1
|
Zhang P, Zheng Z, Sun H, Gao T, Xiao X. A review of common influencing factors and possible mechanisms associated with allergic diseases complicating tic disorders in children. Front Pediatr 2024; 12:1360420. [PMID: 38957776 PMCID: PMC11218626 DOI: 10.3389/fped.2024.1360420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
Over the past few decades, the incidence of childhood allergic diseases has increased globally, and their impact on the affected child extends beyond the allergy itself. There is evidence of an association between childhood allergic diseases and the development of neurological disorders. Several studies have shown a correlation between allergic diseases and tic disorders (TD), and allergic diseases may be an important risk factor for TD. Possible factors influencing the development of these disorders include neurotransmitter imbalance, maternal anxiety or depression, gut microbial disorders, sleep disturbances, maternal allergic status, exposure to tobacco, and environmental factors. Moreover, gut microbial disturbances, altered immunological profiles, and DNA methylation in patients with allergic diseases may be potential mechanisms contributing to the development of TD. An in-depth investigation of the relationship between allergic diseases and TD in children will be important for preventing and treating TD.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Zhimin Zheng
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Hao Sun
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Tieying Gao
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Xuwu Xiao
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
2
|
Zaręba Ł, Piszczatowska K, Dżaman K, Soroczynska K, Motamedi P, Szczepański MJ, Ludwig N. The Relationship between Fine Particle Matter (PM2.5) Exposure and Upper Respiratory Tract Diseases. J Pers Med 2024; 14:98. [PMID: 38248800 PMCID: PMC10817350 DOI: 10.3390/jpm14010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/13/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
PM2.5 is one of the most harmful components of airborne pollution and includes particles with diameters of less than 2.5 μm. Almost 90% of the world's population lives in areas with poor air quality exceeding the norms established by the WHO. PM2.5 exposure affects various organs and systems of the human body including the upper respiratory tract which is one of the most prone to its adverse effects. PM2.5 can disrupt nasal epithelial cell metabolism, decrease the integrity of the epithelial barrier, affect mucociliary clearance, and alter the inflammatory process in the nasal mucosa. Those effects may increase the chance of developing upper respiratory tract diseases in areas with high PM2.5 pollution. PM2.5's contribution to allergic rhinitis (AR) and rhinosinusitis was recently thoroughly investigated. Numerous studies demonstrated various mechanisms that occur when subjects with AR or rhinosinusitis are exposed to PM2.5. Various immunological changes and alterations in the nasal and sinonasal epithelia were reported. These changes may contribute to the observations that exposure to higher PM2.5 concentrations may increase AR and rhinosinusitis symptoms in patients and the number of clinical visits. Thus, studying novel strategies against PM2.5 has recently become the focus of researchers' attention. In this review, we summarize the current knowledge on the effects of PM2.5 on healthy upper respiratory tract mucosa and PM2.5's contribution to AR and rhinosinusitis. Finally, we summarize the current advances in developing strategies against PM2.5 particles' effects on the upper respiratory tract.
Collapse
Affiliation(s)
- Łukasz Zaręba
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (K.P.); (K.S.); (P.M.)
| | - Katarzyna Piszczatowska
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (K.P.); (K.S.); (P.M.)
| | - Karolina Dżaman
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 03-242 Warsaw, Poland;
| | - Karolina Soroczynska
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (K.P.); (K.S.); (P.M.)
| | - Parham Motamedi
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (K.P.); (K.S.); (P.M.)
| | - Mirosław J. Szczepański
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (K.P.); (K.S.); (P.M.)
| | - Nils Ludwig
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
3
|
Wei S, Liao J, Xue T, Yu K, Fu X, Wang R, Dang X, Zhang C, Qiao H, Jiang S, Xiao J, Dong L, Yin J, Yan X, Jia W, Zhang G, Chen R, Zhou B, Song B, Li J, Yin M, Zhang L, Xie L, Dong S, Sun J, Gao P, Miao B, Li W, He L, Ning Q, Zhao L, Liu H, Cao H, Wang G. Ambient fine particulate matter and allergic symptoms in the middle-aged and elderly population: results from the PIFCOPD study. Respir Res 2023; 24:139. [PMID: 37231445 DOI: 10.1186/s12931-023-02433-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The associations between short- and long-term exposure to ambient fine particulate matter with an aerodynamic diameter ≤ 2.5 µm (PM2.5) and allergic symptoms in middle-aged and elderly populations remain unclear, particularly in China, where most cities have severe air pollution. METHODS Participants (n = 10,142; age = 40-75 years) were recruited from ten regions in China from 2018 to 2021 for the Predictive Value of Inflammatory Biomarkers and Forced Expiratory Volume in 1 s (FEV1) for Chronic Obstructive Pulmonary Disease (PIFCOPD) study. Short-term (lag0 and lag0-7 day) and long-term (1-, 3- and 5-year) PM2.5 concentrations at residences were extracted from the air pollutant database known as Tracking Air Pollution (TAP) in China. Multivariate logistic regression models were used to estimate associations for short- and long-term PM2.5 exposure concentrations and long-term exposure models were additionally adjusted for short-term deviations. RESULTS A 10 µg/m3 increase in PM2.5 on the day the allergic symptoms questionnaire was administered (lag0 day) was associated with higher odds of allergic nasal (1.09, 95% CI 1.05, 1.12) and eye symptoms (1.08, 95% CI 1.05, 1.11), worsening dyspnea caused by allergens (1.06, 95% CI 1.02, 1.10), and ≥ 2 allergic symptoms (1.07, 95% CI 1.03, 1.11), which was similar in the lag0-7 day concentrations. A 10 µg/m3 increase in the 1-year average PM2.5 concentration was associated with an increase of 23% for allergic nasal symptoms, 22% for eye symptoms, 20% for worsening dyspnea caused by allergens, and 21% for ≥ 2 allergic symptoms, similar to the 3- and 5-year average PM2.5 concentrations. These associations between long-term PM2.5 concentration and allergic symptoms were generally unchanged after adjustment for short-term deviations. CONCLUSIONS Short- and long-term exposure to ambient PM2.5 was associated with an increased risk of allergic nasal and eye symptoms, worsening dyspnea caused by allergens, and ≥ 2 allergic symptoms. TRIAL REGISTRATION Clinical trial ID: NCT03532893 (29 Mar 2018).
Collapse
Affiliation(s)
- Shanshan Wei
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Jiping Liao
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Tao Xue
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Kunyao Yu
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Xiuhua Fu
- Division of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Ruiying Wang
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaomin Dang
- Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Cheng Zhang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Hua Qiao
- The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Shujuan Jiang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jianhong Xiao
- Mindong Hospital of Ningde City, Ningde, Fujian, China
| | - Lixia Dong
- Tianjin Medical University General Hospital, Tianjin, China
| | - Jinzhi Yin
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xixin Yan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Respiratory Critical Care, Shijiazhuang, Hebei, China
| | - Weihua Jia
- General Hospital of Taiyuan Iron & Steel (Group) Co., LTD, Taiyuan, Shanxi, China
| | - Guifang Zhang
- Jinyuan Community Health Service Center, Taiyuan, Shanxi, China
| | - Rui Chen
- Division of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Bo Zhou
- Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Beibei Song
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Respiratory Critical Care, Shijiazhuang, Hebei, China
| | - Jing Li
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mengyu Yin
- Tianjin Medical University General Hospital, Tianjin, China
| | - Lina Zhang
- Jining First People's Hospital, Jining, Shandong, China
| | - Liping Xie
- General Hospital of Taiyuan Iron & Steel (Group) Co., LTD, Taiyuan, Shanxi, China
| | - Shaochen Dong
- The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Jian Sun
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Peng Gao
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Bifang Miao
- Mindong Hospital of Ningde City, Ningde, Fujian, China
| | - Wei Li
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Lan He
- Division of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Qian Ning
- Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Limin Zhao
- Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Hengyi Liu
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Han Cao
- Department of Biostatistics, Peking University First Hospital, Beijing, China
| | - Guangfa Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| |
Collapse
|
4
|
Piao CH, Fan Y, Nguyen TV, Song CH, Kim HT, Chai OH. PM2.5 exposure regulates Th1/Th2/Th17 cytokine production through NF-κB signaling in combined allergic rhinitis and asthma syndrome. Int Immunopharmacol 2023; 119:110254. [PMID: 37163921 DOI: 10.1016/j.intimp.2023.110254] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Particulate matter (PM) is a major component of air pollution from emissions from anthropogenic and natural sources and is a serious problem worldwide due to its adverse effects on human health. Increased particulate air pollution increases respiratory disease-related mortality and morbidity. However, the impact of PM with an aerodynamic diameter of ≤ 2.5 μm (PM2.5) on combined allergic rhinitis and asthma syndrome (CARAS) remains to be elucidated. Accordingly, in the present study, we investigated the effect of PM2.5 in an ovalbumin (OVA)-induced CARAS mouse model with a focus on NF-κB signaling. METHODOLOGY We established an OVA-induced mouse model of CARAS to determine the effects of exposure to PM2.5. BALB/c mice were randomly divided into four groups: (1) naive, (2) PM2.5, (3) CARAS, and (4) CARAS/PM2.5. Mice were systemically sensitized with OVA and challenged with inhalation of ultrasonically nebulized 5% OVA three times by intranasal instillation of OVA in each nostril for 7 consecutive days. Mice in the PM2.5 and CARAS/PM2.5 groups were then exposed to PM2.5 by intranasal instillation of PM2.5 for several days. We then examined the impacts of PM2.5 exposure on histopathology and NF-κB signaling in our OVA-induced CARAS mouse model. RESULTS PM2.5 increased infiltration of eosinophils in bronchoalveolar lavage fluid (BALF) samples and inflammatory cells in lung tissue. It also increased production of GATA3, RORγ, IL-4, IL-5, IL-13, and IL-17 in nasal lavage fluid (NALF) and BALF samples in the CARAS mouse model, but secretion of IL-12 and IFN-γ was suppressed. Exposure to PM2.5 increased OVA-specific IgE and IgG1 levels in serum, inflammatory cell infiltration in the airways, and fibrosis in lung tissue. It also activated the NF-κB signaling pathway, increasing Th2/Th17 cytokine levels while decreasing Th1 cytokine expression, thereby inducing an inflammatory response and promoting inflammatory cell infiltration in nasal and lung tissue. CONCLUSION Our results demonstrate that PM2.5 can aggravate OVA-induced CARAS.
Collapse
Affiliation(s)
- Chun Hua Piao
- Department of Pulmonary and Critical Care Medicine, The affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, PR China; Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Yanjing Fan
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea; School of Medicine, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Thi Van Nguyen
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Chang Ho Song
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea; Institute for Medical Sciences, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Hyoung Tae Kim
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Ok Hee Chai
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea; Institute for Medical Sciences, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea; Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Jeonbuk 54896, Republic of Korea.
| |
Collapse
|
5
|
Islam MA, Huq Atanu MS, Siraj MA, Acharyya RN, Ahmed KS, Dev S, Uddin SJ, Das AK. Supplementation of syringic acid-rich Phrynium pubinerve leaves imparts protection against allergic inflammatory responses by downregulating iNOS, COX-2, and NF-κB expressions. Heliyon 2023; 9:e13343. [PMID: 36816283 PMCID: PMC9932742 DOI: 10.1016/j.heliyon.2023.e13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 12/24/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Background The present study was designed to characterize the role of ethanolic leaf extract of Phrynium pubinerve Blume (EPP) supplement in attenuating allergic inflammation, encouraged by the presence of syringic acid in it, as this phenolic acid is reportedly promising in suppressing serum immunoglobulin E (IgE) and inflammatory cytokine levels. Materials and methods HPLC-DAD dereplication analysis was performed to determine the presence of the vital polyphenolic metabolites. The efficacy of EPP against lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 cells was evaluated by measuring its inhibitory effects on NO and ROS/RNS production. The expressions of major inflammation-associated molecules (iNOS, COX-2, NF-κB, IL-6, and TNF-α) in RAW 264.7 cells were assessed through Western blot. Physiological and behavioral changes, BMI, and different biochemical parameters in mice blood serum were investigated in the toxicological assays. Formaldehyde-induced paw edema test in mice was conducted using established animal model. TDI-induced allergic model in mice was carried out to determine different allergy-like symptoms, and differential white blood cell (WBC) counts in blood and bronchoalveolar lavage (BAL) fluid. The intermolecular interaction analysis of the identified major metabolite of EPP with H1R and iNOS was studied by molecular docking. Results HPLC-DAD analysis showed the presence of syringic acid (89.19 mg/100 g EPP) and a few other compounds. LPS-induced NO generation was reduced by EPP in a concentration-dependent manner, showing IC50 of 28.20 ± 0.27 μg/mL. EPP exhibited a similar inhibitory effect on ROS/RNS production with IC50 of 29.47 ± 2.19 μg/mL. Western blotting revealed that EPP significantly downregulated the expressions of iNOS, COX-2, NF-κB, IL-6, and TNF-α in RAW 264.7 cells when challenged with LPS. The toxicological assays confirmed the dosage and organ-specific safety of EPP. In the formaldehyde-induced paw edema test, EPP caused a 66.41% reduction in mice paw volume at 500 mg/kg dose. It ameliorated TDI-induced allergy-like symptoms and decreased different inflammatory WBCs in mice's blood and BAL fluid in a dose-dependent manner. Finally, syringic acid demonstrated mentionable intermolecular binding affinity towards H1R (-6.6 Kcal/moL) and iNOS (-6.7 Kcal/moL). Conclusions Collectively, considerable scientific reasoning was obtained in favor of the suppressive potential of EPP against allergic inflammatory responses that are proposed to be exerted via the downregulation of iNOS, COX-2, and NF-κB expressions, H1R antagonism and suppression of cytokines, such as IL-6, and TNF-α.
Collapse
Affiliation(s)
- Md Arman Islam
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | | | - Md Afjalus Siraj
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
- Department of Pharmacy, Gono Bishwabidyalay, Savar, Dhaka 1344, Bangladesh
| | | | - Khondoker Shahin Ahmed
- Chemical Research Division, BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Shrabanti Dev
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Asish Kumar Das
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| |
Collapse
|
6
|
Morales-Rubio R, Amador-Muñoz O, Rosas-Pérez I, Sánchez-Pérez Y, García-Cuéllar C, Segura-Medina P, Osornio-Vargas Á, De Vizcaya-Ruiz A. PM 2.5 induces airway hyperresponsiveness and inflammation via the AhR pathway in a sensitized Guinea pig asthma-like model. Toxicology 2021; 465:153026. [PMID: 34774659 DOI: 10.1016/j.tox.2021.153026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 01/09/2023]
Abstract
Exposure to fine particulate matter (PM2.5) induces airway inflammation and hyperreactivity that lead to asthma. The mechanisms involved are still under investigation. We investigated the effect of resveratrol (3,4',5-trihydroxystilbene) (RES) on airway hyperresponsiveness, inflammation and CYP1A1 protein expression (an aryl hydrocarbon receptor (AhR) target) induced by PM2.5 exposure in an allergic asthma experimental guinea pig model. The polyphenolic compound RES was used due to its antioxidant and anti-inflammatory properties and as an antagonist of the AhR; thus, providing mechanistic insights. Animals were sensitized with aluminum hydroxide and ovalbumin and exposed to filtered air or PM2.5. Exposure to PM2.5 was conducted using a whole-body chamber particle concentrator (5 h/day) for 15 days. Animals received saline solution or RES (10 mg/kg per day) orally for 21 days simultaneously to the OVA challenge or PM2.5 exposure. PM2.5 exposure (mean 433 ± 111 μg/m3 in the exposure chamber) in OVA challenged animals induced an asthma-like phenotype characterized by increased baseline lung resistance (Rrs) and central airway resistance (Rn) in response to acetylcholine (ACh) evaluated using a flexiVent system®. A parallel increase of pro-inflammatory cytokines (IL-6, IL-17, TNF-α and IFN-γ), inflammatory cells (eosinophils and neutrophils) in bronchoalveolar lavage fluid (BALF) and lung CYP1A1 increase also occurred. RES significantly inhibited airway hyperresponsiveness, inflammation, and CYP1A1 protein expression in the OVA-challenged PM2.5 exposed animals. In summary, with the use of RES we demonstrate that PM-induced airway hyperreactivity is modulated by the inflammatory response via the AhR pathway in an allergic asthma guinea pig model.
Collapse
|
7
|
The Role of Airborne Pollutants in Chronic Rhinosinusitis. CURRENT TREATMENT OPTIONS IN ALLERGY 2021. [DOI: 10.1007/s40521-021-00296-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Leland EM, Zhang Z, Kelly KM, Ramanathan M. Role of Environmental Air Pollution in Chronic Rhinosinusitis. Curr Allergy Asthma Rep 2021; 21:42. [PMID: 34499234 DOI: 10.1007/s11882-021-01019-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Chronic rhinosinusitis (CRS) is a highly prevalent disease with large social and financial burdens. The pathophysiology is multifactorial. Environmental pollutants have been suggested to play a role in the inflammatory component of the disease process. RECENT FINDINGS Recent work has focused on exposure to various pollutants, primarily particulate matter (PM). Exposure to environmental pollutants leads to upregulation of inflammatory markers and ciliary dysfunction at the cellular level. Mouse models suggest a role for epithelial barrier dysfunction contributing to inflammatory changes after pollutant exposure. Clinical studies support the role of pollutants contributing to disease severity in certain populations, but the role in CRS incidence or prevalence is less clear. Research is limited by the retrospective nature of most studies. This review focuses on recent advancements in our understanding of the impact of environmental pollutants in CRS, limitations of the available data, and potential opportunities for future studies.
Collapse
Affiliation(s)
- Evelyn M Leland
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, 601 N. Caroline St. JHOC 6263, Baltimore, MD, USA
| | - Zhenyu Zhang
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, 601 N. Caroline St. JHOC 6263, Baltimore, MD, USA
| | - Kathleen M Kelly
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, 601 N. Caroline St. JHOC 6263, Baltimore, MD, USA
| | - Murugappan Ramanathan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, 601 N. Caroline St. JHOC 6263, Baltimore, MD, USA.
| |
Collapse
|
9
|
Jin X, Wang L, Yang M. circ_0038467 promotes PM2.5-induced bronchial epithelial cell dysfunction. Open Med (Wars) 2021; 16:854-863. [PMID: 34164581 PMCID: PMC8193422 DOI: 10.1515/med-2021-0213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/07/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose This study was to explore the toxicological mechanisms by which PM2.5 causes lung dysfunction. Methods The expression of circ_0038467 and miR-138-1-3p in PM2.5-induced human bronchial epithelial cell line BEAS-2B was detected by RT-qPCR. The effects of circ_0038467 and miR-138-1-3p on proliferation, apoptosis, and inflammatory cytokines (IL-6 and IL-8) in PM2.5-induced BEAS-2B were determined using cell counting kit-8, flow cytometry, western blot, and enzyme-linked immunosorbent assay, respectively. The levels of nuclear factor kappa B (NF-κB) pathway-related protein were also analyzed by western blot. The binding interaction between circ_0038467 and miR-138-1-3p was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation assay and pull-down assay. Results circ_0038467 expression was increased by PM2.5 treatment in BEAS-2B cells in time- and dose-dependent methods, and knockdown of circ_0038467 reversed PM2.5-triggered BEAS-2B cell death and inflammatory response. miR-138-1-3p was decreased by PM2.5 treatment, and restoration of miR-138-1-3p attenuated PM2.5-induced BEAS-2B cell injury. In a mechanical study, we found circ_0038467 directly bound to miR-138-1-3p, and further rescue experiments exhibited miR-138-1-3p inhibition partially overturned the regulatory functions of circ_0038467 knockdown in PM2.5-induced BEAS-2B cells. Conclusion circ_0038467 provided a potential therapeutic strategy for future clinic intervention in air pollution-triggered lung dysfunction.
Collapse
Affiliation(s)
- Xuan Jin
- Department of Pediatrics, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, No. 2, Weiyang West Road, Xianyang 712000, Shaan'xi, China.,Department of Pediatrics, Xianyang Central Hospital, Xianyang, Shaan'xi, China
| | - Li Wang
- Department of Pediatrics, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, No. 2, Weiyang West Road, Xianyang 712000, Shaan'xi, China
| | - Mingzhu Yang
- Department of Clinical laboratory, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaan'xi, China
| |
Collapse
|
10
|
Lu M, Yang H, Wang J, An Z, Li J, Wu Z, Zhao Q, Li H, Zhai D, Liu Y, Wu W, Song J. Acute effects of ambient air pollution on outpatients with chronic rhinitis in Xinxiang, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9889-9897. [PMID: 33159228 DOI: 10.1007/s11356-020-11534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Air pollution exposure leads to increased mortality and morbidity rates of respiratory diseases. Most of the evidence was founded on acute diseases such as acute lower respiratory diseases. However, limited studies have been conducted to evaluate the effects of air pollution on chronic respiratory diseases. This time-series study was conducted to examine the acute effects of 6 criteria ambient air pollutants on hospital outpatients with chronic rhinitis (CR) in Xinxiang, China. We retrieved 223,826 outpatient records of patients with respiratory diseases, of which 62,901 were those of patients with CR. Results showed that the current 10-μg/m3 increase in fine particulate matter (PM2.5), inhalable particulate matter (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO) corresponds to 0.67% (95% confidence interval [CI]: 0.15-1.18%), 0.58% (95% CI: 0.24-0.92%), 1.89% (95% CI: 0.52-3.27%), 3.01% (95% CI: 1.66-4.35%), and 0.06% (95% CI: 0.03-0.10%) increments in outpatients with CR, respectively. In addition, the effects in the male were stronger than those in the female. Higher effect estimates were observed in the old (≥ 65 years of age) and younger (< 15 years of age) groups. Our study confirmed the association between air pollution and outpatients with CR in Xinxiang, China. More stringent air pollution control measures must be implemented.
Collapse
Affiliation(s)
- Mengxue Lu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Huijuan Yang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Jingyao Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Zhineng Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Qian Zhao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Huijun Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Desheng Zhai
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Yue Liu
- Chinese Center for Disease Control and Prevention, National Institute of Environmental Health, Beijing, 100021, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China.
| |
Collapse
|
11
|
Ge J, Chu H, Xiao Q, Hao W, Shang J, Zhu T, Sun Z, Wei X. BC and 1,4NQ-BC up-regulate the cytokines and enhance IL-33 expression in LPS pretreatment of human bronchial epithelial cells ☆. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116452. [PMID: 33486252 DOI: 10.1016/j.envpol.2021.116452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Black carbon (BC) reacts with different substances to form secondary pollutants called aged black carbon, which causes inflammation and lung damage. BC and aged BC may enhance IL-33 in vivo, which may be derived from macrophages. The pro-inflammatory effect of IL-33 makes it essential to determine the source of IL-33, so it guides us to explore how to alleviate lung injury. In this study, a human bronchial epithelial cell line of 16HBE cells was selected, and aged BC (1,4-NQ coated BC and ozone oxidized BC) was used. We found that both BC and aged BC were able to up-regulate the mRNA expression of IL-1β, IL-6, and IL-8 except IL-33. However, the Mitogen-activated protein kinases (MAPKs) and Phosphatidylinositol 3-kinase (PI3K)/Protein kinase B (AKTs) pathways remained inactive. After pretreatment with Lipopolysaccharide (LPS), IL-33 mRNA expression was significantly increased in 16HBE cells and MAPKs and PI3K/AKT were activated. These results suggested that MAPKs and PI3K/AKT pathways were involved in the elevation of IL-33. Furthermore, epithelial cells are unlikely to be the source of lung inflammation caused by elevated IL-33 in BC and aged BC.
Collapse
Affiliation(s)
- Jianhong Ge
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, PR China; Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Jing Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Tong Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, PR China; Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China.
| |
Collapse
|
12
|
Han X, Zhuang Y. PM2.5 induces autophagy-mediated cell apoptosis via PI3K/AKT/mTOR signaling pathway in mice bronchial epithelium cells. Exp Ther Med 2020; 21:1. [PMID: 33235610 PMCID: PMC7678636 DOI: 10.3892/etm.2020.9433] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/22/2020] [Indexed: 12/16/2022] Open
Abstract
Air pollution can highly impact the respiratory system in healthy individuals. Studies have indicated that particles with an aerodynamic diameter of ≤2.5 µm (PM2.5) can be considered to be harmful for lung alveoli and bronchial epithelium cells. PM2.5 can be directly inhaled and can deeply penetrate into the lung alveoli, causing lung dysfunction. However, the toxicological mechanism mediated by PM2.5 for respiratory disease has still not been clearly determined. The purpose of the current study was to investigate the effects of PM2.5 on mouse bronchial epithelium cells (MBECs) and explored the possible mechanism mediated by PM2.5 in MBECs. The results of the current study indicated that PM2.5 markedly decreased lung function, including total lung capacity, residual volume, vital capacity and airway resistance in experimental mice. The results demonstrated that PM2.5 markedly induced inflammatory responses, oxidative injury and MBEC apoptosis. PM2.5 increased interleukin (IL)-1β and IL-6 expression, and reactive oxygen species production in MBECs. Furthermore, PM2.5 specifically induced PI3K, AKT and mTOR expression in MBECs. Disruption of PI3K/AKT/mTOR signaling was also indicated to effectively inhibit apoptosis of MBECs. In conclusion, the results of the current study systematically demonstrated the role of apoptosis-mediated MBEC apoptosis in PM2.5-treated mice, and provides a potential strategy for preclinical intervention in patients with PM2.5-induced lung diseases.
Collapse
Affiliation(s)
- Xuemei Han
- Respiratory Department, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Yan Zhuang
- Respiratory Department, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
13
|
Kim JY, Lee DS, Woo HJ, Kim HG, Son BS, Park MK, Hong SN. Impact of Particulate Matter on the Clinical Characteristics of Rhinitis. Laryngoscope 2020; 131:E1753-E1759. [PMID: 33103783 DOI: 10.1002/lary.29185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/16/2020] [Accepted: 10/09/2020] [Indexed: 11/09/2022]
Abstract
OBJECTIVES/HYPOTHESIS To investigate the association between PM10 concentration and the severity of rhinitis symptoms. STUDY DESIGN Retrospective cohort study. METHODS Retrospective analysis of the data of 590 participants prospectively enrolled in a regional population-based cohort study was performed. The ambient PM10 concentrations were measured at 12 different observatories located in three cities. All participants were screened for allergic sensitization by skin prick tests and asked to complete questionnaires regarding their rhinitis symptoms. The severity and duration of rhinitis were analyzed and compared at different levels of PM10 concentration. RESULTS: On multivariate analysis, the PM10 concentration significantly correlated with the severity of symptoms when adjusting for age, sex, presence of sensitized allergen, region, and the time of enrolment (β = 0.102, P = .021). Positive correlation was found between PM10 concentration and the duration of allergic rhinitis symptoms (β = 0.082, P = .077). In the stratified analysis on the atopic status, there was a significant correlation between PM10 concentration and the severity and duration of rhinitis symptoms in those without allergic sensitization (β = 0.104; P = .032 and β = 0.104; P = .011, respectively). CONCLUSIONS The significant correlation between the annual PM10 concentration and severity and duration of rhinitis symptoms suggests the necessity of intensive management of rhinitis patients exposed to elevated levels of ambient PM10 concentration. LEVEL OF EVIDENCE 3 Laryngoscope, 131:E1753-E1759, 2021.
Collapse
Affiliation(s)
- Jin Youp Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Sungnam, South Korea
| | - Dong Su Lee
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Hyun-Joon Woo
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Boramae Medical Center, Seoul, South Korea
| | - Hyung Gu Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Hanyang University Guri Hospital, Guri, South Korea
| | - Bu-Soon Son
- Department of Environmental Health, Soonchunhyang University, Asan, South Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Seung-No Hong
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Boramae Medical Center, Seoul, South Korea
| |
Collapse
|
14
|
Ma H, Guo H, Zhang W, Hu F, Huang Y, Zeng Y, Liu Y, Li C, Wang J. The effects of phenanthrene exposure on Treg and Th17 cells related cytokines in female rats. Toxicol Res (Camb) 2020; 9:283-289. [PMID: 32670559 PMCID: PMC7329182 DOI: 10.1093/toxres/tfaa030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/20/2020] [Accepted: 04/20/2020] [Indexed: 01/18/2023] Open
Abstract
Phenanthrene (Phe) female rat model was established to explore the mechanism of Phe on immune impairment. The rats were randomly divided into three groups, including control (C), low (L), and high (H) groups. Phe was supplied to L and H groups at the dose of 180 and 900 mg/kg orally at first day and with the dose of 90 and 450 mg/kg by intraperitoneal injection at the last 2 days. The C group was enriched with the same volume of corn oil. The liver tissue was collected. Then, the protein and mRNA expressions of interleukin (IL)-35 and the concentration IL-17 were detected to evaluate the function of regulatory T cells (Treg cells) and T helper 17 cells (Th17 cells). In addition, IL-1β and interferon-γ (IFN-γ) were analyzed to evaluate the immune impairment. The results showed that the protein and mRNA expressions of IL-35 decreased significantly in H groups (P < 0.05). Meanwhile, there were significant increases in IL-17, IFN-γ and IL-1β in the liver of H group (P < 0.05). This study demonstrated that Phe exposure might be associated with the immune impairment via changing inflammatory mediators including IL-35 and IL-17 in female rats.
Collapse
Affiliation(s)
- Haitao Ma
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Huizhen Guo
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Wenwen Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Fengjing Hu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Yushan Huang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Yong Zeng
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Yang Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Chengyun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Junling Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China
| |
Collapse
|
15
|
Long MH, Zhu XM, Wang Q, Chen Y, Gan XD, Li F, Fu WL, Xing WW, Xu DQ, Xu DG. PM2.5 exposure induces vascular dysfunction via NO generated by iNOS in lung of ApoE-/- mouse. Int J Biol Sci 2020; 16:49-60. [PMID: 31892845 PMCID: PMC6930374 DOI: 10.7150/ijbs.36073] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022] Open
Abstract
PM2.5 exposure exacerbates cardiovascular diseases via oxidative stress and inflammation, the detailed mechanism of which is unclear. In this study, the effects of oxidative stress and inflammation, as well as vascular structure and function were studied by multiple PM2.5 exposure model of ApoE-/- mice. The results indicated that NO produced by iNOS not cNOS might play important roles in inducing vascular dysfunction after PM2.5 exposure. The occurrence order and causality among NO, other oxidative stress indicators and inflammation is explored by single PM2.5 exposure. The results showed that NO generated by iNOS occurred earlier than that of other oxidative stress indicators, which was followed by the increased inflammation. Inhibition of NOS could effectively block the raise of NO, oxidative stress and inflammation after PM2.5 exposure. All in all, we firstly confirmed that NO was the initiation factor of PM2.5 exposure-induced oxidative stress, which led to inflammation and the following vascular dysfunction.
Collapse
Affiliation(s)
- Min-Hui Long
- Institute of Military Cognitive and Brain Sciences, Beijing, 100850, China
| | - Xiao-Ming Zhu
- Institute of Military Cognitive and Brain Sciences, Beijing, 100850, China
| | - Qin Wang
- National Institute of Environmental Health Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Yao Chen
- Institute of Military Cognitive and Brain Sciences, Beijing, 100850, China
| | - Xiang-Dong Gan
- Institute of Military Cognitive and Brain Sciences, Beijing, 100850, China
| | - Fei Li
- Institute of Military Cognitive and Brain Sciences, Beijing, 100850, China
| | - Wen-Liang Fu
- Institute of Military Cognitive and Brain Sciences, Beijing, 100850, China
| | - Wei-Wei Xing
- Institute of Military Cognitive and Brain Sciences, Beijing, 100850, China
| | - Dong-Qun Xu
- National Institute of Environmental Health Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Dong-Gang Xu
- Institute of Military Cognitive and Brain Sciences, Beijing, 100850, China
| |
Collapse
|
16
|
Influence of PM 2.5 Exposure Level on the Association between Alzheimer's Disease and Allergic Rhinitis: A National Population-Based Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183357. [PMID: 31514400 PMCID: PMC6765937 DOI: 10.3390/ijerph16183357] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disease that leads to dementia, health impairment, and high economic cost. Allergic rhinitis (AR) is a chronic inflammatory and allergic disease of the respiratory system that leads to health problems and has major effects on the daily lives of patients and their caregivers. Particulate matter (PM) refers to air pollutants 2.5 μm or less in diameter that are a source of concern because of their role in numerous diseases, including AR and other neurodegenerative diseases. To date, no study has demonstrated how PM2.5 exacerbates AR and results in AD. We conducted a national population-based cohort study by obtaining patient data from the National Health Insurance Research Database of Taiwan for the 2008-2013 period. PM2.5 concentration data were obtained from the ambient air quality monitoring network established by the Environmental Protection Administration of Taiwan. Monthly PM2.5 exposure levels were categorized into quartiles from Q1-Q4. The Cox proportional hazards analysis, after adjusting for age, sex, low income, and urbanization level, revealed that patients with AR had an elevated risk of developing AD (hazard ratio (HR): 2.008). In addition, the cumulative incidence of AD in the AR group was significantly higher than in the comparison group. The PM2.5 levels at Q2-Q4 (crude HR: 1.663-8.315; adjusted HR: 1.812-8.981) were stratified on the basis of the PM2.5 exposure group and revealed that AR patients exposed to PM2.5 are significantly prone to develop AD. In addition, the logistic regression analyses, after adjustment, demonstrated that an increase in the PM2.5 exposure level at Q2-Q4 (adjusted odds ratio (OR): 2.656-5.604) increased the risk of AR in AD patients. In conclusion, an increased PM2.5 exposure level could be correlated with AR, which could in turn cause AD. AR increased the risk of AD, in which exposure to PM2.5 increases the higher probability of AD.
Collapse
|
17
|
Lin B, Cai B, Wang H. Honeysuckle extract relieves ovalbumin-induced allergic rhinitis by inhibiting AR-induced inflammation and autoimmunity. Biosci Rep 2019; 39:BSR20190673. [PMID: 31308153 PMCID: PMC6663992 DOI: 10.1042/bsr20190673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/13/2019] [Accepted: 06/20/2019] [Indexed: 02/05/2023] Open
Abstract
Honeysuckle has antiviral, antioxidative and anti-inflammatory properties. Allergic rhinitis (AR) is induced by immunoglobulin E (IgE)-mediated inflammatory reaction. Our study investigates whether honeysuckle extract (HE) has therapeutic effect on AR. An AR model of mice was established by ovalbumin (OVA). Hematoxylin-Eosin staining was used to assess nasal mucosa damage. Enzyme-linked immunosorbent assay (ELISA) was performed to determine serum histamine, IgE and interleukin (IL)-2, IL-4, IL-17 and interferon-γ (IFN-γ) from nasal lavage fluid. Western blot was carried out to analyze the protein level from nasal mucosa tissue. We found that HE not only decreased nasal rubbing and sneezing in AR mice, but also reduced AR-induced damage to nasal mucosa. Moreover, HE lowered the levels of serum IgE and histamine and inhibited IL-4 and IL-17 levels from AR mice but raised IL-2 and IFN-γ levels in AR-induced nasal lavage fluid. Our results also showed that HE elevated the protein levels of forkhead box P3 (Foxp3) and T-box transcription factor (T-bet) in AR-induced nasal mucosa tissue, whereas it inhibited signal transducer and activator of transcription (STAT) 3 and GATA binding protein 3 (GATA-3) protein levels. By regulating AR-induced inflammatory reaction and autoimmune response, HE also relieved OVA-induced AR. Thus, HE could be used as a potential drug to treat AR.
Collapse
Affiliation(s)
- Bin Lin
- ENT Department, Guangzhou Hospital of Integrated Traditional and West Medicine, No. 87 Yingbin Road, Huadu District, Guangzhou 510800, Guangdong Province, China
| | - Bijuan Cai
- ENT Department, Guangzhou Hospital of Integrated Traditional and West Medicine, No. 87 Yingbin Road, Huadu District, Guangzhou 510800, Guangdong Province, China
| | - Huige Wang
- ENT Department, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
18
|
P-FN12, an H4R-Based Epitope Vaccine Screened by Phage Display, Regulates the Th1/Th2 Balance in Rat Allergic Rhinitis. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 11:83-91. [PMID: 30417023 PMCID: PMC6216098 DOI: 10.1016/j.omtm.2018.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/25/2018] [Indexed: 12/22/2022]
Abstract
Allergic rhinitis (AR) involves antigen-specific immune-inflammation of the nasal mucosa. Classical therapy for AR targets the histamine pathway, e.g., histamine receptor blockers. Histamine H4 receptor (H4R) was suggested as a novel therapeutic target due to its wide expression on almost all immune-related cells. A 12-mer random peptide library was used to select the specific epitope of the H4R. The phage clone showing the highest degree of activation was verified and translated to the corresponding peptide. The peptide FNKWMDCLSVTH, designated as P-FN12, was bound by H4R monoclonal antibody (mcAb) with high affinity. Moreover, the P-FN12 + CTB@Lipo-formulated vaccine, used as nasal drops, decreased allergic symptoms such as sneezing and nasal rubbing in a rat model. The level of ovalbumin (OVA)-specific immunoglobulin E (IgE) decreased significantly after vaccine administration. It also elicited increased levels of interferon (IFN)-γ and interleukin-2 (IL-2) but a decreased level of IL-4, and it elevated the T helper type 1 (Th1):T helper type 2 (Th2) cell ratio in peripheral blood mononuclear cell cultures. Our results indicated that the reduction of allergic inflammation by P-FN12-based vaccine was related to a decrease in production of OVA-specific IgE, Th2 immunity, and tissue eosinophilia. P-FN12 + CTB@Lipo is a promising vaccine that could suppress Th2 response and enhance the induction of Th1 cells in an AR model.
Collapse
|
19
|
London NR, Lina I, Ramanathan M. Aeroallergens, air pollutants, and chronic rhinitis and rhinosinusitis. World J Otorhinolaryngol Head Neck Surg 2018; 4:209-215. [PMID: 30506053 PMCID: PMC6251962 DOI: 10.1016/j.wjorl.2018.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 12/15/2022] Open
Abstract
Chronic rhinitis and rhinosinusitis are among the most common conditions worldwide with significant morbidity and decreased quality of life. Although the pathogenesis of these conditions is multifactorial, there has been increasing evidence for the role of environmental factors such as aeroallergens and air pollutants as initiating or exacerbating factors. This review will outline the current literature focusing on the role of aeroallergens and air pollution in the pathogenesis of chronic sinonasal inflammatory conditions.
Collapse
Affiliation(s)
| | | | - Murugappan Ramanathan
- Johns Hopkins Department of Otolaryngology – Head and Neck Surgery, Baltimore, MD 21287, USA
| |
Collapse
|
20
|
Wu JZ, Ge DD, Zhou LF, Hou LY, Zhou Y, Li QY. Effects of particulate matter on allergic respiratory diseases. Chronic Dis Transl Med 2018; 4:95-102. [PMID: 29988900 PMCID: PMC6034084 DOI: 10.1016/j.cdtm.2018.04.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Indexed: 01/30/2023] Open
Abstract
The health impact of airborne particulate matter (PM) has long been a concern to clinicians, biologists, and the general public. With many epidemiological studies confirming the association of PM with allergic respiratory diseases, an increasing number of follow-up empirical studies are being conducted to investigate the mechanisms underlying the toxic effects of PM on asthma and allergic rhinitis. In this review, we have briefly introduced the characteristics of PM and discussed its effects on public health. Subsequently, we have focused on recent studies to elucidate the association between PM and the allergic symptoms of human respiratory diseases. Specifically, we have discussed the mechanism of action of PM in allergic respiratory diseases according to different subtypes: coarse PM (PM2.5-10), fine PM (PM2.5), and ultrafine PM.
Collapse
Affiliation(s)
- Jin-Zhun Wu
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, China
| | - Dan-Dan Ge
- Children's Medicine Institute of Medical College, Xiamen University, Xiamen, Fujian 361102, China
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| | - Lin-Fu Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ling-Yun Hou
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| | - Ying Zhou
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen, Fujian 361102, China
- Center for BioMedical Big Data Research, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| | - Qi-Yuan Li
- Children's Medicine Institute of Medical College, Xiamen University, Xiamen, Fujian 361102, China
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen, Fujian 361102, China
- Center for BioMedical Big Data Research, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
21
|
Ouyang Y, Xu Z, Fan E, Li Y, Miyake K, Xu X, Zhang L. Changes in gene expression in chronic allergy mouse model exposed to natural environmental PM2.5-rich ambient air pollution. Sci Rep 2018; 8:6326. [PMID: 29679058 PMCID: PMC5910422 DOI: 10.1038/s41598-018-24831-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/11/2018] [Indexed: 02/07/2023] Open
Abstract
Particulate matter (PM) air pollution has been associated with an increase in the incidence of chronic allergic diseases; however, the mechanisms underlying the effect of exposure to natural ambient air pollution in chronic allergic diseases have not been fully elucidated. In the present study, we aimed to investigate the cellular responses induced by exposure to natural ambient air pollution, employing a mouse model of chronic allergy. The results indicated that exposure to ambient air pollution significantly increased the number of eosinophils in the nasal mucosa. The modulation of gene expression profile identified a set of regulated genes, and the Triggering Receptor Expressed on Myeloid cells1(TREM1) signaling canonical pathway was increased after exposure to ambient air pollution. In vitro, PM2.5 increased Nucleotide-binding oligomerization domain-containing protein 1 (Nod1) and nuclear factor (NF)-κB signaling pathway activation in A549 and HEK293 cell cultures. These results suggest a novel mechanism by which, PM2.5 in ambient air pollution may stimulate the innate immune system through the PM2.5-Nod1-NF-κB axis in chronic allergic disease.
Collapse
Affiliation(s)
- Yuhui Ouyang
- Department of Otolaryngology Head and Neck Surgery and department of Allergy, Beijing TongRen Hospital, Affiliated to the Capital University of Medical Science, Beijing, 100730, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, 100005, China
| | - Zhaojun Xu
- Department of Environmental Medicine, Quanzhou Medical College, Quanzhou, Fujian, 362011, China.,Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Erzhong Fan
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, 100005, China
| | - Ying Li
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, 100005, China
| | - Kunio Miyake
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Xianyan Xu
- Department of Environmental Medicine, Quanzhou Medical College, Quanzhou, Fujian, 362011, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery and department of Allergy, Beijing TongRen Hospital, Affiliated to the Capital University of Medical Science, Beijing, 100730, China. .,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, 100005, China.
| |
Collapse
|
22
|
Zhu XM, Wang Q, Xing WW, Long MH, Fu WL, Xia WR, Jin C, Guo N, Xu DQ, Xu DG. PM2.5 induces autophagy-mediated cell death via NOS2 signaling in human bronchial epithelium cells. Int J Biol Sci 2018; 14:557-564. [PMID: 29805307 PMCID: PMC5968848 DOI: 10.7150/ijbs.24546] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 02/16/2018] [Indexed: 01/09/2023] Open
Abstract
The biggest victim of ambient air pollution is the respiratory system. Mainly because of the harmful components, especially the particulate matters with an aerodynamic diameter of ≤ 2.5µm (PM2.5), can be directly inhaled and deeply penetrate into the lung alveoli, thus causing severe lung dysfunction, including chronic cough, bronchitis and asthma, even lung cancer. Unfortunately, the toxicological mechanisms of PM2.5 associations with these adverse respiratory outcomes have still not been clearly unveiled. Here, we found that PM2.5 rapidly induced inflammatory responses, oxidative injure and cell death in human bronchial epithelium cells through upregulation of IL-6 expression, ROS production and apoptosis. Furthermore, PM2.5 specifically induced nitric oxide synthase 2 (NOS2) expression and NO generation to elevate excessive autophagy. Finally, disruption of NOS2 signaling effectively blocked autophayosome formation and the subsequent cell death. Our novel findings systemically reveled the role of autophagy-mediated cell death in PM2.5-treated human bronchial epithelium cells and provided potential strategy for future clinic intervention.
Collapse
Affiliation(s)
- Xiao-Ming Zhu
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Qin Wang
- Institute for Environmental Health and Related Product Safety, China, CDC, Beijing, 100021, China
| | - Wei-Wei Xing
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Min-Hui Long
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Wen-Liang Fu
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Wen-Rong Xia
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Chen Jin
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Ning Guo
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Dong-Qun Xu
- Institute for Environmental Health and Related Product Safety, China, CDC, Beijing, 100021, China
| | - Dong-Gang Xu
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, China
| |
Collapse
|