinical diagnostic process including signs and symptoms, staging investigations, and molecular pathology, followed by a summary of treatment modalities and considerations. Finally, we summarise future directions to progress understanding of treatment resistance and the biological mechanisms underpinning early therapy-refractory and relapsed disease. These initiatives include development of comprehensive and collaborative molecular profiling approaches at relapse, liquid biopsies such as cerebrospinal fluid (CSF) as a biomarker of minimal residual disease (MRD), modelling strategies, and the use of primary tumour material for real-time drug screening approaches.
Collapse
Affiliation(s)
- Rebecca M. Hill
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne NE1 7RU, UK; (S.C.C.); (S.B.)
| | - Sabine L. A. Plasschaert
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (S.L.A.P.); (M.L.); (P.W.)
| | - Beate Timmermann
- Department of Particle Therapy, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany;
| | - Christelle Dufour
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, 94800 Villejuif, France;
| | - Kristian Aquilina
- Department of Neurosurgery, Great Ormond Street Hospital, London WC1N 3JH, UK;
| | - Shivaram Avula
- Department of Radiology, Alder Hey Children’s NHS Foundation Trust, Liverpool L12 2AP, UK;
| | - Laura Donovan
- UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK;
| | - Maarten Lequin
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (S.L.A.P.); (M.L.); (P.W.)
| | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, 53127 Bonn, Germany;
| | - Ulrich Thomale
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany;
| | - Stephan Tippelt
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45147 Essen, Germany;
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (S.L.A.P.); (M.L.); (P.W.)
- Department of Pathology, Amsterdam University Medical Centers/VUmc, 1081 HV Amsterdam, The Netherlands
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Steven C. Clifford
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne NE1 7RU, UK; (S.C.C.); (S.B.)
| | - Stefan M. Pfister
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany;
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Pediatric Oncology and Hematology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Simon Bailey
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne NE1 7RU, UK; (S.C.C.); (S.B.)
| | - Gudrun Fleischhack
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45147 Essen, Germany;
| |
Collapse
|
19
|
Ganapathy A, Diaz EJ, Coleman JT, Mackey KA. Tumor Syndromes: Neurosurgical Evaluation and Management. Neurosurg Clin N Am 2021; 33:91-104. [PMID: 34801146 DOI: 10.1016/j.nec.2021.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There are multiple syndromes associated with tumors of the central nervous system (CNS). The most common CNS tumor syndrome is neurofibromatosis-1, with well-defined major and minor criteria needed for diagnosis. Other syndromes with variable degree of CNS and extra-CNS involvement that the neurosurgeon should be aware of include neurofibromatosis-2; Turcot syndrome; Cowden syndrome; Gorlin syndrome; Li-Fraumeni syndrome; ataxia-telangiectasia; multiple endocrine neoplasia type 1; von Hippel-Lindau syndrome; and tuberous sclerosis complex. Although most CNS tumor syndromes follow an autosomal dominant pattern of inheritance, the genetic underpinnings of each disease are complex and increasingly better understood.
Collapse
Affiliation(s)
- Aravinda Ganapathy
- Washington University School of Medicine, 660 S Euclid Avenue, St Louis, MO 63110, USA
| | - Elizabeth Juarez Diaz
- Washington University School of Medicine, 660 S Euclid Avenue, St Louis, MO 63110, USA
| | - Justin T Coleman
- South Georgia Medical Center, 2409 North Patterson Street, Suite 210, Valdosta, GA 31605, USA
| | - Kimberly A Mackey
- South Georgia Medical Center, 2409 North Patterson Street, Suite 210, Valdosta, GA 31605, USA; Department of Neurosurgery, Children's Hospital of the King's Daughters, 601 Children's Ln, Norfolk, VA 23507, USA.
| |
Collapse
|
20
|
Central Nervous System Tumor Classification: An Update on the Integration of Tumor Genetics. Hematol Oncol Clin North Am 2021; 36:1-21. [PMID: 34763992 DOI: 10.1016/j.hoc.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In 2016, the World Health Organization Classification of CNS Tumors introduced molecular abnormalities that refined tumor diagnoses. Around this time, the introduction of large scale genetic mutational analyses quickly advanced our knowledge of recurrent abnormalities in disease. In 2017, the C-IMPACT group was established to render expert consensus opinions regarding the application of molecular findings into central nervous system tumor diagnoses. C-IMPACT have presented their recommendations in 7 peer-reviewed publications; this article details those recommendations that are expected to be incorporated into the upcoming fifth edition of the World Health Organization classification.
Collapse
|
21
|
Yang RR, Li KKW, Zhang ZY, Chan AKY, Wang WW, Chan DTM, Li WC, Liu XZ, Li FC, Chen H, Ng HK, Mao Y, Shi ZF. Mismatch repair proteins PMS2 and MLH1 can further refine molecular stratification of IDH-mutant lower grade astrocytomas. Clin Neurol Neurosurg 2021; 208:106882. [PMID: 34428613 DOI: 10.1016/j.clineuro.2021.106882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/14/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
The diagnostic role of Isocitrate Dehydrogenase (IDH) mutation status in adult lower grade astrocytomas was first formally presented within the WHO Classification of Tumours of the Central Nervous System (2016). IDH-mutant astrocytomas are not as common as IDH-wildtype astrocytomas but are of better prognosis. Our previous study provided an evident that IDH-mutant lower grade astrocytomas is not a homogeneous group and could be further stratified by PDGFRA amplification, CDK4 amplification and CDKN2A deletion. In this study, we detected the expressions of DNA mismatch repair (MMR) proteins (PMS2, MLH1, MSH2, MSH6) and PD-L1 by immunohistochemistry in 147 IDH-mutant lower grade astrocytomas and explored their clinical relevance. The loss of was identified in 28.6%, 1.4%, 8.8% and 13.6%, respectively. PD-L1 expression was detected in 1.4% of this cohort. Survival analysis revealed that loss of PMS2 was correlated with shorter OS (p < 0.001) and PFS (p = 0.005). Loss of PMS2 or MLH1 was associated with shorter OS (p < 0.001) and PFS (p = 0.008). In IDH-mutant lower grade astrocytomas without CDKN2A deletion, loss of PMS2 was associated with poorer OS (p < 0.001) and PFS (p = 0.001). Furthermore, among IDH-mutant lower grade astrocytomas lacking the three biomarkers (PDGFRA, CDK4 and CDKN2A), loss of PMS2 was also associated with a poorer OS (p < 0.001) and PFS (p = 0.003). Our data illustrated the potential application of MMR genes in stratification of IDH-mutant lower grade astrocytomas without PDGFRA, CDK4 and CDKN2A copy number alterations.
Collapse
Affiliation(s)
- Rui Ryan Yang
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China
| | - Kay Ka-Wai Li
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Zhen-Yu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Aden Ka-Yin Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wei-Wei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danny Tat-Ming Chan
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wen-Cai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xian-Zhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang-Cheng Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China
| | - Hong Chen
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.
| | - Zhi-Feng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Wallace GC, Tjoelker M, Bartley K, Henson JW. Precision Therapy for Brain Tumors in Hereditary Syndromes. Curr Treat Options Oncol 2021; 22:80. [PMID: 34213626 DOI: 10.1007/s11864-021-00876-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
OPINION STATEMENT Nervous system tumors arising in the setting of monogenic, hereditary cancer predisposition syndromes are unique in that the initiating genetic event in tumor formation is known. This knowledge provides a powerful treatment approach if the alteration or pathway can be targeted with a therapeutic agent. A reasonable argument can be made for the use of targeted agents in these tumor patients, even though many of them have FDA approval only for other tumor types. It is our practice to use and employ targeted therapy when standard treatments have failed or represent an unattractive option. Over time, however, targeted therapies will likely become first-line options.
Collapse
Affiliation(s)
- Gerald C Wallace
- Neurology Residency Program, Medical College of Georgia, 1120 15th Street, Augusta, GA, 30912, USA
| | - Madeleine Tjoelker
- Hereditary Cancer Clinic, Georgia Cancer Center, Medical College of Georgia, Augusta University, 1411 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Kaitlyn Bartley
- Georgia Cancer Center, Medical College of Georgia, Augusta University, 1411 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - John W Henson
- Georgia Neurofibromatosis Clinic, Brain Tumor Program and Hereditary Cancer Clinic, Georgia Cancer Center, Medical College of Georgia, Augusta University, 1411 Laney Walker Blvd, Augusta, GA, 30912, USA.
| |
Collapse
|
23
|
Förster A, Brand F, Banan R, Hüneburg R, Weber CAM, Ewert W, Kronenberg J, Previti C, Elyan N, Beyer U, Martens H, Hong B, Bräsen JH, Erbersdobler A, Krauss JK, Stangel M, Samii A, Wolf S, Preller M, Aretz S, Wiese B, Hartmann C, Weber RG. Rare germline variants in the E-cadherin gene CDH1 are associated with the risk of brain tumors of neuroepithelial and epithelial origin. Acta Neuropathol 2021; 142:191-210. [PMID: 33929593 PMCID: PMC8217027 DOI: 10.1007/s00401-021-02307-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 04/04/2021] [Indexed: 12/17/2022]
Abstract
The genetic basis of brain tumor development is poorly understood. Here, leukocyte DNA of 21 patients from 15 families with ≥ 2 glioma cases each was analyzed by whole-genome or targeted sequencing. As a result, we identified two families with rare germline variants, p.(A592T) or p.(A817V), in the E-cadherin gene CDH1 that co-segregate with the tumor phenotype, consisting primarily of oligodendrogliomas, WHO grade II/III, IDH-mutant, 1p/19q-codeleted (ODs). Rare CDH1 variants, previously shown to predispose to gastric and breast cancer, were significantly overrepresented in these glioma families (13.3%) versus controls (1.7%). In 68 individuals from 28 gastric cancer families with pathogenic CDH1 germline variants, brain tumors, including a pituitary adenoma, were observed in three cases (4.4%), a significantly higher prevalence than in the general population (0.2%). Furthermore, rare CDH1 variants were identified in tumor DNA of 6/99 (6%) ODs. CDH1 expression was detected in undifferentiated and differentiating oligodendroglial cells isolated from rat brain. Functional studies using CRISPR/Cas9-mediated knock-in or stably transfected cell models demonstrated that the identified CDH1 germline variants affect cell membrane expression, cell migration and aggregation. E-cadherin ectodomain containing variant p.(A592T) had an increased intramolecular flexibility in a molecular dynamics simulation model. E-cadherin harboring intracellular variant p.(A817V) showed reduced β-catenin binding resulting in increased cytosolic and nuclear β-catenin levels reverted by treatment with the MAPK interacting serine/threonine kinase 1 inhibitor CGP 57380. Our data provide evidence for a role of deactivating CDH1 variants in the risk and tumorigenesis of neuroepithelial and epithelial brain tumors, particularly ODs, possibly via WNT/β-catenin signaling.
Collapse
Affiliation(s)
- Alisa Förster
- Department of Human Genetics OE 6300, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Frank Brand
- Department of Human Genetics OE 6300, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Rouzbeh Banan
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Robert Hüneburg
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Christine A M Weber
- Department of Human Genetics OE 6300, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Wiebke Ewert
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Jessica Kronenberg
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Centre (DLR), Köln, Germany
| | - Christopher Previti
- Genomics and Proteomics Core Facility, High Throughput Sequencing Unit W190, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Omics IT and Data Management Core Facility W610, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Natalie Elyan
- Department of Human Genetics OE 6300, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Ulrike Beyer
- Department of Human Genetics OE 6300, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Helge Martens
- Department of Human Genetics OE 6300, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Bujung Hong
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Jan H Bräsen
- Nephropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | | | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Martin Stangel
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Amir Samii
- Department of Neurosurgery, International Neuroscience Institute, Hannover, Germany
| | - Stephan Wolf
- Genomics and Proteomics Core Facility, High Throughput Sequencing Unit W190, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Preller
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Rheinbach, Germany
| | - Stefan Aretz
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Bettina Wiese
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
- Department of Neurology, Henriettenstift, Diakovere Krankenhaus gGmbH, Hannover, Germany
| | - Christian Hartmann
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Ruthild G Weber
- Department of Human Genetics OE 6300, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
24
|
Constitutional mismatch repair deficiency (CMMRD) presenting with high-grade glioma, multiple developmental venous anomalies and malformations of cortical development-a multidisciplinary/multicentre approach and neuroimaging clues to clinching the diagnosis. Childs Nerv Syst 2021; 37:2375-2379. [PMID: 33247381 DOI: 10.1007/s00381-020-04986-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
Constitutional mismatch repair deficiency syndrome (CMMRD) is a rare cancer-predisposition syndrome associated with a high risk of developing a spectrum of malignancies in childhood and adolescence, including brain tumours. In this report, we present the case of an 8-year-old boy with acute headache, vomiting and an episode of unconsciousness in whom brain imaging revealed a high-grade glioma (HGG). The possibility of an underlying diagnosis of CMMRD was suspected radiologically on the basis of additional neuroimaging findings, specifically the presence of multiple supratentorial and infratentorial developmental venous anomalies (DVAs) and malformations of cortical development (MCD), namely, heterotopic grey matter. The tumour was debulked and confirmed to be a HGG on histopathology. The suspected diagnosis of CMMRD was confirmed on immunohistochemistry and genetic testing which revealed mutations in PMS2 and MSH6. The combination of a HGG, multiple DVAs and MCD in a paediatric or young adult patient should prompt the neuroradiologist to suggest an underlying diagnosis of CMMRD. A diagnosis of CMMRD has an important treatment and surveillance implications not only for the child but also the family in terms of genetic counselling.
Collapse
|
25
|
Pinheiro JAF, de Almeida JCM, Lopes JMPB. Embryonal Tumors of the Central Nervous System: The WHO 2016 Classification and New Insights. J Pediatr Hematol Oncol 2021; 43:79-89. [PMID: 32925406 DOI: 10.1097/mph.0000000000001923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022]
Abstract
Central nervous system tumors comprise 26% of cancer in children, representing the most frequent solid neoplasms. Embryonal tumors comprise 15% of them, and they are defined as "small round blue cells" in which morphology is reminiscent of the developing embryonic nervous system. They are the most common high-grade central nervous system neoplasms. Over the years, molecular research has been improving our knowledge concerning these neoplasms, stressing the need for tumor reclassification. Indeed, the revised 2016 fourth edition of the World Health Organization classification introduced genetic parameters in the classification. Specific molecular signatures allow a more accurate risk assessment, leading to proper therapeutic approach and potentially improved prognosis. Holding this new approach, medulloblastoma is noteworthy. The present classification combines the previous histologic classification with a new genetic definition in WNT-activated, sonic hedgehog-activated and non-WNT/non-sonic hedgehog. Molecular data are also a defining feature in the diagnosis of atypical teratoid/rhabdoid tumors and embryonal tumors with multilayered rosettes. However, there are still embryonal tumors that challenge the present World Health Organization classification, and new molecular data have been underlining the need for novel tumor entities. Likewise, recent research has been highlighting heterogeneity in recognized entities. How to translate these molecular developments into routine clinical practice is still a major challenge.
Collapse
Affiliation(s)
| | | | - José Manuel P B Lopes
- Department of Pathology, Centro Hospitalar e Universitário de São João, Faculty of Medicine, Porto University, Porto, Portugal
| |
Collapse
|
26
|
Massimino M, Signoroni S, Boschetti L, Chiapparini L, Erbetta A, Biassoni V, Schiavello E, Ferrari A, Spreafico F, Terenziani M, Chiaravalli S, Puma N, Bergamaschi L, Ricci MT, Cattaneo L, Gattuso G, Buttarelli FR, Gianno F, Miele E, Poggi G, Vitellaro M. Medulloblastoma and familial adenomatous polyposis: Good prognosis and good quality of life in the long-term? Pediatr Blood Cancer 2021; 68:e28912. [PMID: 33459525 DOI: 10.1002/pbc.28912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Mutations of the APC (adenomatous polyposis coli) gene correlate mainly with familial adenomatous polyposis (FAP), but can occasionally be pathogenic for medulloblastoma (MBL) wingless-related integration site (WNT) subtype, the course of which has only recently been described. METHODS We retrieved all patients with documented germline APC mutations and a diagnosis of MBL to examine their outcome, late effects of treatment, and further oncological events. RESULTS Between 2007 and 2016, we treated six patients, all with a pathogenic APC variant mutation and all with MBL, classic histotype. None had metastatic disease. All patients were in complete remission a median 65 months after treatment with craniospinal irradiation at 23.4 Gy, plus a boost on the posterior fossa/tumor bed up to 54 Gy, followed by cisplatin/carboplatin, lomustine, and vincristine for a maximum of eight courses. Five of six diagnostic revised MRI were suggestive of the WNT molecular subgroup typical aspects. Methylation profile score (in two cases) and copy number variation analysis (chromosome 6 deletion in two cases) performed on four of six retrieved samples confirmed WNT molecular subgroup. Four out of six patients had a positive family history of FAP, while gastrointestinal symptoms prompted its identification in the other two cases. Four patients developed other tumors (desmoid, MELTUMP, melanoma, pancreatoblastoma, thyroid Tir3) from 5 to 7 years after MBL. DISCUSSION Our data confirm a good prognosis for patients with MBL associated with FAP. Patients' secondary tumors may or may not be related to their syndrome or treatment, but warrant adequate attention when planning shared guidelines for these patients.
Collapse
Affiliation(s)
- Maura Massimino
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Stefano Signoroni
- Hereditary Digestive Tract Tumors Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Luna Boschetti
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Luisa Chiapparini
- Neuroradiology Department, IRCCS Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandra Erbetta
- Neuroradiology Department, IRCCS Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Veronica Biassoni
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | - Andrea Ferrari
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Filippo Spreafico
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Monica Terenziani
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | - Nadia Puma
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Luca Bergamaschi
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Maria Teresa Ricci
- Hereditary Digestive Tract Tumors Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Laura Cattaneo
- Department of Pathology and Laboratory Medicine, First Pathology Division, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Giovanna Gattuso
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | - Francesca Gianno
- Radiologic, Oncologic and Anatomo-Pathological Sciences Department, Sapienza University, Rome, Italy
| | - Evelina Miele
- Department of Paediatric Haematology/Oncology Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Geraldina Poggi
- Neuro-Oncological and Neuropsychological Rehabilitation Unit, Scientific Institute, IRCCS Eugenio Medea, Lecco, Italy
| | - Marco Vitellaro
- Hereditary Digestive Tract Tumors Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy.,Colorectal Surgery Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
27
|
Zhao Y, Zhang X, Yao J. Comprehensive analysis of PLOD family members in low-grade gliomas using bioinformatics methods. PLoS One 2021; 16:e0246097. [PMID: 33503035 PMCID: PMC7840023 DOI: 10.1371/journal.pone.0246097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/13/2021] [Indexed: 12/20/2022] Open
Abstract
Low-grade gliomas (LGGs) is a primary invasive brain tumor that grows slowly but is incurable and eventually develops into high malignant glioma. Novel biomarkers for the tumorigenesis and lifetime of LGG are critically demanded to be investigated. In this study, the expression levels of procollagen-lysine, 2-oxoglutarate 5-dioxygenases (PLODs) were analyzed by ONCOMINE, HPA and GEPIA. The GEPIA online platform was applied to evaluate the interrelation between PLODs and survival index in LGG. Furthermore, functions of PLODs and co-expression genes were inspected by the DAVID. Moreover, we used TIMER, cBioportal, GeneMINIA and NetworkAnalyst analysis to reveal the mechanism of PLODs in LGG. We found that expression levels of each PLOD family members were up-regulated in patients with LGG. Higher expression of PLODs was closely related to shorter disease-free survival (DFS) and overall survival (OS). The findings showed that LGG cases with or without alterations were significantly correlated with the OS and DFS. The mechanism of PLODs in LGG may be involved in response to hypoxia, oxidoreductase activity, Lysine degradation and immune cell infiltration. In general, this research has investigated the values of PLODs in LGG, which could serve as biomarkers for diagnosis, prognosis and potential therapeutic targets of LGG patients.
Collapse
Affiliation(s)
- Yonghui Zhao
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei, People’s Republic of China
- * E-mail:
| | - Xiang Zhang
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei, People’s Republic of China
| | - Junchao Yao
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei, People’s Republic of China
| |
Collapse
|
28
|
Suwala AK, Stichel D, Schrimpf D, Kloor M, Wefers AK, Reinhardt A, Maas SLN, Kratz CP, Schweizer L, Hasselblatt M, Snuderl M, Abedalthagafi MSJ, Abdullaev Z, Monoranu CM, Bergmann M, Pekrun A, Freyschlag C, Aronica E, Kramm CM, Hinz F, Sievers P, Korshunov A, Kool M, Pfister SM, Sturm D, Jones DTW, Wick W, Unterberg A, Hartmann C, Dodgshun A, Tabori U, Wesseling P, Sahm F, von Deimling A, Reuss DE. Primary mismatch repair deficient IDH-mutant astrocytoma (PMMRDIA) is a distinct type with a poor prognosis. Acta Neuropathol 2021; 141:85-100. [PMID: 33216206 PMCID: PMC7785563 DOI: 10.1007/s00401-020-02243-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 01/05/2023]
Abstract
Diffuse IDH-mutant astrocytoma mostly occurs in adults and carries a favorable prognosis compared to IDH-wildtype malignant gliomas. Acquired mismatch repair deficiency is known to occur in recurrent IDH-mutant gliomas as resistance mechanism towards alkylating chemotherapy. In this multi-institutional study, we report a novel epigenetic group of 32 IDH-mutant gliomas with proven or suspected hereditary mismatch repair deficiency. None of the tumors exhibited a combined 1p/19q deletion. These primary mismatch repair-deficient IDH-mutant astrocytomas (PMMRDIA) were histologically high-grade and were mainly found in children, adolescents and young adults (median age 14 years). Mismatch repair deficiency syndromes (Lynch or Constitutional Mismatch Repair Deficiency Syndrom (CMMRD)) were clinically diagnosed and/or germline mutations in DNA mismatch repair genes (MLH1, MSH6, MSH2) were found in all cases, except one case with a family and personal history of colon cancer and another case with MSH6-deficiency available only as recurrent tumor. Loss of at least one of the mismatch repair proteins was detected via immunohistochemistry in all, but one case analyzed. Tumors displayed a hypermutant genotype and microsatellite instability was present in more than half of the sequenced cases. Integrated somatic mutational and chromosomal copy number analyses showed frequent inactivation of TP53, RB1 and activation of RTK/PI3K/AKT pathways. In contrast to the majority of IDH-mutant gliomas, more than 60% of the samples in our cohort presented with an unmethylated MGMT promoter. While the rate of immuno-histochemical ATRX loss was reduced, variants of unknown significance were more frequently detected possibly indicating a higher frequency of ATRX inactivation by protein malfunction. Compared to reference cohorts of other IDH-mutant gliomas, primary mismatch repair-deficient IDH-mutant astrocytomas have by far the worst clinical outcome with a median survival of only 15 months irrespective of histological or molecular features. The findings reveal a so far unknown entity of IDH-mutant astrocytoma with high prognostic relevance. Diagnosis can be established by aligning with the characteristic DNA methylation profile, by DNA-sequencing-based proof of mismatch repair deficiency or immunohistochemically demonstrating loss-of-mismatch repair proteins.
Collapse
Affiliation(s)
- Abigail K Suwala
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Damian Stichel
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Daniel Schrimpf
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Annika K Wefers
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Annekathrin Reinhardt
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Sybren L N Maas
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Leonille Schweizer
- Department of Neuropathology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Matija Snuderl
- Division of Neuropathology, NYU Langone Health, New York, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, USA
- Division of Molecular Pathology and Diagnostics, NYU Langone Health, New York, USA
| | - Malak Sameer J Abedalthagafi
- Pathology Department, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Zied Abdullaev
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Camelia M Monoranu
- Institute of Pathology, Julius-Maximilians-University, Würzburg, Germany
| | - Markus Bergmann
- Institute of Clinical Neuropathology, Bremen-Mitte Medical Center, Bremen, Germany
| | - Arnulf Pekrun
- Professor Hess Children's Hospital, Klinikum Bremen-Mitte, Bremen, Germany
| | | | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Christof M Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Felix Hinz
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Philipp Sievers
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Andrey Korshunov
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Dominik Sturm
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Pediatric Glioma Research Group, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Christian Hartmann
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Andrew Dodgshun
- Department of Paediatrics, University of Otago, Christchurch, New Zealand
- Children's Haematology and Oncology Center, Christchurch Hospital, Christchurch, New Zealand
| | - Uri Tabori
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
- Division of Haematology and Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, Amsterdam University Medical Centers/VUmc and Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - David E Reuss
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
| |
Collapse
|
29
|
Ceglie G, Del Baldo G, Agolini E, Rinelli M, Cacchione A, Del Bufalo F, Vinci M, Carta R, Boccuto L, Miele E, Mastronuzzi A, Locatelli F, Carai A. Cancer Predisposition Syndromes Associated With Pediatric High-Grade Gliomas. Front Pediatr 2020; 8:561487. [PMID: 33282797 PMCID: PMC7690624 DOI: 10.3389/fped.2020.561487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/26/2020] [Indexed: 01/10/2023] Open
Abstract
Pediatric High-Grade Gliomas (pHGG) are among the deadliest childhood brain tumors and can be associated with an underlying cancer predisposing syndrome. The thorough understanding of these syndromes can aid the clinician in their prompt recognition, leading to an informed genetic counseling for families and to a wider understanding of a specific genetic landscape of the tumor for target therapies. In this review, we summarize the main pHGG-associated cancer predisposing conditions, providing a guide for suspecting these syndromes and referring for genetic counseling.
Collapse
Affiliation(s)
- Giulia Ceglie
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| | - Giada Del Baldo
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| | - Martina Rinelli
- Laboratory of Medical Genetics, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonella Cacchione
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Del Bufalo
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| | - Maria Vinci
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| | - Roberto Carta
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| | - Luigi Boccuto
- Greenwood Genetic Center, Greenwood, SC, United States
- Clemson University School of Health Research, Clemson, SC, United States
| | - Evelina Miele
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
- Sapienza, University of Rome, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurological and Psychiatric Sciences, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
30
|
Ceglie G, Papetti L, Valeriani M, Merli P. Hematopoietic Stem Cell Transplantation in Neuromyelitis Optica-Spectrum Disorders (NMO-SD): State-of-the-Art and Future Perspectives. Int J Mol Sci 2020; 21:ijms21155304. [PMID: 32722601 PMCID: PMC7432050 DOI: 10.3390/ijms21155304] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Neuromyelitis optica (NMO) and neuromyelitis optica spectrum disorders (NMOSD) are a group of autoimmune inflammatory disorders of the central nervous system (CNS). Understanding of the molecular basis of these diseases in the last decades has led to an important improvement in the treatment of this disease, in particular, to the use of immunotherapeutic approaches, such as monoclonal antibodies and Hematopoietic Stem Cell Transplantation (HSCT). The aim of this review is to summarize the pathogenesis, biological basis and new treatment options of these disorders, with a particular focus on HSCT applications. Different HSCT strategies are being explored in NMOSD, both autologous and allogeneic HSCT, with the new emergence of therapeutic effects such as an induction of tolerance to auto-antigens and graft versus autoimmunity effects that can be exploited to hopefully treat a disease that still has prognosis.
Collapse
Affiliation(s)
- Giulia Ceglie
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
| | - Laura Papetti
- Department of Neurology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (L.P.); (M.V.)
| | - Massimiliano Valeriani
- Department of Neurology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (L.P.); (M.V.)
| | - Pietro Merli
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
- Correspondence: ; Tel.: +39-06-6859-2623
| |
Collapse
|
31
|
Kerpel A, Yalon M, Soudack M, Chiang J, Gajjar A, Nichols KE, Patay Z, Shrot S, Hoffmann C. Neuroimaging Findings in Children with Constitutional Mismatch Repair Deficiency Syndrome. AJNR Am J Neuroradiol 2020; 41:904-910. [PMID: 32354708 DOI: 10.3174/ajnr.a6512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/26/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE Constitutional mismatch repair deficiency is a hereditary childhood cancer predisposition syndrome characterized by brain tumors and colorectal and hematologic malignancies. Our objective was to describe the neuroimaging findings in patients with constitutional mismatch repair deficiency. MATERIALS AND METHODS This retrospective study included 14 children with genetically confirmed constitutional mismatch repair deficiency who were referred to 2 tertiary pediatric oncology centers. RESULTS Fourteen patients from 11 different families had diagnosed constitutional mismatch repair deficiency. The mean age at presentation was 9.3 years (range, 5-14 years). The most common clinical presentation was brain malignancy, diagnosed in 13 of the 14 patients. The most common brain tumors were glioblastoma (n = 7 patients), anaplastic astrocytoma (n = 3 patients), and diffuse astrocytoma (n = 3 patients). Nonspecific subcortical white matter T2 hyperintensities were noted in 10 patients (71%). Subcortical hyperintensities transformed into overt brain tumors on follow-up imaging in 3 patients. Additional non-neoplastic brain MR imaging findings included developmental venous anomalies in 12 patients (85%) and nontherapy-induced cavernous hemangiomas in 3 patients (21%). CONCLUSIONS On brain MR imaging, these patients have both highly characteristic intra-axial tumors (typically multifocal high-grade gliomas) and nonspecific findings, some of which might represent early stages of neoplastic transformation. The incidence of developmental venous anomalies is high in these patients for unclear reasons. Awareness of these imaging findings, especially in combination, is important to raise the suspicion of constitutional mismatch repair deficiency in routine diagnostic imaging evaluation or surveillance imaging studies of asymptomatic carriers because early identification of the phenotypic "gestalt" might improve outcomes.
Collapse
Affiliation(s)
- A Kerpel
- From the Department of Radiology (A.K., M.S., S.S., C.H.), Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel .,Sackler School of Medicine (A.K., M.Y., M.S., S.S., C.H.), Tel Aviv University, Tel Aviv, Israel
| | - M Yalon
- Pediatric Hemato-Oncology (M.Y.), Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler School of Medicine (A.K., M.Y., M.S., S.S., C.H.), Tel Aviv University, Tel Aviv, Israel
| | - M Soudack
- From the Department of Radiology (A.K., M.S., S.S., C.H.), Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler School of Medicine (A.K., M.Y., M.S., S.S., C.H.), Tel Aviv University, Tel Aviv, Israel
| | | | - A Gajjar
- Divisions of Neuro-Oncology (A.G.)
| | | | - Z Patay
- Department of Oncology and Section of Neuroimaging, Department of Diagnostic Imaging (Z.P.), St. Jude Children's Research Hospital, Memphis, Tennessee
| | - S Shrot
- From the Department of Radiology (A.K., M.S., S.S., C.H.), Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler School of Medicine (A.K., M.Y., M.S., S.S., C.H.), Tel Aviv University, Tel Aviv, Israel
| | - C Hoffmann
- From the Department of Radiology (A.K., M.S., S.S., C.H.), Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler School of Medicine (A.K., M.Y., M.S., S.S., C.H.), Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
32
|
An update on the central nervous system manifestations of familial tumor predisposition syndromes. Acta Neuropathol 2020; 139:609-612. [PMID: 32016553 DOI: 10.1007/s00401-020-02130-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 10/25/2022]
|