1
|
Copeland-Hardin L, Paunesku T, Murley JS, Crentsil J, Antipova O, Li L, Maxey E, Jin Q, Hooper D, Lai B, Chen S, Woloschak GE. Proof of principle study: synchrotron X-ray fluorescence microscopy for identification of previously radioactive microparticles and elemental mapping of FFPE tissues. Sci Rep 2023; 13:7806. [PMID: 37179410 PMCID: PMC10183016 DOI: 10.1038/s41598-023-34890-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
Biobanks containing formalin-fixed, paraffin-embedded (FFPE) tissues from animals and human atomic-bomb survivors exposed to radioactive particulates remain a vital resource for understanding the molecular effects of radiation exposure. These samples are often decades old and prepared using harsh fixation processes which limit sample imaging options. Optical imaging of hematoxylin and eosin (H&E) stained tissues may be the only feasible processing option, however, H&E images provide no information about radioactive microparticles or radioactive history. Synchrotron X-ray fluorescence microscopy (XFM) is a robust, non-destructive, semi-quantitative technique for elemental mapping and identifying candidate chemical element biomarkers in FFPE tissues. Still, XFM has never been used to uncover distribution of formerly radioactive micro-particulates in FFPE canine specimens collected more than 30 years ago. In this work, we demonstrate the first use of low-, medium-, and high-resolution XFM to generate 2D elemental maps of ~ 35-year-old, canine FFPE lung and lymph node specimens stored in the Northwestern University Radiobiology Archive documenting distribution of formerly radioactive micro-particulates. Additionally, we use XFM to identify individual microparticles and detect daughter products of radioactive decay. The results of this proof-of-principle study support the use of XFM to map chemical element composition in historic FFPE specimens and conduct radioactive micro-particulate forensics.
Collapse
Affiliation(s)
- Letonia Copeland-Hardin
- Department of Radiation Oncology and Department of Radiology, Feinberg School of Medicine, Northwestern University, 300 E. Superior St., Tarry 4-713, Chicago, IL, 60611, USA
| | - Tatjana Paunesku
- Department of Radiation Oncology and Department of Radiology, Feinberg School of Medicine, Northwestern University, 300 E. Superior St., Tarry 4-713, Chicago, IL, 60611, USA
| | - Jeffrey S Murley
- Department of Radiation Oncology and Department of Radiology, Feinberg School of Medicine, Northwestern University, 300 E. Superior St., Tarry 4-713, Chicago, IL, 60611, USA
| | - Jasson Crentsil
- Department of Radiation Oncology and Department of Radiology, Feinberg School of Medicine, Northwestern University, 300 E. Superior St., Tarry 4-713, Chicago, IL, 60611, USA
| | - Olga Antipova
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - LuXi Li
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Evan Maxey
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Qiaoling Jin
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - David Hooper
- Nuclear Nonproliferation Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Barry Lai
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Si Chen
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Gayle E Woloschak
- Department of Radiation Oncology and Department of Radiology, Feinberg School of Medicine, Northwestern University, 300 E. Superior St., Tarry 4-713, Chicago, IL, 60611, USA.
| |
Collapse
|
2
|
Analyses of cancer incidence and other morbidities in neutron irradiated B6CF1 mice. PLoS One 2021; 16:e0231511. [PMID: 33657093 PMCID: PMC7928494 DOI: 10.1371/journal.pone.0231511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 02/02/2021] [Indexed: 11/19/2022] Open
Abstract
The Department of Energy conduced ten large-scale neutron irradiation experiments at Argonne National Laboratory between 1972 and 1989. Using a new approach to utilize experimental controls to determine whether a cross comparison between experiments was appropriate, we amalgamated data on neutron exposures to discover that fractionation significantly improved overall survival. A more detailed investigation showed that fractionation only had a significant impact on the death hazard for animals that died from solid tumors, but did not significantly impact any other causes of death. Additionally, we compared the effects of sex, age first irradiated, and radiation fractionation on neutron irradiated mice versus cobalt 60 gamma irradiated mice and found that solid tumors were the most common cause of death in neutron irradiated mice, while lymphomas were the dominant cause of death in gamma irradiated mice. Most animals in this study were irradiated before 150 days of age but a subset of mice was first exposed to gamma or neutron irradiation over 500 days of age. Advanced age played a significant role in decreasing the death hazard for neutron irradiated mice, but not for gamma irradiated mice. Mice that were 500 days old before their first exposures to neutrons began dying later than both sham irradiated or gamma irradiated mice.
Collapse
|
3
|
Zander A, Paunesku T, Woloschak GE. Analyses of cancer incidence and other morbidities in gamma irradiated B6CF1 mice. PLoS One 2020; 15:e0231510. [PMID: 32818954 PMCID: PMC7440931 DOI: 10.1371/journal.pone.0231510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
With increasing medical radiation exposures, it is important to understand how different modes of delivery of ionizing radiation as well as total doses of exposure impact health outcomes. Our lab studied the risks associated with ionizing radiation by analyzing the Northwestern University Radiation Archive for animals (NURA). NURA contains detailed data from a series of 10 individual neutron and gamma irradiation experiments conducted on over 50,000 mice. Rigorous statistical testing on control mice from all Janus experiments enabled us to select studies that could be compared to one another and uncover unexpected differences among the controls as well as experimental animals. For controls, mice sham irradiated with 300 fractions died significantly earlier than those with fewer sham fractions and were excluded from the pooled dataset. Using the integrated dataset of gamma irradiated and control mice, we found that fractionation significantly decreased the death hazard for animals dying of lymphomas, tumors, non-tumors, and unknown causes. Gender differences in frequencies of causes of death were identified irrespective of irradiation and dose fractionation, with female mice being at a greater risk for all causes of death, except for lung tumors. Irradiated and control male mice were at a significantly greater risk for lung tumors, the opposite from observations noted in humans. Additionally, we discovered that lymphoma deaths can occur quickly after exposures to high doses of gamma rays. This study systematically cross-compared outcomes of different modes of fractionation evaluated across different Janus experiments and across a wide span of total doses. It demonstrates that protraction modulated survival and disease status differently based on the total dose, cause of death, and sex of an animal. This novel method for analyzing the Janus datasets will lead to insightful new mechanistic hypotheses and research in the fields of radiation biology and protection.
Collapse
Affiliation(s)
- Alia Zander
- Feinberg School of Medicine, Radiation Oncology, Northwestern University, Chicago, IL, United States of America
| | - Tatjana Paunesku
- Feinberg School of Medicine, Radiation Oncology, Northwestern University, Chicago, IL, United States of America
| | - Gayle E. Woloschak
- Feinberg School of Medicine, Radiation Oncology, Northwestern University, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
4
|
Morioka T, Blyth BJ, Imaoka T, Nishimura M, Takeshita H, Shimomura T, Ohtake J, Ishida A, Schofield P, Grosche B, Kulka U, Shimada Y, Yamada Y, Kakinuma S. Establishing the Japan-Store house of animal radiobiology experiments (J-SHARE), a large-scale necropsy and histopathology archive providing international access to important radiobiology data. Int J Radiat Biol 2019; 95:1372-1377. [PMID: 31145030 DOI: 10.1080/09553002.2019.1625458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Purpose: Projects evaluating the effects of radiation, within the National Institutes of Quantum and Radiological Science and Technology (QST), National Institute of Radiological Sciences (NIRS), have focused on risk analyses for life shortening and cancer prevalence using laboratory animals. Genetic and epigenetic alterations in radiation-induced tumors have been also analyzed with the aim of better understanding mechanisms of radiation carcinogenesis. As well as the economic and practical limitations of repeating such large-scale experiments, ethical considerations make it vital that we store and share the pathological data and samples of the animal experiments for future use. We are now constructing such an archive called the Japan-Storehouse of Animal Radiobiology Experiments (J-SHARE). Methods: J-SHARE records include information such as detailed experimental protocols, necropsy records and photographs of organs at necropsy. For each animal organs and tumor tissues are dissected, and parts are stored as frozen samples at -80 °C. Samples fixed with formalin are also embedded in paraffin blocks for histopathological analyses. Digital copies of stained tissues are being systematically saved using a virtual slide system linked to original records by barcodes. Embedded and frozen tissues are available for molecular analysis. Conclusion: Similar archive systems for radiation biology have also been under construction in the USA and Europe, the Northwestern University Radiation Archive (NURA), and STORE at the BfS, respectively. The J-SHARE will be linked with the sister-archives and made available for collaborative research to institutions and universities all over the world.
Collapse
Affiliation(s)
- Takamitsu Morioka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba , Japan
| | - Benjamin J Blyth
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba , Japan
| | - Tatsuhiko Imaoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba , Japan
| | - Mayumi Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba , Japan
| | | | - Takeo Shimomura
- Department of Information Technology, NIRS, QST , Chiba , Japan
| | - Jun Ohtake
- Department of Information Technology, NIRS, QST , Chiba , Japan
| | - Atsuro Ishida
- Department of Information Technology, NIRS, QST , Chiba , Japan
| | - Paul Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge , Cambridge , UK
| | - Bernd Grosche
- Federal Office for Radiation Protection, Radiation and Health , Oberschleissheim , Germany
| | - Ulrike Kulka
- Federal Office for Radiation Protection, Radiation and Health , Oberschleissheim , Germany
| | | | - Yutaka Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba , Japan.,Fukushima Project Headquarters, NIRS, QST , Chiba , Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba , Japan
| |
Collapse
|
5
|
Madas BG, Schofield PN. SURVEY ON DATA MANAGEMENT IN RADIATION PROTECTION RESEARCH. RADIATION PROTECTION DOSIMETRY 2019; 183:233-236. [PMID: 30534952 DOI: 10.1093/rpd/ncy250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
The importance of datasharing is of increasing concern to funding bodies and institutions. With some prescience, the radiobiology community has established datasharing infrastructures over the last two decades, including STORE; however, the utilization of these databases is disappointing. The aim of the present study was to identify the current state of datasharing amongst researchers in radiation protection, and to identify barriers to effective sharing. An electronic survey was prepared, including questions on post-publication data provision, institutional, funding agency, and journal policies, awareness of datasharing infrastructures, attitudinal barriers and technical support. The survey was sent to the members of a mailing list maintained by the EC funded CONCERT project. Responses identified that the radiation protection community shared similar concerns to other groups canvassed in earlier studies; the perceived negative impact of datasharing on competitiveness, career development and reputation, along with concern about the costs of data management. More surprising was the lack of awareness of existing datasharing platforms. We find that there is a clear need for education and training in data management and for a significant programme of improving awareness of Open Data issues.
Collapse
Affiliation(s)
- Balázs G Madas
- Radiation Biophysics Group, Environmental Physics Department, MTA Centre for Energy Research, Konkoly-Thege Miklós út 29-33., Budapest, Hungary
| | - Paul N Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| |
Collapse
|
6
|
Schofield PN, Kulka U, Tapio S, Grosche B. Big data in radiation biology and epidemiology; an overview of the historical and contemporary landscape of data and biomaterial archives. Int J Radiat Biol 2019; 95:861-878. [DOI: 10.1080/09553002.2019.1589026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Paul N. Schofield
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Ulrike Kulka
- Bundesamt fuer Strahlenschutz, Neuherberg, Germany
| | - Soile Tapio
- Helmholtz Zentrum Muenchen, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, Neuherberg, Germany
| | | |
Collapse
|
7
|
Chua HL, Artur Plett P, Fisher A, Sampson CH, Vemula S, Feng H, Sellamuthu R, Wu T, MacVittie TJ, Orschell CM. Lifelong Residual bone Marrow Damage in Murine Survivors of the Hematopoietic Acute Radiation Syndrome (H-ARS): A Compilation of Studies Comprising the Indiana University Experience. HEALTH PHYSICS 2019; 116:546-557. [PMID: 30789496 PMCID: PMC6388630 DOI: 10.1097/hp.0000000000000950] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Accurate analyses of the delayed effects of acute radiation exposure in survivors of the hematopoietic acute radiation syndrome are hampered by low numbers of mice for examination due to high lethality from the acute syndrome, increased morbidity and mortality in survivors, high cost of husbandry for long-term studies, biological variability, and inconsistencies of models from different laboratories complicating meta-analyses. To address this, a compilation of 38 similar hematopoietic acute radiation syndrome studies conducted over a 7-y period in the authors' laboratory, comprising more than 1,500 irradiated young adult C57BL/6 mice and almost 600 day-30 survivors, was assessed for hematopoietic delayed effects of acute radiation exposure at various times up to 30 mo of age. Significant loss of long-term repopulating potential of phenotypically defined primitive hematopoietic stem cells was documented in hematopoietic acute radiation syndrome survivors, as well as significant decreases in all hematopoietic lineages in peripheral blood, prominent myeloid skew, significantly decreased bone marrow cellularity, and numbers of lineage-negative Sca-1+ cKit+ CD150+ cells (KSL CD150+; the phenotype known to be enriched for hematopoietic stem cells), and increased cycling of KSL CD150+ cells. Studies interrogating the phenotype of bone marrow cells capable of initiation of suspension cultures and engraftment in competitive transplantation assays documented the phenotype of hematopoietic stem cells in hematopoietic acute radiation syndrome survivors to be the same as that in nonirradiated age-matched controls. This compilation study adds rigor and validity to our initial findings of persistent hematopoietic dysfunction in hematopoietic acute radiation syndrome survivors that arises at the level of the hematopoietic stem cell and which affects all classes of hematopoietic cells for the life of the survivor.
Collapse
Affiliation(s)
- Hui Lin Chua
- : Indiana University School of Medicine, Indianapolis, IN, USA
| | - P. Artur Plett
- : Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexa Fisher
- : Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Sasidhar Vemula
- : Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hailin Feng
- : Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Tong Wu
- : Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
8
|
Rühm W, Azizova TV, Bouffler SD, Little MP, Shore RE, Walsh L, Woloschak GE. Dose-rate effects in radiation biology and radiation protection. Ann ICRP 2016; 45:262-279. [PMID: 26960819 DOI: 10.1177/0146645316629336] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Quantification of biological effects (cancer, other diseases, and cell damage) associated with exposure to ionising radiation has been a major issue for the International Commission on Radiological Protection (ICRP) since its foundation in 1928. While there is a wealth of information on the effects on human health for whole-body doses above approximately 100 mGy, the effects associated with doses below 100 mGy are still being investigated and debated intensively. The current radiological protection approach, proposed by ICRP for workers and the public, is largely based on risks obtained from high-dose and high-dose-rate studies, such as the Japanese Life Span Study on atomic bomb survivors. The risk coefficients obtained from these studies can be reduced by the dose and dose-rate effectiveness factor (DDREF) to account for the assumed lower effectiveness of low-dose and low-dose-rate exposures. The 2007 ICRP Recommendations continue to propose a value of 2 for DDREF, while other international organisations suggest either application of different values or abandonment of the factor. This paper summarises the current status of discussions, and highlights issues that are relevant to reassessing the magnitude and application of DDREF.
Collapse
Affiliation(s)
- W Rühm
- a Helmholtz Centre Munich, German Research Centre for Environmental Health, Department for Radiation Sciences, Institute of Radiation Protection, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - T V Azizova
- b Southern Urals Biophysics Institute, Russian Federation
| | - S D Bouffler
- c Centre for Radiation, Chemical and Environmental Hazards, Public Health England, UK
| | - M P Little
- d Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, USA
| | - R E Shore
- e New York University School of Medicine, USA
| | - L Walsh
- f Federal Office for Radiation Protection, Germany
| | - G E Woloschak
- g Department of Radiation Oncology, Northwestern University, Feinberg School of Medicine, USA
| |
Collapse
|
9
|
Haley BM, Paunesku T, Grdina DJ, Woloschak GE. The Increase in Animal Mortality Risk following Exposure to Sparsely Ionizing Radiation Is Not Linear Quadratic with Dose. PLoS One 2015; 10:e0140989. [PMID: 26649569 PMCID: PMC4674094 DOI: 10.1371/journal.pone.0140989] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/29/2015] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION The US government regulates allowable radiation exposures relying, in large part, on the seventh report from the committee to estimate the Biological Effect of Ionizing Radiation (BEIR VII), which estimated that most contemporary exposures- protracted or low-dose, carry 1.5 fold less risk of carcinogenesis and mortality per Gy than acute exposures of atomic bomb survivors. This correction is known as the dose and dose rate effectiveness factor for the life span study of atomic bomb survivors (DDREFLSS). It was calculated by applying a linear-quadratic dose response model to data from Japanese atomic bomb survivors and a limited number of animal studies. METHODS AND RESULTS We argue that the linear-quadratic model does not provide appropriate support to estimate the risk of contemporary exposures. In this work, we re-estimated DDREFLSS using 15 animal studies that were not included in BEIR VII's original analysis. Acute exposure data led to a DDREFLSS estimate from 0.9 to 3.0. By contrast, data that included both acute and protracted exposures led to a DDREFLSS estimate from 4.8 to infinity. These two estimates are significantly different, violating the assumptions of the linear-quadratic model, which predicts that DDREFLSS values calculated in either way should be the same. CONCLUSIONS Therefore, we propose that future estimates of the risk of protracted exposures should be based on direct comparisons of data from acute and protracted exposures, rather than from extrapolations from a linear-quadratic model. The risk of low dose exposures may be extrapolated from these protracted estimates, though we encourage ongoing debate as to whether this is the most valid approach. We also encourage efforts to enlarge the datasets used to estimate the risk of protracted exposures by including both human and animal data, carcinogenesis outcomes, a wider range of exposures, and by making more radiobiology data publicly accessible. We believe that these steps will contribute to better estimates of the risks of contemporary radiation exposures.
Collapse
Affiliation(s)
- Benjamin M. Haley
- Department of Radiation Oncology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Tatjana Paunesku
- Department of Radiation Oncology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - David J. Grdina
- Departments of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Gayle E. Woloschak
- Departments of Radiation Oncology, Radiology, and Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
10
|
Rühm W, Woloschak GE, Shore RE, Azizova TV, Grosche B, Niwa O, Akiba S, Ono T, Suzuki K, Iwasaki T, Ban N, Kai M, Clement CH, Bouffler S, Toma H, Hamada N. Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2015; 54:379-401. [PMID: 26343037 DOI: 10.1007/s00411-015-0613-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 08/18/2015] [Indexed: 05/21/2023]
Abstract
The biological effects on humans of low-dose and low-dose-rate exposures to ionizing radiation have always been of major interest. The most recent concept as suggested by the International Commission on Radiological Protection (ICRP) is to extrapolate existing epidemiological data at high doses and dose rates down to low doses and low dose rates relevant to radiological protection, using the so-called dose and dose-rate effectiveness factor (DDREF). The present paper summarizes what was presented and discussed by experts from ICRP and Japan at a dedicated workshop on this topic held in May 2015 in Kyoto, Japan. This paper describes the historical development of the DDREF concept in light of emerging scientific evidence on dose and dose-rate effects, summarizes the conclusions recently drawn by a number of international organizations (e.g., BEIR VII, ICRP, SSK, UNSCEAR, and WHO), mentions current scientific efforts to obtain more data on low-dose and low-dose-rate effects at molecular, cellular, animal and human levels, and discusses future options that could be useful to improve and optimize the DDREF concept for the purpose of radiological protection.
Collapse
Affiliation(s)
- Werner Rühm
- Institute of Radiation Protection, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Gayle E Woloschak
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Roy E Shore
- Radiation Effects Research Foundation (RERF), 5-2 Hijiyama Park, Minami-ku, Hiroshima City, 732-0815, Japan
| | - Tamara V Azizova
- Southern Urals Biophysics Institute (SUBI), Ozyorskoe Shosse 19, Ozyorsk, Chelyabinsk Region, Russian Federation, 456780
| | - Bernd Grosche
- Federal Office for Radiation Protection, Ingolstaedter Landstr. 1, 85764, Oberschleissheim, Germany
| | - Ohtsura Niwa
- Fukushima Medical University, Hikarigaoka 1, Fukushima, 960-1295, Japan
| | - Suminori Akiba
- Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Japan
| | - Tetsuya Ono
- Institute for Environmental Sciences, 1-7 Ienomae, Rokkasho, Aomori-ken, 039-3212, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Toshiyasu Iwasaki
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Tokyo, 201-8511, Japan
| | - Nobuhiko Ban
- Faculty of Nursing, Tokyo Healthcare University, 2-5-1 Higashigaoka, Meguro, Tokyo, 152-8558, Japan
| | - Michiaki Kai
- Department of Environmental Health Science, Oita University of Nursing and Health Sciences, 2944-9 Megusuno, Oita, 840-1201, Japan
| | - Christopher H Clement
- International Commission on Radiological Protection (ICRP), PO Box 1046, Station B, 280 Slater Street, Ottawa, ON, K1P 5S9, Canada
| | - Simon Bouffler
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England (PHE), Chilton, Didcot, OX11 ORQ, UK
| | - Hideki Toma
- JAPAN NUS Co., Ltd. (JANUS), 7-5-25 Nishi-Shinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| | - Nobuyuki Hamada
- International Commission on Radiological Protection (ICRP), PO Box 1046, Station B, 280 Slater Street, Ottawa, ON, K1P 5S9, Canada.
| |
Collapse
|
11
|
Liu W, Haley B, Kwasny MJ, Li JJ, Grdina DJ, Paunesku T, Woloschak GE. Comparing radiation toxicities across species: an examination of radiation effects in Mus musculus and Peromyscus leucopus. Int J Radiat Biol 2013; 89:391-400. [PMID: 23362954 DOI: 10.3109/09553002.2013.767994] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Life shortening and pathological complications in similarly irradiated cohorts of the laboratory mouse Mus musculus and the white-footed mouse Peromyscus leucopus were recorded in the course of the Janus studies conducted at Argonne National Laboratory from 1970-1992. This study examines how lifespan, tumor and non-tumor disease incidence, and tumor multiplicity are differentially affected by gamma-rays and neutron radiation exposure in two different animal species. MATERIALS AND METHODS Survival analyses examined differences in lifespan across species, while decision tree analyses examined statistically significant associations between lifespan, radiation exposure, and specific diseases. Logistic regression models were generated to examine the likelihood of disease incidence in these two species following gamma-ray or neutron radiation exposure. RESULTS Life shortening in response to radiation was more significant in Peromyscus leucopus than in Mus musculus, irrespective of radiation quality. Many types of tumor and non-tumor diseases were found to be consistently species specific. Tumor multiplicity was observed in both species in response to radiation, although more pronounced in Mus musculus. CONCLUSION The response to radiation was highly species specific, highlighting the difficulty in extrapolating conclusions from one species to another, irrespective of their phenotypic similarities and ecologic niches.
Collapse
Affiliation(s)
- William Liu
- Department of Radiation Oncology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
The effects of radiation and dose-fractionation on cancer and non-tumor disease development. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:4688-703. [PMID: 23249856 PMCID: PMC3546784 DOI: 10.3390/ijerph9124688] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 11/16/2022]
Abstract
The Janus series of radiation experiments, conducted from 1970 to 1992, explored the effects of gamma and neutron radiation on animal lifespan and disease development. Data from these experiments presents an opportunity to conduct a large scale analysis of both tumor and non-tumor disease development. This work was focused on a subset of animals from the Janus series of experiments, comparing acute or fractionated exposures of gamma or neutron radiation on the hazards associated with the development of tumor and non-tumor diseases of the liver, lung, kidney or vascular system. This study also examines how the co-occurrence of non-tumor diseases may affect tumor-associated hazards. While exposure to radiation increases the hazard of dying with tumor and non-tumor diseases, dose fractionation modulates these hazards, which varies across different organ systems. Finally, the effect that concurrent non-cancer diseases have on the hazard of dying with a tumor also differs by organ system. These results highlight the complexity in the effects of radiation on the liver, lung, kidney and vascular system.
Collapse
|
13
|
Birschwilks M, Schofield PN, Grosche B. The European Radiobiological Archives: online access to data from radiobiological experiments is available now. HEALTH PHYSICS 2012; 102:220. [PMID: 22217595 DOI: 10.1097/hp.0b013e3182216d02] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The European Radiobiological Archive can be accessed at no cost at https://era.bfs.de. The necessary ID and password can be obtained from the curators at era@bfs.de.
Collapse
Affiliation(s)
- M Birschwilks
- Federal Office for Radiation Protection, Ingolstaedter Landstr., 85764 Oberschleissheim, Germany.
| | | | | |
Collapse
|
14
|
Birschwilks M, Gruenberger M, Adelmann C, Tapio S, Gerber G, Schofield PN, Grosche B. The European Radiobiological Archives: Online Access to Data from Radiobiological Experiments. Radiat Res 2011; 175:526-31. [DOI: 10.1667/rr2471.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|