1
|
Abusara OH, Hammad AM, Debas R, Al-Shalabi E, Waleed M, Scott Hall F. The inflammation and oxidative status of rat lung tissue following smoke/vapor exposure via E-cigarette, cigarette, and waterpipe. Gene 2024; 935:149066. [PMID: 39491601 DOI: 10.1016/j.gene.2024.149066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Tobacco smoking is a major worldwide health issue that contributes to millions of deaths annually. Electronic cigarettes (E-cigarettes) are also harmful. Smoke/vapor from E-cigarettes and tobacco products consists of free radicals and other toxic substances. Tissue damage in smokers, such as lungs, is highly observed and is linked to oxidative damage and inflammation. METHODS The inflammation and oxidative status of rat lung tissues was examined following whole-body smoke/vapor exposure via E-cigarette, cigarette, and waterpipe for 2 h daily, 5 days per week for 8 weeks. RESULTS Lung tissue damage was higher in cigarettes and waterpipe groups compared to the E-cigarette group. Collectively, there was a significant increase (p < 0.05) in the mRNA expression of pro-inflammatory mediators (TNF-α, NF-κB, IL-1β) with the exception of IL-1β in the E-cigarettes group. As for the anti-inflammatory mediators (Nrf2 and IL-10), a significant reduction (p < 0.05) of mRNA expression was observed with the exception of Nrf2 in the E-cigarette group. As for IL-6, there was a significant increase in its mRNA expression (p < 0.05) in the cigarette and waterpipe groups. There was also a significant decrease (p < 0.05) in the antioxidant activity of all antioxidants tested (GPx, SOD, and CAT) in all groups with the exception of SOD in the cigarette group. CONCLUSION Smoke/vapor administered via E-cigarette, cigarette, and waterpipe elicits inflammation and oxidative stress in rat lungs that is accompanied by histopathological changes.
Collapse
Affiliation(s)
- Osama H Abusara
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Alaa M Hammad
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan.
| | - Rasha Debas
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Eveen Al-Shalabi
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Mohammed Waleed
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
2
|
Xiao K, Liu J, Sun Y, Chen S, Ma J, Cao M, Yang Y, Pan Z, Li P, Du Z. Anti-inflammatory and antioxidant activity of high concentrations of hydrogen in the lung diseases: a systematic review and meta-analysis. Front Immunol 2024; 15:1444958. [PMID: 39211045 PMCID: PMC11357939 DOI: 10.3389/fimmu.2024.1444958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
As a small molecule, hydrogen is colorless, odorless and lightest. Many studies conducted that hydrogen can protect almost every organ, including the brain, heart muscle, liver, small intestine, and lungs. To verify whether high concentrations of hydrogen (HCH) has anti-inflammatory and antioxidant activities on respiratory system, we product a systematic review and meta-analysis. We investigated MEDLINE-PubMed, Cochrane Library, ScienceDirect, Wiley and SpringerLink database and selected in vivo studies related to the anti-inflammatory or antioxidant effects of HCH in the lung diseases which were published until September 2023. We firstly identified 437 studies and only 12 met the inclusion criteria. They all conducted in rodents. The results showed that HCH had a positive effect on the reduction of tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, IL-4, IL-8, malondialdehyde (MDA), superoxide dismutase (SOD) and reactive oxygen species (ROS); but there is no effect on IL-6, we speculated that may contribute to the test results for different body fluids and at different points in time. This meta-analysis discovered the protective effects on inflammation and oxidative stress, but whether there exists more effects on reduction of inflammatory and oxidant mediators needs to be further elucidated.
Collapse
Affiliation(s)
- Kang Xiao
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jianwei Liu
- Public Health Monitoring and Evaluation Institute of Shandong Provincial Center for Disease Control and Prevention, Ji’nan, Shandong, China
| | - Yuxin Sun
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Shangya Chen
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Jiazi Ma
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Mao Cao
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Yong Yang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Zhifeng Pan
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Peng Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Zhongjun Du
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| |
Collapse
|
3
|
Sameed Saher A, Raza A, Qiu F, Mehmood K, Hussain R, Qayyum A, Idris M, Almutairi MH, Li K. Detection of haptoglobin and serum amyloid A as biomarkers in naturally infected Mycoplasma bovis calves. Acta Trop 2024; 254:107215. [PMID: 38604328 DOI: 10.1016/j.actatropica.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024]
Abstract
The livestock sector of Pakistan is increasing rapidly and it plays important role both for rural community and national economy. It is estimated that almost 8 million rural people are involved in livestock rearing and earning about 35-40 % of their income from the livestock sector. Mycoplasma bovis (M. bovis) infection causes significant economic losses in dairy animals especially young calf in the form of clinical illnesses such as pneumonia, poly-arthritis, respiratory distress and mortality. M. bovis is hard to diagnose and control because of uneven disease appearance and it is usually noticed in asymptomatic animals. For the identification of M. bovis in sub-clinical and clinical samples, determination of acute phase proteins i.e., haptoglobin (Hp) and serum amyloid A (SAA) are important tools for the timely diagnosis of disease. Therefore, early diagnosis of disease and hemato-biochemical changes are considered beneficial tools to control the infectious agent to uplift the economy of the dairy farmers. For this purpose, blood samples were collected from 200 calves of Bovidae family. Serum was separated from blood samples to determine the concentration of Hp and SAA, while blood samples were processed to determine hematological changes in blood from calves by using hematological analyzer. The blood plasma obtained from the blood samples was processed to measure oxidative stress factors. Lungs tissues from slaughterhouses/ morbid calves were collected to observe histopathological changes. The results of present study indicated that level of SAA and Hp remarkably increased (P < 0.05) in M. bovis infected calves in comparison to healthy calves. The oxidative stress markers indicated that nitric oxide and MDA levels in the infected calves increased significantly (P < 0.05), while infected claves had considerably lower levels of superoxide dismutase, catalase and glutathione. These findings indicate that oxidative stress play role to increase the level of APPs, while monitoring of APPs levels may serve as a valuable addition to the clinical evaluation of naturally infected calves with M. bovis. The hematological parameters were decreased significantly (P < 0.05). Altogether, this study suggests that Hp and SAA are proposed as promising biomarkers for detecting naturally occurring M. bovis infection in calves.
Collapse
Affiliation(s)
- Abdul Sameed Saher
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur 63100, Pakistan
| | - Ali Raza
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur 63100, Pakistan
| | - Fuan Qiu
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province & Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Khalid Mehmood
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur 63100, Pakistan.
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur 63100, Pakistan
| | - Abdul Qayyum
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur 63100, Pakistan
| | - Musadiq Idris
- Department of Physiology, Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur 63100, Pakistan
| | - Mikhlid H Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451, Riyadh, Saudi Arabia
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine & MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Sá AK, Olímpio F, Vasconcelos J, Rosa P, Faria Neto HC, Rocha C, Camacho MF, Barcick U, Zelanis A, Aimbire F. Involvement of GPR43 Receptor in Effect of Lacticaseibacillus rhamnosus on Murine Steroid Resistant Chronic Obstructive Pulmonary Disease: Relevance to Pro-Inflammatory Mediators and Oxidative Stress in Human Macrophages. Nutrients 2024; 16:1509. [PMID: 38794746 PMCID: PMC11124176 DOI: 10.3390/nu16101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Cytokine storm and oxidative stress are present in chronic obstructive pulmonary disease (COPD). Individuals with COPD present high levels of NF-κB-associated cytokines and pro-oxidant agents as well as low levels of Nrf2-associated antioxidants. This condition creates a steroid-resistant inflammatory microenvironment. Lacticaseibacillus rhamnosus (Lr) is a known anti-cytokine in lung diseases; however, the effect of Lr on lung inflammation and oxidative stress in steroid-resistant COPD mice remains unknown. OBJECTIVE Thus, we investigated the Lr effect on lung inflammation and oxidative stress in mice and macrophages exposed to cigarette smoke extract (CSE) and unresponsive to steroids. METHODS Mice and macrophages received dexamethasone or GLPG-094 (a GPR43 inhibitor), and only the macrophages received butyrate (but), all treatments being given before CSE. Lung inflammation was evaluated from the leukocyte population, airway remodeling, cytokines, and NF-κB. Oxidative stress disturbance was measured from ROS, 8-isoprostane, NADPH oxidase, TBARS, SOD, catalase, HO-1, and Nrf2. RESULTS Lr attenuated cellularity, mucus, collagen, cytokines, ROS, 8-isoprostane, NADPH oxidase, and TBARS. Otherwise, SOD, catalase, HO-1, and Nrf2 were upregulated in Lr-treated COPD mice. Anti-cytokine and antioxidant effects of butyrate also occurred in CSE-exposed macrophages. GLPG-094 rendered Lr and butyrate less effective. CONCLUSIONS Lr attenuates lung inflammation and oxidative stress in COPD mice, suggesting the presence of a GPR43 receptor-dependent mechanism also found in macrophages.
Collapse
Affiliation(s)
- Ana Karolina Sá
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720–2 Andar, Vila Clementino, São Paulo 04039-002, Brazil; (A.K.S.); (F.O.); (J.V.); (P.R.)
- Laboratory of Immunopharmacology, Institute of Science and Technology, Federal University of São Paulo, Rua Talim, 330, Vila Nair, São José dos Campos 12231-280, Brazil
| | - Fabiana Olímpio
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720–2 Andar, Vila Clementino, São Paulo 04039-002, Brazil; (A.K.S.); (F.O.); (J.V.); (P.R.)
- Laboratory of Immunopharmacology, Institute of Science and Technology, Federal University of São Paulo, Rua Talim, 330, Vila Nair, São José dos Campos 12231-280, Brazil
| | - Jessica Vasconcelos
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720–2 Andar, Vila Clementino, São Paulo 04039-002, Brazil; (A.K.S.); (F.O.); (J.V.); (P.R.)
- Laboratory of Immunopharmacology, Institute of Science and Technology, Federal University of São Paulo, Rua Talim, 330, Vila Nair, São José dos Campos 12231-280, Brazil
| | - Paloma Rosa
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720–2 Andar, Vila Clementino, São Paulo 04039-002, Brazil; (A.K.S.); (F.O.); (J.V.); (P.R.)
- Laboratory of Immunopharmacology, Institute of Science and Technology, Federal University of São Paulo, Rua Talim, 330, Vila Nair, São José dos Campos 12231-280, Brazil
| | - Hugo Caire Faria Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Foundation Fundação Oswaldo Cruz, Av. Brazil, Rio de Janeiro 4036, Brazil;
| | - Carlos Rocha
- Medical School, Group of Phytocomplexes and Cell Signaling, Anhembi Morumbi University, São José dos Campos 04039-002, Brazil;
| | - Maurício Frota Camacho
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos 12231-280, Brazil; (M.F.C.); (U.B.); (A.Z.)
| | - Uilla Barcick
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos 12231-280, Brazil; (M.F.C.); (U.B.); (A.Z.)
| | - Andre Zelanis
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos 12231-280, Brazil; (M.F.C.); (U.B.); (A.Z.)
| | - Flavio Aimbire
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720–2 Andar, Vila Clementino, São Paulo 04039-002, Brazil; (A.K.S.); (F.O.); (J.V.); (P.R.)
- Laboratory of Immunopharmacology, Institute of Science and Technology, Federal University of São Paulo, Rua Talim, 330, Vila Nair, São José dos Campos 12231-280, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Evangelical University of Goiás (UniEvangélica), Avenida Universitária Km 3,5, Anápolis 75083-515, Brazil
| |
Collapse
|
5
|
Paudel KR, Clarence DD, Panth N, Manandhar B, De Rubis G, Devkota HP, Gupta G, Zacconi FC, Williams KA, Pont LG, Singh SK, Warkiani ME, Adams J, MacLoughlin R, Oliver BG, Chellappan DK, Hansbro PM, Dua K. Zerumbone liquid crystalline nanoparticles protect against oxidative stress, inflammation and senescence induced by cigarette smoke extract in vitro. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2465-2483. [PMID: 37851060 PMCID: PMC10933165 DOI: 10.1007/s00210-023-02760-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
The purpose of this study was to evaluate the potential of zerumbone-loaded liquid crystalline nanoparticles (ZER-LCNs) in the protection of broncho-epithelial cells and alveolar macrophages against oxidative stress, inflammation and senescence induced by cigarette smoke extract in vitro. The effect of the treatment of ZER-LCNs on in vitro cell models of cigarette smoke extract (CSE)-treated mouse RAW264.7 and human BCi-NS1.1 basal epithelial cell lines was evaluated for their anti-inflammatory, antioxidant and anti-senescence activities using colorimetric and fluorescence-based assays, fluorescence imaging, RT-qPCR and proteome profiler kit. The ZER-LCNs successfully reduced the expression of pro-inflammatory markers including Il-6, Il-1β and Tnf-α, as well as the production of nitric oxide in RAW 264.7 cells. Additionally, ZER-LCNs successfully inhibited oxidative stress through reduction of reactive oxygen species (ROS) levels and regulation of genes, namely GPX2 and GCLC in BCi-NS1.1 cells. Anti-senescence activity of ZER-LCNs was also observed in BCi-NS1.1 cells, with significant reductions in the expression of SIRT1, CDKN1A and CDKN2A. This study demonstrates strong in vitro anti-inflammatory, antioxidative and anti-senescence activities of ZER-LCNs paving the path for this formulation to be translated into a promising therapeutic agent for chronic respiratory inflammatory conditions including COPD and asthma.
Collapse
Affiliation(s)
- Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Dvya Delilaa Clarence
- School of Postgraduate Studies, International Medical University (IMU), 57000, Kuala Lumpur, Malaysia
| | - Nisha Panth
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, 862-0973, Japan
- Program for Leading Graduate Schools, Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Gaurav Gupta
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, 302017, India
| | - Flavia C Zacconi
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436, Santiago, Macul, Chile
- Centro de Investigación en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kylie A Williams
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Lisa G Pont
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi GT Road, Phagwara, Punjab, 144411, India
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Jon Adams
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Dangan, Galway, H91 HE94, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, D02 PN40, Ireland
| | - Brian G Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Philip Michael Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
6
|
Gahtori R, Tripathi AH, Kumari A, Negi N, Paliwal A, Tripathi P, Joshi P, Rai RC, Upadhyay SK. Anticancer plant-derivatives: deciphering their oncopreventive and therapeutic potential in molecular terms. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2023. [DOI: 10.1186/s43094-023-00465-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Abstract
Background
Over the years, phytomedicines have been widely used as natural modalities for the treatment and prevention of various diseases by different ethnic groups across the globe. Although, 25% of drugs in the USA contain at least one plant-derived therapeutic compound, currently there is a paucity of plant-derived active medicinal ingredients in the pharmaceutical industry. Scientific evidence-based translation of plant-derived ethnomedicines for their clinical application is an urgent need. The anticancer and associated properties (antioxidative, anti-inflammatory, pro-apoptotic and epithelial-mesenchymal transition (EMT) inhibition) of various plant extracts and phytochemicals have been elucidated earlier. Several of the plant derivatives are already in use under prophylactic/therapeutic settings against cancer and many are being investigated under different phases of clinical trials.
Main body
The purpose of this study is to systematically comprehend the progress made in the area of prophylactic and therapeutic potential of the anticancerous plant derivatives. Besides, we aim to understand their anticancer potential in terms of specific sub-phenomena, such as anti-oxidative, anti-inflammatory, pro-apoptotic and inhibition of EMT, with an insight of the molecules/pathways associated with them. The study also provides details of classes of anticancer compounds, their plant source(s) and the molecular pathway(s) targeted by them. In addition to the antioxidative and antiproliferative potentials of anticancer plant derivatives, this study emphasizes on their EMT-inhibition potential and other ‘anticancer related’ properties. The EMT is highlighted as a phenomenon of choice for targeting cancer due to its role in the induction of metastasis and drug resistance. Different phytochemicals in pre-clinical or clinical trials, with promising chemopreventive/anticancer activities have been enlisted and the plant compounds showing synergistic anticancer activity in combination with the existing drugs have been discussed. The review also unravels the need of carrying out pan-signalome studies for identifying the cardinal pathways modulated by phytomedicine(s), as in many cases, the molecular pathway(s) has/have been randomly studied.
Conclusion
This review systematically compiles the studies regarding the impact of various plant derivatives in different cancers and oncogenic processes, as tested in diverse experimental model systems. Availability of more comprehensive information on anticancer phyto-constituents, their relative abundance in crude drugs, pathways/molecules targeted by phytomedicines, their long-term toxicity data and information regarding their safe use under the combinatorial settings, would open greater avenues of their utilization in future against this dreaded disease.
Graphical Abstract
Collapse
|
7
|
Li H, Tao X, Song E, Song Y. Iron oxide nanoparticles oxidize transformed RAW 264.7 macrophages into foam cells: Impact of pulmonary surfactant component dipalmitoylphosphatidylcholine. CHEMOSPHERE 2022; 300:134617. [PMID: 35430205 DOI: 10.1016/j.chemosphere.2022.134617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Iron oxide nanoparticles (IONPs) are one of the most important components in airborne particulate matter that originally generated from traffic emission, iron ore mining, coal combustion and melting of engine fragments. Once IONPs entered respiratory tract and deposit in the alveoli, they may interact with pulmonary surfactant (PS) that distributed in the alveolar lining. Thereafter, it is necessary to investigate the interaction of inhaled IONPs and PS, which helps the understanding of health risk of respiratory health induced by IONPs. Using dipalmitoyl phosphatidylcholine (DPPC), the major components of PS, as a lipid model, we explored the interaction of DPPC with typical IONPs, Fe3O4 NPs and amino-functionalized analogue (Fe3O4-NH2 NPs). DPPC was readily adsorbed on the surface of both IONPs. Although DPPC corona depressed the cellular uptake of IONPs, IONPs@DPPC complexes caused higher cytotoxicity toward RAW 264.7 macrophages, compared to pristine IONPs. Mechanistic studies have shown that IONPs react with intracellular hydrogen peroxide, which promotes the Fenton reaction, to generate hydroxyl radicals. Iron ions could oxidize lipids to form lipid peroxides, and lipid hydroperoxides will decompose to generate hydroxyl radicals, which further promote cellular oxidative stress, lipid accumulation, foam cell formation, and the release of inflammatory factors. These findings demonstrated the phenomenon of coronal component oxidation, which contributed to IONPs-induced cytotoxicity. This study offered a brand-new toxicological mechanism of IONPs at the molecular level, which is helpful for further understanding the adverse effects of IONPs.
Collapse
Affiliation(s)
- Haidong Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Xiaoqi Tao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China.
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing, 100085, China.
| |
Collapse
|
8
|
Keskinidou C, Vassiliou AG, Dimopoulou I, Kotanidou A, Orfanos SE. Mechanistic Understanding of Lung Inflammation: Recent Advances and Emerging Techniques. J Inflamm Res 2022; 15:3501-3546. [PMID: 35734098 PMCID: PMC9207257 DOI: 10.2147/jir.s282695] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung injury characterized by an acute inflammatory response in the lung parenchyma. Hence, it is considered as the most appropriate clinical syndrome to study pathogenic mechanisms of lung inflammation. ARDS is associated with increased morbidity and mortality in the intensive care unit (ICU), while no effective pharmacological treatment exists. It is very important therefore to fully characterize the underlying pathobiology and the related mechanisms, in order to develop novel therapeutic approaches. In vivo and in vitro models are important pre-clinical tools in biological and medical research in the mechanistic and pathological understanding of the majority of diseases. In this review, we will present data from selected experimental models of lung injury/acute lung inflammation, which have been based on clinical disorders that can lead to the development of ARDS and related inflammatory lung processes in humans, including ventilation-induced lung injury (VILI), sepsis, ischemia/reperfusion, smoke, acid aspiration, radiation, transfusion-related acute lung injury (TRALI), influenza, Streptococcus (S.) pneumoniae and coronaviruses infection. Data from the corresponding clinical conditions will also be presented. The mechanisms related to lung inflammation that will be covered are oxidative stress, neutrophil extracellular traps, mitogen-activated protein kinase (MAPK) pathways, surfactant, and water and ion channels. Finally, we will present a brief overview of emerging techniques in the field of omics research that have been applied to ARDS research, encompassing genomics, transcriptomics, proteomics, and metabolomics, which may recognize factors to help stratify ICU patients at risk, predict their prognosis, and possibly, serve as more specific therapeutic targets.
Collapse
Affiliation(s)
- Chrysi Keskinidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Alice G Vassiliou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Ioanna Dimopoulou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Stylianos E Orfanos
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| |
Collapse
|
9
|
Cui P, Tang Z, Zhan Q, Deng C, Lai Y, Zhu F, Xin H, Li R, Chen A, Tong Y. In vitro and vivo study of tranilast protects from acute respiratory distress syndrome and early pulmonary fibrosis induced by smoke inhalation. Burns 2022; 48:880-895. [PMID: 35410697 DOI: 10.1016/j.burns.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Tranilast (N-[3',4'-dimethoxycinnamoyl]-anthranilic acid) is an analog of a tryptophan metabolite. It was identified with anti-inflammatory and antifibrotic activities, and used in the treatment of a variety of diseases, such as anti - allergy, bronchial asthma, and hypertrophic scars. As a drug with few adverse reactions, tranilast has attracted great attention, but its application is limited due to the uncertainty of dosages and mechanisms. In this study, the protection effects of different doses of tranilast on smoke inhalation mediated lung injury on rats, and on the damage of three kinds of lung cells in vitro were investigated. METHOD In vivo, Sprague-Dawley rats were randomly divided into sham group, smoke group (rats were exposed to pine sawdust smoke three times, each time for 5 min), different doses of tranilast treatment group (doses were 100 mg/kg, 200 mg/kg and 300 mg/kg, ip.) and placebo group. After 1, 3 and 7 days, pulmonary function, pathologic injury by HE staining, cytokines and oxidative stress level by kits were determined. At 7days, lung fibrosis was assessed by Masson's trichrome staining and the level of hydroxyproline (HYP). In vitro, three kinds of lung cells from normal rats were isolated: type II alveolar epithelial cells (AT-II), pulmonary microvascular endothelial cells (PMVECs) and pulmonary fibroblasts (PFs). To investigate the potential effects of tranilast on cell proliferation, cell cycle and cytokine production of three kinds of lung cells exposed to smoke. RESULTS Compared with smoke group and placebo group, tranilast treatment significantly reduced histopathological changes (such as pulmonary hemorrhage, edema and inflammatory cell infiltration, etc.), significantly reduced histopathological score (p < 0.05), increased arterial oxygen partial pressure, and decreased the levels of IL-1β, TNF-α, TGF-β1 (p < 0.05), oxidative stress and the expression of nuclear transcription factor κB (NF-κB) smoke exposed rats (p < 0.01). In particular, the effect of 200 mg/kg dose was more prominent. In vitro, smoke induced AT-II and PMVECs apoptosis, improved PFs proliferation (p < 0.01), activity of SOD and decreased the content of MDA (p < 0.01). However, tranilast seems to be turning this trend well. The inflammatory factor IL-11β, TNF-α and TGF-β1, and the expression of NF-κB were significantly lower in the tranilast treatment than in the smoke group (p < 0.01). CONCLUSION This study indicates that tranilast had a protective effect on acute respiratory distress syndrome and early pulmonary fibrosis of rats in vivo. In addition, tranilast promotes proliferation of AT-II and PMVECs but inhibits PFs proliferation, down-regulates secretion of inflammatory cytokines and alleviates oxidative stress of AT-II, PMVECs and PFs after smoke stimuli in vitro.
Collapse
Affiliation(s)
- Pei Cui
- Department of Burns, Plastic and Wound Repair Surgery, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China; Animal Laboratory, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China
| | - Zhiping Tang
- Department of Burns, Plastic and Wound Repair Surgery, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China; Animal Laboratory, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China
| | - Qiu Zhan
- Department of Burns, Plastic and Wound Repair Surgery, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China; Animal Laboratory, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China
| | - Chunjiang Deng
- Department of Burns, Plastic and Wound Repair Surgery, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China; Animal Laboratory, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China
| | - Yanhua Lai
- Department of Burns, Plastic and Wound Repair Surgery, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China; Animal Laboratory, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China
| | - Fujun Zhu
- Department of Burns, Plastic and Wound Repair Surgery, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China; Animal Laboratory, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China
| | - Haiming Xin
- Department of Burns, Plastic and Wound Repair Surgery, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China; Animal Laboratory, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China
| | - Rongsheng Li
- Department of Burns, Plastic and Wound Repair Surgery, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China; Animal Laboratory, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China
| | - Anning Chen
- Department of Burns, Plastic and Wound Repair Surgery, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China; Animal Laboratory, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China
| | - Yalin Tong
- Department of Burns, Plastic and Wound Repair Surgery, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China; Animal Laboratory, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China.
| |
Collapse
|
10
|
Nanosilver Dressing in Treating Deep II Degree Burn Wound Infection in Patients with Clinical Studies. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:3171547. [PMID: 34938352 PMCID: PMC8687789 DOI: 10.1155/2021/3171547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022]
Abstract
Background Patients' clinical antibiotic treatment of deep II degree burns usually fails to achieve the ideal effect; in order to avoid the late result in pigmentation, scarring, and even limb dysfunction, it also needs to deal effectively with burn wounds. Aim The purpose of this study is to evaluate nanosilver dressing in treating deep II degree burn wound infection in patients with clinical studies. Materials and Methods 106 burn patients were classified into the Sulfadiazine Silver Cream (SSC) group (n = 53) and the Nanosilver Burn Dressing (NSBD) group (n = 53). Both of them received basic wound treatment, and wound healing time and pigmentation fading away time of all patients were recorded. And the wound healing rate of the patients was calculated. Serum levels of tumor necrosis factor alpha (TNF-α) and interleukin-1beta (IL-1β) were detected pre- and posttreatment. Results After basic treatment for all patients, Sulfadiazine Silver Cream was used in the SSC group, and Nanosilver Burn Dressing was used in the NSBD group. It was observed that after treatment, compared with the SSC group, there was significant efficiency; wound healing rate, healing time, and pigmentation fading away time were shortened in the NSBD group, and IL-1β levels were decreased, and the positive rate of bacterial culture was decreased (all P < 0.05). Conclusion Nanosilver Burn Dressing in treating deep II degree burns can effectively reduce the wound infection and promote wound healing. The curative effect was distinct, which was worthy of popularization and application.
Collapse
|
11
|
Mechanism of Phosgene-Induced Acute Lung Injury and Treatment Strategy. Int J Mol Sci 2021; 22:ijms222010933. [PMID: 34681591 PMCID: PMC8535529 DOI: 10.3390/ijms222010933] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 12/29/2022] Open
Abstract
Phosgene (COCl2) was once used as a classic suffocation poison and currently plays an essential role in industrial production. Due to its high toxicity, the problem of poisoning caused by leakage during production, storage, and use cannot be ignored. Phosgene mainly acts on the lungs, causing long-lasting respiratory depression, refractory pulmonary edema, and other related lung injuries, which may cause acute respiratory distress syndrome or even death in severe cases. Due to the high mortality, poor prognosis, and frequent sequelae, targeted therapies for phosgene exposure are needed. However, there is currently no specific antidote for phosgene poisoning. This paper reviews the literature on the mechanism and treatment strategies to explore new ideas for the treatment of phosgene poisoning.
Collapse
|
12
|
Zheng X, Chen D, Zhu X, Le Grange JM, Zhou L, Zhang J. Impacts of anti-inflammatory phosphodiesterase inhibitors on a murine model of chronic pulmonary inflammation. Pharmacol Res Perspect 2021; 9:e00840. [PMID: 34327862 PMCID: PMC8322673 DOI: 10.1002/prp2.840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 01/04/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) often tends to respond poorly to glucocorticoid (GC) therapy. Reduced Histone deacetylase-2 (HDAC-2) activity is an important mechanism behind this GC insensitivity. In this study, we investigated the effects of three phosphodiesterase inhibitors (PDEIs), with an anti-inflammatory propensity, on cigarette smoke (CS)-induced pulmonary inflammation and HDAC-2 activity. Male C57BL/6 mice were exposed to cigarette smoke (CS) over the course of 30 weeks. Administration of the PDEIs commenced from the 29th week and followed a schedule of once daily treatments, 5 days a week, for 2 weeks. Roflumilast (ROF) was administered intragastrically (5 mg·kg-1 ), while pentoxifylline (PTX) (10 mg·kg-1 ) and theophylline (THEO) (10 mg·kg-1 ) were administered intraperitoneally, either alone or in combination with a GC (triamcinolone acetonide or TRI, 5 mg·kg-1 , i.m., single injection). Lung morphometry, as well as the activity of HDAC-2, pro-inflammatory cytokines and reactive oxygen species (ROS) were assessed at the end of the 30-week course. CS exposure was associated with a reduction in HDAC-2 activity and the up-regulation of ROS expression. PTX, ROF, and THEO administration led to the partial restoration of HDAC-2 activity, which was favorably associated with the reduction of ROS expression. However, combining TRI to any of these PDEIs did not synergistically augment HDAC-2 activity. Inactivation of HDAC-2 due to long-term CS exposure is closely related to exaggerated oxidative stress, and this reduced HDAC-2 activity could partially be restored through the use of PDEIs. This finding provides a potential novel approach for further clinical research.
Collapse
Affiliation(s)
- Xiao‐Fang Zheng
- Department of Emergency MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dan‐Dan Chen
- Department of Emergency MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiao‐Ling Zhu
- Department of Emergency MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jehane Michael Le Grange
- Department of Emergency MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lu‐Qian Zhou
- Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Jin‐Nong Zhang
- Department of Emergency MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
13
|
Johansson E, Martin LJ, He H, Chen X, Weirauch MT, Kroner JW, Khurana Hershey GK, Biagini JM. Second-hand smoke and NFE2L2 genotype interaction increases paediatric asthma risk and severity. Clin Exp Allergy 2021; 51:801-810. [PMID: 33382170 DOI: 10.1111/cea.13815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/16/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Second-hand smoke (SHS) exposure is associated with paediatric asthma, and oxidative stress is believed to play a role in mediating this association. The nuclear factor (erythroid-derived 2)-like 2 (NFE2L2) is important for the defence against oxidative stress. OBJECTIVE To explore interactions between NFE2L2 genotype and SHS exposure in paediatric asthma risk. METHODS We used a genotyped subset of patients of European ancestry (N = 669, median age at enrolment = 6.8 years) enrolled in the clinical cohort Greater Cincinnati Pediatric Clinic Repository as the study population, and a population-based paediatric cohort (N = 791) to replicate our findings. History of asthma diagnosis was obtained from medical records, and SHS exposure was obtained from questionnaires. Four NFE2L2 tagging SNPs were included in the analysis, and interactions between SHS and NFE2L2 genotype were evaluated using logistic regression. RESULTS Three of the analysed SNPs, rs10183914, rs1806649 and rs2886161, interacted significantly with SHS exposure to increase asthma risk (p ≤ .02). The interaction was replicated in an independent cohort for rs10183914 (p = .04). Interactions between SHS exposure and NFE2L2 genotype were also associated with an increased risk of hospitalization (p = .016). In stratified analyses, NFE2L2 genotype was associated with daily asthma symptoms in children with SHS exposure (OR = 3.1; p = .048). No association was found in children without SHS exposure. Examination of publicly available chromatin immunoprecipitation followed by sequencing (ChIP-seq) data sets confirmed the presence of active histone marks and binding sites for particular transcription factors overlapping the coordinates for the significantly associated SNPs. CONCLUSIONS AND CLINICAL RELEVANCE Our study provides evidence that NFE2L2 genotype interacts with SHS exposure to affect both asthma risk and severity in children and identifies a population of children at increased risk of asthma development.
Collapse
Affiliation(s)
- Elisabet Johansson
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lisa J Martin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Hua He
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Matthew T Weirauch
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - John W Kroner
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jocelyn M Biagini
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
14
|
Caliri AW, Tommasi S, Besaratinia A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 787:108365. [PMID: 34083039 PMCID: PMC8287787 DOI: 10.1016/j.mrrev.2021.108365] [Citation(s) in RCA: 231] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Smoking is a major risk factor for a variety of diseases, including cancer and immune-mediated inflammatory diseases. Tobacco smoke contains a mixture of chemicals, including a host of reactive oxygen- and nitrogen species (ROS and RNS), among others, that can damage cellular and sub-cellular targets, such as lipids, proteins, and nucleic acids. A growing body of evidence supports a key role for smoking-induced ROS and the resulting oxidative stress in inflammation and carcinogenesis. This comprehensive and up-to-date review covers four interrelated topics, including 'smoking', 'oxidative stress', 'inflammation', and 'cancer'. The review discusses each of the four topics, while exploring the intersections among the topics by highlighting the macromolecular damage attributable to ROS. Specifically, oxidative damage to macromolecular targets, such as lipid peroxidation, post-translational modification of proteins, and DNA adduction, as well as enzymatic and non-enzymatic antioxidant defense mechanisms, and the multi-faceted repair pathways of oxidized lesions are described. Also discussed are the biological consequences of oxidative damage to macromolecules if they evade the defense mechanisms and/or are not repaired properly or in time. Emphasis is placed on the genetic- and epigenetic alterations that may lead to transcriptional deregulation of functionally-important genes and disruption of regulatory elements. Smoking-associated oxidative stress also activates the inflammatory response pathway, which triggers a cascade of events of which ROS production is an initial yet indispensable step. The release of ROS at the site of damage and inflammation helps combat foreign pathogens and restores the injured tissue, while simultaneously increasing the burden of oxidative stress. This creates a vicious cycle in which smoking-related oxidative stress causes inflammation, which in turn, results in further generation of ROS, and potentially increased oxidative damage to macromolecular targets that may lead to cancer initiation and/or progression.
Collapse
Affiliation(s)
- Andrew W Caliri
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Stella Tommasi
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Ahmad Besaratinia
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA.
| |
Collapse
|
15
|
Yang RQ, Guo PF, Ma Z, Chang C, Meng QN, Gao Y, Khan I, Wang XB, Cui ZJ. Effects of simvastatin on iNOS and caspase‑3 levels and oxidative stress following smoke inhalation injury. Mol Med Rep 2020; 22:3405-3417. [PMID: 32945441 PMCID: PMC7453554 DOI: 10.3892/mmr.2020.11413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 06/12/2020] [Indexed: 11/06/2022] Open
Abstract
The overexpression of inducible nitric oxide synthase (iNOS) induces cell apoptosis through various signal transduction pathways and aggravates lung injury. Caspase‑3 is an important protein in the apoptotic pathway and its activation can exacerbate apoptosis. Simvastatin, a hydroxymethyl glutaryl‑A reductase inhibitor, protects against smoke inhalation injury by inhibiting the synthesis and release of inflammatory factors and decreasing cell apoptosis. Following the establishment of an animal model of smoke inhalation injury, lung tissue and serum were collected at different time points and the protein and mRNA expression of iNOS and caspase‑3 in lung tissue by immunochemistry, western blot and reverse transcription‑quantitative polymerase chain reaction, the malondialdehyde (MDA) content and superoxide dismutase (SOD) activity in lung tissue and serum were analyzed using thiobarbituric acid method and the WST‑1 method. The results were statistically analyzed. The lung tissues of the rats in the saline group and the low‑, middle‑ and high‑dose groups exhibited clear edema and hemorrhage, and had significantly higher pathological scores at the various time points compared with the rats in the control group (P<0.05). Furthermore, lung tissue and serum samples obtained from these four groups had significantly higher mRNA and protein expression levels of iNOS and caspase‑3 (P<0.05), significantly lower SOD activity and higher MDA content (P<0.05). Compared with the saline group, the low‑, middle‑ and high‑dose groups had significantly lower pathological scores (P<0.05), significantly lower mRNA and protein expression levels of iNOS, caspase‑3 and MDA content in lung tissues (P<0.05) and significantly higher SOD activity in lung tissues and serum. The middle‑ and high‑dose groups had significantly lower pathological scores (P<0.05), significantly decreased iNOS and caspase‑3 mRNA and protein expression in lung tissues, significantly higher SOD activity in lung tissues and serum and a significantly lower MDA content (P<0.05) compared with the low‑dose group. With the exception of SOD activity in lung tissues at 24 and 72 h and MDA content in serum at 48 h, no significant differences were observed between the middle‑ and high‑dose groups. The present study demonstrated that there was an association between the therapeutic effect and dosage of simvastatin within a definitive range. In rats with smoke inhalation injury, simvastatin inhibited iNOS and caspase‑3 expression in lung tissues and mitigated oxidative stress, thereby exerting a protective effect. In addition, the effect and dose were associated within a definitive range.
Collapse
Affiliation(s)
- Rong-Qiang Yang
- Department of Burn and Repair Reconstruction Surgery, The School of Basic Medical Science of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Peng-Fei Guo
- Department of Burn and Repair Reconstruction Surgery, The School of Basic Medical Science of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhao Ma
- Department of Burn and Repair Reconstruction Surgery, The School of Basic Medical Science of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Cheng Chang
- Department of Burn and Repair Reconstruction Surgery, The School of Basic Medical Science of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qing-Nan Meng
- Department of Burn and Repair Reconstruction Surgery, The School of Basic Medical Science of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ya Gao
- Department of Burn and Repair Reconstruction Surgery, The School of Basic Medical Science of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Imran Khan
- Department of Burn and Repair Reconstruction Surgery, The School of Basic Medical Science of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiao-Bo Wang
- Department of Burn and Repair Reconstruction Surgery, The School of Basic Medical Science of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zheng-Jun Cui
- Department of Burn and Repair Reconstruction Surgery, The School of Basic Medical Science of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
16
|
Increased Neutrophil Granulocyte and Myeloperoxidase Levels Indicate Acute Inflammation Due to the Exposure of Zinc- and Copper-Containing Welding Fumes. J Occup Environ Med 2020; 62:618-627. [PMID: 32404823 DOI: 10.1097/jom.0000000000001905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Recent studies have shown an increase of C-reactive-protein (CRP) after exposure to zinc- and copper-containing welding fumes. The objective of this study was to determine the effects of exposure to zinc- and copper-containing welding fumes on leukocytes, their subtypes, and myeloperoxidase (MPO). METHODS Serum samples of male volunteers were examined after exposures to welding fumes in two settings: repeated exposure on 4 consecutive days for 6 hours and single exposures for different times (3, 4, 5 hours). RESULTS Neutrophil granulocyte and MPO levels showed increases 24 hours after single and repeated exposures for 6 hours similar to CRP increases reported in literature. Overall leukocyte levels and levels of monocytes and lymphocytes were not significantly affected. CONCLUSIONS This study indicates the involvement of neutrophil granulocytes in welding fume fever additional to mediator related effects.
Collapse
|
17
|
Klein HJ, Rittirsch D, Buehler PK, Schweizer R, Giovanoli P, Cinelli P, Plock JA, Reding T, Graf R. Response of routine inflammatory biomarkers and novel Pancreatic Stone Protein to inhalation injury and its interference with sepsis detection in severely burned patients. Burns 2020; 47:338-348. [PMID: 33272743 DOI: 10.1016/j.burns.2020.04.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Inhalation of thermal and chemical products of combustion evokes an immune response measurable at a systemic level. Inhalation injury related kinetics of currently available inflammatory biomarkers and novel Pancreatic Stone Protein (PSP) as well as their interference with septic events has not been addressed to literature yet. METHODS Analysis of the influence of inhalation injury and ARDS on biomarker kinetics (PSP, procalcitonin (PCT), C-reactive Protein (CRP), white blood cells (WBC)) in 90 patients admitted to Zurich Burn Center between May 2015 and October 2018 with burns ≥15% total body surface area (TBSA) over 14 days. RESULTS Twenty-five (27%) of 90 included patients presented with inhalation injury (median age 52 years [IQR 27], median TBSA 31.5% [IQR 21], mean ABSI-Score 7±3). At admission, only WBC demonstrated significantly higher values in the inhalation injury group (p=0.011). Acute respiratory distress syndrome (ARDS) was present in 32% without association to the severity of inhalation injury (p=0.11). WBC, CRP and PCT failed to delineate inhalation injury related inflammation from septic progression at most time points. PSP was the strongest marker to identify septic patients both by its higher values and steeper increase over time (p<0.001). CONCLUSION Inhalation injury leads to an inflammatory response at a systemic level with alterations of biomarkers. While routine inflammatory markers demonstrated strong interferences between inhalation injury with its associated ARDS and evolving sepsis, PSP reliably identified septic patients in a setting of inflammatory turbulences secondary to inhalation injury.
Collapse
Affiliation(s)
- Holger J Klein
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, Zurich, Switzerland; Regenerative and Reconstructive Plastic Surgery Research Laboratory, University of Zurich, Zurich, Switzerland.
| | - Daniel Rittirsch
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, Zurich, Switzerland
| | - Philipp K Buehler
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Riccardo Schweizer
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, Zurich, Switzerland; Regenerative and Reconstructive Plastic Surgery Research Laboratory, University of Zurich, Zurich, Switzerland
| | - Pietro Giovanoli
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, Zurich, Switzerland
| | - Paolo Cinelli
- Center for Surgical Research, University and University Hospital Zurich, Zurich, Switzerland
| | - Jan A Plock
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, Zurich, Switzerland; Regenerative and Reconstructive Plastic Surgery Research Laboratory, University of Zurich, Zurich, Switzerland
| | - Theresia Reding
- Pancreas Research Laboratory, Department of Visceral Surgery & Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Rolf Graf
- Pancreas Research Laboratory, Department of Visceral Surgery & Transplantation, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Sharebiani H, Fazeli B, Maniscalco R, Ligi D, Mannello F. The Imbalance among Oxidative Biomarkers and Antioxidant Defense Systems in Thromboangiitis Obliterans (Winiwarter-Buerger Disease). J Clin Med 2020; 9:E1036. [PMID: 32272606 PMCID: PMC7231233 DOI: 10.3390/jcm9041036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Thromboangiitis obliterans or Winiwarter-Buerger disease (WBD), is an inflammatory, thrombotic occlusive, peripheral vascular disease, usually occurring in young smokers. The pathophysiological mechanisms underlying the disease are not clearly understood. The aim of this study is to investigate the imbalance between oxidants and antioxidants occurring in these patients. (2) Patients and Methods: In this cross-sectional study, 22 male patients with WBD and 20 healthy male smoking habit matched control group were included. To evaluate the possible sources of oxidative stress, the antioxidant biomarkers, and the markers of lipid peroxidation and protein oxidation, serum samples were analyzed for total oxidative status (TOS), total antioxidant capacity (TAC), myeloperoxidase (MPO), coenzyme Q10 (CoQ10), superoxide dismutase (SOD), glutathione reductase (GR), malondialdehyde (MDA), and protein carbonyl (PC) activity and/or content. (3) Results: The circulating levels of TOS, TAC, and CoQ10 were significantly higher in WBD patients, with respect to healthy smokers as controls. No significant difference was found among the serum level of PC, total cholesterol, MPO, and GR activity in WBD patients and healthy smoker controls. The activity of SOD and the mean serum level of MDA were significantly lower in WBD patients, with respect to healthy smoker controls. (4) Conclusion: Considerably high levels of oxidative stress were detected in WBD patients, which were greater than the antioxidant capacity. The low level of MDA may be associated with the enzymatic degradation of lipid peroxidation products. High levels of CoQ10 and low levels of SOD may be related to a harmful oxidative cooperation, leading to the vasoconstriction of WBD, representing a promising tool to discern possible different clinical risks of this poorly understood peripheral occlusive disease.
Collapse
Affiliation(s)
- Hiva Sharebiani
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; (H.S.); or (B.F.)
| | - Bahare Fazeli
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; (H.S.); or (B.F.)
- Vascular Independent Research and Education, European Organization, 20157 Milan, Italy
| | - Rosanna Maniscalco
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, University “Carlo Bo” of Urbino, 61029 Urbino (PU), Italy; (R.M.); (D.L.)
| | - Daniela Ligi
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, University “Carlo Bo” of Urbino, 61029 Urbino (PU), Italy; (R.M.); (D.L.)
| | - Ferdinando Mannello
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, University “Carlo Bo” of Urbino, 61029 Urbino (PU), Italy; (R.M.); (D.L.)
| |
Collapse
|
19
|
de Carvalho FO, Silva ÉR, Gomes IA, Santana HSR, do Nascimento Santos D, de Oliveira Souza GP, de Jesus Silva D, Monteiro JCM, de Albuquerque Júnior RLC, de Souza Araújo AA, Nunes PS. Anti-inflammatory and antioxidant activity of carvacrol in the respiratory system: A systematic review and meta-analysis. Phytother Res 2020; 34:2214-2229. [PMID: 32249518 DOI: 10.1002/ptr.6688] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 11/10/2022]
Abstract
Carvacrol is a monoterpene present in the essential oil of a number of plants and has been widely used in traditional medicine because it is considered to have a range of therapeutic effects including in relation to respiratory disease. To conduct a systematic review and meta-analysis to assess the anti-inflammatory and antioxidant activities of carvacrol when used in the treatment of respiratory disorders. A comprehensive literature search using Scopus, MEDLINE-PubMed, Cochrane and Web of Science was undertaken. Papers related to the anti-inflammatory or antioxidant properties of carvacrol in the treatment of an injury in the respiratory system in in vivo studies and published in the period up to and including August 2019. A total of 152 studies were initially identified, with only 17 meeting the inclusion criteria. Five of the studies were performed in humans, and 12 were performed in rodents. Among the 17 studies included in the systematic review, we performed the meta-analysis with nine of the studies with animals. Carvacrol had a positive effect on the reduction of interleukin (IL)-1β, IL-4, IL-8 and malondialdehyde (MDA); however, the analysis indicated that carvacrol had no effect on IL-6 and tumor necrosis factor alpha (TNF-α), probably due to the methodological quality of the studies and their heterogeneity. Current evidence supports the antioxidant and anti-inflammatory effects of carvacrol, but its relationship with the reduction of some inflammatory mediators in animals with lung injury needs further elucidation.
Collapse
Affiliation(s)
| | - Érika Ramos Silva
- Physiotherapy Department, Universidade Federal de Sergipe-UFS, Lagarto, Brazil
| | - Isla Alcântara Gomes
- Institute of Technology and Research of Universidade Tiradentes, Aracaju, Brazil
| | | | | | | | | | | | | | - Adriano Antunes de Souza Araújo
- Health Sciences Graduate Center, Universidade Federal de Sergipe-UFS, São Cristóvão, Brazil.,Pharmacy Graduate Center, Universidade Federal de Sergipe-UFS, São Cristóvão, Brazil
| | - Paula Santos Nunes
- Health Sciences Graduate Center, Universidade Federal de Sergipe-UFS, São Cristóvão, Brazil
| |
Collapse
|
20
|
El-Deeb W, Elsohaby I, Fayez M, Mkrtchyan HV, El-Etriby D, ElGioushy M. Use of procalcitonin, neopterin, haptoglobin, serum amyloid A and proinflammatory cytokines in diagnosis and prognosis of bovine respiratory disease in feedlot calves under field conditions. Acta Trop 2020; 204:105336. [PMID: 31926143 DOI: 10.1016/j.actatropica.2020.105336] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 12/13/2022]
Abstract
Bovine respiratory diseases (BRD) have long been considered a serious problem that causes major economic losses in feedlot calves (FC). This study aimed to determine the diagnostic and prognostic effect of selected biological markers including, procalcitonin (PCT), neopterin (NP), proinflammatory cytokines (IL-1β, IL-8, TNF-α, IF-γ), haptoglobin (HP) and serum amyloid A (SAA) on FC with BRD under field conditions. Sixty-nine FC that were identified to be infected with Mannheimia haemolytica and Histophilus somni and had different clinical respiratory signs (diseased group) were selected for this study. In addition, 20 healthy FC have been selected as a control group. We have detected higher serum levels of PCT, NP, HP, SAA, IL-1β, IL-8, TNF-α and IF-γ in diseased FC group compared with the control group. All tested markers revealed a high level of discrimination between BRD infected FC and healthy ones (AUC > 0.90). Moreover, the obtained data showed a high degree of prognostic accuracy for PCT, NP, IL-8, HP, IF-γ and IL-1β in predicting treatment response of FC with BRD at the selected thresholds (AUC = 0.99, 0.99, 0.97, 0.93, 0.88 and 0.82, respectively). Significant inhibition was observed for the selected biochemical markers in treated FC 7 days post-treatment. In conclusion, this study showed that BRD in FC was associated with significant alterations in serum APPs, proinflammatory cytokines, PCT and NPT levels. Furthermore, it demonstrated that these serum biomarkers are much higher in FC with BRD compared to recovered ones. Our data suggest that the measurement of PCT, NPT, APPs and cytokines together with the clinical examination may be a useful diagnostic and prognostic tool for assessment of FC naturally infected with M. haemolytica and H. somni.
Collapse
|
21
|
Harrell CR, Miloradovic D, Sadikot R, Fellabaum C, Markovic BS, Miloradovic D, Acovic A, Djonov V, Arsenijevic N, Volarevic V. Molecular and Cellular Mechanisms Responsible for Beneficial Effects of Mesenchymal Stem Cell-Derived Product "Exo-d-MAPPS" in Attenuation of Chronic Airway Inflammation. Anal Cell Pathol (Amst) 2020; 2020:3153891. [PMID: 32257769 PMCID: PMC7109559 DOI: 10.1155/2020/3153891] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs), due to their potential for differentiation into alveolar epithelial cells and their immunosuppressive characteristics, are considered a new therapeutic agent in cell-based therapy of inflammatory lung disorders, including chronic obstructive pulmonary disease (COPD). Since most of the MSC-mediated beneficent effects were the consequence of their paracrine action, herewith, we investigated the effects of a newly designed MSC-derived product "Exosome-derived Multiple Allogeneic Protein Paracrine Signaling (Exo-d-MAPPS)" in the attenuation of chronic airway inflammation by using an animal model of COPD (induced by chronic exposure to cigarette smoke (CS)) and clinical data obtained from Exo-d-MAPPS-treated COPD patients. Exo-d-MAPPS contains a high concentration of immunomodulatory factors which are capable of attenuating chronic airway inflammation, including soluble TNF receptors I and II, IL-1 receptor antagonist, and soluble receptor for advanced glycation end products. Accordingly, Exo-d-MAPPS significantly improved respiratory function, downregulated serum levels of inflammatory cytokines (TNF-α, IL-1β, IL-12, and IFN-γ), increased serum concentration of immunosuppressive IL-10, and attenuated chronic airway inflammation in CS-exposed mice. The cellular makeup of the lungs revealed that Exo-d-MAPPS treatment attenuated the production of inflammatory cytokines in lung-infiltrated macrophages, neutrophils, and natural killer and natural killer T cells and alleviated the antigen-presenting properties of lung-infiltrated macrophages and dendritic cells (DCs). Additionally, Exo-d-MAPPS promoted the expansion of immunosuppressive IL-10-producing alternatively activated macrophages, regulatory DCs, and CD4+FoxP3+T regulatory cells in inflamed lungs which resulted in the attenuation of chronic airway inflammation. In a similar manner, as it was observed in an animal model, Exo-d-MAPPS treatment significantly improved the pulmonary status and quality of life of COPD patients. Importantly, Exo-d-MAPPS was well tolerated since none of the 30 COPD patients reported any adverse effects after Exo-d-MAPPS administration. In summing up, we believe that Exo-d-MAPPS could be considered a potentially new therapeutic agent in the treatment of chronic inflammatory lung diseases whose efficacy should be further explored in large clinical trials.
Collapse
Affiliation(s)
- Carl Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N, Palm Harbor, Florida, USA
| | - Dragica Miloradovic
- Center for Molecular Medicine and Stem Cell Research, Department for Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, Kragujevac, Serbia
| | - Ruxana Sadikot
- Emory University School of Medicine, 648 Pierce Dr. NE, Atlanta, GA, USA
- Atlanta VA Medical Center, 1670 Clairmont Rd., Decatur/Atlanta, GA, USA
| | - Crissy Fellabaum
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N, Palm Harbor, Florida, USA
| | - Bojana Simovic Markovic
- Center for Molecular Medicine and Stem Cell Research, Department for Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, Kragujevac, Serbia
| | - Dragana Miloradovic
- Center for Molecular Medicine and Stem Cell Research, Department for Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, Kragujevac, Serbia
| | - Aleksandar Acovic
- Center for Molecular Medicine and Stem Cell Research, Department for Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, Kragujevac, Serbia
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, 2 Baltzerstrasse, Switzerland
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Department for Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, Kragujevac, Serbia
| | - Vladislav Volarevic
- Center for Molecular Medicine and Stem Cell Research, Department for Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, Kragujevac, Serbia
| |
Collapse
|
22
|
High Serum Level of IL-17 in Patients with Chronic Obstructive Pulmonary Disease and the Alpha-1 Antitrypsin PiZ Allele. Pulm Med 2020; 2020:9738032. [PMID: 32089881 PMCID: PMC7011399 DOI: 10.1155/2020/9738032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is multifactorial disease, which is characterized by airflow limitation and can be provoked by genetic factors, including carriage of the PiZ allele of the protease inhibitor (Pi) gene, encoding alpha-1 antitrypsin (A1AT). Both homozygous and heterozygous PiZ allele carriers can develop COPD. It was found recently that normal A1AT regulates cytokine levels, including IL-17, which is involved in COPD progression. The aim of this study was to determine whether homozygous or heterozygous PiZ allele carriage leads to elevated level of IL-17 and other proinflammatory cytokines in COPD patients. Materials and Methods. Serum samples and clinical data were obtained from 44 COPD patients, who included 6 PiZZ, 8 PiMZ, and 30 PiMM A1AT phenotype carriers. Serum concentrations of IL-17, IL-6, IL-8, IFN-γ, and TNF-α were measured by the enzyme-linked immunosorbent assay (ELISA). All A1AT phenotypes were verified by narrow pH range isoelectrofocusing with selective A1AT staining. A turbidimetric method was used for quantitative A1AT measurements. Results. COPD patients with both PiZZ and PiMZ phenotypes demonstrated elevated IL-17 and decreased IFN-γ levels in comparison to patients with the PiMM phenotype of A1AT. Thereafter, the ratio IL-17/IFN-γ in PiZZ and PiMZ groups greatly exceeded the values of the PiMM group. Homozygous PiZ allele carriers also had significantly higher levels of IL-6 and lower levels of IL-8, and IL-6 values correlated negatively with A1AT concentrations. Conclusions. The presence of the PiZ allele in both homozygous and heterozygous states is associated with altered serum cytokine levels, including elevated IL-17, IL-17/IFN-γ ratio, and IL-6 (only PiZZ), but lower IFN-γ and IL-8.
Collapse
|
23
|
Sánchez-Marzo N, Lozano-Sánchez J, Cádiz-Gurrea MDLL, Herranz-López M, Micol V, Segura-Carretero A. Relationships Between Chemical Structure and Antioxidant Activity of Isolated Phytocompounds from Lemon Verbena. Antioxidants (Basel) 2019; 8:antiox8080324. [PMID: 31434276 PMCID: PMC6719922 DOI: 10.3390/antiox8080324] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/12/2019] [Accepted: 08/17/2019] [Indexed: 12/17/2022] Open
Abstract
Over the last few years, people have been concerned about the narrow relationship between nutrition and health leading to an increasing demand of nutraceutical products and functional food. Lemon verbena (Lippia citriodora Kunth) has been traditionally used for respiratory, digestive, and muscular diseases, showing effects that are promoted by the antioxidant activity of its phytoconstituents. The antioxidant power of several lemon verbena extracts has been tested but its isolated compounds activity has not been described. The aim of the present work was to isolate phytochemicals from a commercial lemon verbena extract through a semi-preparative high-performance liquid chromatography approach for further evaluation of its individual antioxidant activity using three different methods. The structure-antioxidant activity relationships revealed the influence of substitutions in the strong antioxidant power exerted by glycosylated phenylpropanoids, in contrast to the low antioxidant capacity showed by iridoids. Development of enriched extracts in these compounds could lead to greater antioxidant effects and improved functional ingredients to prevent chronic diseases.
Collapse
Affiliation(s)
- Noelia Sánchez-Marzo
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, University of Granada, Campus of Cartuja, 18071 Granada, Spain.
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento s/n., Edificio BioRegion, 18016 Granada, Spain.
| | - María de la Luz Cádiz-Gurrea
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento s/n., Edificio BioRegion, 18016 Granada, Spain
- Department of Analytical Chemistry, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain
| | - María Herranz-López
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Vicente Micol
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
- CIBER: CB12/03/30038, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (ISCIII), 07122 Palma de Mallorca, Spain
| | - Antonio Segura-Carretero
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento s/n., Edificio BioRegion, 18016 Granada, Spain
- Department of Analytical Chemistry, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
24
|
Xiao P, Sun S, Cao J, Wang J, Li H, Hou S, Ding H, Liu Z, Fang Y, Bai S, Qin X, Yu F, Liu J, Wang X, Lv Q, Fan H. Expression profile of microRNAs in bronchoalveolar lavage fluid of rats as predictors for smoke inhalation injury. Burns 2018; 44:2042-2050. [DOI: 10.1016/j.burns.2018.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/08/2018] [Accepted: 07/19/2018] [Indexed: 02/08/2023]
|
25
|
Wang SZ, Qin ZH. Anti-Inflammatory and Immune Regulatory Actions of Naja naja atra Venom. Toxins (Basel) 2018; 10:E100. [PMID: 29495566 PMCID: PMC5869388 DOI: 10.3390/toxins10030100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 02/06/2023] Open
Abstract
Naja naja atra venom (NNAV) is composed of various proteins, peptides, and enzymes with different biological and pharmacological functions. A number of previous studies have reported that NNAV exerts potent analgesic effects on various animal models of pain. The clinical studies using whole venom or active components have confirmed that NNAV is an effective and safe medicine for treatment of chronic pain. Furthermore, recent studies have demonstrated that NNAV has anti-inflammatory and immune regulatory actions in vitro and in vivo. In this review article, we summarize recent studies of NNAV and its components on inflammation and immunity. The main new findings in NNAV research show that it may enhance innate and humoral immune responses while suppressing T lymphocytes-mediated cellular immunity, thus suggesting that NNAV and its active components may have therapeutic values in the treatment of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
26
|
Gibbs-Flournoy EA, Gilmour MI, Higuchi M, Jetter J, George I, Copeland L, Harrison R, Moser VC, Dye JA. Differential exposure and acute health impacts of inhaled solid-fuel emissions from rudimentary and advanced cookstoves in female CD-1 mice. ENVIRONMENTAL RESEARCH 2018; 161:35-48. [PMID: 29100208 PMCID: PMC6143295 DOI: 10.1016/j.envres.2017.10.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/25/2017] [Accepted: 10/24/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND There is an urgent need to provide access to cleaner end user energy technologies for the nearly 40% of the world's population who currently depend on rudimentary cooking and heating systems. Advanced cookstoves (CS) are designed to cut emissions and solid-fuel consumption, thus reducing adverse human health and environmental impacts. STUDY PREMISE We hypothesized that, compared to a traditional (Tier 0) three-stone (3-S) fire, acute inhalation of solid-fuel emissions from advanced natural-draft (ND; Tier 2) or forced-draft (FD; Tier 3) stoves would reduce exposure biomarkers and lessen pulmonary and innate immune system health effects in exposed mice. RESULTS Across two simulated cooking cycles (duration ~ 3h), emitted particulate mass concentrations were reduced 80% and 62% by FD and ND stoves, respectively, compared to the 3-S fire; with corresponding decreases in particles visible within murine alveolar macrophages. Emitted carbon monoxide was reduced ~ 90% and ~ 60%, respectively. Only 3-S-fire-exposed mice had increased carboxyhemoglobin levels. Emitted volatile organic compounds were FD ≪ 3-S-fire ≤ ND stove; increased expression of genes involved in xenobiotic metabolism (COX-2, NQO1, CYP1a1) was detected only in ND- and 3-S-fire-exposed mice. Diminished macrophage phagocytosis was observed in the ND group. Lung glutathione was significantly depleted across all CS groups, however the FD group had the most severe, ongoing oxidative stress. CONCLUSIONS These results are consistent with reports associating exposure to solid fuel stove emissions with modulation of the innate immune system and increased susceptibility to infection. Lower respiratory infections continue to be a leading cause of death in low-income economies. Notably, 3-S-fire-exposed mice were the only group to develop acute lung injury, possibly because they inhaled the highest concentrations of hazardous air toxicants (e.g., 1,3-butadiene, toluene, benzene, acrolein) in association with the greatest number of particles, and particles with the highest % organic carbon. However, no Tier 0-3 ranked CS group was without some untoward health effect indicating that access to still cleaner, ideally renewable, energy technologies for cooking and heating is warranted.
Collapse
Affiliation(s)
| | - M Ian Gilmour
- National Health and Environmental Research Laboratory (NHEERL), Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Mark Higuchi
- National Health and Environmental Research Laboratory (NHEERL), Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - James Jetter
- National Risk Management Research Laboratory (NRMRL), Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Ingrid George
- National Risk Management Research Laboratory (NRMRL), Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Lisa Copeland
- National Health and Environmental Research Laboratory (NHEERL), Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Randy Harrison
- National Health and Environmental Research Laboratory (NHEERL), Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Virginia C Moser
- National Health and Environmental Research Laboratory (NHEERL), Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Janice A Dye
- National Health and Environmental Research Laboratory (NHEERL), Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
27
|
Joshi V, Gupta VK, Bhanuprakash AG, Mandal RSK, Dimri U, Ajith Y. Haptoglobin and serum amyloid A as putative biomarker candidates of naturally occurring bovine respiratory disease in dairy calves. Microb Pathog 2018; 116:33-37. [PMID: 29330058 DOI: 10.1016/j.micpath.2018.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/13/2017] [Accepted: 01/07/2018] [Indexed: 02/06/2023]
Abstract
Bovine respiratory disease (BRD) is one of the leading causes of morbidity and mortality in dairy calves. Identification of reliable biomarkers of naturally occurring BRD is essential for ensuring early diagnosis and treatment of calves and monitoring treatment efficacy. This need is punctuated, especially in mild to moderate cases that would greatly help to decrease recurrence and the overall prevalence of BRD. The present study was conducted to investigate the changes in serum concentrations of haptoglobin (Hpt) and serum amyloid A (SAA) and association between oxidative stress and acute phase proteins (APPs) in BRD. Hpt and SAA levels significantly increased (P < .01) in BRD stressed calves as compared to healthy subjects. There was a significant decrease (P < .01) in serum albumin (Alb) concentration of infected calves as compared to controls. The oxidative stress markers revealed a significant (P < .01) increase in lipid peroxidation (LPO) and a concurrent decrease in activities of superoxide dismutase (SOD), reduced glutathione (R-GSH) and catalase (CAT) in BRD. A significant correlation among APPs, extent of oxidative stress and clinical score (CS) of calves was depicted. A stepwise decrease in Hpt and SAA and increase in Alb was observed in infected calves post-treatment. These results suggest implication of oxidative stress in enhancing APPs and monitoring of APPs as a potential complement to clinical assessment of treatment in calves with naturally occurring BRD. Hpt may be useful as the most sensitive biomarker in BRD. However, the combined use of Hpt and oxidative stress biomarkers would greatly improve the diagnostic accuracy.
Collapse
Affiliation(s)
- Vivek Joshi
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India.
| | - V K Gupta
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - A G Bhanuprakash
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - R S K Mandal
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - U Dimri
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Y Ajith
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
28
|
Gupta K, Mehrotra M, Kumar P, Gogia AR, Prasad A, Fisher JA. Smoke Inhalation Injury: Etiopathogenesis, Diagnosis, and Management. Indian J Crit Care Med 2018; 22:180-188. [PMID: 29657376 PMCID: PMC5879861 DOI: 10.4103/ijccm.ijccm_460_17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Smoke inhalation injury is a major determinant of morbidity and mortality in fire victims. It is a complex multifaceted injury affecting initially the airway; however, in short time, it can become a complex life-threatening systemic disease affecting every organ in the body. In this review, we provide a summary of the underlying pathophysiology of organ dysfunction and provide an up-to-date survey of the various critical care modalities that have been found beneficial in caring for these patients. Major pathophysiological change is development of edema in the respiratory tract. The tracheobronchial tree is injured by steam and toxic chemicals, leading to bronchoconstriction. Lung parenchyma is damaged by the release of proteolytic elastases, leading to release of inflammatory mediators, increase in transvascular flux of fluids, and development of pulmonary edema and atelectasis. Decreased levels of surfactant and immunomodulators such as interleukins and tumor-necrosis-factor-α accentuate the injury. A primary survey is conducted at the site of fire, to ensure adequate airway, breathing, and circulation. A good intravenous access is obtained for the administration of resuscitation fluids. Early intubation, preferably with fiberoptic bronchoscope, is prudent before development of airway edema. Bronchial hygiene is maintained, which involves therapeutic coughing, chest physiotherapy, deep breathing exercises, and early ambulation. Pharmacological agents such as beta-2 agonists, racemic epinephrine, N-acetyl cysteine, and aerosolized heparin are used for improving oxygenation of lungs. Newer agents being tested are perfluorohexane, porcine pulmonary surfactant, and ClearMate. Early diagnosis and treatment of smoke inhalation injury are the keys for better outcome.
Collapse
Affiliation(s)
- Kapil Gupta
- Department of Anaesthesia, Vardhaman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Mayank Mehrotra
- Department of Anesthesia, Integral Institute of Medical Sciences, Lucknow, India
| | - Parul Kumar
- Department of Emergency Medicine, Sinai Health Systems, Chicago, USA
| | - Anoop Raj Gogia
- Department of Anaesthesia, Vardhaman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Arun Prasad
- Department of Anaesthesia, University Health Network, and University of Toronto, Toronto, Canada
| | - Joseph Arnold Fisher
- Department of Anaesthesia, University Health Network, and University of Toronto, Toronto, Canada
| |
Collapse
|
29
|
De Carvalho FO, Silva ÉR, Felipe FA, Teixeira LGB, Zago LBS, Nunes PS, Shanmugam S, Serafini MR, Araújo AADS. Natural and synthetic products used for the treatment of smoke inhalation: a patent review. Expert Opin Ther Pat 2017; 27:877-886. [DOI: 10.1080/13543776.2017.1339790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Érika Ramos Silva
- Post-graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | - Fernanda Araújo Felipe
- Post-graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | | | | | - Paula Santos Nunes
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Saravanan Shanmugam
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Brazil
| | | | | |
Collapse
|
30
|
Wang WT, Ye H, Wei PP, Han BW, He B, Chen ZH, Chen YQ. LncRNAs H19 and HULC, activated by oxidative stress, promote cell migration and invasion in cholangiocarcinoma through a ceRNA manner. J Hematol Oncol 2016; 9:117. [PMID: 27809873 PMCID: PMC5093965 DOI: 10.1186/s13045-016-0348-0] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/18/2016] [Indexed: 02/08/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are known to play important roles in different cell contexts, including cancers. However, little is known about lncRNAs in cholangiocarcinoma (CCA), a cholangiocyte malignancy with poor prognosis, associated with chronic inflammation and damage to the biliary epithelium. The aim of the study is to identify if any lncRNA might associate with inflammation or oxidative stress in CCA and regulate the disease progression. Methods In this study, RNA-seqs datasets were used to identify aberrantly expressed lncRNAs. Small interfering RNA and overexpressed plasmids were used to modulate the expression of lncRNAs, and luciferase target assay RNA immunoprecipitation (RIP) was performed to explore the mechanism of miRNA-lncRNA sponging. Results We firstly analyzed five available RNA-seqs datasets to investigate aberrantly expressed lncRNAs which might associate with inflammation or oxidative stress. We identified that two lncRNAs, H19 and HULC, were differentially expressed among all the samples under the treatment of hypoxic or inflammatory factors, and they were shown to be stimulated by short-term oxidative stress responses to H2O2 and glucose oxidase in CCA cell lines. Further studies revealed that these two lncRNAs promoted cholangiocyte migration and invasion via the inflammation pathway. H19 and HULC functioned as competing endogenous RNAs (ceRNAs) by sponging let-7a/let-7b and miR-372/miR-373, respectively, which activate pivotal inflammation cytokine IL-6 and chemokine receptor CXCR4. Conclusions Our study revealed that H19 and HULC, up-regulated by oxidative stress, regulate CCA cell migration and invasion by targeting IL-6 and CXCR4 via ceRNA patterns of sponging let-7a/let-7b and miR-372/miR-373, respectively. The results suggest that these lncRNAs might be the chief culprits of CCA pathogenesis and progression. The study provides new insight into the mechanism linking lncRNA function with CCA and may serve as novel targets for the development of new countermeasures of CCA. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0348-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen-Tao Wang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Hua Ye
- Department of Hepatobiliary, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.,Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - Pan-Pan Wei
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Bo-Wei Han
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Bo He
- Department of Hepatobiliary, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.,Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - Zhen- Hua Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yue-Qin Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|