1
|
Kim S, Kim YW, Jeon H, Im CH, Lee SH. Altered Cortical Thickness-Based Individualized Structural Covariance Networks in Patients with Schizophrenia and Bipolar Disorder. J Clin Med 2020; 9:jcm9061846. [PMID: 32545747 PMCID: PMC7356298 DOI: 10.3390/jcm9061846] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Structural covariance is described as coordinated variation in brain morphological features, such as cortical thickness and volume, among brain structures functionally or anatomically interconnected to one another. Structural covariance networks, based on graph theory, have been studied in mental disorders. This analysis can help in understanding the brain mechanisms of schizophrenia and bipolar disorder. We investigated cortical thickness-based individualized structural covariance networks in patients with schizophrenia and bipolar disorder. T1-weighted magnetic resonance images were obtained from 39 patients with schizophrenia, 37 patients with bipolar disorder type I, and 32 healthy controls, and cortical thickness was analyzed via a surface-based morphometry analysis. The structural covariance of cortical thickness was calculated at the individual level, and covariance networks were analyzed based on graph theoretical indices: strength, clustering coefficient (CC), path length (PL) and efficiency. At the global level, both patient groups showed decreased strength, CC and efficiency, and increased PL, compared to healthy controls. In bipolar disorder, we found intermediate network measures among the groups. At the nodal level, schizophrenia patients showed decreased CCs in the left suborbital sulcus and the right superior frontal sulcus, compared to bipolar disorder patients. In addition, patient groups showed decreased CCs in the right insular cortex and the left superior occipital gyrus. Global-level network indices, including strength, CCs and efficiency, positively correlated, while PL negatively correlated, with the positive symptoms of the Positive and Negative Syndrome Scale for patients with schizophrenia. The nodal-level CC of the right insular cortex positively correlated with the positive symptoms of schizophrenia, while that of the left superior occipital gyrus positively correlated with the Young Mania Rating Scale scores for bipolar disorder. Altered cortical structural networks were revealed in patients, and particularly, the prefrontal regions were more altered in schizophrenia. Furthermore, altered cortical structural networks in both patient groups correlated with core pathological symptoms, indicating that the insular cortex is more vulnerable in schizophrenia, and the superior occipital gyrus is more vulnerable in bipolar disorder. Our individualized structural covariance network indices might be promising biomarkers for the evaluation of patients with schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Sungkean Kim
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Yong-Wook Kim
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea; (Y.-W.K.); (C.-H.I.)
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang 411-706, Korea;
| | - Hyeonjin Jeon
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang 411-706, Korea;
| | - Chang-Hwan Im
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea; (Y.-W.K.); (C.-H.I.)
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang 411-706, Korea;
- Department of Psychiatry, Ilsan Paik Hospital, College of Medicine, Inje University, Juhwa-ro 170, Ilsanseo-Gu, Goyang 411-706, Korea
- Correspondence: ; Tel.: +82-31-910-7260; Fax: +82-31-910-7268
| |
Collapse
|
2
|
Kim S, Kim YW, Shim M, Jin MJ, Im CH, Lee SH. Altered Cortical Functional Networks in Patients With Schizophrenia and Bipolar Disorder: A Resting-State Electroencephalographic Study. Front Psychiatry 2020; 11:661. [PMID: 32774308 PMCID: PMC7388793 DOI: 10.3389/fpsyt.2020.00661] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/25/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Pathologies of schizophrenia and bipolar disorder have been poorly understood. Brain network analysis could help understand brain mechanisms of schizophrenia and bipolar disorder. This study investigates the source-level brain cortical networks using resting-state electroencephalography (EEG) in patients with schizophrenia and bipolar disorder. METHODS Resting-state EEG was measured in 38 patients with schizophrenia, 34 patients with bipolar disorder type I, and 30 healthy controls. Graph theory based source-level weighted functional networks were evaluated: strength, clustering coefficient (CC), path length (PL), and efficiency in six frequency bands. RESULTS At the global level, patients with schizophrenia or bipolar disorder showed higher strength, CC, and efficiency, and lower PL in the theta band, compared to healthy controls. At the nodal level, patients with schizophrenia or bipolar disorder showed higher CCs, mostly in the frontal lobe for the theta band. Particularly, patients with schizophrenia showed higher nodal CCs in the left inferior frontal cortex and the left ascending ramus of the lateral sulcus compared to patients with bipolar disorder. In addition, the nodal-level theta band CC of the superior frontal gyrus and sulcus (cognition-related region) correlated with positive symptoms and social and occupational functioning scale (SOFAS) scores in the schizophrenia group, while that of the middle frontal gyrus (emotion-related region) correlated with SOFAS scores in the bipolar disorder group. CONCLUSIONS Altered cortical networks were revealed and these alterations were significantly correlated with core pathological symptoms of schizophrenia and bipolar disorder. These source-level cortical network indices could be promising biomarkers to evaluate patients with schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Sungkean Kim
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Yong-Wook Kim
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, South Korea.,Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Miseon Shim
- Institute of Industrial Technology, Korea University, Sejong, South Korea
| | - Min Jin Jin
- Department of Psychiatry, Wonkwang University Hospital, Iksan, South Korea
| | - Chang-Hwan Im
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, South Korea.,Department of Psychiatry, Inje University Ilsan Paik Hospital, Ilsan, South Korea
| |
Collapse
|
3
|
Kuo SS, Pogue-Geile MF. Variation in fourteen brain structure volumes in schizophrenia: A comprehensive meta-analysis of 246 studies. Neurosci Biobehav Rev 2019; 98:85-94. [PMID: 30615934 PMCID: PMC6401304 DOI: 10.1016/j.neubiorev.2018.12.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/21/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022]
Abstract
Despite hundreds of structural MRI studies documenting smaller brain volumes on average in schizophrenia compared to controls, little attention has been paid to group differences in the variability of brain volumes. Examination of variability may help interpret mean group differences in brain volumes and aid in better understanding the heterogeneity of schizophrenia. Variability in 246 MRI studies was meta-analyzed for 13 structures that have shown medium to large mean effect sizes (Cohen's d≥0.4): intracranial volume, total brain volume, lateral ventricles, third ventricle, total gray matter, frontal gray matter, prefrontal gray matter, temporal gray matter, superior temporal gyrus gray matter, planum temporale, hippocampus, fusiform gyrus, insula; and a control structure, caudate nucleus. No significant differences in variability in cortical/subcortical volumes were detected in schizophrenia relative to controls. In contrast, increased variability was found in schizophrenia compared to controls for intracranial and especially lateral and third ventricle volumes. These findings highlight the need for more attention to ventricles and detailed analyses of brain volume distributions to better elucidate the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Susan S Kuo
- Department of Psychology, University of Pittsburgh, 4209 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA.
| | - Michael F Pogue-Geile
- Department of Psychology, University of Pittsburgh, 4209 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA; Department of Psychology and Department of Psychiatry, University of Pittsburgh, 4207 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA.
| |
Collapse
|
4
|
Aging of cerebral white matter. Ageing Res Rev 2017; 34:64-76. [PMID: 27865980 DOI: 10.1016/j.arr.2016.11.006] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/21/2016] [Accepted: 11/04/2016] [Indexed: 12/12/2022]
Abstract
White matter (WM) occupies a large volume of the human cerebrum and is mainly composed of myelinated axons and myelin-producing glial cells. The myelinated axons within WM are the structural foundation for efficient neurotransmission between cortical and subcortical areas. Similar to neuron-enriched gray matter areas, WM undergoes a series of changes during the process of aging. WM malfunction can induce serious neurobehavioral and cognitive impairments. Thus, age-related changes in WM may contribute to the functional decline observed in the elderly. In addition, aged WM becomes more susceptible to neurological disorders, such as stroke, traumatic brain injury (TBI), and neurodegeneration. In this review, we summarize the structural and functional alterations of WM in natural aging and speculate on the underlying mechanisms. We also discuss how age-related WM changes influence the progression of various brain disorders, including ischemic and hemorrhagic stroke, TBI, Alzheimer's disease, and Parkinson's disease. Although the physiology of WM is still poorly understood relative to gray matter, WM is a rational therapeutic target for a number of neurological and psychiatric conditions.
Collapse
|
5
|
Meechan DW, Maynard TM, Tucker ES, Fernandez A, Karpinski BA, Rothblat LA, LaMantia AS. Modeling a model: Mouse genetics, 22q11.2 Deletion Syndrome, and disorders of cortical circuit development. Prog Neurobiol 2015; 130:1-28. [PMID: 25866365 DOI: 10.1016/j.pneurobio.2015.03.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/24/2015] [Accepted: 03/29/2015] [Indexed: 12/21/2022]
Abstract
Understanding the developmental etiology of autistic spectrum disorders, attention deficit/hyperactivity disorder and schizophrenia remains a major challenge for establishing new diagnostic and therapeutic approaches to these common, difficult-to-treat diseases that compromise neural circuits in the cerebral cortex. One aspect of this challenge is the breadth and overlap of ASD, ADHD, and SCZ deficits; another is the complexity of mutations associated with each, and a third is the difficulty of analyzing disrupted development in at-risk or affected human fetuses. The identification of distinct genetic syndromes that include behavioral deficits similar to those in ASD, ADHC and SCZ provides a critical starting point for meeting this challenge. We summarize clinical and behavioral impairments in children and adults with one such genetic syndrome, the 22q11.2 Deletion Syndrome, routinely called 22q11DS, caused by micro-deletions of between 1.5 and 3.0 MB on human chromosome 22. Among many syndromic features, including cardiovascular and craniofacial anomalies, 22q11DS patients have a high incidence of brain structural, functional, and behavioral deficits that reflect cerebral cortical dysfunction and fall within the spectrum that defines ASD, ADHD, and SCZ. We show that developmental pathogenesis underlying this apparent genetic "model" syndrome in patients can be defined and analyzed mechanistically using genomically accurate mouse models of the deletion that causes 22q11DS. We conclude that "modeling a model", in this case 22q11DS as a model for idiopathic ASD, ADHD and SCZ, as well as other behavioral disorders like anxiety frequently seen in 22q11DS patients, in genetically engineered mice provides a foundation for understanding the causes and improving diagnosis and therapy for these disorders of cortical circuit development.
Collapse
Affiliation(s)
- Daniel W Meechan
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States
| | - Thomas M Maynard
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States
| | - Eric S Tucker
- Department of Neurobiology and Anatomy, Neuroscience Graduate Program, and Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Alejandra Fernandez
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States
| | - Beverly A Karpinski
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States
| | - Lawrence A Rothblat
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States; Department of Psychology, The George Washington University, Washington, DC, United States
| | - Anthony-S LaMantia
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States.
| |
Collapse
|
6
|
Abstract
Schizophrenia is a complex mental health disorder with positive, negative and cognitive symptom domains. Approximately one third of patients are resistant to currently available medication. New therapeutic targets and a better understanding of the basic biological processes that drive pathogenesis are needed in order to develop therapies that will improve quality of life for these patients. Several drugs that act on neurotransmitter systems in the brain have been suggested to model aspects of schizophrenia in animals and in man. In this paper, we selectively review findings from dopaminergic, glutamatergic, serotonergic, cannabinoid, GABA, cholinergic and kappa opioid pharmacological drug models to evaluate their similarity to schizophrenia. Understanding the interactions between these different neurotransmitter systems and their relationship with symptoms will be an important step towards building a coherent hypothesis for the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Hannah Steeds
- Imperial College London, Division of Brain Sciences, Du Cane Road, London W12 0NN, UK
| | | | - James M Stone
- King's College London, Institute of Psychiatry Psychology and Neuroscience, De Crespigny Park, London SE5 8AF, UK, Imperial College London, Division of Brain Sciences, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
7
|
Mighdoll MI, Tao R, Kleinman JE, Hyde TM. Myelin, myelin-related disorders, and psychosis. Schizophr Res 2015; 161:85-93. [PMID: 25449713 DOI: 10.1016/j.schres.2014.09.040] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/18/2014] [Accepted: 09/21/2014] [Indexed: 12/14/2022]
Abstract
The neuropathological basis of schizophrenia and related psychoses remains elusive despite intensive scientific investigation. Symptoms of psychosis have been reported in a number of conditions where normal myelin development is interrupted. The nature, location, and timing of white matter pathology seem to be key factors in the development of psychosis, especially during the critical adolescent period of association area myelination. Numerous lines of evidence implicate myelin and oligodendrocyte function as critical processes that could affect neuronal connectivity, which has been implicated as a central abnormality in schizophrenia. Phenocopies of schizophrenia with a known pathological basis involving demyelination or dysmyelination may offer insights into the biology of schizophrenia itself. This article reviews the pathological changes in white matter of patients with schizophrenia, as well as demyelinating diseases associated with psychosis. In an attempt to understand the potential role of dysmyelination in schizophrenia, we outline the evidence from a number of both clinically-based and post-mortem studies that provide evidence that OMR genes are genetically associated with increased risk for schizophrenia. To further understand the implication of white matter dysfunction and dysmyelination in schizophrenia, we examine diffusion tensor imaging (DTI), which has shown volumetric and microstructural white matter differences in patients with schizophrenia. While classical clinical-neuropathological correlations have established that disruption in myelination can produce a high fidelity phenocopy of psychosis similar to schizophrenia, the role of dysmyelination in schizophrenia remains controversial.
Collapse
Affiliation(s)
- Michelle I Mighdoll
- Lieber Institute for Brain Development, Johns Hopkins Medical Institutions, 855 N. Wolfe Street, Suite 300, Baltimore, MD 21205, USA.
| | - Ran Tao
- Lieber Institute for Brain Development, Johns Hopkins Medical Institutions, 855 N. Wolfe Street, Suite 300, Baltimore, MD 21205, USA.
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Institutions, 855 N. Wolfe Street, Suite 300, Baltimore, MD 21205, USA.
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Institutions, 855 N. Wolfe Street, Suite 300, Baltimore, MD 21205, USA; Department of Psychiatry & Behavioral Sciences, Johns Hopkins Medical School, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins Medical School, Baltimore, MD 21205, USA.
| |
Collapse
|
8
|
Rigucci S, Rossi-Espagnet C, Ferracuti S, De Carolis A, Corigliano V, Carducci F, Mancinelli I, Cicone F, Tatarelli R, Bozzao A, Girardi P, Comparelli A. Anatomical substrates of cognitive and clinical dimensions in first episode schizophrenia. Acta Psychiatr Scand 2013; 128:261-70. [PMID: 23216145 DOI: 10.1111/acps.12051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2012] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To explore gray (GM) and white matter (WM) abnormalities and the relationships with neuropsychopathology in first-episode schizophrenia (FES). METHOD Nineteen patients with first episode of non-affective psychosis and 18 controls underwent a magnetic resonance voxel-based morphometry. Additionally, WM fractional anisotropy (FA) was calculated. For correlative analysis, symptoms and neuropsychological performances were scored by PANSS and by a comprehensive neuropsychological assessment respectively. RESULTS Patients showed significantly decreased volume of left temporal lobe and disarray of all major WM tracts. Disorganized PANSS factor was inversely related to left cerebellar GM volume (corrected P = 0.03) and to WM FA of the left cerebellum, inferior fronto-occipital fasciculi (IFOF), and inferior longitudinal fasciculi (corrected P < 0.05). PANSS negative factor was inversely related to FA in the IFOF and superior longitudinal fasciculi (corrected P < 0.05). Impairment in facial emotion identification showed associations with temporo-occipital GM volume decrease (corrected P = 0.003) and WM disarray of superior and middle temporal gyri, anterior thalamic radiation, and superior longitudinal fasciculi (corrected P < 0.05). Speed of processing and visual memory correlated with WM abnormalities in fronto-temporal tracts. CONCLUSION These results confirm how the structural development of key brain regions is related to neuropsychopathological dysfunction in FES, consistently with a neurodevelopmentally derived misconnection syndrome.
Collapse
Affiliation(s)
- S Rigucci
- Unit of Psychiatry, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (Ne.S.M.O.S.), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Keshavan MS, Eack SM, Wojtalik JA, Prasad KMR, Francis AN, Bhojraj TS, Greenwald DP, Hogarty SS. A broad cortical reserve accelerates response to cognitive enhancement therapy in early course schizophrenia. Schizophr Res 2011; 130:123-9. [PMID: 21645997 PMCID: PMC3209759 DOI: 10.1016/j.schres.2011.05.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/28/2011] [Accepted: 05/01/2011] [Indexed: 01/31/2023]
Abstract
OBJECTIVES Cognitive rehabilitation can improve cognition in schizophrenia and prevent disability. It is unknown, however, whether a greater neurobiologic reserve, as measured by cortical volumes, will predict a favorable response to rehabilitation. We investigated this question in early course schizophrenia patients treated with Cognitive Enhancement Therapy (CET). METHODS Outpatients in the early course of schizophrenia or schizoaffective disorder were randomly assigned to CET (n=29) or an Enriched Supportive Therapy control (n=21) and treated for two years. Cortical surface area and gray matter volume data were collected before treatment using structural magnetic resonance imaging. Neurocognition and social cognition were assessed before, and after one and two years of treatment. Moderator analyses examined the impact of pre-treatment cortical surface area and gray matter volume on differential neurocognitive and social-cognitive response to CET. RESULTS Pre-treatment, whole brain cortical surface area and gray matter volume significantly moderated the effects of CET on social cognition, but not neurocognition. Greater neurobiologic reserve predicted a rapid social-cognitive response to CET in the first year of treatment; patients with less neurobiologic reserve achieved a comparable social-cognitive response by the second year. While nearly every regional measurement significantly contributed to this accelerated social-cognitive treatment response, effects were the strongest in the temporal cortex. CONCLUSIONS A broad cortical surface area and gray matter reserve is associated with an accelerated social-cognitive response to CET in early schizophrenia, yet the benefits of cognitive rehabilitation are achieved in those with less initial cognitive resources after a longer duration of treatment.
Collapse
Affiliation(s)
- Matcheri S Keshavan
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Horga G, Bernacer J, Dusi N, Entis J, Chu K, Hazlett EA, Mehmet Haznedar M, Kemether E, Byne W, Buchsbaum MS. Correlations between ventricular enlargement and gray and white matter volumes of cortex, thalamus, striatum, and internal capsule in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2011; 261:467-76. [PMID: 21431919 PMCID: PMC3182327 DOI: 10.1007/s00406-011-0202-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 02/15/2011] [Indexed: 11/25/2022]
Abstract
Ventricular enlargement is one of the most consistent abnormal structural brain findings in schizophrenia and has been used to infer brain shrinkage. However, whether ventricular enlargement is related to local overlying cortex and/or adjacent subcortical structures or whether it is related to brain volume change globally has not been assessed. We systematically assessed interrelations of ventricular volumes with gray and white matter volumes of 40 Brodmann areas (BAs), the thalamus and its medial dorsal nucleus and pulvinar, the internal capsule, caudate and putamen. We acquired structural MRI ( patients with schizophrenia (n = 64) and healthy controls (n = 56)) and diffusion tensor fractional anisotropy (FA) (untreated schizophrenia n = 19, controls n = 32). Volumes were assessed by manual tracing of central structures and a semi-automated parcellation of BAs. Patients with schizophrenia had increased ventricular size associated with decreased cortical gray matter volumes widely across the brain; a similar but less pronounced pattern was seen in normal controls; local correlations (e.g. temporal horn with temporal lobe volume) were not appreciably higher than non-local correlations (e.g. temporal horn with prefrontal volume). White matter regions adjacent to the ventricles similarly did not reveal strong regional relationships. FA and center of mass of the anterior limb of the internal capsule also appeared differentially influenced by ventricular volume but findings were similarly not regional. Taken together, these findings indicate that ventricular enlargement is globally interrelated with gray matter volume diminution but not directly correlated with volume loss in the immediately adjacent caudate, putamen, or internal capsule.
Collapse
Affiliation(s)
- Guillermo Horga
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1230, 10029 New York, NY USA
- Schizophrenia Clinic Program, Department of Psychiatry, Hospital Clínic Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | - Javier Bernacer
- Laboratory of Functional Neuromorphology, Clinica Universitaria, Universidad de Navarra, Avda. Pío XII 36, 31008 Pamplona, Spain
| | - Nicola Dusi
- Department of Public Health and Community Medicine, Section of Psychiatry and Clinical Psychology, University of Verona, Policlinico Giambattista Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Jonathan Entis
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1230, 10029 New York, NY USA
| | - Kingwai Chu
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1230, 10029 New York, NY USA
| | - Erin A. Hazlett
- Department of Psychiatry, James J Peters VA Medical Center, 130 West Kingsbridge Road, 10468 Bronx, NY USA
| | - M. Mehmet Haznedar
- Department of Psychiatry, James J Peters VA Medical Center, 130 West Kingsbridge Road, 10468 Bronx, NY USA
| | - Eileen Kemether
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1230, 10029 New York, NY USA
| | - William Byne
- Department of Psychiatry, James J Peters VA Medical Center, 130 West Kingsbridge Road, 10468 Bronx, NY USA
| | - Monte S. Buchsbaum
- Departments of Psychiatry and Radiology, NeuroPET Center, University of California, 11388 Sorrento Valley Road, Suite #100, 92121 San Diego, CA USA
| |
Collapse
|
11
|
Bartzokis G, Lu PH, Stewart SB, Oluwadara B, Lucas AJ, Pantages J, Pratt E, Sherin JE, Altshuler LL, Mintz J, Gitlin MJ, Subotnik KL, Nuechterlein KH. In vivo evidence of differential impact of typical and atypical antipsychotics on intracortical myelin in adults with schizophrenia. Schizophr Res 2009; 113:322-31. [PMID: 19616412 PMCID: PMC2862048 DOI: 10.1016/j.schres.2009.06.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 06/13/2009] [Accepted: 06/16/2009] [Indexed: 10/20/2022]
Abstract
CONTEXT Imaging and post-mortem studies provide converging evidence that patients with schizophrenia have a dysregulated developmental trajectory of frontal lobe myelination. The hypothesis that typical and atypical medications may differentially impact brain myelination in adults with schizophrenia was previously assessed with inversion recovery (IR) images. Increased white matter (WM) volume suggestive of increased myelination was detected in the patient group treated with an atypical antipsychotic compared to a typical one. OBJECTIVE In a follow-up reanalysis of MRI images from the original study, we used a novel method to assess whether the difference in WM volumes could be caused by a differential effect of medications on the intracortical myelination process. DESIGN, SETTING, AND PARTICIPANTS Two different male cohorts of healthy controls ranging in age from 18-35 years were compared to cohorts of subjects with schizophrenia who were treated with either oral risperidone (Ris) or fluphenazine decanoate (Fd). MAIN OUTCOME MEASURE A novel MRI method that combines the distinct tissue contrasts provided by IR and proton density (PD) images was used to estimate intracortical myelin (ICM) volume. RESULTS When compared with their pooled healthy control comparison group, the two groups of schizophrenic patients differed in the frontal lobe ICM measure with the Ris group having significantly higher volume. CONCLUSIONS The data suggest that in adults with schizophrenia antipsychotic treatment choice may be specifically and differentially impacting later-myelinating intracortical circuitry. In vivo MRI can be used to dissect subtle differences in brain tissue characteristics and thus help clarify the effect of pharmacologic treatments on developmental and pathologic processes.
Collapse
Affiliation(s)
- George Bartzokis
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6968, USA.
| | - Po H. Lu
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Stephanie B. Stewart
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Bolanle Oluwadara
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California.,Greater Los Angeles VA Healthcare System, West Los Angeles, California
| | - Andrew J. Lucas
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Joanna Pantages
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California.,Greater Los Angeles VA Healthcare System, West Los Angeles, California
| | - Erika Pratt
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California.,Greater Los Angeles VA Healthcare System, West Los Angeles, California
| | - Jonathan E. Sherin
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California.,Greater Los Angeles VA Healthcare System, West Los Angeles, California
| | - Lori L. Altshuler
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California.,Greater Los Angeles VA Healthcare System, West Los Angeles, California
| | - Jim Mintz
- University of Texas Health Science Center at San Antonio, Department of Epidemiology and Biostatistics, San Antonio, Texas
| | - Michael J. Gitlin
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Kenneth L. Subotnik
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Keith H. Nuechterlein
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
12
|
Höistad M, Segal D, Takahashi N, Sakurai T, Buxbaum JD, Hof PR. Linking white and grey matter in schizophrenia: oligodendrocyte and neuron pathology in the prefrontal cortex. Front Neuroanat 2009; 3:9. [PMID: 19636386 PMCID: PMC2713751 DOI: 10.3389/neuro.05.009.2009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 06/16/2009] [Indexed: 11/21/2022] Open
Abstract
Neuronal circuitry relies to a large extent on the presence of functional myelin produced in the brain by oligodendrocytes. Schizophrenia has been proposed to arise partly from altered brain connectivity. Brain imaging and neuropathologic studies have revealed changes in white matter and reduction in myelin content in patients with schizophrenia. In particular, alterations in the directionality and alignment of axons have been documented in schizophrenia. Moreover, the expression levels of several myelin-related genes are decreased in postmortem brains obtained from patients with schizophrenia. These findings have led to the formulation of the oligodendrocyte/myelin dysfunction hypothesis of schizophrenia. In this review, we present a brief overview of the neuropathologic findings obtained on white matter and oligodendrocyte status observed in schizophrenia patients, and relate these changes to the processes of brain maturation and myelination. We also review recent data on oligodendrocyte/myelin genes, and present some recent mouse models of myelin deficiencies. The use of transgenic and mutant animal models offers a unique opportunity to analyze oligodendrocyte and neuronal changes that may have a clinical impact. Lastly, we present some recent morphological findings supporting possible causal involvement of white and grey matter abnormalities, in the aim of determining the morphologic characteristics of the circuits whose alteration leads to the cortical dysfunction that possibly underlies the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Malin Höistad
- Department of Neuroscience, Mount Sinai School of MedicineNew York, NY, USA
| | - Devorah Segal
- Department of Neuroscience, Mount Sinai School of MedicineNew York, NY, USA
| | - Nagahide Takahashi
- Department of Psychiatry, Mount Sinai School of MedicineNew York, NY, USA
| | - Takeshi Sakurai
- Department of Psychiatry, Mount Sinai School of MedicineNew York, NY, USA
| | - Joseph D. Buxbaum
- Department of Psychiatry, Mount Sinai School of MedicineNew York, NY, USA
| | - Patrick R. Hof
- Department of Neuroscience, Mount Sinai School of MedicineNew York, NY, USA
| |
Collapse
|
13
|
Rametti G, Junqué C, Vendrell P, Catalán R, Penadés R, Bargalló N, Bernardo M. Hippocampal underactivation in an fMRI study of word and face memory recognition in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2009; 259:203-11. [PMID: 19224116 DOI: 10.1007/s00406-008-0852-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 10/14/2008] [Indexed: 11/24/2022]
Abstract
Schizophrenia is a major mental disorder which is characterized by several cognitive deficits. Investigations of the neural basis of memory dysfunctions using neuroimaging techniques suggest that the hippocampus plays an important role in declarative memory impairment. The goal of this study was to investigate possible dysfunctions in cerebral activation in schizophrenic patients during both word and face recognition memory tasks. We tested 22 schizophrenics and 24 controls matched by gender, age, handedness and parental socioeconomic status. Compared to healthy volunteers, patients with schizophrenia showed decreased bilateral hippocampal activation during word and face recognition tasks. The whole brain analysis also showed a pattern of cortical and subcortical hypoactivation for both verbal and non-verbal recognition. This study provides further evidence of hippocampal involvement in declarative memory impairments of schizophrenia.
Collapse
Affiliation(s)
- Giuseppina Rametti
- Department of Psychiatry and Clinical Psychobiology, University of Barcelona, c/Casanova, 143, 08036, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Nesvåg R, Saetre P, Lawyer G, Jönsson EG, Agartz I. The relationship between symptom severity and regional cortical and grey matter volumes in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:482-90. [PMID: 19439246 DOI: 10.1016/j.pnpbp.2009.01.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 01/23/2009] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To investigate the relationship between symptom severity and cortical and grey matter volumes in schizophrenia. METHOD Fifty-three outpatients with schizophrenia were assessed by the Scale for the Assessment of Negative Symptoms and the Scale for the Assessment of Positive Symptoms. Symptoms were grouped into five factors (negative, relational, inattention, disorganization, and reality distortion). Cortical and lobar grey matter volumes within all regions of the brain were obtained from magnetic resonance images using two independent software tools. The relationships between brain volumes and symptom factors were analyzed by partial correlations controlling for age, gender, dose and type of antipsychotic medication, and intracranial volume. RESULTS Negative symptoms were generally associated with larger cortical volumes in all regions of the brain, and the relational and inattention factors were associated with larger frontal grey matter volumes. The reality distortion factor was associated with smaller cortical volumes throughout the brain and with smaller frontal and temporal grey matter volumes. CONCLUSION Differential contribution of positive and negative symptoms to variation in cortical and grey matter volumes indicates separate neurobiological mechanisms underlying the two major symptom domains in schizophrenia.
Collapse
Affiliation(s)
- Ragnar Nesvåg
- Institute of Psychiatry, University of Oslo, P.O. Box 85 Vinderen, 0319 Oslo, Norway.
| | | | | | | | | |
Collapse
|
15
|
Lawyer G, Nesvåg R, Varnäs K, Frigessi A, Agartz I. Investigating possible subtypes of schizophrenia patients and controls based on brain cortical thickness. Psychiatry Res 2008; 164:254-64. [PMID: 19022629 DOI: 10.1016/j.pscychresns.2007.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 09/03/2007] [Accepted: 12/22/2007] [Indexed: 10/21/2022]
Abstract
Schizophrenia is a heterogeneous disease in which different dimensions could be associated with localized subtypes in cortical thickness of the brain. Subtypes in data that includes patients and controls could be associated with patient/control could associate with patient/control groupings. Testing for subtypes provides a non-parametric investigation of group differences. Cortical thickness maps, generated from magnetic resonance images of 96 patients with schizophrenia and 106 controls, were co-registered and corrected for age-related thinning. At multiple map locations, the number of (sub)types best explaining cortical thickness in the patients, the controls, and both combined was determined. Grey matter volumes of selected regions were measured. Both patients and controls, considered independently, were predominantly homogeneous in cortical thickness. The few bimodal regions were similar in both groups. The combined subjects' cortical thickness was bimodal over 34% of the cortical mantle and otherwise unimodal. Further probing of these bimodal regions showed that subjects tending to belong to thinner modes were significantly more likely to be patients, and grey matter volumes of most bimodal regions were significantly smaller in patients. The study found no subtypes specific to patients. It suggested, however, that associations between abnormally thin cortex and schizophrenia are more widespread than shown by previously published results based on significance testing.
Collapse
Affiliation(s)
- Glenn Lawyer
- Institute of Psychiatry, University of Oslo, Oslo, Norway.
| | | | | | | | | |
Collapse
|
16
|
Structural brain alterations at different stages of schizophrenia: a voxel-based morphometric study. Schizophr Res 2008; 104:44-60. [PMID: 18703313 DOI: 10.1016/j.schres.2008.06.023] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 05/30/2008] [Accepted: 06/15/2008] [Indexed: 11/21/2022]
Abstract
Structural alterations in schizophrenia have mainly been regarded as the result of neurodevelopmental processes. However, it remains unresolved whether the pattern of morphological brain changes differs between different stages of disease. We examined structural brain changes in 93 first-episode (FES) and 72 recurrently ill (REZ) patients with schizophrenia (SZ) and 175 matched healthy control subjects (HC) using cross-sectional and conjunctional voxel-based morphometry (VBM) of whole-brain MRI data in a three-step approach. We found significant grey matter density (GMD) reductions in FES compared to HC bilaterally in the temporal and prefrontal areas, including the anterior cingulate gyrus, as well as in both thalami. Hippocampus and amygdala were affected on the left side (P<0.05, corrected). In REZ patients this pattern was spatially extended. The basal ganglia were exclusively reduced in the recurrently ill group compared to controls. Common to both disease groups were reductions in the bilateral perisylvian regions, the opercular region, the insula, prefrontal cortex, left inferior temporal gyrus, limbic system including hippocampus and amygdala, and the thalami. In FES patients there were no regions affected that were not also affected in REZ patients. In contrast, REZ patients showed extended alterations within the frontal and temporal regions, the hippocampus, amygdala and exclusively in the basal ganglia relative to the FES patients. Our findings suggest a system-specific involvement of neuronal networks in schizophrenia. Furthermore, our data suggest that in the advanced stages of schizophrenia additional cortical and subcortical brain areas become involved in the disease process. Longitudinal data will be required to further test this hypothesis.
Collapse
|
17
|
Scherk H, Kemmer C, Usher J, Reith W, Falkai P, Gruber O. No change to grey and white matter volumes in bipolar I disorder patients. Eur Arch Psychiatry Clin Neurosci 2008; 258:345-9. [PMID: 18347837 PMCID: PMC3085759 DOI: 10.1007/s00406-007-0801-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 12/04/2007] [Indexed: 11/29/2022]
Abstract
BACKGROUND Structural brain imaging is assumed to be a key method to elucidate the underlying neuropathology of bipolar disorder. However, magnetic resonance imaging studies using region of interest analysis and voxel-based morphometry (VBM) revealed quite inconsistent findings. Hence, there is no clear evidence so far for core regions of cortical or subcortical structural abnormalities in bipolar disorder. The aim of this study was to investigate grey and white matter volumes in a large sample of patients with bipolar I disorder. METHODS Thirty-five patients with bipolar I disorder and 32 healthy controls matched with respect to gender, handedness and education participated in the study. MRI scanning was performed and an optimized VBM analysis was conducted. RESULTS We could not observe any significant differences of grey or white matter volumes between patients with bipolar disorder and healthy control subjects. Additional analyses did not reveal significant correlations between grey or white matter volume with number of manic or depressive episodes, duration of illness, existence of psychotic symptoms, and treatment with lithium or antipsychotics. CONCLUSIONS With this VBM study we were not able to identify core regions of structural abnormalities in bipolar disorder.
Collapse
Affiliation(s)
- Harald Scherk
- Department of Psychiatry and Psychotherapy, Georg-August-University of Goettingen, von-Siebold-Str. 5, 37075, Goettingen, Germany.
| | - Claudia Kemmer
- Department of Psychiatry and Psychotherapy, Saarland University Hospital, Homburg, Germany
| | - Juliana Usher
- Department of Psychiatry and Psychotherapy, Georg-August-University of Goettingen, von-Siebold-Str. 5, 37075 Goettingen, Germany
| | - Wolfgang Reith
- Department of Neuroradiology, Saarland University Hospital, Homburg, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Georg-August-University of Goettingen, von-Siebold-Str. 5, 37075 Goettingen, Germany
| | - Oliver Gruber
- Department of Psychiatry and Psychotherapy, Saarland University Hospital, Homburg, Germany
| |
Collapse
|
18
|
Keep smiling! Facial reactions to emotional stimuli and their relationship to emotional contagion in patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2008; 258:245-53. [PMID: 18297418 DOI: 10.1007/s00406-007-0792-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 11/08/2007] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Emotional contagion is a common phenomenon in verbal and nonverbal communication between individuals. Perception and mimicry of facial movements play an important role in this process. Several studies have demonstrated impaired facial expression recognition in patients with schizophrenia and differences in their facial behavior compared to healthy subjects, but so far, the relationship between facial mimicry and emotional contagion has not been studied in this group. METHODS Seventeen schizophrenic patients and an equal number of matched healthy controls were presented with digital versions of happy, sad and neutral faces from the "Pictures of facial affect" (Ekman and Friesen, Consulting Psychologists Press, Palo Alto, 1976) and were asked to pull their lip corners up or down (like in smiling or showing a sad face) according to the direction of two arrows that were presented simultaneously. In healthy subjects, congruous movements (i.e. pulling the lip corners up when seeing a happy face or pulling them down when seeing a sad face) are facilitated and dissonant movements are inhibited; these tendencies were considered as indicators of emotional contagion. RESULTS In schizophrenic patients, these tendencies were significantly diminished. The patients were more apt to display a smile as a reaction to a sad face. We found a positive correlation between these effects and the PANSS-Scores for General Psychopathology. DISCUSSION Patients' tendencies towards positive reactions even when a negative stimulus was presented could function as a protective mechanism against overwhelming emotional experiences.
Collapse
|
19
|
Saze T, Hirao K, Namiki C, Fukuyama H, Hayashi T, Murai T. Insular volume reduction in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2007; 257:473-9. [PMID: 17902004 DOI: 10.1007/s00406-007-0750-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 06/08/2007] [Indexed: 10/22/2022]
Abstract
Structural and functional abnormalities of the insular cortex have been reported in patients with schizophrenia. Most studies have shown that the insular volumes in schizophrenia patients are smaller than those of healthy people. As the insular cortex is functio-anatomically divided into anterior and posterior subdivisons, recent research is focused on uncovering a specific subdivisional abnormality of the insula in patients with schizophrenia. A recent ROI-based volumetric MRI study demonstrated specific left anterior insular volume reduction in chronic schizophrenia patients (Makris N, Goldstein J, Kennedy D, Hodge S, Caviness V, Faraone S, Tsuang M, Seidman L (2006) Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophr Res 83:155-171). On the other hand, our VBM-based volumetric study revealed a reduction in right posterior insular volume (Yamada M, Hirao K, Namiki C, Hanakawa T, Fukuyama H, Hayashi T, Murai T (2007) Social cognition and frontal lobe pathology in schizophrenia: a voxel-based morphometric study. NeuroImage 35:292-298). In order to address these controversial results, ROI-based subdivisional volumetry was performed using the MRI images from the same population we analyzed in our previous VBM-study. The sample group comprised 20 schizophrenia patients and 20 matched healthy controls. Patients with schizophrenia showed a global reduction in insular gray matter volumes relative to healthy comparison subjects. In a simple comparison of the volumes of each subdivision between the groups, a statistically significant volume reduction in patients with schizophrenia was demonstrated only in the right posterior insula. This study suggests that insular abnormalities in schizophrenia would include anterior as well as posterior parts. Each subdivisional abnormality may impact on different aspects of the pathophysiology and psychopathology of schizophrenia; these relationships should be the focus of future research.
Collapse
Affiliation(s)
- Teruyasu Saze
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Rotarska-Jagiela A, Schönmeyer R, Oertel V, Haenschel C, Vogeley K, Linden DEJ. The corpus callosum in schizophrenia-volume and connectivity changes affect specific regions. Neuroimage 2007; 39:1522-32. [PMID: 18096406 DOI: 10.1016/j.neuroimage.2007.10.063] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 10/17/2007] [Accepted: 10/31/2007] [Indexed: 11/29/2022] Open
Abstract
The corpus callosum (CC) is of great interest for pathophysiological models of schizophrenia. Volume and structural integrity of the CC have been examined by volumetric and diffusion tensor imaging (DTI) studies, but results were not consistent across methods or studies. A possible explanation may be varying methodologies and accuracy of measurements based on a single slice or small regions of interest. In addition, none of the studies examined volume and diffusion values in the same group of patients, and thus the relationship between these anatomical measures is not clear. We used an automatic algorithm to segment seven midline slices of the CC from DTI images. We compared volume and the DTI measures fractional anisotropy (FA) and mean diffusivity (MD) in the CC and its subdivisions in the schizophrenia patients and matched controls. Patients had decreased volume, decreased FA and increased MD of the whole CC. The important novel finding is, however, that not all regions were equally affected by anatomical changes. The results emphasize the importance of using different methods in evaluation of white matter (WM) in schizophrenia to avoid false negative findings. In addition, the measures were highly correlated with each other, implying a common pathological process influencing FA, MD and volume of the CC. Although we cannot rule out other mechanisms affecting volume, FA and MD, converging evidence from cytoarchitectonic and genetic studies suggests that WM changes observed in schizophrenia may involve disintegration of healthy, functional axons and strengthening of aberrant connections resulting in increased severity of clinical symptoms.
Collapse
Affiliation(s)
- Anna Rotarska-Jagiela
- Department of Psychiatry, Neurophysiology and Neuroimaging Lab, Johann Wolfgang Goethe University, Frankfurt/Main, Germany.
| | | | | | | | | | | |
Collapse
|