1
|
Chen M, Wang F, Lei H, Yang Z, Li C. In Silico Insights into Micro-Mechanism Understanding of Extracts of Taxus Chinensis Fruits Against Alzheimer's Disease. J Alzheimers Dis 2024; 97:727-740. [PMID: 38217605 DOI: 10.3233/jad-231066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
BACKGROUND The taxus chinensis fruit (TCF) shows promises in treatment of aging-related diseases such as Alzheimer's disease (AD). However, its related constituents and targets against AD have not been deciphered. OBJECTIVE This study was to uncover constituents and targets of TCF extracts against AD. METHODS An integrated approach including ultrasound extractions and constituent identification of TCF by UPLC-QE-MS/MS, target identification of constituents and AD by R data-mining from Pubchem, Drugbank and GEO databases, network construction, molecular docking and the ROC curve analysis was carried out. RESULTS We identified 250 compounds in TCF extracts, and obtained 3,231 known constituent targets and 5,326 differential expression genes of AD, and 988 intersection genes. Through the network construction and KEGG pathway analysis, 19 chemicals, 31 targets, and 11 biological pathways were obtained as core compounds, targets and pathways of TCF extracts against AD. Among these constituents, luteolin, oleic acid, gallic acid, baicalein, naringenin, lovastatin and rutin had obvious anti-AD effect. Molecular docking results further confirmed above results. The ROC AUC values of about 87% of these core targets of TCF extracts was greater than 0.5 in the two GEO chips of AD, especially 10 targets with ROC AUC values greater than 0.7, such as BCL2, CASP7, NFKBIA, HMOX1, CDK2, LDLR, RELA, and CCL2, which mainly referred to neuron apoptosis, response to oxidative stress and inflammation, fibroblast proliferation, etc.Conclusions:The TCF extracts have diverse active compounds that can act on the diagnostic genes of AD, which deserve further in-depth study.
Collapse
Affiliation(s)
- Meimei Chen
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Fengzhen Wang
- Certification Center for Chinese Physicians, State Administration of Traditional Chinese Medicine, Beijing, Beijing, China
| | - Huangwei Lei
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Zhaoyang Yang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Candong Li
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Yao Q, Mascarenhas dos Santos AC, Zhang H, Mañas A, Hussaini A, Kim U, Xu C, Basheer S, Tasaki S, Xiang J. Unconventional Source of Neurotoxic Protein Aggregation from Organelle Off-Target Bax∆2 in Alzheimer's Disease. Biomolecules 2023; 13:970. [PMID: 37371550 PMCID: PMC10296721 DOI: 10.3390/biom13060970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Protein aggregates are a hallmark of Alzheimer's disease (AD). Extensive studies have focused on β-amyloid plaques and Tau tangles. Here, we illustrate a novel source of protein aggregates in AD neurons from organelle off-target proteins. Bax is a mitochondrial pore-forming pro-death protein. What happens to Bax if it fails to target mitochondria? We previously showed that a mitochondrial target-deficient alternatively spliced variant, Bax∆2, formed large cytosolic protein aggregates and triggered caspase 8-mediated cell death. Bax∆2 protein levels were low in most normal organs and the proteins were quickly degraded in cancer. Here, we found that 85% of AD patients had Bax∆2 required alternative splicing. Increased Bax∆2 proteins were mostly accumulated in neurons of AD-susceptible brain regions. Intracellularly, Bax∆2 aggregates distributed independently of Tau tangles. Interestingly, Bax∆2 aggregates triggered the formation of stress granules (SGs), a large protein-RNA complex involved in AD pathogenesis. Although the functional domains required for aggregation and cell death are the same as in cancer cells, Bax∆2 relied on SGs, not caspase 8, for neuronal cell death. These results imply that the aggregation of organelle off-target proteins, such as Bax∆2, broadens the scope of traditional AD pathogenic proteins that contribute to the neuronal stress responses and AD pathogenesis.
Collapse
Affiliation(s)
- Qi Yao
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA (C.X.)
| | | | - Huaiyuan Zhang
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA (C.X.)
| | - Adriana Mañas
- Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
| | - Ammarah Hussaini
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA (C.X.)
| | - Ujin Kim
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA (C.X.)
| | - Congtai Xu
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA (C.X.)
| | - Sana Basheer
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA (C.X.)
| | - Shinya Tasaki
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jialing Xiang
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA (C.X.)
| |
Collapse
|
3
|
Zhu M, Zhang Y, Zhang C, Chen L, Kuang Y. Rutin modified selenium nanoparticles reduces cell oxidative damage induced by H 2O 2 by activating Nrf2/HO-1 signaling pathway. J Biomater Appl 2023:8853282231182765. [PMID: 37285508 DOI: 10.1177/08853282231182765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Oxidative damage of neurons is one of the key pathological markers of Alzheimer's disease (AD), which eventually leads to neuronal apoptosis and loss. Nuclear factor E2-related factor 2 (Nrf2) is a key regulator of antioxidant response and is considered to be an important therapeutic target for neurodegenerative diseases. In this study, the selenated derivative of antioxidant rutin (Se-Rutin) was synthesized with sodium selenate (Na2SeO3) as raw material by a simple electrostatic-compound in situ selenium reduction method. The effects of Se-Rutin on H2O2 induced oxidative damage in Pheochromocytoma PC12 cells were evaluated by cell viability, apoptosis, reactive oxygen species level and the expression of antioxidant response element (Nrf2). The results showed that H2O2 treatment significantly increased the level of apoptosis and reactive oxygen species, while the level of Nrf2 and HO-1 decreased. However, Se-Rutin significantly reduced H2O2 induced apoptosis and cytotoxicity, and increased the expression of Nrf2 and HO-1, both of which were better than that of pure rutin. Therefore, the activation of Nrf2/HO-1 signaling pathway may be the basis of Se-Rutin's anti-oxidative damage to AD.
Collapse
Affiliation(s)
- Mengyu Zhu
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Yang Zhang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Chi Zhang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Lei Chen
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Ying Kuang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| |
Collapse
|
4
|
Xia P, Ma H, Chen J, Liu Y, Cui X, Wang C, Zong S, Wang L, Liu Y, Lu Z. Differential expression of pyroptosis-related genes in the hippocampus of patients with Alzheimer's disease. BMC Med Genomics 2023; 16:56. [PMID: 36918839 PMCID: PMC10012531 DOI: 10.1186/s12920-023-01479-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/06/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive, neurodegenerative disorder with insidious onset. Some scholars believe that there is a close relationship between pyroptosis and AD. However, studies with evidence supporting this relationship are lacking. MATERIALS AND METHODS The microarray data of AD were retrieved from the Gene Expression Omnibus (GEO) database with the datasets merged using the R package inSilicoMerging. R software package Limma was used to perform the differential expression analysis to identify the differentially expressed genes (DEGs). We further performed the enrichment analyses of the DEGs based on Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases to identify the metabolic pathways with a significant difference. The Gene Set Enrichment Analysis (GSEA) was applied to identify the significant pathways. The protein-protein interaction (PPI) network was constructed based on the STRING database with the hub genes identified. Quantitative real-time PCR (qRT-PCR) analyses based on HT22 cells were performed to validate the findings based on the microarray analysis. Gene expression correlation heatmaps were generated to evaluate the relationships among the genes. RESULTS A new dataset was derived by merging 4 microarray datasets in the hippocampus of AD patients in the GEO database. Differential gene expression analysis yielded a volcano plot of a total of 20 DEGs (14 up-regulated and 6 down-regulated). GO analysis revealed a group of GO terms with a significant difference, e.g., cytoplasmic vesicle membrane, vesicle membrane, and monocyte chemotaxis. KEGG analysis detected the metabolic pathways with a significant difference, e.g., Rheumatoid arthritis and Fluid shear stress and atherosclerosis. The results of the Gene Set Enrichment Analysis of the microarray data showed that gene set ALZHEIMER_DISEASE and the gene set PYROPTOSIS were both up-regulated. PPI network showed that pyroptosis-related genes were divided into two groups. In the Aβ-induced HT22 cell model, three genes (i.e., BAX, IL18, and CYCS) were revealed with significant differences. Gene expression correlation heatmaps revealed strong correlations between pyroptotic genes and AD-related genes. CONCLUSION The pyroptosis-related genes BAX, IL18, and CYCS were significantly different between AD patients and normal controls.
Collapse
Affiliation(s)
- Pengcheng Xia
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Huijun Ma
- Clinical Laboratory, Qingdao Women and Children's Hospital, Qingdao, Shandong, China
| | - Jing Chen
- Discipline of Anatomy and Pathology, Shandong First Medical University, Jinan, Shandong, China
| | - Yingchao Liu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Xiaolin Cui
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Cuicui Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Shuai Zong
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Le Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Yun Liu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China.
| | - Zhiming Lu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
5
|
Choi GY, Kim HB, Hwang ES, Park HS, Cho JM, Ham YK, Kim JH, Mun MK, Maeng S, Park JH. Naringin enhances long-term potentiation and recovers learning and memory deficits of amyloid-beta induced Alzheimer's disease-like behavioral rat model. Neurotoxicology 2023; 95:35-45. [PMID: 36549596 DOI: 10.1016/j.neuro.2022.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD), as the most typical type of dementia, is a chronic neurodegenerative disorder characterized by progressive learning and memory impairment. It is known that the main causes of AD are the accumulation of β-amyloid (Aβ) plaques and neurofibrillary tangles (NFT) containing hyperphosphorylated tau protein. Naringin is a flavonoid from citrus fruits, especially in grapefruit, which has anti-inflammatory, antioxidant, anti-apoptotic, and neuroprotective activities. However, the effect of naringin in AD caused by Aβ has not been clearly studied, and there are few studies on the electrophysiological aspect. Thus, we investigated the ex vivo neuroprotective effect of naringin through the long-term potentiation (LTP) on organotypic hippocampal slice cultures. We evaluated the in vivo effects of naringin (100 mg/kg/day) orally treated for 20 days on learning, memory, and cognition which was impaired by bilateral CA1 subregion injection of Aβ. Cognitive behaviors were measured 2 weeks after Aβ injection using behavioral tests and the hippocampal expression of apoptotic and neurotrophic regulators were measured by immunoblotting. In hippocampal tissue slices, naringin dose-dependently increased the field excitatory postsynaptic potential (fEPSP) after theta burst stimulation and attenuated Aβ-induced blockade of fEPSP in the hippocampal CA1 area. In Aβ injected rats, naringin improved object recognition memory in the novel object test, avoidance memory in the passive avoidance test and spatial recognition memory in the Morris water maze test. In the hippocampus, naringin attenuated the Aβ-induced cyclooxygenase-2, Bax activation and Bcl-2, CREB, BDNF and TrkB inhibition. These results suggest that naringin has therapeutic potential to reduce neuronal inflammation and apoptosis induced by Aβ related with the BDNF/TrkB/CREB signaling.
Collapse
Affiliation(s)
- Ga-Young Choi
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Hyun-Bum Kim
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eun-Sang Hwang
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Ho-Sub Park
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Jae-Min Cho
- Graduate School of Biotechnology, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Young-Ki Ham
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Jin-Hee Kim
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Mi-Kyung Mun
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Sungho Maeng
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Ji-Ho Park
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
6
|
Yao Q, Zhang H, Standish C, Grube J, Mañas A, Xiang J. Expression profile of the proapoptotic protein Bax in the human brain. Histochem Cell Biol 2023; 159:209-220. [PMID: 35951115 DOI: 10.1007/s00418-022-02146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 11/27/2022]
Abstract
Bax is a well-known universal proapoptotic protein. Bax protein is detected in almost all human organs, and its expression levels can be correlated with disease progression and therapeutic efficacy in certain settings. Interestingly, increasing evidence has shown that mature neuronal cell death is often not typical apoptosis. Most results on the expression of Bax proteins (predominantly Baxα) in the human brain come from disease-oriented studies, and the data on Bax protein expression in the normal brain are limited and lack consistency due to many variable factors. Here, we analyzed Bax RNA and protein expression data from multiple databases and performed immunostaining of over 80 samples from 25 healthy subjects across 7 different brain regions. We found that Bax protein expression was heterogeneous across brain regions and individual subjects. Both neurons and glial cells, such as astrocytes, could be Bax positive, but Bax positivity appeared to be highly selective, even within the same cell type in the same region. Furthermore, Bax proteins could be localized in the cytosol (evenly spread or concentrated to one region), nucleus or nucleolus depending on the cell type. Such variation and distribution in Bax expression suggest that Bax may function differently in the human brain than in other organs.
Collapse
Affiliation(s)
- Qi Yao
- Department of Biology, Lewis College of Science and Letters, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL, 60616, USA
| | - Huaiyuan Zhang
- Department of Biology, Lewis College of Science and Letters, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL, 60616, USA
| | - Collin Standish
- Department of Biology, Lewis College of Science and Letters, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL, 60616, USA
| | - Joshua Grube
- Department of Biology, Lewis College of Science and Letters, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL, 60616, USA
| | - Adriana Mañas
- Department of Biology, Lewis College of Science and Letters, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL, 60616, USA
| | - Jialing Xiang
- Department of Biology, Lewis College of Science and Letters, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL, 60616, USA.
| |
Collapse
|
7
|
Yu H, Li M, Pan Q, Liu Y, Zhang Y, He T, Yang H, Xiao Y, Weng Y, Gao Y, Ke D, Chai G, Wang J. Integrated analyses of brain and platelet omics reveal their common altered and driven molecules in Alzheimer's disease. MedComm (Beijing) 2022; 3:e180. [PMID: 36254251 PMCID: PMC9560744 DOI: 10.1002/mco2.180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/08/2022] Open
Abstract
Platelets may serve as a perfect peripheral source for exploring diagnostic biomarkers for Alzheimer's disease (AD); however, the molecular linkage between platelet and the brain is missing. To find the common altered and driving molecules in both brain and the platelet, we performed an integrated analysis of our platelet omics and brain omics reported in the literature, and analyzed their correlations with AD-specific pathology and cognitive impairment. By integrating the gene and protein expression profiles from 269 AD patients, we deduced 239 differentially expressed proteins (DEPs) appeared in both brain and the platelet, and 70.3% of them had consistent changes. Further analysis demonstrated that the altered brain and peripheral regulations were pinpointed into 10 imbalanced pathways. We also found that 117 DEPs, including ADAM10, were closely associated to the AD-specific β-amyloid and tau pathologies; and the changes of IDH3B and RTN1 had a potential diagnostic value for cognitive impairment analyzed by machine learning. Finally, we identified that HMOX2 and SERPINA3 could serve as driving molecules in neurodegeneration, and they were increased and decreased in AD patients, respectively. Together, this integrated brain and platelet omics provides a valuable resource for establishing efficient peripheral diagnostic biomarkers and potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Haitao Yu
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Mengzhu Li
- Department of NeurosurgeryWuhan Central Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qihang Pan
- Department of NeurosurgeryWuhan Central Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yanchao Liu
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yao Zhang
- Department of EndocrinologyLiyuan HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ting He
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Huisheng Yang
- Institute of Acupuncture and MoxibustionChina Academy of Chinese Medical SciencesBeijingChina
| | - Yue Xiao
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ying Weng
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yang Gao
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dan Ke
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Gaoshang Chai
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Jian‐Zhi Wang
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| |
Collapse
|
8
|
Li RM, Xiao L, Zhang T, Ren D, Zhu H. Overexpression of fibroblast growth factor 13 ameliorates amyloid-β-induced neuronal damage. Neural Regen Res 2022; 18:1347-1353. [PMID: 36453422 PMCID: PMC9838149 DOI: 10.4103/1673-5374.357902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Previous studies have shown that fibroblast growth factor 13 is downregulated in the brain of both Alzheimer's disease mouse models and patients, and that it plays a vital role in the learning and memory. However, the underlying mechanisms of fibroblast growth factor 13 in Alzheimer's disease remain unclear. In this study, we established rat models of Alzheimer's disease by stereotaxic injection of amyloid-β (Aβ1-42)-induced into bilateral hippocampus. We also injected lentivirus containing fibroblast growth factor 13 into bilateral hippocampus to overexpress fibroblast growth factor 13. The expression of fibroblast growth factor 13 was downregulated in the brain of the Alzheimer's disease model rats. After overexpression of fibroblast growth factor 13, learning and memory abilities of the Alzheimer's disease model rats were remarkably improved. Fibroblast growth factor 13 overexpression increased brain expression levels of oxidative stress-related markers glutathione, superoxide dismutase, phosphatidylinositol-3-kinase, AKT and glycogen synthase kinase 3β, and anti-apoptotic factor BCL. Furthermore, fibroblast growth factor 13 overexpression decreased the number of apoptotic cells, expression of pro-apoptotic factor BAX, cleaved-caspase 3 and amyloid-β expression, and levels of tau phosphorylation, malondialdehyde, reactive oxygen species and acetylcholinesterase in the brain of Alzheimer's disease model rats. The changes were reversed by the phosphatidylinositol-3-kinase inhibitor LY294002. These findings suggest that overexpression of fibroblast growth factor 13 improved neuronal damage in a rat model of Alzheimer's disease through activation of the phosphatidylinositol-3-kinase/AKT/glycogen synthase kinase 3β signaling pathway.
Collapse
Affiliation(s)
- Ruo-Meng Li
- Department of Traditional Chinese Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Lan Xiao
- Department of Traditional Chinese Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Ting Zhang
- Department of Traditional Chinese Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Dan Ren
- Department of Traditional Chinese Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Hong Zhu
- Department of Traditional Chinese Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China,Correspondence to: Hong Zhu, .
| |
Collapse
|
9
|
Zhang L, Qian Y, Li J, Zhou X, Xu H, Yan J, Xiang J, Yuan X, Sun B, Sisodia SS, Jiang YH, Cao X, Jing N, Lin A. BAD-mediated neuronal apoptosis and neuroinflammation contribute to Alzheimer's disease pathology. iScience 2021; 24:102942. [PMID: 34430820 PMCID: PMC8369003 DOI: 10.1016/j.isci.2021.102942] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/07/2021] [Accepted: 07/30/2021] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative disease. However, the underlying molecular mechanism is incompletely understood. Here we report that the pro-apoptotic protein BAD as a key regulator for neuronal apoptosis, neuroinflammation and Aβ clearance in AD. BAD pro-apoptotic activity is significantly increased in neurons of AD patients and 5XFAD mice. Conversely, genetic disruption of Bad alleles restores spatial learning and memory deficits in 5XFAD mice. Mechanistically, phosphorylation and inactivation of BAD by neurotropic factor-activated Akt is abrogated in neurons under AD condition. Through reactive oxygen species (ROS)-oxidized mitochondrial DNA (mtDNA) axis, BAD also promotes microglial NLRP3 inflammasome activation, thereby skewing microglia toward neuroinflammatory microglia to inhibit microglial phagocytosis of Aβ in AD mice. Our results support a model in which BAD contributes to AD pathologies by driving neuronal apoptosis and neuroinflammation but suppressing microglial phagocytosis of Aβ, suggesting that BAD is a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Liansheng Zhang
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
- Institute of Modern Biology, Nanjing University, Nanjing 210023, China
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Yun Qian
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jie Li
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xuan Zhou
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - He Xu
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jie Yan
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allery & Clinical Immunology, Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Jialing Xiang
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Xiang Yuan
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
- Institute of Modern Biology, Nanjing University, Nanjing 210023, China
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Sangram S. Sisodia
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA
- The Microbiome Center, The University of Chicago, Chicago, IL 60637, USA
| | - Yong-Hui Jiang
- Department of Pediatrics and Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Naihe Jing
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Center of Cell Lineage and Atlas, Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
- Corresponding author
| | - Anning Lin
- Institute of Modern Biology, Nanjing University, Nanjing 210023, China
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA
- Grossman Institute for Neuroscience, Quantitative Biology, and Haman Behavior, The University of Chicago, Chicago, IL 60637, USA
- Corresponding author
| |
Collapse
|
10
|
Callens M, Kraskovskaya N, Derevtsova K, Annaert W, Bultynck G, Bezprozvanny I, Vervliet T. The role of Bcl-2 proteins in modulating neuronal Ca 2+ signaling in health and in Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118997. [PMID: 33711363 PMCID: PMC8041352 DOI: 10.1016/j.bbamcr.2021.118997] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
The family of B-cell lymphoma-2 (Bcl-2) proteins exerts key functions in cellular health. Bcl-2 primarily acts in mitochondria where it controls the initiation of apoptosis. However, during the last decades, it has become clear that this family of proteins is also involved in controlling intracellular Ca2+ signaling, a critical process for the function of most cell types, including neurons. Several anti- and pro-apoptotic Bcl-2 family members are expressed in neurons and impact neuronal function. Importantly, expression levels of neuronal Bcl-2 proteins are affected by age. In this review, we focus on the emerging roles of Bcl-2 proteins in neuronal cells. Specifically, we discuss how their dysregulation contributes to the onset, development, and progression of neurodegeneration in the context of Alzheimer's disease (AD). Aberrant Ca2+ signaling plays an important role in the pathogenesis of AD, and we propose that dysregulation of the Bcl-2-Ca2+ signaling axis may contribute to the progression of AD and that herein, Bcl-2 may constitute a potential therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Manon Callens
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Nina Kraskovskaya
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - Kristina Derevtsova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research & KU Leuven, Department of Neurosciences, Gasthuisberg, O&N5, Rm 7.357, B-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium.
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia; Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, United States.
| | - Tim Vervliet
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| |
Collapse
|
11
|
Song Y, Wang X, Wang X, Wang J, Hao Q, Hao J, Hou X. Osthole-Loaded Nanoemulsion Enhances Brain Target in the Treatment of Alzheimer's Disease via Intranasal Administration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8844455. [PMID: 33564364 PMCID: PMC7850840 DOI: 10.1155/2021/8844455] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 02/06/2023]
Abstract
Osthole (OST) is a natural coumarin compound that exerts multiple pharmacologic effects. However, the poor water solubility and the low oral absorption of OST limit its clinical application for the treatment of neurologic diseases. A suitable preparation needs to be tailored to evade these unfavourable properties of OST. In this study, an OST nanoemulsion (OST-NE) was fabricated according to the pseudoternary phase diagram method, which was generally used to optimize the prescription in light of the solubility of OST in surfactants and cosurfactants. The final composition of OST-NE was 3.6% of ethyl oleate as oil phase, 11.4% of the surfactant (polyethylene glycol ester of 15-hydroxystearic acid: polyoxyethylene 35 castor oil = 1 : 1), 3% of polyethylene glycol 400 as cosurfactant, and 82% of the aqueous phase. The pharmacokinetic study of OST-NE showed that the brain-targeting coefficient of OST was larger by the nasal route than that by the intravenous route. Moreover, OST-NE inhibited cell death, decreased the apoptosis-related proteins (Bax and caspase-3), and enhanced the activity of antioxidant enzymes (superoxide dismutase and glutathione) in L-glutamate-induced SH-SY5Y cells. OST-NE improved the spatial memory ability, increased the acetylcholine content in the cerebral cortex, and decreased the activity of acetylcholinesterase in the hippocampus of Alzheimer's disease model mice. In conclusion, this study indicates that the bioavailability of OST was improved by using the OST-NE via the nasal route. A low dose of OST-NE maintained the neuroprotective effects of OST, such as inhibiting apoptosis and oxidative stress and regulating the cholinergic system. Therefore, OST-NE can be used as a possible alternative to improve its bioavailability in the prevention and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yilei Song
- College of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Xiangyu Wang
- College of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Xingrong Wang
- College of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Jianze Wang
- College of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Qiulian Hao
- College of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Jifu Hao
- College of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Xueqin Hou
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| |
Collapse
|
12
|
Kim JH, Meng HW, He MT, Choi JM, Lee D, Cho EJ. Krill Oil Attenuates Cognitive Impairment by the Regulation of Oxidative Stress and Neuronal Apoptosis in an Amyloid β-Induced Alzheimer's Disease Mouse Model. Molecules 2020; 25:E3942. [PMID: 32872354 PMCID: PMC7504506 DOI: 10.3390/molecules25173942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/14/2020] [Accepted: 08/27/2020] [Indexed: 01/10/2023] Open
Abstract
In the present study, we investigated the cognitive improvement effects and its mechanisms of krill oil (KO) in Aβ25-35-induced Alzheimer's disease (AD) mouse model. The Aβ25-35-injected AD mouse showed memory and cognitive impairment in the behavior tests. However, the administration of KO improved novel object recognition ability and passive avoidance ability compared with Aβ25-35-injected control mice in behavior tests. In addition, KO-administered mice showed shorter latency to find the hidden platform in a Morris water maze test, indicating that KO improved learning and memory abilities. To evaluate the cognitive improvement mechanisms of KO, we measured the oxidative stress-related biomarkers and apoptosis-related protein expressions in the brain. The administration of KO inhibited oxidative stress-related biomarkers such as reactive oxygen species, malondialdehyde, and nitric oxide compared with AD control mice induced by Aβ25-35. In addition, KO-administered mice showed down-regulation of Bax/Bcl-2 ratio in the brain. Therefore, this study indicated that KO-administered mice improved cognitive function against Aβ25-35 by attenuations of neuronal oxidative stress and neuronal apoptosis. It suggests that KO might be a potential agent for prevention and treatment of AD.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea; (J.H.K.); (H.W.M.); (M.T.H.); (J.M.C.)
| | - Hui Wen Meng
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea; (J.H.K.); (H.W.M.); (M.T.H.); (J.M.C.)
| | - Mei Tong He
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea; (J.H.K.); (H.W.M.); (M.T.H.); (J.M.C.)
| | - Ji Myung Choi
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea; (J.H.K.); (H.W.M.); (M.T.H.); (J.M.C.)
- Department of Food and Nutrition, Kyungsung University, Busan 48434, Korea
| | | | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea; (J.H.K.); (H.W.M.); (M.T.H.); (J.M.C.)
| |
Collapse
|
13
|
Liu E, Zhou Q, Xie AJ, Li X, Li M, Ye J, Li S, Ke D, Wang Q, Xu ZP, Li L, Yang Y, Liu GP, Wang XC, Li HL, Wang JZ. Tau acetylates and stabilizes β-catenin thereby promoting cell survival. EMBO Rep 2020; 21:e48328. [PMID: 31930681 DOI: 10.15252/embr.201948328] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 11/30/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022] Open
Abstract
Overexpressing Tau counteracts apoptosis and increases dephosphorylated β-catenin levels, but the underlying mechanisms are elusive. Here, we show that Tau can directly and robustly acetylate β-catenin at K49 in a concentration-, time-, and pH-dependent manner. β-catenin K49 acetylation inhibits its phosphorylation and its ubiquitination-associated proteolysis, thus increasing β-catenin protein levels. K49 acetylation further promotes nuclear translocation and the transcriptional activity of β-catenin, and increases the expression of survival-promoting genes (bcl2 and survivin), counteracting apoptosis. Mutation of Tau's acetyltransferase domain or co-expressing non-acetylatable β-catenin-K49R prevents increased β-catenin signaling and abolishes the anti-apoptotic function of Tau. Our data reveal that Tau preserves β-catenin by acetylating K49, and upregulated β-catenin/survival signaling in turn mediates the anti-apoptotic effect of Tau.
Collapse
Affiliation(s)
- Enjie Liu
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiuzhi Zhou
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ao-Ji Xie
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoguang Li
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengzhu Li
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinwang Ye
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shihong Li
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Ke
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Wang
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Peng Xu
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Yang
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gong-Ping Liu
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Chuan Wang
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Lian Li
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
14
|
Chang CC, Chang YT, Huang CW, Tsai SJ, Hsu SW, Huang SH, Lee CC, Chang WN, Lui CC, Lien CY. Associations of Bcl-2 rs956572 genotype groups in the structural covariance network in early-stage Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2018; 10:17. [PMID: 29422088 PMCID: PMC5806294 DOI: 10.1186/s13195-018-0344-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 01/16/2018] [Indexed: 12/30/2022]
Abstract
Background Alzheimer’s disease (AD) is a complex neurodegenerative disease, and genetic differences may mediate neuronal degeneration. In humans, a single-nucleotide polymorphism in the B-cell chronic lymphocytic leukemia/lymphoma-2 (Bcl-2) gene, rs956572, has been found to significantly modulate Bcl-2 protein expression in the brain. The Bcl-2 AA genotype has been associated with reduced Bcl-2 levels and lower gray matter volume in healthy populations. We hypothesized that different Bcl-2 genotype groups may modulate large-scale brain networks that determine neurobehavioral test scores. Methods Gray matter structural covariance networks (SCNs) were constructed in 104 patients with AD using T1-weighted magnetic resonance imaging with seed-based correlation analysis. The patients were stratified into two genotype groups on the basis of Bcl-2 expression (G carriers, n = 76; A homozygotes, n = 28). Four SCNs characteristic of AD were constructed from seeds in the default mode network, salience network, and executive control network, and cognitive test scores served as the major outcome factor. Results For the G carriers, influences of the SCNs were observed mostly in the default mode network, of which the peak clusters anchored by the posterior cingulate cortex seed determined the cognitive test scores. In contrast, genetic influences in the A homozygotes were found mainly in the executive control network, and both the dorsolateral prefrontal cortex seed and the interconnected peak clusters were correlated with the clinical scores. Despite a small number of cases, the A homozygotes showed greater covariance strength than the G carriers among all four SCNs. Conclusions Our results suggest that the Bcl-2 rs956572 polymorphism is associated with different strengths of structural covariance in AD that determine clinical outcomes. The greater covariance strength in the four SCNs shown in the A homozygotes suggests that different Bcl-2 polymorphisms play different modulatory roles. Electronic supplementary material The online version of this article (10.1186/s13195-018-0344-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chiung-Chih Chang
- Department of Neurology, Cognition and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123 Ta-Pei Road, Niaosung, Kaohsiung County, 833, Taiwan.
| | - Ya-Ting Chang
- Department of Neurology, Cognition and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123 Ta-Pei Road, Niaosung, Kaohsiung County, 833, Taiwan
| | - Chi-Wei Huang
- Department of Neurology, Cognition and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123 Ta-Pei Road, Niaosung, Kaohsiung County, 833, Taiwan
| | - Shih-Jen Tsai
- Psychiatric Department, Taipei Veterans General Hospital, Taipei, Taiwan.,Psychiatric Division, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Wei Hsu
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shu-Hua Huang
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chen-Chang Lee
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Neng Chang
- Department of Neurology, Cognition and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123 Ta-Pei Road, Niaosung, Kaohsiung County, 833, Taiwan
| | - Chun-Chung Lui
- Division of Medical Imaging, E-Da Cancer Hospital and I-Shou University, Kaohsiung, Taiwan
| | - Chia-Yi Lien
- Department of Neurology, Cognition and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123 Ta-Pei Road, Niaosung, Kaohsiung County, 833, Taiwan
| |
Collapse
|
15
|
Ferrer I. Sisyphus in Neverland. J Alzheimers Dis 2018; 62:1023-1047. [PMID: 29154280 PMCID: PMC5870014 DOI: 10.3233/jad-170609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2017] [Indexed: 11/24/2022]
Abstract
The study of life and living organisms and the way in which these interact and organize to form social communities have been central to my career. I have been fascinated by biology, neurology, and neuropathology, but also by history, sociology, and art. Certain current historical, political, and social events, some occurring proximally but others affecting people in apparently distant places, have had an impact on me. Epicurus, Seneca, and Camus shared their philosophical positions which I learned from. Many scientists from various disciplines have been exciting sources of knowledge as well. I have created a world of hypothesis and experiments but I have also got carried away by serendipity following unexpected observations. It has not been an easy path; errors and wanderings are not uncommon, and opponents close to home much more abundant than one might imagine. Ambition, imagination, resilience, and endurance have been useful in moving ahead in response to setbacks. In the end, I have enjoyed my dedication to science and I am grateful to have glimpsed beauty in it. These are brief memories of a Spanish neuropathologist born and raised in Barcelona, EU.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona; Service of Pathological Anatomy, Bellvitge University Hospital; CIBERNED; Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
16
|
Rubio-Perez C, Guney E, Aguilar D, Piñero J, Garcia-Garcia J, Iadarola B, Sanz F, Fernandez-Fuentes N, Furlong LI, Oliva B. Genetic and functional characterization of disease associations explains comorbidity. Sci Rep 2017; 7:6207. [PMID: 28740175 PMCID: PMC5524755 DOI: 10.1038/s41598-017-04939-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 05/23/2017] [Indexed: 12/19/2022] Open
Abstract
Understanding relationships between diseases, such as comorbidities, has important socio-economic implications, ranging from clinical study design to health care planning. Most studies characterize disease comorbidity using shared genetic origins, ignoring pathway-based commonalities between diseases. In this study, we define the disease pathways using an interactome-based extension of known disease-genes and introduce several measures of functional overlap. The analysis reveals 206 significant links among 94 diseases, giving rise to a highly clustered disease association network. We observe that around 95% of the links in the disease network, though not identified by genetic overlap, are discovered by functional overlap. This disease network portraits rheumatoid arthritis, asthma, atherosclerosis, pulmonary diseases and Crohn's disease as hubs and thus pointing to common inflammatory processes underlying disease pathophysiology. We identify several described associations such as the inverse comorbidity relationship between Alzheimer's disease and neoplasms. Furthermore, we investigate the disruptions in protein interactions by mapping mutations onto the domains involved in the interaction, suggesting hypotheses on the causal link between diseases. Finally, we provide several proof-of-principle examples in which we model the effect of the mutation and the change of the association strength, which could explain the observed comorbidity between diseases caused by the same genetic alterations.
Collapse
Affiliation(s)
- Carlota Rubio-Perez
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), 08028, Barcelona, Spain.,Structural Bioinformatics Group, GRIB, IMIM, Department of Experimental and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Catalonia, Spain
| | - Emre Guney
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), 08028, Barcelona, Spain.,Center for Complex Network Research and Department of Physics, Northeastern University, Boston, 02115, MA, USA
| | - Daniel Aguilar
- Structural Bioinformatics Group, GRIB, IMIM, Department of Experimental and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Catalonia, Spain.,Barcelona Institute for Global Health (ISGlobal), 08003, Barcelona, Catalonia, Spain
| | - Janet Piñero
- Integrative Biomedical Informatics Group, GRIB, IMIM, Department of Experimental and Life Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Catalonia, Spain
| | - Javier Garcia-Garcia
- Structural Bioinformatics Group, GRIB, IMIM, Department of Experimental and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Catalonia, Spain.,Integrative Biomedical Informatics Group, GRIB, IMIM, Department of Experimental and Life Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Catalonia, Spain
| | - Barbara Iadarola
- Structural Bioinformatics Group, GRIB, IMIM, Department of Experimental and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Catalonia, Spain
| | - Ferran Sanz
- Integrative Biomedical Informatics Group, GRIB, IMIM, Department of Experimental and Life Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Catalonia, Spain
| | - Narcís Fernandez-Fuentes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3EB, United Kingdom.
| | - Laura I Furlong
- Integrative Biomedical Informatics Group, GRIB, IMIM, Department of Experimental and Life Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Catalonia, Spain.
| | - Baldo Oliva
- Structural Bioinformatics Group, GRIB, IMIM, Department of Experimental and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Catalonia, Spain.
| |
Collapse
|
17
|
Carvalho C, Santos MS, Oliveira CR, Moreira PI. Alzheimer's disease and type 2 diabetes-related alterations in brain mitochondria, autophagy and synaptic markers. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1665-75. [PMID: 25960150 DOI: 10.1016/j.bbadis.2015.05.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/13/2015] [Accepted: 05/02/2015] [Indexed: 01/01/2023]
Abstract
We aimed to investigate mitochondrial function, biogenesis and autophagy in the brain of type 2 diabetes (T2D) and Alzheimer's disease (AD) mice. Isolated brain mitochondria and homogenates from cerebral cortex and hippocampus of wild-type (WT), triple transgenic AD (3xTg-AD) and T2D mice were used to evaluate mitochondrial functional parameters and protein levels of mitochondrial biogenesis, autophagy and synaptic integrity markers, respectively. A significant decrease in mitochondrial respiration, membrane potential and energy levels was observed in T2D and 3xTg-AD mice. Also, a significant decrease in the levels of autophagy-related protein 7 (ATG7) and glycosylated lysosomal membrane protein 1 (LAMP1) was observed in cerebral cortex and hippocampus of T2D and 3xTg-AD mice. Moreover, both brain regions of 3xTg-AD mice present lower levels of nuclear respiratory factor (NRF) 1 while the levels of NRF2 are lower in both brain regions of T2D and 3xTg-AD mice. A decrease in mitochondrial encoded, nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) was also observed in T2D and 3xTg-AD mice although only statistically significant in T2D cortex. Furthermore, a decrease in the levels of postsynaptic density protein 95 (PSD95) in the cerebral cortex of 3xTg-AD mice and in hippocampus of T2D and 3xTg-AD mice and a decrease in the levels of synaptosomal-associated protein 25 (SNAP 25) in the hippocampus of T2D and 3xTg-AD mice were observed suggesting synaptic integrity loss. These results support the idea that alterations in mitochondrial function, biogenesis and autophagy cause synaptic damage in AD and T2D.
Collapse
Affiliation(s)
- Cristina Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal.
| | - Maria S Santos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Portugal
| | - Catarina R Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Laboratory of Biochemistry, Faculty of Medicine, University of Coimbra, Portugal
| | - Paula I Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Laboratory of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
18
|
Lysophosphatidylcholine increases the neurotoxicity of Alzheimer's amyloid β1-42 peptide: role of oligomer formation. Neuroscience 2015; 292:159-69. [PMID: 25727637 DOI: 10.1016/j.neuroscience.2015.02.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 02/16/2015] [Accepted: 02/19/2015] [Indexed: 11/24/2022]
Abstract
Oligomer formation is considered as a critical process for the neurotoxic effects of Alzheimer's amyloid β (Aβ) peptide. Previously we have demonstrated that lysophosphatidylcholine (LPC) increases the oligomer formation of Aβ1-42, the major Aβ peptide found Alzheimer's disease (AD) lesions. In this study, we have investigated whether LPC affects the neurotoxic effects of Aβ1-42 in a neuronal cell line (A1) culture. Dimethyl thiazolyl diphenyl tetrazolium (MTT) assay revealed that up to 10μM concentration, LPC did not affect A1 cell viability. Aβ1-42 decreased the cell viability, and such effect was dose dependently enhanced by LPC. However, neither LPC nor Aβ1-42, alone or in combination increased lactate dehydrogenase (LDH) release from A1 cells after 24-h treatment. Terminal deoxynucleotidyl transferase dUTP-biotin nick-end-labeling (TUNEL) assay showed that LPC increased Aβ1-42-induced apoptotic cell number. To determine the underlying mechanisms, the proteins implicated in apoptosis pathways including Bcl-2- and caspase-family were analyzed by Western blotting. The results demonstrated that Aβ1-42 decreased Bcl-2 in A1 cells at 24h, whereas LPC had no effect at any time point. Both LPC and Aβ1-42 increased Bax level at 24h, and their combined stimulation showed a synergistic effect. Similar synergistic effect of LPC and Aβ1-42 on caspase9 activation was observed. Dot blot immunoassay and Western blotting showed that LPC augmented Aβ1-42 oligomer formation in cell culture medium. Removing LPC-induced early-formed Aβ1-42 oligomer from the culture medium by immunoprecipitation decreased active caspase9 level and neurotoxicity, as revealed by Western blotting and MTT assay. Furthermore, dihydroethidium (DHE) assay showed that Aβ1-42 increased reactive oxygen species level in A1 cells, such effect was further enhanced by LPC. Thus, our results demonstrated that LPC increased the oligomer formation process of Aβ1-42 peptide in culture condition, and consequently increased apoptotic neuronal death. Such process might be important for the pathogenesis of AD, and inhibition of LPC generation could be a therapeutic target for the disease.
Collapse
|
19
|
Yang Y, Wang M, Lv B, Ma R, Hu J, Dun Y, Sun S, Li G. Sphingosine Kinase-1 Protects Differentiated N2a Cells Against Beta-Amyloid25–35-Induced Neurotoxicity Via the Mitochondrial Pathway. Neurochem Res 2014; 39:932-40. [DOI: 10.1007/s11064-014-1290-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/09/2014] [Accepted: 03/20/2014] [Indexed: 12/14/2022]
|
20
|
Salminen A, Kaarniranta K, Kauppinen A, Ojala J, Haapasalo A, Soininen H, Hiltunen M. Impaired autophagy and APP processing in Alzheimer's disease: The potential role of Beclin 1 interactome. Prog Neurobiol 2013; 106-107:33-54. [DOI: 10.1016/j.pneurobio.2013.06.002] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 12/18/2022]
|
21
|
Liu M, Song W, Li P, Huang Y, Gong X, Zhou G, Jia X, Zheng L, Fan Y. Galanin protects against nerve injury after shear stress in primary cultured rat cortical neurons. PLoS One 2013; 8:e63473. [PMID: 23691051 PMCID: PMC3653936 DOI: 10.1371/journal.pone.0063473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/02/2013] [Indexed: 12/29/2022] Open
Abstract
The neuropeptide galanin and its receptors (GalR) are found to be up-regulated in brains suffering from nerve injury, but the specific role played by galanin remains unclear. This study aimed to explore the neuroprotective role of galanin after shear stress induced nerve injury in the primary cultured cortical neurons of rats. Our results demonstrated that no significant changes in cell death and viability were found after galanin treatment when subjected to a shear stress of 5 dyn/cm(2) for 12 h, after increasing magnitude of shear stress to 10 dyn/cm(2) for 12 h, cell death was significantly increased, while galanin can inhibit the nerve injury induced by shear stress with 10 dyn/cm(2) for 12 h. Moreover, Gal2-11 (an agonist of GalR2/3) could also effectively inhibit shear stress-induced nerve injury of primary cultured cortical neurons in rats. Although GalR2 is involved in the galanin protection mechanism, there was no GalR3 expression in this system. Moreover, galanin increased the excitatory postsynaptic currents (EPSCs), which can effectively inhibit the physiological effects of shear stress. Galanin was also found to inhibit the activation of p53 and Bax, and further reversed the down regulation of Bcl-2 induced by shear stress. Our results strongly demonstrated that galanin plays a neuroprotective role in injured cortical neurons of rats.
Collapse
Affiliation(s)
- Meili Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing, China, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wei Song
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing, China, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ping Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing, China, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing, China, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xianghui Gong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing, China, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Gang Zhou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing, China, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaoling Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing, China, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Lisha Zheng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing, China, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing, China, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- * E-mail:
| |
Collapse
|
22
|
Genistein inhibits Aβ₂₅₋₃₅ -induced neurotoxicity in PC12 cells via PKC signaling pathway. Neurochem Res 2012; 37:2787-94. [PMID: 22949092 DOI: 10.1007/s11064-012-0872-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/30/2012] [Accepted: 08/14/2012] [Indexed: 10/27/2022]
Abstract
Protein kinase C (PKC) signaling pathway is recognized as an important molecular mechanism of Alzheimer's disease (AD) in the regulation of neuronal plasticity and survival. Genistein, the most active molecule of soy isoflavones, exerts neuroprotective roles in AD. However, the detailed mechanism has not been fully understood yet. The present study aimed to investigate whether the neuroprotective effects of genistein against amyloid β (Aβ)-induced toxicity in cultured rat pheochromocytoma (PC12) cells is involved in PKC signaling pathway. PC12 cells were pretreated with genistein for 2 h following incubation with Aβ(25-35) for additional 24 h. Cell viability was assessed by MTT. Hoechst33342/PI staining was applied to determine the apoptotic cells. PKC activity, intracellular calcium level and caspase-3 activity were analyzed by assay kits. The results showed that pretreatment with genistein significantly increased cell viability and PKC activity, decreased the levels of intracellular calcium, attenuated Hoechst/PI staining and blocked caspase-3 activity in Aβ(25-35)-treated PC12 cells. Pretreatment of Myr, a general PKC inhibitor, significantly attenuated the neuroprotective effect of genistein against Aβ(25-35)-treated PC12 cells. The present study indicates that PKC signaling pathway is involved in the neuroprotective action of genistein against Aβ(25-35)-induced toxicity in PC12 cells.
Collapse
|
23
|
Swerdlow RH. Mitochondria and cell bioenergetics: increasingly recognized components and a possible etiologic cause of Alzheimer's disease. Antioxid Redox Signal 2012; 16:1434-55. [PMID: 21902597 PMCID: PMC3329949 DOI: 10.1089/ars.2011.4149] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 07/28/2011] [Indexed: 12/28/2022]
Abstract
SIGNIFICANCE Mitochondria and brain bioenergetics are increasingly thought to play an important role in Alzheimer's disease (AD). RECENT ADVANCES Data that support this view are discussed from the perspective of the amyloid cascade hypothesis, which assumes beta-amyloid perturbs mitochondrial function, and from an opposite perspective that assumes mitochondrial dysfunction promotes brain amyloidosis. A detailed review of cytoplasmic hybrid (cybrid) studies, which argue mitochondrial DNA (mtDNA) contributes to sporadic AD, is provided. Recent AD endophenotype data that further suggest an mtDNA contribution are also summarized. CRITICAL ISSUES AND FUTURE DIRECTIONS Biochemical, molecular, cybrid, biomarker, and clinical data pertinent to the mitochondria-bioenergetics-AD nexus are synthesized and the mitochondrial cascade hypothesis, which represents a mitochondria-centric attempt to conceptualize sporadic AD, is discussed.
Collapse
Affiliation(s)
- Russell H Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
24
|
Ahmed T, Gilani AH. A comparative study of curcuminoids to measure their effect on inflammatory and apoptotic gene expression in an Aβ plus ibotenic acid-infused rat model of Alzheimer's disease. Brain Res 2011; 1400:1-18. [PMID: 21640982 DOI: 10.1016/j.brainres.2011.05.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 05/02/2011] [Accepted: 05/11/2011] [Indexed: 02/04/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, which depicts features of chronic inflammatory conditions resulting in cellular death and has limited therapeutic options. We aimed to explore the effect of a curcuminoid mixture and its individual components on inflammatory and apoptotic genes expression in AD using an Aβ+ibotenic acid-infused rat model. After 5 days of treatment with demethoxycurcumin, hippocampal IL-1β levels were decreased to 118.54 ± 47.48 and 136.67 ± 31.96% respectively at 30 and 10mg/kg, compared with the amyloid treated group (373.99 ± 15.28%). After 5 days of treatment, the curcuminoid mixture and demethoxycurcumin effectively decreased GFAP levels in the hippocampus. When studied for their effect on apoptotic genes expression, the curcuminoid mixture and bisdemethoxycurcumin effectively decreased caspase-3 level in the hippocampus after 20 days of treatment, where bisdemethoxycurcumin showed a maximal rescuing effect (92.35 ± 3.07%) at 3mg/kg. The curcuminoid mixture at 30 mg/kg decreased hippocampal FasL level to 70.56 ± 3.36% after 5 days of treatment and 19.01 ± 2.03% after 20 days. In the case of Fas receptor levels, demethoxycurcumin decreased levels after 5 days of treatment with all three doses showing a maximal effect (189.76 ± 15.01%) at 10mg/kg. Each compound was effective after 20 days in reducing Fas receptor levels in the hippocampus. This study revealed the important effect of curcuminoids on genes expression, showing that, each component of the curcuminoid mixture distinctly affects gene expression, thus highlighting the therapeutic potential of curcuminoids in AD.
Collapse
Affiliation(s)
- Touqeer Ahmed
- Natural Products Research Unit, Department of Biological and Biomedical Sciences, The Aga Khan University Medical College, Karachi-Pakistan
| | | |
Collapse
|
25
|
Wang H, Zhao H, Ye Y, Xiong N, Huang J, Yao D, Shen Y, Zhao X. Focal cerebral ischemia induces Alzheimer’s disease-like pathological change in rats. ACTA ACUST UNITED AC 2010; 30:29-36. [DOI: 10.1007/s11596-010-0106-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Indexed: 11/25/2022]
|
26
|
Potential protection of curcumin against amyloid β-induced toxicity on cultured rat prefrontal cortical neurons. Neurosci Lett 2009; 463:158-61. [DOI: 10.1016/j.neulet.2009.07.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 07/16/2009] [Accepted: 07/17/2009] [Indexed: 11/22/2022]
|
27
|
Bader Lange ML, Cenini G, Piroddi M, Abdul HM, Sultana R, Galli F, Memo M, Butterfield DA. Loss of phospholipid asymmetry and elevated brain apoptotic protein levels in subjects with amnestic mild cognitive impairment and Alzheimer disease. Neurobiol Dis 2008; 29:456-64. [PMID: 18077176 PMCID: PMC2292396 DOI: 10.1016/j.nbd.2007.11.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 09/21/2007] [Accepted: 11/05/2007] [Indexed: 11/28/2022] Open
Abstract
Oxidative stress, a hallmark of Alzheimer disease (AD), has been shown to induce lipid peroxidation and apoptosis disrupting cellular homeostasis. Normally, the aminophospholipid phosphatidylserine (PtdSer) is asymmetrically distributed on the cytosolic leaflet of the lipid bilayer. Under oxidative stress conditions, asymmetry is altered, characterized by the appearance of PtdSer on the outer leaflet, to initiate the first stages of an apoptotic process. PtdSer asymmetry is actively maintained by the ATP-dependent translocase flippase, whose function is inhibited if covalently bound by lipid peroxidation products, 4-hydroxynonenal (HNE) and acrolein, within the membrane bilayer in which they are produced. Additionally, pro-apoptotic proteins Bax and caspase-3 have been implemented in the oxidative modification of PtdSer resulting in subsequent asymmetric collapse, while anti-apoptotic protein Bcl-2 has been found to prevent this process. The current investigation focused on detection of PtdSer on the outer leaflet of the bilayer in synaptosomes from brain of subjects with AD and amnestic mild cognitive impairment (MCI), as well as expression levels of apoptosis-related proteins Bcl-2, Bax, and caspase-3. Fluorescence and Western blot analysis suggest PtdSer exposure on the outer leaflet is significantly increased in brain from subjects with MCI and AD contributing to early apoptotic elevation of pro- and anti-apoptotic proteins and finally neuronal loss. MCI is considered a possible transition point between normal cognitive aging and probable AD. Brain from subjects with MCI is reported to have increased levels of tissue oxidation; therefore, the results of this study could mark the progression of patients with MCI into AD. This study contributes to a model of apoptosis-specific oxidation of phospholipids consistent with the notion that PtdSer exposure is required for apoptotic-cell death.
Collapse
Affiliation(s)
- Miranda L. Bader Lange
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Ageing, University of Kentucky, Lexington, KY 40506-0055
| | - Giovanna Cenini
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Ageing, University of Kentucky, Lexington, KY 40506-0055
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Viale Europa 11, Brescia, 25124, Italy
| | - Marta Piroddi
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Ageing, University of Kentucky, Lexington, KY 40506-0055
- Department of Internal Medicine, Section of Applied Biochemistry and Nutritional Sciences, University of Perugia, Perugia, Italy
| | - Hafiz Mohmmad Abdul
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Ageing, University of Kentucky, Lexington, KY 40506-0055
| | - Rukhsana Sultana
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Ageing, University of Kentucky, Lexington, KY 40506-0055
| | - Francesco Galli
- Department of Internal Medicine, Section of Applied Biochemistry and Nutritional Sciences, University of Perugia, Perugia, Italy
| | - Maurizio Memo
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Viale Europa 11, Brescia, 25124, Italy
| | - D. Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Ageing, University of Kentucky, Lexington, KY 40506-0055
| |
Collapse
|
28
|
de la Monte SM, Jhaveri A, Maron BA, Wands JR. Nitric Oxide Synthase 3-Mediated Neurodegeneration After Intracerebral Gene Delivery. J Neuropathol Exp Neurol 2007; 66:272-83. [PMID: 17413318 DOI: 10.1097/nen.0b013e318040cfa2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In Alzheimer disease (AD), increased nitric oxide synthase 3 (NOS3) expression correlates with apoptosis in cortical neurons and colocalizes with amyloid precursor protein (APP)-amyloid beta (Abeta) deposits in the brain. In the present study we examined the potential role of NOS3 in relation to AD-type neurodegeneration using an in vivo model of gene delivery. Long Evans rat pups were given a single intracerebral injection of recombinant plasmid DNA containing the human NOS3 cDNA (p-hNOS3) or the luciferase (p-Luc) gene as a negative control, and complexed with polyamine reagent. Overexpression of NOS3 in the brain increased the levels of APP, APP-Abeta, p53, Tau, glial fibrillary acidic protein, and peroxisome proliferator activated receptors (PPAR) delta and gamma and decreased the levels of Hu (neuronal marker) mRNA, phosphorylated glycogen synthase kinase 3beta, ATP synthase, and choline acetyltransferase expression as demonstrated by real-time quantitative reverse-transcribed polymerase chain reaction, Western blot analysis, or immunohistochemical staining. These effects of NOS3 overexpression were accompanied by increased single-stranded DNA immunoreactivity, reflecting DNA damage. The results suggest that increased cerebral expression of NOS3 causes several molecular abnormalities related to AD-type neurodegeneration, including oxidative stress, mitochondrial dysfunction, and impaired acetylcholine homeostasis. The coexisting increases in PPAR-delta and -gamma expression suggest that the adverse effects of NOS3 overexpression may be abated by PPAR agonist treatment.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Department of Medicine, Rhode Island Hospital, Brown Medical School, Providence, Rhode Island 02903, USA.
| | | | | | | |
Collapse
|
29
|
Karlnoski R, Wilcock D, Dickey C, Ronan V, Gordon MN, Zhang W, Morgan D, Taglialatela G. Up-regulation of Bcl-2 in APP transgenic mice is associated with neuroprotection. Neurobiol Dis 2007; 25:179-88. [PMID: 17067805 PMCID: PMC1885419 DOI: 10.1016/j.nbd.2006.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 08/18/2006] [Accepted: 09/05/2006] [Indexed: 01/15/2023] Open
Abstract
Abeta-induced neurodegeneration is limited in APP and APP+PS1 transgenic mice. In middle-aged APP + PS1 transgenic mice, we found significantly increased Bcl-2 expression. The increase in Bcl-2 is restricted to amyloid-containing brain regions and is not found at young ages, suggesting that Abeta deposition is the stimulus for increased Bcl-2. Western blot results were confirmed with immunohistochemistry and qRT-PCR. In addition, we found that APP transgenic mice were protected from neurotoxicity caused by an injection of bak BH3 fusion peptides, known to induce apoptosis by antagonizing bcl protein activity. Nissl and fluorojade-stained slides showed that the active bak BH3 peptide caused substantial neuronal loss in the dentate gyrus and CA3 regions of nontransgenic, but not APP mice. The inactive mutant bak BH3 peptide did not cause degeneration in any mice. These data demonstrate that the increased Bcl-2 expression in brain regions containing Abeta deposits is associated with neuroprotection.
Collapse
Affiliation(s)
- Rachel Karlnoski
- Alzheimer’s Research Laboratory, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida 33612
| | - Donna Wilcock
- Alzheimer’s Research Laboratory, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida 33612
| | - Chad Dickey
- Alzheimer’s Research Laboratory, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida 33612
| | - Victoria Ronan
- Alzheimer’s Research Laboratory, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida 33612
| | - Marcia N. Gordon
- Alzheimer’s Research Laboratory, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida 33612
| | - Wenru Zhang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Texas
| | - Dave Morgan
- Alzheimer’s Research Laboratory, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida 33612
| | - Giulio Taglialatela
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Texas
| |
Collapse
|
30
|
Alberghina L, Colangelo AM. The modular systems biology approach to investigate the control of apoptosis in Alzheimer's disease neurodegeneration. BMC Neurosci 2006; 7 Suppl 1:S2. [PMID: 17118156 PMCID: PMC1775042 DOI: 10.1186/1471-2202-7-s1-s2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Apoptosis is a programmed cell death that plays a critical role during the development of the nervous system and in many chronic neurodegenerative diseases, including Alzheimer's disease (AD). This pathology, characterized by a progressive degeneration of cholinergic function resulting in a remarkable cognitive decline, is the most common form of dementia with high social and economic impact. Current therapies of AD are only symptomatic, therefore the need to elucidate the mechanisms underlying the onset and progression of the disease is surely needed in order to develop effective pharmacological therapies. Because of its pivotal role in neuronal cell death, apoptosis has been considered one of the most appealing therapeutic targets, however, due to the complexity of the molecular mechanisms involving the various triggering events and the many signaling cascades leading to cell death, a comprehensive understanding of this process is still lacking. Modular systems biology is a very effective strategy in organizing information about complex biological processes and deriving modular and mathematical models that greatly simplify the identification of key steps of a given process. This review aims at describing the main steps underlying the strategy of modular systems biology and briefly summarizes how this approach has been successfully applied for cell cycle studies. Moreover, after giving an overview of the many molecular mechanisms underlying apoptosis in AD, we present both a modular and a molecular model of neuronal apoptosis that suggest new insights on neuroprotection for this disease.
Collapse
Affiliation(s)
- Lilia Alberghina
- Department of Biotechnology and Biosciences, Laboratory of Neuroscience R. Levi-Montalcini, University of Milano-Bicocca, 20126 Milan, Italy.
| | | |
Collapse
|
31
|
Woodhouse A, Vickers JC, Dickson TC. Cytoplasmic cytochrome c immunolabelling in dystrophic neurites in Alzheimer's disease. Acta Neuropathol 2006; 112:429-37. [PMID: 16855832 DOI: 10.1007/s00401-006-0107-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 06/18/2006] [Accepted: 06/22/2006] [Indexed: 10/24/2022]
Abstract
Cytochrome c has a well-established role in electron transfer and as a mediator of apoptotic cell death. The cortical and intracellular localisation of cytochrome c immunoreactivity was examined in Alzheimer's disease and control cases. No differences in the cortical labelling pattern or the density of cytochrome c-positive cells in neocortical layer V were present between control and Alzheimer's disease cases. Punctate cytochrome c labelling was present in a subset of neocortical neurons, including clusters of intensely labelled pyramidal neurons that were not specifically associated with beta-amyloid plaques. With respect to Alzheimer's disease associated pathology, only 6.7 +/- 1.4% of neurons showing neurofibrillary tangle formation demonstrated punctate cytochrome c immunoreactivity. These results suggest that cytochrome c may label a subset of pyramidal neurons that is susceptible, yet relatively resistant, to Alzheimer's disease pathology. A low percentage of neurofilament triplet protein medium, tau and chromogranin A labelled dystrophic neurites were also cytochrome c-positive. There was also a trend towards an increase in the percentage of cytochrome c immunoreactive dystrophic neurites in pathologically aged control cases compared to Alzheimer's disease cases, suggesting that cytochrome c may be an early and transient epitope within dystrophic neurites. In contrast to the punctate cytochrome c labelling observed in cortical cells, cytoplasmic cytochrome c labelling was observed within dystrophic neurites. Although cytochrome c release is indicative of the activation of the intrinsic apoptotic pathway, cytoplasmic cytochrome c may also indicate mitochondrial damage or dysfunction.
Collapse
Affiliation(s)
- Adele Woodhouse
- NeuroRepair Group, School of Medicine, University of Tasmania, Private Bag 29, Hobart, TAS, 7001 Australia.
| | | | | |
Collapse
|
32
|
Fleischer A, Ghadiri A, Dessauge F, Duhamel M, Rebollo MP, Alvarez-Franco F, Rebollo A. Modulating apoptosis as a target for effective therapy. Mol Immunol 2006; 43:1065-79. [PMID: 16099509 DOI: 10.1016/j.molimm.2005.07.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Indexed: 10/25/2022]
Abstract
Alterations in cell proliferation and cell death are essential determinants in the pathogenesis and progression of several diseases such as cancer, neurodegenerative disorders or autoimmune diseases among others. Complex networks of regulatory factors determine whether cells proliferate or die. Recent progress in understanding the molecular changes offer the possibility of specifically targeting molecules and pathways to achieve more effective and rational therapies. Drugs that target molecules involved in apoptosis are used as treatment against several diseases. Candidates such as TNF death receptor family, caspase inhibitors, antagonists of the p53-MDM2 interaction, NF-kappaB and PI3K pathways and Bcl-2 family members have been targeted as cancer cell killing agents. Moreover, apoptosis of tumor cells can also be achieved by targeting the inhibitor of apoptosis proteins, IAPs, in addition to the classical antiproliferative approach. Disruption of STAT activation and interferon beta therapy have been used as a treatment to prevent the progression of some autoimmune diseases. In models of Parkinson's, Alzheimer's and amyotrophic lateral sclerosis, blocking of Par-4 expression or function, as well as caspase activation, prevents neuronal cell death. Finally, it has been shown that gene therapy may be an encouraging approach for treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Aarne Fleischer
- Laboratoire d'Immunologie Cellulaire et Tissulaire, U543 INSERM, Hôpital Pitié Salpêtrière, Bâtiment CERVI, 83 Bd de 1'Hôpital, 75013 Paris, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Woodhouse A, Dickson TC, West AK, McLean CA, Vickers JC. No difference in expression of apoptosis-related proteins and apoptotic morphology in control, pathologically aged and Alzheimer's disease cases. Neurobiol Dis 2006; 22:323-33. [PMID: 16406795 DOI: 10.1016/j.nbd.2005.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 11/07/2005] [Accepted: 11/24/2005] [Indexed: 11/24/2022] Open
Abstract
Apoptotic-like changes in the neocortex of control, pathologically aged and Alzheimer's disease (AD) cases were investigated. There was no increase in labeling or change in localization of labeling that distinguished between these cases for active caspase-3, -8, -9, Bax, Bcl-2 or TRADD. Bax, Bcl-2 and TRADD mRNA levels also differed little between case types, although there were small but significant decreases in Bax mRNA levels in AD compared to control cases and Bcl-2 mRNA in AD cases compared to pathologically aged and control cases. There was no difference in the percentage of apoptotic-like nuclei between these cases, except for a small but significant decrease in the inferior temporal gyrus of AD cases relative to controls. Nuclei observed within or adjacent to beta-amyloid plaques were rarely abnormal, and neurons bearing neurofibrillary tangles (NFTs) did not have abnormal nuclei. Apoptosis may not play a major role in the pathogenesis of neuronal degeneration of AD.
Collapse
Affiliation(s)
- Adele Woodhouse
- NeuroRepair Group, School of Medicine, Private Bag 29, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | | | | | | | |
Collapse
|
34
|
Liang ZQ, Wang XX, Wang Y, Chuang DM, DiFiglia M, Chase TN, Qin ZH. Susceptibility of striatal neurons to excitotoxic injury correlates with basal levels of Bcl-2 and the induction of P53 and c-Myc immunoreactivity. Neurobiol Dis 2005; 20:562-73. [PMID: 15922606 DOI: 10.1016/j.nbd.2005.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 03/08/2005] [Accepted: 04/07/2005] [Indexed: 11/29/2022] Open
Abstract
The present studies evaluated the potential contribution of Bcl-2, p53, and c-Myc to the differential vulnerability of striatal neurons to the excitotoxin quinolinic acid (QA). In normal rat striatum, Bcl-2 immunoreactivity (Bcl-2-i) was most intense in large aspiny interneurons including choline acetyltransferase positive (CAT+) and parvalbumin positive (PARV+) neurons, but low in a majority of medium-sized neurons. In human brain, intense Bcl-2-i was seen in large striatal neurons but not in medium-sized spiny projection neurons. QA produced degeneration of numerous medium-sized neurons, but not those enriched in Bcl-2-i. Many Bcl-2-i-enriched interneurons including those with CAT+ and PARV+ survived QA injection, while medium-sized neurons labeled for calbindin D-28K (CAL D-28+) did not. In addition, proapoptotic proteins p53-i and c-Myc-i were robustly induced in medium-sized neurons, but not in most large neurons. The selective vulnerability of striatal medium spiny neurons to degeneration in a rodent model of Huntington's disease appears to correlate with their low levels of Bcl-2-i and high levels of induced p53-i and c-Myc-i.
Collapse
Affiliation(s)
- Zhong-Qin Liang
- Department of Pharmacology, Soochow University School of Medicine, Suzhou 215007, P.R. China
| | | | | | | | | | | | | |
Collapse
|
35
|
Blanchard V, Moussaoui S, Czech C, Touchet N, Bonici B, Planche M, Canton T, Jedidi I, Gohin M, Wirths O, Bayer TA, Langui D, Duyckaerts C, Tremp G, Pradier L. Time sequence of maturation of dystrophic neurites associated with Abeta deposits in APP/PS1 transgenic mice. Exp Neurol 2004; 184:247-63. [PMID: 14637096 DOI: 10.1016/s0014-4886(03)00252-8] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several novel transgenic mouse models expressing different mutant APPs in combination with mutant PS1 have been developed. These models have been analyzed to investigate the formation and progressive alterations of dystrophic neurites (DNs) in relation to Abeta deposits. In the most aggressive model, Abeta deposits appear as early as 2.5 months of age. Maturation of DNs was qualitatively quite similar among models and in some respect reminiscent of human AD pathology. From the onset of deposition, most if not all Abeta deposits were decorated with a high number of APP-, ubiquitin-, and MnSOD-immunoreactive DNs. Phosphorylated Tau DNs, however, appeared at a much slower rate and were more restricted. Mitochondrial dysfunction markers were observed in DNs: the frequency and the density per deposit of DNs accumulating cytochrome c, cytochrome oxidase 1, and Bax progressively increased with age. Later, the burden of reactive DNs was reduced around large compact/mature deposits. In addition, the previously described phenomenon of early intraneuronal Abeta accumulation in our models was associated with altered expression of APP protein as well as oxidative and mitochondrial stress markers occasionally in individual neurons. The present study demonstrates that oxidative and mitochondrial stress factors are present at several phases of Abeta pathology progression, confirming the neuronal dysfunction in APP transgenic mice.
Collapse
Affiliation(s)
- Véronique Blanchard
- Neurodegenerative Disease Group, Centre de Recherche de Paris, Aventis Pharma 94403, Vitry sur Seine Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Uysal H, Cevik IU, Soylemezoglu F, Elibol B, Ozdemir YG, Evrenkaya T, Saygi S, Dalkara T. Is the cell death in mesial temporal sclerosis apoptotic? Epilepsia 2003; 44:778-84. [PMID: 12790890 DOI: 10.1046/j.1528-1157.2003.37402.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE Mesial temporal sclerosis (MTS) is characterized by neuronal loss in the hippocampus. Studies on experimental models and patients with intractable epilepsy suggest that apoptosis may be involved in neuronal death induced by recurrent seizures. METHODS We searched evidence for apoptotic cell death in temporal lobes resected from drug-resistant epilepsy patients with MTS by using the terminal deoxynucleotidyl transferase (TdT) and digoxigenin-11-dUTP (TUNEL) method and immunohistochemistry for Bcl-2, Bax, and caspase-cleaved actin fragment, fractin. The temporal lobe specimens were obtained from 15 patients (six women and nine men; mean age, 29 +/- 8 years). RESULTS Unlike that in normal adult brain, we observed Bcl-2 immunoreactivity in some of the remaining neurons dispersed throughout the hippocampus proper as well as in most of the reactive astroglia. Bax immunopositivity was increased in almost all neurons. Fractin immunostaining, an indicator of caspase activity, was detected in approximately 10% of these neurons. Despite increased Bax expression and activation of caspases, we could not find evidence for DNA fragmentation by TUNEL staining. We also could not detect typical apoptotic changes in nuclear morphology by Hoechst-33258 or hematoxylin counterstaining. CONCLUSIONS These data suggest that either apoptosis is not involved in cell loss in MTS, or a very slow rate of cell demise may have precluded detecting TUNEL-positive neurons dying through apoptosis. Increased Bax expression and activation of caspases support the latter possibility.
Collapse
Affiliation(s)
- Hilmi Uysal
- Department of Neurology, Sevgi Hospital, Hacettepe University Hospitals, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Tatton W, Chen D, Chalmers-Redman R, Wheeler L, Nixon R, Tatton N. Hypothesis for a common basis for neuroprotection in glaucoma and Alzheimer's disease: anti-apoptosis by alpha-2-adrenergic receptor activation. Surv Ophthalmol 2003; 48 Suppl 1:S25-37. [PMID: 12852432 DOI: 10.1016/s0039-6257(03)00005-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent studies have suggested glaucomatous loss of retinal ganglion cells and their axons in Alzheimer's disease. Amyloid beta peptides and phosphorylated tau protein have been implicated in the selective regional neuronal loss and protein accumulations characteristic of Alzheimer's disease. Similar protein accumulations are not present on glaucomatous retinal ganglion cells. Neurons die in both Alzheimer's disease and glaucoma by apoptosis, although the signaling pathways for neuronal degradation appear to differ in the two diseases. Alzheimer's disease features a loss of locus ceruleus noradrenergic neurons, which send axon terminals to the brain regions suffering neuronal apoptosis and results in reductions in noradrenaline in those regions. Activation of alpha-2 adrenergic receptors reduces neuronal apoptosis, in part through a protein kinase B (Akt)-dependent signaling pathway. Loss of noradrenaline innervation facilitates neuronal apoptosis in Alzheimer's disease models and may act similarly in glaucoma. Alpha-2 adrenergic receptor agonists offer the potential to slow the neuronal loss in both diseases by compensating for lost noradrenaline innervation.
Collapse
Affiliation(s)
- William Tatton
- Department of Neurology, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
38
|
de la Monte SM, Chiche JD, von dem Bussche A, Sanyal S, Lahousse SA, Janssens SP, Bloch KD. Nitric oxide synthase-3 overexpression causes apoptosis and impairs neuronal mitochondrial function: relevance to Alzheimer's-type neurodegeneration. J Transl Med 2003; 83:287-98. [PMID: 12594242 DOI: 10.1097/01.lab.0000056995.07053.c0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Dementia in Alzheimer's disease (AD) is correlated with cell loss that is mediated by apoptosis, mitochondrial (Mt) dysfunction, and possibly necrosis. Previous studies demonstrated increased expression of the nitric oxide synthase 3 (NOS3) gene in degenerating neurons of AD brains. For investigating the role of NOS3 overexpression as a mediator of neuronal loss, human PNET2 central nervous system-derived neuronal cells were infected with recombinant adenovirus vectors that expressed either human NOS3 or green fluorescent protein cDNA under the control of a CMV promoter. NOS3 overexpression resulted in apoptosis accompanied by increased levels of p53, p21/Waf1, Bax, and CD95. In addition, NOS3 overexpression impaired neuronal Mt function as demonstrated by the reduced levels of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide and nicotinamide adenine dinucleotide (reduced form)-tetrazolium reductase activities and MitoTracker Red fluorescence. These adverse effects of NOS3 were associated with increased cellular levels of reactive oxygen species and impaired membrane integrity and were not produced in cells that were transfected with a cDNA encoding catalytically inactive NOS3. Importantly, modest elevations in NOS3 expression, achieved by infection with low multiplicities of adenovirus-NOS3 infection, did not cause apoptosis but rendered the cells more sensitive to oxidative injury by H(2)O(2) or diethyldithiocarbamate. In contrast, treatment with NO donors did not enhance neuronal sensitivity to oxidative injury. These results suggest that NOS3-induced neuronal death is mediated by Mt dysfunction, oxidative injury, and impaired membrane integrity, rather than by NO production, and that neuroprotection from these adverse effects of NOS3 may be achieved by modulating intracellular levels of oxidative stress.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Department of Medicine, Rhode Island Hospital and Brown Medical School, Providence, Rhode Island 02903, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Thompson K, Menzies S, Muckenthaler M, Torti FM, Wood T, Torti SV, Hentze MW, Beard J, Connor J. Mouse brains deficient in H-ferritin have normal iron concentration but a protein profile of iron deficiency and increased evidence of oxidative stress. J Neurosci Res 2003; 71:46-63. [PMID: 12478613 DOI: 10.1002/jnr.10463] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several neurodegenerative disorders such as Parkinson's Disease (PD) and Alzheimer's Disease (AD) are associated with elevated brain iron accumulation relative to the amount of ferritin, the intracellular iron storage protein. The accumulation of more iron than can be adequately stored in ferritin creates an environment of oxidative stress. We developed a heavy chain (H) ferritin null mutant in an attempt to mimic the iron milieu of the brain in AD and PD. Animals homozygous for the mutation die in utero but the heterozygotes (+/-) are viable. We examined heterozygous and wild-type (wt) mice between 6 and 8 months of age. Macroscopically, the brains of +/- mice were well formed and did not differ from control brains. There was no evidence of histopathology in the brains of the heterozygous mice. Iron levels in the brain of the +/- and wild-type (+/+) mice were similar, but +/- mice had less than half the levels of H-ferritin. The other iron management proteins transferrin, transferrin receptor, light chain ferritin, Divalent Metal Transporter 1, ceruloplasmin, were increased in the +/- mice compared to +/+ mice. The relative amounts of these proteins in relation to the iron concentration are similar to that found in AD and PD. Thus, we hypothesized that the brains of the heterozygote mice should have an increase in indices of oxidative stress. In support of this hypothesis, there was a decrease in total superoxide dismutase (SOD) activity in the heterozygotes coupled with an increase in oxidatively modified proteins. In addition, apoptotic markers Bax and caspase-3 were detected in neurons of the +/- mice but not in the wt. Thus, we have developed a mouse model that mimics the protein profile for iron management seen in AD and PD that also shows evidence of oxidative stress. These results suggest that this mouse may be a model to determine the role of iron mismanagement in neurodegenerative disorders and for testing antioxidant therapeutic strategies.
Collapse
Affiliation(s)
- Khristy Thompson
- Department of Neuroscience and Anatomy, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhang Y, McLaughlin R, Goodyer C, LeBlanc A. Selective cytotoxicity of intracellular amyloid beta peptide1-42 through p53 and Bax in cultured primary human neurons. J Cell Biol 2002; 156:519-29. [PMID: 11815632 PMCID: PMC2173346 DOI: 10.1083/jcb.200110119] [Citation(s) in RCA: 328] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular amyloid beta peptides (Abetas) have long been thought to be a primary cause of Alzheimer's disease (AD). Now, detection of intracellular neuronal Abeta1--42 accumulation before extracellular Abeta deposits questions the relevance of intracellular peptides in AD. In the present study, we directly address whether intracellular Abeta is toxic to human neurons. Microinjections of Abeta1--42 peptide or a cDNA-expressing cytosolic Abeta1--42 rapidly induces cell death of primary human neurons. In contrast, Abeta1--40, Abeta40--1, or Abeta42--1 peptides, and cDNAs expressing cytosolic Abeta1--40 or secreted Abeta1--42 and Abeta1--40, are not toxic. As little as a 1-pM concentration or 1500 molecules/cell of Abeta1--42 peptides is neurotoxic. The nonfibrillized and fibrillized Abeta1--42 peptides are equally toxic. In contrast, Abeta1--42 peptides are not toxic to human primary astrocytes, neuronal, and nonneuronal cell lines. Inhibition of de novo protein synthesis protects against Abeta1--42 toxicity, indicating that programmed cell death is involved. Bcl-2, Bax-neutralizing antibodies, cDNA expression of a p53R273H dominant negative mutant, and caspase inhibitors prevent Abeta1--42-mediated human neuronal cell death. Taken together, our data directly demonstrate that intracellular Abeta1--42 is selectively cytotoxic to human neurons through the p53--Bax cell death pathway.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2T5, Canada
| | | | | | | |
Collapse
|
41
|
Vestling M, Wiehager B, Tanii H, Cowburn RF. Akt activity in presenilin 1 wild-type and mutation transfected human SH-SY5Y neuroblastoma cells after serum deprivation and high glucose stress. J Neurosci Res 2001; 66:448-56. [PMID: 11746362 DOI: 10.1002/jnr.10006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The majority of early-onset familial Alzheimer disease cases are caused by mutations in the genes encoding presenilin 1 (PS1) and presenilin 2 (PS2). Presenilin mutations have been hypothesised to cause Alzheimer disease either by altering amyloid precursor protein metabolism or by increasing the vulnerability of neurons to undergo death by apoptosis. We showed previously that PS1 exon 9 deletion (PS1 DeltaE9) and L250S mutations predispose SH-SY5Y neuroblastoma cells to high glucose stress-induced apoptosis and that the anti-apoptotic effect of insulin-like growth factor I (IGF-I) is compromised by these mutations. The present study investigates whether the susceptibility of PS1 mutation transfected SH-SY5Y cells to undergo apoptosis is likely due to a downregulation of Akt/protein kinase B (Akt), a key intermediate in the phosphatidylinositol 3 (PI3)-kinase arm of the IGF-I signaling pathway. We used two methods to determine the regulation of Akt in response to the pro-apoptotic stimuli of serum deprivation and high glucose stress, as well as treatment with IGF-I. We also looked at the phosphorylatiom state of GSK-3beta at Ser9. Using a kinase assay with immunoprecipitated Akt, we detected an increased Akt activity in PS1 L250S cells at 1 hr after the combination of 20 mM glucose plus 10 nM IGF-I, when compared to the other cell types. This effect, however, was transient in that no mutation related differences were seen at either 6- or 24-hr post-treatment. Immunoblotting for Phospho-Akt as a ratio of total Akt, as well as for GSK-3beta phosphorylated at Ser9 revealed no apparent between cell type and treatment differences. This data strongly indicates that PS1 wt and mutant cells show no major differences in the pattern of Akt regulation after exposure to the pro-apoptotic stimuli of either serum deprivation or high glucose stress, or treatment with IGF-I. It is suggested that another component of IGF-I signaling is likely disrupted in these cells to increase their vulnerability to undergo death by apoptosis.
Collapse
Affiliation(s)
- M Vestling
- Karolinska Institutet, NEUROTEC, Division of Experimental Geriatrics, KFC, NOVUM, Huddinge, Sweden
| | | | | | | |
Collapse
|
42
|
Jellinger KA, Stadelmann C. Mechanisms of cell death in neurodegenerative disorders. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2001; 59:95-114. [PMID: 10961423 DOI: 10.1007/978-3-7091-6781-6_13] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Progressive cell loss in specific neuronal populations is the prominent pathological hallmark of neurodegenerative diseases, but its molecular basis remains unresolved. Apoptotic cell death has been implicated as a general mechanism in Alzheimer disease (AD) and other neurodegenerative disorders. However, DNA fragmention in neurons is too frequent to account for the continuous loss in these slowly progressive diseases. MATERIAL AND METHODS In 9 cases of morphologically confirmed AD (CERAD criteria, Braak stages 5 or 6), 5 cases of Parkinson disease (PD) and 3 cases each of Dementia with Lewy bodies (DLB), Progressive Supranuclear Palsy (PSP), and Multiple System Atrophy (MSA), and 7 age-matched controls, the TUNEL method was used to detect DNA fragmentation, and immunohistochemistry for an array of apoptosis-related proteins (ARP), protooncogenes, and activated caspase-3 were performed. RESULTS In AD, a considerable number of hippocampal neurons showed DNA fragmentation with a 3 to 5.7 fold increase related to neurofibrillary tangles and amyloid deposits, but only exceptional neurons displayed apoptotic morphology (1 in 1100-5000) and cytoplasmic immunoreactivity for ARPs and activated caspase-3 (1 in 2600 to 5650 hippocampal neurons), whereas no neurons were labeled in age-matched controls. Caspase-3 immunoreactivity was seen in granules of granulovacuolar degeneration, only rarely colocalized with tau-immunoreactivity. In PD, DLB, and MSA, TUNEL positivity and expression of ARPs or activated caspase-3 was only seen in microglia, rare astrocytes and in oligodendroglia with cytoplasmic inclusions in MSA, but not in nigral or other neurons with or without Lewy bodies. In PSP, only single neurons but oligodendrocytes, some with tau deposits, in brainstem tegmentum and pontine nuclei were TUNEL-positive and expressed both ARPs and activated caspase-3. CONCLUSIONS These data provide evidence for extremely rare apoptotic neuronal death in AD compatible with the progression of neuronal degeneration in this chronic disease. In other neurodegenerative disorders, apoptosis mainly involves microglia and oligodendroglia, while alternative mechanisms of neuronal death may occur. Susceptible cell populations in a proapoptotic environment show increased vulnerability towards metabolic and other pathogenic factors, with autophagy as a possible protective mechanism in early stages of programmed cell death. The intracellular cascade leading to cell death still awaits elucidation.
Collapse
Affiliation(s)
- K A Jellinger
- Ludwig Boltzmann Institute of Clinical Neurobiology, Psychiatric Hospital, Vienna, Austria.
| | | |
Collapse
|
43
|
de la Monte SM, Wands JR. Alzheimer-associated neuronal thread protein-induced apoptosis and impaired mitochondrial function in human central nervous system-derived neuronal cells. J Neuropathol Exp Neurol 2001; 60:195-207. [PMID: 11273007 DOI: 10.1093/jnen/60.2.195] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In Alzheimer Disease (AD), dementia is due to cell loss and impaired synaptic function. The cell loss is mediated by increased apoptosis, predisposition to apoptosis, and impaired mitochondrial function. Previous studies demonstrated that the AD7c-NTP neuronal thread protein gene is over-expressed in AD beginning early in the course of disease, and that in AD, AD7c-NTP protein accumulation in neurons co-localizes with phospho-tau-immunoreactivity. To determine the potential contribution of AD7c-NTP over-expression to cell loss in AD, we utilized an inducible mammalian expression system to regulate AD7c-NTP gene expression in human CNS-derived neuronal cells by stimulation with isopropyl-1-beta-D-thiogalactopyranoside (IPTG). IPTG induction of AD7c-NTP gene expression resulted in increased cell death mediated by apoptosis, impaired mitochondrial function, and increased cellular levels of the p53 and CD95 pro-apoptosis gene products as occur in AD. In addition, over-expression of AD7c-NTP was associated with increased levels of phospho-tau, but not amyloid-beta immunoreactivity. These results suggest that AD7c-NTP over-expression may have a direct role in mediating some of the important cell death cascades associated with AD neurodegeneration, and further establish a link between AD7c-NTP overexpression and the accumulation of phospho-tau in preapoptotic CNS neuronal cells.
Collapse
Affiliation(s)
- S M de la Monte
- Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence 02903, USA
| | | |
Collapse
|
44
|
Xie J, Guo Q, Zhu H, Wooten MW, Mattson MP. Protein kinase C iota protects neural cells against apoptosis induced by amyloid beta-peptide. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 82:107-13. [PMID: 11042363 DOI: 10.1016/s0169-328x(00)00187-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein kinase C (PKC) isoforms are increasingly recognized as playing important roles in the regulation of neuronal plasticity and survival. Recent findings from studies of non-neuronal cells suggest that atypical isoforms of PKC can modulate apoptosis in various paradigms. Because increasing data support a role for neuronal apoptosis in the pathogenesis of Alzheimer's disease (AD), we tested the hypothesis that PKCiota (PKCiota) can modify vulnerability of neural cells to apoptosis induced by amyloid beta-peptide (ABP), a cytotoxic peptide linked to neuronal degeneration in AD. Overexpression of PKCiota increased the resistance of PC12 cells to apoptosis induced by ABP. Associated with the increased resistance to apoptosis were improved mitochondrial function and reduced activity of caspases. In addition, ABP-induced increases in levels of oxidative stress and intracellular calcium levels were attenuated in cells overexpressing PKCiota. These findings suggest that PKCiota prevents apoptosis induced by ABP by interrupting the cell death process at a very early step, thereby allowing the cells to maintain ion homeostasis and mitochondrial function.
Collapse
Affiliation(s)
- J Xie
- Sanders-Brown Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
45
|
de la Monte SM, Luong T, Neely TR, Robinson D, Wands JR. Mitochondrial DNA damage as a mechanism of cell loss in Alzheimer's disease. J Transl Med 2000; 80:1323-35. [PMID: 10950123 DOI: 10.1038/labinvest.3780140] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Aging is associated with impaired mitochondrial function caused by accumulation of oxygen free radical-induced mitochondrial (Mt) DNA mutations. One prevailing theory is that age-associated diseases, including Alzheimer's disease (AD), may be precipitated, propagated, or caused by impaired mitochondrial function. To investigate the role of MtDNA relative to genomic (Gn) DNA damage in AD, temporal lobe samples from postmortem AD (n = 37) and control (n = 25) brains were analyzed for MtDNA and GnDNA fragmentation, mitochondrial protein and cytochrome oxidase expression, MitoTracker Green fluorescence (to assess mitochondrial mass/abundance), and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OHdG) immunoreactivity. Brains with AD had more extensive nicking and fragmentation of both MtDNA and GnDNA as demonstrated by agarose gel electrophoresis, end-labeling, and the in situ terminal deoxynucleotide transferase end-labeling (TUNEL) assay, and only the brains with AD had detectable 8-OHdG immunoreactivity in cortical neurons. Increased MtDNA damage in AD was associated with reduced MtDNA content, as demonstrated by semiquantitative PCR analysis and reduced levels of Mt protein and cytochrome oxidase expression by Western blot analysis or immunohistochemical staining with image analysis. The finding of reduced MitoTracker Green fluorescence in AD brains provided additional evidence that reduced Mt mass/abundance occurs with AD neurodegeneration. The presence of increased MtDNA and GnDNA damage in AD suggest dual cell death cascades in AD. Impaired mitochondrial function caused by MtDNA damage may render brain cells in AD more susceptible to oxidative injury and thereby provide a mechanism by which systemic or environmental factors could influence the course of disease.
Collapse
Affiliation(s)
- S M de la Monte
- Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence 02903, USA.
| | | | | | | | | |
Collapse
|
46
|
Zhu H, Fu W, Mattson MP. The catalytic subunit of telomerase protects neurons against amyloid beta-peptide-induced apoptosis. J Neurochem 2000; 75:117-24. [PMID: 10854254 DOI: 10.1046/j.1471-4159.2000.0750117.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The catalytic subunit of telomerase (TERT) is a specialized reverse transcriptase that has been associated with cell immortalization and cancer. It was reported recently that TERT is expressed in neurons throughout the brain in embryonic and early postnatal development, but is absent from neurons in the adult brain. We now report that suppression of TERT levels and function in embryonic mouse hippocampal neurons in culture using antisense technology and the telomerase inhibitor 3' -azido-2' 3' -dideoxythymidine significantly increases their vulnerability to cell death induced by amyloid beta-peptide, a neurotoxic protein believed to promote neuronal degeneration in Alzheimer's disease. Neurons in which TERT levels were reduced exhibited increased levels of oxidative stress and mitochondrial dysfunction following exposure to amyloid beta-peptide. Overexpression of TERT in pheochromocytoma cells resulted in decreased vulnerability to amyloid beta-peptide-induced apoptosis. Our findings demonstrate a neuroprotective function of TERT in an experimental model relevant to Alzheimer's disease, and suggest the possibility that restoration of TERT expression in neurons in the adult brain may protect against age-related neurodegeneration.
Collapse
Affiliation(s)
- H Zhu
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington, Kentucky. Laboratory of Neurosciences, National Institute on Aging, Baltimore, Maryland, USA
| | | | | |
Collapse
|
47
|
Selznick LA, Zheng TS, Flavell RA, Rakic P, Roth KA. Amyloid beta-induced neuronal death is bax-dependent but caspase-independent. J Neuropathol Exp Neurol 2000; 59:271-9. [PMID: 10759182 DOI: 10.1093/jnen/59.4.271] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fibrillar amyloid beta (Abeta) peptides are major constituents of senile plaques in Alzheimer disease (AD) brain and cause neuronal apoptosis in vitro. Bax and caspase-3 have been implicated in the pathogenesis of AD and are components of a well-defined molecular pathway of neuronal apoptosis. To determine whether Abeta-induced neuronal apoptosis involves bax and/or caspase-3 activation, we examined the effect of Abeta on wild-type, bax-deficient, and caspase-3-deficient telencephalic neurons in vitro. In wild-type cultures, Abeta produced time- and concentration-dependent caspase-3 activation, apoptotic nuclear changes, and neuronal death. These neurotoxic effects of Abeta were not observed in bax-deficient cultures. Caspase-3 deficiency, or pharmacological inhibition of caspase activity, prevented caspase-3 activation and blocked the appearance of apoptotic nuclear features but not Abeta-induced neuronal death. Neither calpain inhibition nor microtubule stabilization with Taxol protected telencephalic neurons from Abeta-induced caspase activation or apoptosis. These results have potential implications regarding the underlying pathophysiology of AD and towards AD treatment strategies.
Collapse
Affiliation(s)
- L A Selznick
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
48
|
Blasko I, Wagner M, Whitaker N, Grubeck-Loebenstein B, Jansen-Dürr P. The amyloid beta peptide abeta (25-35) induces apoptosis independent of p53. FEBS Lett 2000; 470:221-5. [PMID: 10734238 DOI: 10.1016/s0014-5793(00)01323-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Apoptosis of neuronal cells apparently plays a role in Alzheimer's disease (AD). The amyloid beta (Abeta) peptide derived from beta-amyloid precursor protein is found in AD brain in vivo and can induce apoptosis in vitro. While p53 accumulates in cells of AD brain, it is not known if p53 plays an active role in Abeta-induced apoptosis. We show here that inactivation of p53 in two experimental cell lines, either by expression of the papillomavirus E6 protein or by a shift to restrictive temperature, does not affect apoptosis induction by Abeta (25-35), indicating that Abeta induces apoptosis in a p53-independent manner.
Collapse
Affiliation(s)
- I Blasko
- Institute for Biomedical Aging Research of the Austrian Academy of Sciences, Rennweg 10, A-6020, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
49
|
Shinoura N, Satou R, Yoshida Y, Asai A, Kirino T, Hamada H. Adenovirus-mediated transfer of Bcl-X(L) protects neuronal cells from Bax-induced apoptosis. Exp Cell Res 2000; 254:221-31. [PMID: 10640420 DOI: 10.1006/excr.1999.4751] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bax-mediated apoptosis in neurons is involved in many pathologic conditions affecting the central nervous system, including degenerative diseases, stroke, and trauma. Two molecules belonging to the Bcl-2 family, Bcl-2 and Bcl-X(L), protect cells from Bax-induced apoptosis and show distinct expression patterns in adult neurons, with downregulated Bcl-2 and highly upregulated Bcl-X(L) expression. To investigate the biological functions of these two molecules in Bax-mediated apoptosis in neurons, we transduced various levels of Bcl-X(L) or Bcl-2 via adenoviral vectors into nerve growth factor (NGF)-treated PC12 cells. Overexpression of Bax induced drastic apoptosis in NGF-treated PC12 cells. Bcl-X(L) expressed at a wide range of levels conferred a high level of protection against Bax-mediated apoptosis. In contrast, Bcl-2 at various levels conferred far less protection against apoptosis. Moreover, Bcl-X(L) protected PC12 cells from apoptosis induced by NGF withdrawal. These data indicate that Bcl-X(L)-mediated protection is the major pathway that suppresses apoptosis in NGF-treated PC12 cells and that Bcl-X(L) would be a more relevant target of manipulation in future treatment strategies, including gene therapies.
Collapse
Affiliation(s)
- N Shinoura
- Department of Molecular Biotherapy Research, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 1-37-1 Kami-Ikebukuro, Toshima-ku, Tokyo, 170-8455
| | | | | | | | | | | |
Collapse
|
50
|
Chan SL, Griffin WS, Mattson MP. Evidence for caspase-mediated cleavage of AMPA receptor subunits in neuronal apoptosis and Alzheimer's disease. J Neurosci Res 1999; 57:315-23. [PMID: 10412022 DOI: 10.1002/(sici)1097-4547(19990801)57:3<315::aid-jnr3>3.0.co;2-#] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In Alzheimer's disease (AD) synapses degenerate and neurons die in brain regions involved in learning and memory processes. Although the cellular and molecular mechanisms underlying the neurodegenerative process in AD are unclear, increasing evidence suggests roles for amyloid beta-peptide (Abeta) and biochemical cascades associated with a form of programmed cell death called apoptosis. Cysteine proteases of the caspase family are activated in neurons undergoing apoptosis and apparently play a major role in the cell death process by cleaving yet-to-be-identified substrates. We now report that caspase activity is increased in brain tissue and neurons from AD patients, and in cultured hippocampal neurons undergoing apoptosis after exposure to amyloid beta-peptide (Abeta). Western blot analyses using antibodies against different subunits of 2-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) types of ionotropic glutamate receptors indicate that AMPA receptor subunits (GluR1, GluR2/3, and GluR4), but not NMDA receptor subunits (NR1 and NR2A), are proteolytically cleaved after exposure of hippocampal neurons to apoptotic insults, including Abeta, and that the caspase inhibitor zVAD-fmk suppresses such cleavage. Western blot analysis of brain tissue from AD patients and age-matched controls revealed evidence for increased proteolysis of AMPA receptor subunits in AD. Our data suggest roles for caspase-mediated cleavage of AMPA receptor subunits in modifying neuronal responsivity to glutamate and in the neurodegenerative process in AD.
Collapse
Affiliation(s)
- S L Chan
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536-0230, USA
| | | | | |
Collapse
|