1
|
Li R, Hu X, Li W, Wu W, Xu J, Lin Y, Shi S, Dong C. Nebulized pH-Responsive Nanospray Combined with Pentoxifylline and Edaravone to Lungs for Efficient Treatments of Acute Respiratory Distress Syndrome. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8310-8320. [PMID: 38343060 DOI: 10.1021/acsami.3c15691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The COVID-19 pandemic has become an unprecedented global medical emergency, resulting in more than 5 million deaths. Acute respiratory distress syndrome (ARDS) caused by COVID-19, characterized by the release of a large number of pro-inflammatory cytokines and the production of excessive toxic ROS, is the most common serious complication leading to death. To develop new strategies for treating ARDS caused by COVID-19, a mouse model of ARDS was established by using lipopolysaccharide (LPS). Subsequently, we have constructed a novel nanospray with anti-inflammatory and antioxidant capacity by loading pentoxifylline (PTX) and edaravone (Eda) on zeolite imidazolate frameworks-8 (ZIF-8). This nanospray was endowed with synergetic therapy, which could kill two birds with one stone: (1) the loaded PTX played a powerful anti-inflammatory role by inhibiting the activation of inflammatory cells and the synthesis of pro-inflammatory cytokines; (2) Eda served as a free radical scavenger in ARDS. Furthermore, compared with the traditional intravenous administration, nanosprays can be administered directly and inhaled efficiently and reduce the risk of systemic adverse reactions greatly. This nanospray could not only coload two drugs efficiently but also realize acid-responsive release on local lung tissue. Importantly, ZIF8-EP nanospray showed an excellent therapeutic effect on ARDS in vitro and in vivo, which provided a new direction for the treatment of ARDS.
Collapse
Affiliation(s)
- Ruihao Li
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Xiaochun Hu
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China
| | - Wenhui Li
- Shanghai Institute of Quality Inspection and Technical Research, Shanghai 201100, P. R. China
| | - Wenjing Wu
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Jin Xu
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Yun Lin
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Shuo Shi
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Chunyan Dong
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
2
|
Zheng Z, Li X, Chen P, Zou Y, Shi X, Li X, Young Kim E, Liao J, Yang J, Chattipakorn N, Wu G, Tang Q, Cho WJ, Liang G. Design and synthesis optimization of novel diimide indoles derivatives for ameliorating acute lung injury through modulation of NF-κB signaling pathway. Bioorg Chem 2023; 136:106557. [PMID: 37121106 DOI: 10.1016/j.bioorg.2023.106557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023]
Abstract
Acute lung injury (ALI) is a common respiratory disease caused by local or systemic inflammatory reaction. Based on the natural 7-chain diaryl anti-inflammatory framework, a series of diimide indoles derivatives were designed by combining curcumin and indole in this study. The synthesis of diimide compounds was extended using dichloromethane (DCM) as solvent and 1,1'-carbonyldiimidazole (CDI) and sodium hydride (NaH) as double activators, and a total of 40 diimide-indole derivatives were obtained. The results of in vitro anti-inflammatory activity showed that most compounds could inhibit the production of interleukin-6 (IL-6) better than curcumin and indomethacin. Among the compounds, the IC50 of compound 11f on IL-6 reached 1.05 μM with no obvious cytotoxic side effects. Mechanistically, compound 11f could block the expression of NF-κB P65 phosphorylation, and nuclear translocation of P65. The acute toxicity tests in-vivo also showed no obvious toxicity in mice after the intragastric administration of 1000 mg/kg. In addition, the compound 11f could significantly inhibit the LPS-induced inflammatory response in mice and reduce the number of neutrophils and wet/dry lung weight ratio, thereby alleviating ALI. These results indicated that the novel diimide indoles were promising anti-inflammatory agents for the treatment of ALI.
Collapse
Affiliation(s)
- Zhiwei Zheng
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Xiaobo Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Yu Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaojian Shi
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiang Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Eun Young Kim
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jing Liao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jun Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Gaojun Wu
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China.
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Guang Liang
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China.
| |
Collapse
|
3
|
Liu Y, Zhu Y, Wang L, Li K, Du N, Pan X, Li Y, Cao R, Li B, Lin H, Song Y, Zhang Y, Wu X, Hu C, Wang Y, Liao S, Huang Y. Acid-sensitive ion channel 1a regulates TNF-α expression in LPS-induced acute lung injury via ERS-CHOP-C/EBPα signaling pathway. Mol Immunol 2023; 153:25-35. [PMID: 36403431 DOI: 10.1016/j.molimm.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/28/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Acute lung injury (ALI) is the local inflammatory response of the lungs involved in a variety of inflammatory cells. Macrophages are immune cells and inflammatory cells widely distributed in the body. Acid-sensitive ion channel 1a (ASIC1a) is involved in the occurrence of ALI, but the mechanism is still unclear. METHODS Kunming mouse were stimulated by Lipopolysaccharides (LPS) to establish ALI model in vivo, and RAW264.7 cells were stimulated by LPS to establish inflammatory model in vitro. Amiloride was used as a blocker of ASIC1a to treat mice, and dexamethasone was used as a positive drug for ALI. After blockers and RNAi blocked or silenced the expression of ASIC1a, the expressions of ASIC1a, endoplasmic reticulum-related proteins GRP78, CHOP, C/EBPα and TNF-α were detected. The Ca2+ concentration was measured by a laser confocal microscope. The interaction between CHOP and C/EBPα and the effect of C/EBPα on the activity of TNF-α promoter were detected by immunoprecipitation and luciferase reporter. RESULTS The expressions of ASIC1a and TNF-α were increased significantly in LPS group. After the blocker and RNAi blocked or silenced ASIC1a, the expressions of TNF-α, GRP78, CHOP were reduced, and the intracellular Ca2+ influx was weakened. The results of immunoprecipitation showed that CHOP and C/EBPα interacted in the macrophages. After silencing CHOP, C/EBPα expression was increased, and TNF-α expression was decreased. The results of the luciferase reporter indicated that C/EBPα directly binds to TNF-α. CONCLUSION ASIC1a regulates the expression of TNF-α in LPS-induced acute lung injury via ERS-CHOP-C/EBPα signaling pathway.
Collapse
Affiliation(s)
- Yanyi Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Yueqin Zhu
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Lili Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Kuayue Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Na Du
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Xuesheng Pan
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Yangyang Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Rui Cao
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Bowen Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Huimin Lin
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Yonghu Song
- Clinical Medical College, Anhui Medical University, Hefei 230032, China
| | - Yunting Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Xian Wu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Chengmu Hu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Yuanyuan Wang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Songyan Liao
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong, China.
| | - Yan Huang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
4
|
Li QC, Liang Y, Su ZB. Prophylactic treatment with MSC-derived exosomes attenuates traumatic acute lung injury in rats. Am J Physiol Lung Cell Mol Physiol 2019; 316:L1107-L1117. [PMID: 30892077 DOI: 10.1152/ajplung.00391.2018] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The mesenchymal stem cell (MSC) is a potential strategy in the pretreatment of traumatic acute lung injury (ALI), a disease that causes inflammation and oxidative stress. This study aimed to investigate whether MSC-exosomal microRNA-124-3p (miR-124-3p) affects traumatic ALI. Initially, a traumatic ALI rat model was established using the weight-drop method. Then, exosomes were obtained from MSCs of Sprague-Dawley rats, which were injected into the traumatic ALI rats. We found that miR-124-3p was abundantly-expressed in MSCs-derived exosomes and could directly target purinergic receptor P2X ligand-gated ion channel 7 (P2X7), which was overexpressed in traumatic ALI rats. After that, a loss- and gain-of-function study was performed in MSCs and traumatic ALI rats to investigate the role of miR-124-3p and P2X7 in traumatic ALI. MSC-derived exosomal miR-124-3p or silenced P2X7 was observed to increase the survival rate of traumatic ALI rats and enhance the glutathione/superoxide dismutase activity in their lung tissues. However, the wet/dry weight of lung tissues, activity of methylenedioxyamphetamine and H2O2, and levels of inflammatory factors (TNF-a, IL-6, and IL-8) were reduced. Similarly, the numbers of total cells, macrophages, neutrophils, and lymphocytes in bronchoalveolar lavage fluid were also reduced when treated with exosomal miR-124-3p or silenced P2X7. In conclusion, the results provide evidence that miR-124-3p transferred by MSC-derived exosomes inhibited P2X7 expression, thus improving oxidative stress injury and suppressing inflammatory response in traumatic ALI, highlighting a potential pretreatment for traumatic ALI.
Collapse
Affiliation(s)
- Qing-Chun Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yun Liang
- Center of Physical Examination, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zhen-Bo Su
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
5
|
Chen Y, Dong J, Liu J, Xu W, Wei Z, Li Y, Wu H, Xiao H. Network Pharmacology-Based Investigation of Protective Mechanism of Aster tataricus on Lipopolysaccharide-Induced Acute Lung Injury. Int J Mol Sci 2019; 20:E543. [PMID: 30696024 PMCID: PMC6387216 DOI: 10.3390/ijms20030543] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/20/2019] [Accepted: 01/25/2019] [Indexed: 12/12/2022] Open
Abstract
Acute lung injury (ALI) is a common clinical condition that badly influences people's health. Recent studies indicated that Aster tataricus (RA) had potential effects on ALI, but the effective components and their mechanism is not clear. In this study, we found that the Fraction-75 eluted from RA extract could significantly protect the lipopolysaccharide (LPS)-induced ALI in mice, including alleviating the severity of lung pathology, attenuating the pulmonary edema, and reducing the release of inflammatory cells. Further ingredient analyses demonstrated that there were mainly 16 components in it, among which 10 components were collected according to their relative peak area and oral bioavailability. Next, the components-disease targets network suggested that the candidate components had extensive associations with 49 known therapeutic targets of ALI, among which 31 targets could be regulated by more than one component. Herein, GO functional and pathway analysis revealed that the common targets were associated with four biological processes, including the inflammatory response to stimulus, cellular process, chemokine biosynthetic process and immune system process. Furthermore, the ELISA validation indicated that the candidate components in RA extract may protect the LPS-induced ALI mainly through inhibiting the release of inflammatory cytokines and promoting the repair of vascular endothelial.
Collapse
Affiliation(s)
- Yijun Chen
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Jiaojiao Dong
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Jie Liu
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Wenjuan Xu
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Ziyi Wei
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yueting Li
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Hao Wu
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Hongbin Xiao
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
6
|
He F, Zhang N, Lv Y, Sun W, Chen H. Low‑dose lipopolysaccharide inhibits neuronal apoptosis induced by cerebral ischemia/reperfusion injury via the PI3K/Akt/FoxO1 signaling pathway in rats. Mol Med Rep 2019; 19:1443-1452. [PMID: 30628689 PMCID: PMC6390019 DOI: 10.3892/mmr.2019.9827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/03/2018] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the effects of low‑dose lipopolysaccharide (LPS) on ischemia/reperfusion (I/R)‑induced brain injury, and to explore the mechanism of phosphoinositide 3‑kinase (PI3K)/Akt/forkhead box protein (Fox)O1 signaling pathway. Male Sprague‑Dawley rats were divided into control group (control), ischemia/reperfusion surgery group (I/R) and low‑dose LPS treatment group (LPS). An I/R model was established and the hemodynamic parameters were recorded at the end of I/R injury. The brain tissues were observed by hematoxylin and eosin staining, immunohistochemistry and terminal deoxynucleotidyl‑transferase‑mediated dUTP nick end labeling staining. Microglia were treated with LPS following hypoxia/reoxygenation. The cellular viability was detected by 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide assay. The apoptotic rate of microglia was detected using AnnexinV/propidium iodide staining. The expression of B‑cell lymphoma (Bcl)‑2, Bcl‑2‑associated X (Bax), and caspase‑3 were detected by western blot analysis and reverse transcription‑quantitative polymerase chain reaction. Akt, phosphorylated (p)‑Akt, FoxO1 and p‑FoxO1 expression were detected by western blotting. It was previously reported that, following I/R injury, neuronal cells were disorderly and brain injury markers (neuron‑specific enolase and S100 β), inflammatory cytokines [interleukin (IL)‑1β, IL‑6 and tumor necrosis factor‑α] levels were significantly upregulated. In the present study, the expression levels of Bax, caspase‑3 Akt and p‑Akt were significantly higher, while that of Bcl‑2, FoxO1 and p‑FoxO1 were significantly lower in the I/R group. LPS treatment significantly increased the viability of neuronal cells and decreased the rate of neuronal cell apoptosis. Following the addition of PI3K signaling pathway inhibitor LY294002 to microglia, LPS reduced the levels of activated Akt, increased the downstream regulatory gene phosphorylation of FoxO1 and reduced microglia apoptosis. It was concluded that LPS can alleviate I/R‑induced brain injury, inhibit neuronal cells apoptosis and protect neuronal cells via the PI3K/Akt/FoxO1 signaling pathway.
Collapse
Affiliation(s)
- Fan He
- Department of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Nannan Zhang
- Department of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Yan Lv
- Department of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Wenhao Sun
- Department of Neurology, The General Hospital of Tianjin Medical University, Tianjin 300020, P.R. China
| | - Huisheng Chen
- Department of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
7
|
Song D, Liu X, Diao Y, Sun Y, Gao G, Zhang T, Chen K, Pei L. Hydrogen‑rich solution against myocardial injury and aquaporin expression via the PI3K/Akt signaling pathway during cardiopulmonary bypass in rats. Mol Med Rep 2018; 18:1925-1938. [PMID: 29956781 PMCID: PMC6072160 DOI: 10.3892/mmr.2018.9198] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/05/2018] [Indexed: 12/19/2022] Open
Abstract
Myocardial ischemia, hypoxia and reperfusion injury are induced by aortic occlusion, cardiac arrest and resuscitation during cardiopulmonary bypass (CPB), which can severely affect cardiac function. The aim of the present study was to investigate the effects of hydrogen-rich solution (HRS) and aquaporin (AQP) on cardiopulmonary bypass (CPB)-induced myocardial injury, and determine the mechanism of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. Sprague Dawley rats were divided into a sham operation group, a CPB surgery group and a HRS group. A CPB model was established, and the hemodynamic parameters were determined at the termination of CPB. The myocardial tissues were observed by hematoxylin and eosin, and Masson staining. The levels of myocardial injury markers [adult cardiac troponin I (cTnI), lactate dehydrogenase (LDH), creatine kinase MB (CK-MB) and brain natriuretic peptide (BNP)], inflammatory factors [interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α)] and oxidative stress indicators [superoxide dismutase (SOD), malondialdehyde (MDA) and myeloperoxidase (MPO)] were determined by ELISA. Furthermore, H9C2 cells were treated with HRS following hypoxia/reoxygenation. Cell viability and cell apoptosis were investigated. The expression of apoptosis regulator Bcl-2 (Bcl-2), apoptosis regulator Bax (Bax), caspase 3, AQP-1, AQP-4, phosphorylated (p)-Akt, heme oxygenase 1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) were investigated using western blotting and quantitative-polymerase chain reaction of tissues and cells. Following CPB, myocardial cell arrangement was disordered, myocardial injury markers (cTnI, LDH, CK-MB and BNP), inflammatory cytokines (IL-1β, IL-6 and TNF-α) and MDA levels were significantly increased compared with the sham group; whereas the SOD levels were significantly downregulated following CPB compared with the sham group. HRS attenuated myocardial injury, reduced the expression levels of cTnI, LDH, CK-MB, BNP, IL-1β, IL-6, TNF-α, MDA and MPO, and increased SOD release. Levels of Bcl-2, AQP-1, AQP-4, p-Akt, HO-1 and Nrf2 were significantly increased following HRS; whereas Bax and caspase-3 expression levels were significantly reduced following CPB. HRS treatment significantly increased the viability of myocardial cells, reduced the rate of myocardial cell apoptosis and the release of MDA and LDH compared with the CPB group. A PI3K inhibitor (LY294002) was revealed to reverse the protective effect of HRS treatment. HRS was demonstrated to attenuate CPB-induced myocardial injury, suppress AQP-1 and AQP-4 expression following CPB treatment and protect myocardial cells via the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Dandan Song
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110016, P.R. China
| | - Xuelei Liu
- Department of Clinical Laboratory, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Yugang Diao
- Department of Anesthesiology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Yingjie Sun
- Department of Anesthesiology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Guangjie Gao
- Department of Anesthesiology, The 463rd Hospital of People's Liberation Army China, Shenyang, Liaoning 110012, P.R. China
| | - Tiezheng Zhang
- Department of Anesthesiology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Keyan Chen
- Department of Laboratory Animal Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Ling Pei
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
8
|
Differential pulmonary effects of wintertime California and China particulate matter in healthy young mice. Toxicol Lett 2017; 278:1-8. [PMID: 28698096 DOI: 10.1016/j.toxlet.2017.07.853] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 06/04/2017] [Accepted: 07/05/2017] [Indexed: 12/16/2022]
Abstract
Airborne particulate matter (PM) is associated with adverse cardiorespiratory effects. To better understand source-orientated PM toxicity, a comparative study of the biological effects of fine PM (diameter≤2.5μm, PM2.5) collected during the winter season from Shanxi Province, China, and the Central Valley, California, United States, was conducted. The overarching hypothesis for this study was to test whether the chemical composition of PM on an equal mass basis from two urban areas, one in China and one in California, can lead to significantly different effects of acute toxicity and inflammation in the lungs of healthy young mice. Male, 8-week old BALB/C mice received a single 50μg dose of vehicle, Taiyuan PM or Sacramento PM by oropharyngeal aspiration and were sacrificed 24h later. Bronchoalveolar lavage, ELISA and histopathology were performed along with chemical analysis of PM composition. Sacramento PM had a greater proportion of oxidized organic material, significantly increased neutrophil numbers and elevated CXCL-1 and TNF-α protein levels compared to the Taiyuan PM. The findings suggest that Sacramento PM2.5 was associated with a greater inflammatory response compared to that of Taiyuan PM2.5 that may be due to a higher oxidice. Male, 8-week old BALB/C mice received a single 50μg dose of vehicle, Taiyuan PM or Sacramento PM by oropharyngeal aspiration and were sacrificed 24h later. Bronchoalveolar lavage, ELISA and histopathology were performed along with chemical analysis of PM composition. Sacramento PM had a greater proportion of oxidized organic material, significantly increased neutrophil numbers and elevated CXCL-1 and TNF-α protein levels compared to the Taiyuan PM. The findings suggest that Sacramento PM2.5 was associated with a greater inflammatory response compared to that of Taiyuan PM2.5 that may be due to a higher oxidized state of organic carbon and copper content.
Collapse
|
9
|
Abstract
Increased levels of tumor necrosis factor (TNF) α have been linked to a number of pulmonary inflammatory diseases including asthma, chronic obstructive pulmonary disease (COPD), acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), sarcoidosis, and interstitial pulmonary fibrosis (IPF). TNFα plays multiple roles in disease pathology by inducing an accumulation of inflammatory cells, stimulating the generation of inflammatory mediators, and causing oxidative and nitrosative stress, airway hyperresponsiveness and tissue remodeling. TNFα-targeting biologics, therefore, present a potentially highly efficacious treatment option. This review summarizes current knowledge on the role of TNFα in pulmonary disease pathologies, with a focus on the therapeutic potential of TNFα-targeting agents in treating inflammatory lung diseases.
Collapse
Affiliation(s)
- Rama Malaviya
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
10
|
Lu X, Pu Y, Kong W, Tang X, Zhou J, Gou H, Song X, Zhou H, Gao N, Shen J. Antidesmone, a unique tetrahydroquinoline alkaloid, prevents acute lung injury via regulating MAPK and NF-κB activities. Int Immunopharmacol 2017; 45:34-42. [DOI: 10.1016/j.intimp.2017.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/04/2017] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
|
11
|
Lu X, Min L, Wei J, Gou H, Bao Z, Wang J, Wang Z, Huang Y, An B. Heliangin inhibited lipopolysaccharide-induced inflammation through signaling NF-κB pathway on LPS-induced RAW 264.7 cells. Biomed Pharmacother 2017; 88:102-108. [PMID: 28095354 DOI: 10.1016/j.biopha.2017.01.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 01/24/2023] Open
Abstract
The heliangin is a natural agent mainly isolated from Helianthus tuberosus L. (Asteraceae). In order to investigate the anti-inflammatory effect of heliangin, several typical models in vivo and in vitro were performed. The RAW264.7 mouse macrophages cells were employed in vitro and dexamethasone were conducted as positive. The cytotoxicity results of heliangin on RAW 264.7 cells provided the safety in vitro for further study. The mRNA of TNF-α, IL-6, iNOS and COX-2 were degraded under heliangin exposure in LPS-stimulated RAW 264.7 cells. The protein expression of iNOS, COX-2 were decreased via heliangin exposure in a dose-dependent manner. Heliangin inhibited TNF-α, NO, IL-6 and PGE2 expression levels in macrophage cells lysate. The immunocytochemistry assay showed the fluorescence image of heliangin treatment intercepted the p65 translocation process from outside to inside of nuclei triggered by LPS. Moreover, we founded that MAPK and NF-κB signaling pathway play important roles in heliangin's activity on RAW264.7 cells. Secondly, the acute toxic study results of heliangin manifested the safety in vivo. Heliangin exerted anti-inflammation effect in a xylene-induced ear swelling in BALB/C mice and carrageenan-induced paw edema model in SD rats. The cytokines levels (TNF-α, IL-6 and PGE2) were decreased. The paw tissue immunochemistry assay demonstrated the IL-6 protein level changes in carrageenan-induced paw edema model under heliangin administration.
Collapse
Affiliation(s)
- XinGang Lu
- Department of Traditional Chinese Medicine, HuaDong Hospital, FuDan University, Shanghai, 200040, PR China
| | - Li Min
- Department of Anorectal, JiaDing Traditional Chinese Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201899, PR China
| | - JiongLin Wei
- Department of Anesthesiology, HuaDong Hospital, FuDan University, Shanghai, 200040, PR China
| | - HaiXin Gou
- Department of Traditional Chinese Medicine, HuaDong Hospital, FuDan University, Shanghai, 200040, PR China
| | - ZhiJun Bao
- Department of Geriatric, HuaDong Hospital, FuDan University, Shanghai, 200040, PR China
| | - JiaoFeng Wang
- Department of Geriatric, HuaDong Hospital, FuDan University, Shanghai, 200040, PR China
| | - Zheng Wang
- Department of Geriatric, HuaDong Hospital, FuDan University, Shanghai, 200040, PR China
| | - YiZhi Huang
- Department of Traditional Chinese Medicine, HuaShan Hospital, FuDan University, Shanghai, 200040, PR China
| | - BingChen An
- Department of Rehabilitation, HuaDong Hospital, FuDan University, Shanghai, 200040, PR China.
| |
Collapse
|
12
|
Li C, Yang D, Cao X, Wang F, Jiang H, Guo H, Du L, Guo Q, Yin X. LFG-500, a newly synthesized flavonoid, attenuates lipopolysaccharide-induced acute lung injury and inflammation in mice. Biochem Pharmacol 2016; 113:57-69. [DOI: 10.1016/j.bcp.2016.05.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/16/2016] [Indexed: 12/01/2022]
|
13
|
Zhao Y, Zhang CW, Zhou WJ, Chen J, Luo NF, Gong LN, Du L, Zhou J. Is there a role of TNFR1 in acute lung injury cases associated with extracorporeal circulation? J Zhejiang Univ Sci B 2014; 15:281-8. [PMID: 24599692 DOI: 10.1631/jzus.b1300147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The signaling pathway for tumor necrosis factor-α (TNF-α) and its receptors is up-regulated during extracorporeal circulation (ECC), and recruits blood neutrophil into the lung tissue, which results in acute lung injury (ALI). In this study, we evaluated the role of tumor necrosis factor receptor 1 (TNFR1) in ECC-induced ALI by blocking TNF-α binding to TNFR1 with CAY10500. Anesthetized Sprague-Dawley (SD) rats were pretreated intravenously with phosphate buffered saline (PBS) or vehicle (0.3 ml ethanol IV) or CAY10500, and then underwent ECC for 2 h. The oxygenation index (OI) and pulmonary inflammation were assessed after ECC. OI was significantly decreased, while TNF-α and neutrophil in bronchoalveolar lavage fluid (BALF) and plasma TNF-α increased after ECC. Pretreatment of CAY10500 decreased plasma TNF-α level, but did not decrease TNF-α levels and neutrophil counts in BALF or improve OI. Lung histopathology showed significant alveolar congestion, infiltration of the leukocytes in the airspace, and increased thickness of the alveolar wall in all ECC-treated groups. CAY10500 pretreatment slightly reduced leukocyte infiltration in lungs, but did not change the wet/dry ratio in the lung tissue. Blocking TNF-α binding to TNFR1 by CAY10500 intravenously slightly mitigates pulmonary inflammation, but cannot improve the pulmonary function, indicating the limited role of TNFR1 pathway in circulating inflammatory cell in ECC-induced ALI.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Yao J, Pan D, Zhao Y, Zhao L, Sun J, Wang Y, You QD, Xi T, Guo QL, Lu N. Wogonin prevents lipopolysaccharide-induced acute lung injury and inflammation in mice via peroxisome proliferator-activated receptor gamma-mediated attenuation of the nuclear factor-kappaB pathway. Immunology 2014; 143:241-57. [PMID: 24766487 DOI: 10.1111/imm.12305] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 04/17/2014] [Accepted: 04/22/2014] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury (ALI) from a variety of clinical disorders, characterized by diffuse inflammation, is a cause of acute respiratory failure that develops in patients of all ages. Previous studies reported that wogonin, a flavonoid-like chemical compound which was found in Scutellaria baicalensis, has anti-inflammatory effects in several inflammation models, but not in ALI. Here, the in vivo protective effect of wogonin in the amelioration of lipopolysaccharide (LPS) -induced lung injury and inflammation was assessed. In addition, the in vitro effects and mechanisms of wogonin were studied in the mouse macrophage cell lines Ana-1 and RAW264.7. In vivo results indicated that wogonin attenuated LPS-induced histological alterations. Peripheral blood leucocytes decreased in the LPS-induced group, which was ameliorated by wogonin. In addition, wogonin inhibited the production of several inflammatory cytokines, including tumour necrosis factor-α, interleukin-1β (IL-1β) and IL-6, in the bronchoalveolar lavage fluid and lung tissues after LPS challenge, while the peroxisome proliferator-activated receptor γ (PPARγ) inhibitor GW9662 reversed these effects. In vitro results indicated that wogonin significantly decreased the secretion of IL-6, IL-1β and tumour necrosis factor-α in Ana-1 and RAW264.7 cells, which was suppressed by transfection of PPARγ small interfering RNA and GW9662 treatment. Moreover, wogonin activated PPARγ, induced PPARγ-mediated attenuation of the nuclear translocation and the DNA-binding activity of nuclear factor-κB in vivo and in vitro. In conclusion, all of these results showed that wogonin may serve as a promising agent for the attenuation of ALI-associated inflammation and pathology by regulating the PPARγ-involved nuclear factor-κB pathway.
Collapse
Affiliation(s)
- Jing Yao
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Enforced expression of miR-125b attenuates LPS-induced acute lung injury. Immunol Lett 2014; 162:18-26. [PMID: 25004393 DOI: 10.1016/j.imlet.2014.06.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 06/11/2014] [Accepted: 06/15/2014] [Indexed: 01/11/2023]
Abstract
The acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI) in humans, is a leading cause of morbidity and mortality in critically ill patients. Despite decades of research, few therapeutic strategies for clinical ARDS have emerged. Recent evidence implicated a potential role of miR-125b in development of ALI. Here we evaluated the miR-125b-based strategy in treatment of ARDS using the murine model of lipopolysaccharide (LPS)-induced ALI. We found that up-regulation of miR-125b expression maintained the body weight and survival of ALI mice, and significantly reduced LPS-induced pulmonary inflammation as reflected by reductions in total cell and neutrophil counts, proinflammatory cytokines, as well as chemokines in BAL fluid. Further, enforced expression of miR-125b resulted in remarkable reversal of LPS-induced increases in lung permeability as assessed by reductions in total protein, albumin and IgM in BAL fluid, and ameliorated the histopathology changes of lung in LPS-induced ALI mice. Of interest, serum miR-125b expression was also decreased and inversely correlated with the disease severity in patients with ARDS. Our findings strongly demonstrated that enforced expression of miR-125b could effectively ameliorate the LPS-induced ALI, suggesting a potential application for miR-125b-based therapy to treat clinical ARDS.
Collapse
|