1
|
Detection of multiple biomarkers associated with satellite cell fate in the contused skeletal muscle of rats for wound age estimation. Int J Legal Med 2023; 137:875-886. [PMID: 36797435 DOI: 10.1007/s00414-023-02971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 02/08/2023] [Indexed: 02/18/2023]
Abstract
From the perspective of forensic wound age estimation, experiments related to skeletal muscle regeneration after injury have rarely been reported. Here, we examined the time-dependent expression patterns of multiple biomarkers associated with satellite cell fate, including the transcription factor paired box 7 (Pax7), myoblast determination protein (MyoD), myogenin, and insulin-like growth factor (IGF-1), using immunohistochemistry, western blotting, and quantitative real-time PCR in contused skeletal muscle. An animal model of skeletal muscle contusion was established in 30 Sprague-Dawley male rats, and another five rats were employed as non-contused controls. Morphometrically, the data obtained from the numbers of Pax7 + , MyoD + , and myogenin + cells were highly correlated with the wound age. Pax7, MyoD, myogenin, and IGF-1 expression patterns were upregulated after injury at both the mRNA and protein levels. Pax7, MyoD, and myogenin protein expression levels confirmed the results of the morphometrical analysis. Additionally, the relative quantity of IGF-1 protein > 0.92 suggested a wound age of 3 to 7 days. The relative quantity of Pax7 mRNA > 2.44 also suggested a wound age of 3 to 7 days. Relative quantities of Myod1, Myog, and Igf1 mRNA expression > 2.78, > 7.80, or > 3.13, respectively, indicated a wound age of approximately 3 days. In conclusion, the expression levels of Pax7, MyoD, myogenin, and IGF-1 were upregulated in a time-dependent manner during skeletal muscle wound healing, suggesting the potential for using them as candidate biomarkers for wound age estimation in skeletal muscle.
Collapse
|
2
|
Deng P, Qiu S, Liao F, Jiang Y, Zheng C, Zhu Q. Contusion concomitant with ischemia injury aggravates skeletal muscle necrosis and hinders muscle functional recovery. Exp Biol Med (Maywood) 2022; 247:1577-1590. [PMID: 35775612 PMCID: PMC9554171 DOI: 10.1177/15353702221102376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Contusion concomitant with ischemia injury to skeletal muscles is common in civilian and battlefield trauma. Despite their clinical importance, few experimental studies on these injuries are reported. The present study established a rat skeletal muscle contusion concomitant with ischemia injury model to identify skeletal muscle alterations compared with contusion injury or ischemia injury. Macroscopic and microscopic morphological evaluation showed that contusion concomitant with ischemia injury aggravated muscle edema and hematoxylin-eosin (HE) injury score at 24 h postinjury. Serum creatine kinase (CK) and lactate dehydrogenase (LDH) levels, together with gastrocnemius muscle (GM) tumor necrosis factor-alpha (TNF-α) content elevated at 24 h postinjury too. During the 28-day follow-up, electrophysiological and contractile impairment was more severe in the contusion concomitant with ischemia injury group. In addition, contusion concomitant with ischemia injury decreased the percentage of larger (600-3000 μm2) fibers and increased the fibrotic area and collagen I proportion in the GM. Smaller proportions of Pax7+ and MyoD+ satellite cells (SCs) were observed in the contusion concomitant with ischemia injury group at 7 days postinjury. In conclusion, contusion concomitant with ischemia injury to skeletal muscle not only aggravates early muscle fiber necrosis but also hinders muscle functional recovery by impairing SC differentiation and exacerbating fibrosis during skeletal muscle repair.
Collapse
Affiliation(s)
- Peijun Deng
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China,Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Shuai Qiu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China,Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Fawei Liao
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China,Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Yifei Jiang
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China,Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Canbin Zheng
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China,Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Qingtang Zhu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China,Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China,Qingtang Zhu.
| |
Collapse
|
3
|
Dalle S, Schouten M, Meeus G, Slagmolen L, Koppo K. Molecular networks underlying cannabinoid signaling in skeletal muscle plasticity. J Cell Physiol 2022; 237:3517-3540. [PMID: 35862111 DOI: 10.1002/jcp.30837] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/07/2022]
Abstract
The cannabinoid system is ubiquitously present and is classically considered to engage in neural and immunity processes. Yet, the role of the cannabinoid system in the whole body and tissue metabolism via central and peripheral mechanisms is increasingly recognized. The present review provides insights in (i) how cannabinoid signaling is regulated via receptor-independent and -dependent mechanisms and (ii) how these signaling cascades (might) affect skeletal muscle plasticity and physiology. Receptor-independent mechanisms include endocannabinoid metabolism to eicosanoids and the regulation of ion channels. Alternatively, endocannabinoids can act as ligands for different classic (cannabinoid receptor 1 [CB1 ], CB2 ) and/or alternative (e.g., TRPV1, GPR55) cannabinoid receptors with a unique affinity, specificity, and intracellular signaling cascade (often tissue-specific). Antagonism of CB1 might hold clues to improve oxidative (mitochondrial) metabolism, insulin sensitivity, satellite cell growth, and muscle anabolism, whereas CB2 agonism might be a promising way to stimulate muscle metabolism and muscle cell growth. Besides, CB2 ameliorates muscle regeneration via macrophage polarization toward an anti-inflammatory phenotype, induction of MyoD and myogenin expression and antifibrotic mechanisms. Also TRPV1 and GPR55 contribute to the regulation of muscle growth and metabolism. Future studies should reveal how the cannabinoid system can be targeted to improve muscle quantity and/or quality in conditions such as ageing, disease, disuse, and metabolic dysregulation, taking into account challenges that are inherent to modulation of the cannabinoid system, such as central and peripheral side effects.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Moniek Schouten
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Gitte Meeus
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Lotte Slagmolen
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Katrien Koppo
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Evidence-based Potential Therapeutic Applications of Cannabinoids in Wound Management. Adv Skin Wound Care 2022; 35:447-453. [PMID: 35588193 DOI: 10.1097/01.asw.0000831920.15801.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although wound management is a major component of all domains of healthcare, conventional therapeutics have numerous limitations. The endocannabinoid system of the skin, one of the major endogenous systems, has recently been connected to wound healing. Cannabinoids and their interactions with the endogenous chemical signaling system may be a promising therapeutic option because they address some of the fundamental pathways for physiologic derangement that underpin chronic integumentary wounds. RECENT ADVANCES The therapeutic applications of cannabinoids are increasing because of their legalization and resulting market expansion. Recently, their immunosuppressive and anti-inflammatory properties have been explored for the treatment of wounds that are not effectively managed by conventional medicines. CRITICAL ISSUES Failure to manage wounds effectively is associated with reduced quality of life, disability, mortality, and increased healthcare expenditures. Therapeutic options that can manage wounds effectively and efficiently are needed. In this review, the authors summarize recent advances on the use of cannabinoids to treat skin disorders with an emphasis on wound management. FUTURE DIRECTIONS Effective wound management requires medicines with good therapeutic outcomes and minimal adverse effects. Despite the promising results of cannabinoids in wound management, further controlled clinical studies are required to establish the definitive role of these compounds in the pathophysiology of wounds and their usefulness in the clinical setting.
Collapse
|
5
|
Qi J, Zheng Z, Hu L, Wang H, Tang B, Lin L. Development and characterization of cannabidiol-loaded alginate copper hydrogel for repairing open bone defects in vitro. Colloids Surf B Biointerfaces 2022; 212:112339. [PMID: 35114435 DOI: 10.1016/j.colsurfb.2022.112339] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023]
Abstract
The clinical treatment of open bone defects caused by accidental bone trauma, bone tumors, bone diseases and bone infections is challenging. In this study, we designed and fabricated a multifunctional alginate-based hydrogel that contains cannabidiol (CBD), SA@Cu/CBD hydrogel, for repairing open bone defects. The results of physicochemical characterization showed that the SA@Cu/CBD hydrogel was successfully prepared and showed a suitable swelling ratio, high thermal stability, and stable mechanical properties. In vitro evaluation of antibacterial activity indicated that more than 90% of S. aureus and E. coli were inhibited compared to the control group. The ALP activity assay showed that the ALP expression level of MC3T3-E1cells in SA@Cu/CBD hydrogel was approximately 2-fold higher than that in the control group on day 7 and 14. Additionally, compared to the control group, the level of mineralized deposits in SA@Cu/CBD hydrogel was also improved by about 2 times on day 14. The PCR results indicated the mRNA expression levels of osteogenic markers (ALP, Col1α1, OCN, and RUNX2 genes) and angiogenic markers (EGFL6 and VEGF genes) in SA@Cu/CBD hydrogel were significantly upregulated compared to that in the control group, and the mRNA expression levels of critical inflammatory cytokines (TNF-α and IL-1β) in the SA@Cu/CBD hydrogel were significantly down-regulated compared to that in SA@Cu hydrogel. Taken together, these results demonstrated that the SA@Cu/CBD hydrogel showed significantly anti-bacterial, anti-inflammation, angiogenic and osteogenic activities in vitro studies. Thus, SA@Cu/CBD hydrogels may be a promising candidate in repairing open bone defects.
Collapse
Affiliation(s)
- Jianchao Qi
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China; Department of Emergency surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, PR China; Shenzhen Key Laboratory of Cell Microenvironment, PR China
| | - Zhe Zheng
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Liqiu Hu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Huizhen Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China; Shenzhen Key Laboratory of Cell Microenvironment, PR China
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, PR China; Shenzhen Key Laboratory of Cell Microenvironment, PR China.
| | - Lijun Lin
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
6
|
Abd-Elhakim YM, Omran BHF, Ezzeldein SA, Ahmed AI, El-Sharkawy NI, Mohamed AAR. Time-dependent expression of high-mobility group box-1 and toll-like receptors proteins as potential determinants of skin wound age in rats: Forensic implication. Int J Legal Med 2022; 136:1781-1789. [PMID: 35132471 PMCID: PMC9576669 DOI: 10.1007/s00414-022-02788-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/21/2022] [Indexed: 12/03/2022]
Abstract
The skin wound age determination in living subjects is an imperative task for forensic experts. In this study, we investigated the time-dependent expression of high-mobility group box-1 (HMGB1) and toll-like receptors 2 and 4 (TLR2 and 4) in rat skin wounds using real-time PCR and seek their forensic potentials during the skin wound repair process. In addition, the levels of serum pro-inflammatory cytokines (tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6)), as well as nitric oxide (NO) production, were measured. The wound tissue and serum samples were collected after 30 min, 2 h, 6 h, 12 h, 1 day, 3 days, 5 days, and 7 days after incision. As a control (zero time), skin specimens and blood samples were collected without incision. The results reveal that the HMGB1, TLR2, and TLR4 expression levels were increased in a time-dependent manner until the first day where the peak level was achieved for the three tested genes compared with the zero time. On the 7th day, the statistical significance was lost for TLR2 and TLR4 but persisted for HMGB1. The serum TNF-α, IL6, and NO levels peaked within 30 min and 1st and 3rd day after injury, respectively. On the 7th day after incision, no significant differences exist in the TNF-α serum level compared to the control group, but the statistical significance persisted for IL6 and NO. It was apparent that the analyzed genes in the wound tissues showed higher R2 values rather than the serum biochemical indicators. Of note, a strong positive correlation was evident between the HMGB1 and that of TLR2 and TLR4 relative expression as well as IL-6 serum level. Conclusively, based on the observed changes in the analyzed markers in wound tissues and serum and R2 values obtained from mathematical models established to determine the wound age, the relative expression of HMGB1, TLR2, and TLR4 could be a reliable indicator for wound age determination in living subjects. Further investigation of these markers and mathematical models in human tissues is necessary.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Bothina H F Omran
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Shimaa A Ezzeldein
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amany I Ahmed
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nabela I El-Sharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
7
|
Ruhl T, Lippold EF, Christer T, Schaefer B, Kim BS, Beier JP. Genetic deletion of the cannabinoid receptors CB1 and CB2 enhances inflammation with diverging effects on skin wound healing in mice. Life Sci 2021; 285:120018. [PMID: 34624321 DOI: 10.1016/j.lfs.2021.120018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 01/13/2023]
Abstract
AIMS Inflammation during wound healing is both essential and critical for restoring tissue integrity. Participating cells secrete soluble factors to regulate the inflammatory phase and to induce the adjacent regenerative processes. If pro-inflammatory signals are overexpressed, the wound stagnates in the inflammatory phase, which decelerates regular wound healing. The endocannabinoid system is ascribed great significance in maintenance of tissue homeostasis. It mediates several effects through the cannabinoid receptors CB1 and CB2. MAIN METHODS In order to clarify the role of these receptors in wound healing, excisional wounds were created on wildtype and CB1 and CB2 knockout mice. The wound closure was analyzed over a period of 14 days, and cytokine concentrations of tissue homogenisates were measured by ELISA. MSCs were isolated from the animals' subcutaneous adipose tissue and analyzed for viability and differentiation capacity, in vitro. KEY FINDINGS Deletion of CB2 increased Interleukin (IL)-6 and tumor necrosis factor (TNF)-α but did not affect tissue regeneration. In CB1-deficient animals, wound closure was delayed during early phases of healing, which was accompanied by increased concentrations of monocyte chemoattractant protein (MCP)-1 and TNF-α. CB1 and CB2 knockout MSCs presented altered viability and differentiation capacity compared to wildtype MSCs. The CB1-deficient MSCs released high levels of MCP-1 upon stimulation with TNF-α and IL-1β. SIGNIFICANCE The data indicate that both cannabinoid receptors regulate inflammation, and this study emphasizes the important role of CB1 in wound repair. Furthermore, our findings suggest that the secretome of CB1-deficient MSCs may contribute to the wound healing delay, in vivo.
Collapse
Affiliation(s)
- Tim Ruhl
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - Ella F Lippold
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - Tim Christer
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - Benedikt Schaefer
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - Bong-Sung Kim
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - Justus P Beier
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany.
| |
Collapse
|
8
|
Lowe H, Toyang N, Steele B, Bryant J, Ngwa W. The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases. Int J Mol Sci 2021; 22:9472. [PMID: 34502379 PMCID: PMC8430969 DOI: 10.3390/ijms22179472] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems. In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development. The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases. In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest in medicine, research, and drug discovery and development. The distribution of the components of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-signalling pathways in many diseases, all offer promising opportunities for the development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or antagonism of the receptors of the ECS. This modulation results in the differential expression/activity of the components of the ECS that may be beneficial in the treatment of a number of diseases. This manuscript in-depth review will investigate the potential of the ECS in the treatment of various diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa L. (hereafter referred to as "C. sativa L." or "medical cannabis"), may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.
Collapse
Affiliation(s)
- Henry Lowe
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
- Department of Medicine, University of Maryland Medical School, Baltimore, MD 21202, USA
| | - Ngeh Toyang
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
| | - Blair Steele
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Joseph Bryant
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Wilfred Ngwa
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
- Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| |
Collapse
|
9
|
Morris G, Walder K, Kloiber S, Amminger P, Berk M, Bortolasci CC, Maes M, Puri BK, Carvalho AF. The endocannabinoidome in neuropsychiatry: Opportunities and potential risks. Pharmacol Res 2021; 170:105729. [PMID: 34119623 DOI: 10.1016/j.phrs.2021.105729] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
The endocannabinoid system (ECS) comprises two cognate endocannabinoid receptors referred to as CB1R and CB2R. ECS dysregulation is apparent in neurodegenerative/neuro-psychiatric disorders including but not limited to schizophrenia, major depressive disorder and potentially bipolar disorder. The aim of this paper is to review mechanisms whereby both receptors may interact with neuro-immune and neuro-oxidative pathways, which play a pathophysiological role in these disorders. CB1R is located in the presynaptic terminals of GABAergic, glutamatergic, cholinergic, noradrenergic and serotonergic neurons where it regulates the retrograde suppression of neurotransmission. CB1R plays a key role in long-term depression, and, to a lesser extent, long-term potentiation, thereby modulating synaptic transmission and mediating learning and memory. Optimal CB1R activity plays an essential neuroprotective role by providing a defense against the development of glutamate-mediated excitotoxicity, which is achieved, at least in part, by impeding AMPA-mediated increase in intracellular calcium overload and oxidative stress. Moreover, CB1R activity enables optimal neuron-glial communication and the function of the neurovascular unit. CB2R receptors are detected in peripheral immune cells and also in central nervous system regions including the striatum, basal ganglia, frontal cortex, hippocampus, amygdala as well as the ventral tegmental area. CB2R upregulation inhibits the presynaptic release of glutamate in several brain regions. CB2R activation also decreases neuroinflammation partly by mediating the transition from a predominantly neurotoxic "M1" microglial phenotype to a more neuroprotective "M2" phenotype. CB1R and CB2R are thus novel drug targets for the treatment of neuro-immune and neuro-oxidative disorders including schizophrenia and affective disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Stefan Kloiber
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 33 Ursula Franklin Street, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Paul Amminger
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| |
Collapse
|
10
|
Rohbeck E, Eckel J, Romacho T. Cannabinoid Receptors in Metabolic Regulation and Diabetes. Physiology (Bethesda) 2021; 36:102-113. [PMID: 33595385 DOI: 10.1152/physiol.00029.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is an urgent need for developing effective drugs to combat the obesity and Type 2 diabetes mellitus epidemics. The endocannabinoid system plays a major role in energy homeostasis. It comprises the cannabinoid receptors 1 and 2 (CB1 and CB2), endogenous ligands called endocannabinoids and their metabolizing enzymes. Because the CB1 receptor is overactivated in metabolic alterations, pharmacological blockade of the CB1 receptor arose as a promising candidate to treat obesity. However, because of the wide distribution of CB1 receptors in the central nervous system, their negative central effects halted further therapeutic use. Although the CB2 receptor is mostly peripherally expressed, its role in metabolic homeostasis remains unclear. This review discusses the potential of CB1 and CB2 receptors at the peripheral level to be therapeutic targets in metabolic diseases. We focus on the impact of pharmacological intervention and/or silencing on peripheral cannabinoid receptors in organs/tissues relevant for energy homeostasis. Moreover, we provide a perspective on novel therapeutic strategies modulating these receptors. Targeting CB1 with peripherally restricted antagonists, neutral antagonists, inverse agonists, or monoclonal antibodies could represent successful strategies. CB2 agonism has shown promising results at preclinical level. Beyond classic antagonism and agonism targeting orthosteric sites, the recently described crystal structures of CB1 and CB2 open new possibilities for therapeutic interventions with negative and positive allosteric modulators. The challenge of simultaneously targeting CB1 and CB2 might be possible by developing dual-steric ligands. The future will tell whether these promising strategies result in a renaissance of the cannabinoid receptors as therapeutic targets in metabolic diseases.
Collapse
Affiliation(s)
- Elisabeth Rohbeck
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Juergen Eckel
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tania Romacho
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
11
|
Haspula D, Clark MA. Cannabinoid Receptors: An Update on Cell Signaling, Pathophysiological Roles and Therapeutic Opportunities in Neurological, Cardiovascular, and Inflammatory Diseases. Int J Mol Sci 2020; 21:E7693. [PMID: 33080916 PMCID: PMC7590033 DOI: 10.3390/ijms21207693] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The identification of the human cannabinoid receptors and their roles in health and disease, has been one of the most significant biochemical and pharmacological advancements to have occurred in the past few decades. In spite of the major strides made in furthering endocannabinoid research, therapeutic exploitation of the endocannabinoid system has often been a challenging task. An impaired endocannabinoid tone often manifests as changes in expression and/or functions of type 1 and/or type 2 cannabinoid receptors. It becomes important to understand how alterations in cannabinoid receptor cellular signaling can lead to disruptions in major physiological and biological functions, as they are often associated with the pathogenesis of several neurological, cardiovascular, metabolic, and inflammatory diseases. This review focusses mostly on the pathophysiological roles of type 1 and type 2 cannabinoid receptors, and it attempts to integrate both cellular and physiological functions of the cannabinoid receptors. Apart from an updated review of pre-clinical and clinical studies, the adequacy/inadequacy of cannabinoid-based therapeutics in various pathological conditions is also highlighted. Finally, alternative strategies to modulate endocannabinoid tone, and future directions are also emphasized.
Collapse
Affiliation(s)
- Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| | - Michelle A. Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
12
|
Cannabinoid type 2 receptor manipulates skeletal muscle regeneration partly by regulating macrophage M1/M2 polarization in IR injury in mice. Life Sci 2020; 256:117989. [PMID: 32565250 DOI: 10.1016/j.lfs.2020.117989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/04/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022]
Abstract
AIMS The beneficial effects of cannabinoid type 2 receptor (CB2R) activation have been verified in various tissue repair processes. Our recent study revealed CB2R activation promotes myogenesis partly through Nrf2 signaling in a mouse skeletal muscle ischemia-reperfusion (IR) injury model. Other relevant mechanisms need to be further elucidated. Macrophages orchestrate tissue regeneration mainly by changing their phenotype and function. The aim of this study was to investigate the role of CB2R in IR-induced skeletal muscle regeneration, focusing on its impact on macrophage polarization and the consequences on myogenesis. MAIN METHODS The effects of CB2R on skeletal muscle regeneration, and the macrophage infiltration and M1/M2 polarization were tested with the IR injury model in wild type (WT) and CB2R knockout (CB2R-KO) mice. The effect of CB2R on peritoneal macrophage polarization, and its impact on the myoblasts differentiation was evaluated by co-culture experiments in vitro. KEY FINDINGS The present study revealed the myofiber regeneration was hindered in the CB2R-KO mice. The infiltration of M1 macrophages and relevant markers' protein expression were enhanced in the CB2R-KO mice, while that of M2 macrophages was decreased compared with the WT mice. The in vitro studies further demonstrated that the absence of CB2R promoted M1 polarization while inhibited M2 polarization. The promoted M1 polarization and retarded M2 polarization in CB2R-KO macrophages hindered myoblasts differentiation. SIGNIFICANCE Overall, these results suggested CB2R plays a beneficial effect on skeletal muscle regeneration partly by regulating macrophage M1/M2 polarization after IR injury in mice.
Collapse
|
13
|
Zhang M, Zhang M, Wang L, Yu T, Jiang S, Jiang P, Sun Y, Pi J, Zhao R, Guan D. Activation of cannabinoid type 2 receptor protects skeletal muscle from ischemia-reperfusion injury partly via Nrf2 signaling. Life Sci 2019; 230:55-67. [PMID: 31128135 DOI: 10.1016/j.lfs.2019.05.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 12/19/2022]
Abstract
AIMS Cannabinoid type 2 (CB2) receptor activation has been shown to attenuate IRI in various organs. NF-E2-related factor (Nrf2) is an anti-oxidative factor that plays multiple roles in regulating cellular redox homeostasis and modulating cell proliferation and differentiation. The protective effects of CB2 receptor activation on skeletal muscle IRI and the underlying mechanism that involves Nrf2 signaling remain unknown. MAIN METHODS We evaluated the in vivo effect of CB2 receptor activation by the CB2 receptor agonist AM1241 on IR-induced skeletal muscle damage and early myogenesis. We also assessed the effects of CB2 receptor activation on C2C12 myoblasts differentiation and H2O2-induced C2C12 myoblasts damage in vitro, with a focus on the mechanism of Nrf2 signaling. KEY FINDINGS Our results showed that CB2 receptor activation reduced IR-induced histopathological lesions, edema, and oxidative stress 1 day post-injury and accelerated early myogenesis 4 days post-injury in mice. Nrf2 knockout mice that were treated with AM1241 exhibited deteriorative skeletal muscle oxidative damage and myogenesis. In vitro, pretreatment with AM1241 significantly increased the expression of Nrf2 and its nuclear translocation, attenuated the decrease in H2O2-induced C2C12 cell viability, and decreased reactive oxygen species generation and apoptosis. CB2 receptor activation also significantly enhanced C2C12 myoblasts differentiation, which was impaired by silencing Nrf2. SIGNIFICANCE Overall, CB2 receptor activation protected skeletal muscle against IRI by ameliorating oxidative damage and promoting early skeletal muscle myogenesis, which was partly via Nrf2 signaling.
Collapse
Affiliation(s)
- Mengzhou Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Miao Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China; Remote Forensic Consultation Center, Collaborative Innovation Center of Judicial Civilization, China University of Political Science and Law, Beijing 100192, China; Collaborative Laboratory of Intelligentized Forensic Science (CLIFS), Shenyang 110032, China
| | - Linlin Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China; Remote Forensic Consultation Center, Collaborative Innovation Center of Judicial Civilization, China University of Political Science and Law, Beijing 100192, China; Collaborative Laboratory of Intelligentized Forensic Science (CLIFS), Shenyang 110032, China
| | - Tianshui Yu
- Remote Forensic Consultation Center, Collaborative Innovation Center of Judicial Civilization, China University of Political Science and Law, Beijing 100192, China
| | - Shukun Jiang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China; Remote Forensic Consultation Center, Collaborative Innovation Center of Judicial Civilization, China University of Political Science and Law, Beijing 100192, China; Collaborative Laboratory of Intelligentized Forensic Science (CLIFS), Shenyang 110032, China
| | - Penghao Jiang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Yingfu Sun
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Jingbo Pi
- Program of Environmental Toxicology, China Medical University School of Public Health, Shenyang 110122, China
| | - Rui Zhao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China; Remote Forensic Consultation Center, Collaborative Innovation Center of Judicial Civilization, China University of Political Science and Law, Beijing 100192, China; Collaborative Laboratory of Intelligentized Forensic Science (CLIFS), Shenyang 110032, China.
| | - Dawei Guan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China; Remote Forensic Consultation Center, Collaborative Innovation Center of Judicial Civilization, China University of Political Science and Law, Beijing 100192, China; Collaborative Laboratory of Intelligentized Forensic Science (CLIFS), Shenyang 110032, China.
| |
Collapse
|
14
|
Kamali A, Oryan A, Hosseini S, Ghanian MH, Alizadeh M, Baghaban Eslaminejad M, Baharvand H. Cannabidiol-loaded microspheres incorporated into osteoconductive scaffold enhance mesenchymal stem cell recruitment and regeneration of critical-sized bone defects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:64-75. [PMID: 31029357 DOI: 10.1016/j.msec.2019.03.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/05/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Recruitment of mesenchymal stem cells (MSCs) to an injury site and their differentiation into the desired cell lineage are implicated in deficient bone regeneration. To date, there is no ideal structure that provides these conditions for bone regeneration. In the current study, we aim to develop a novel scaffold that induces MSC migration towards the defect site, followed by their differentiation into an osteogenic lineage. We have fabricated a gelatin/nano-hydroxyapatite (G/nHAp) scaffold that delivered cannabidiol (CBD)-loaded poly (lactic-co-glycolic acid) (PLGA) microspheres to critical size radial bone defects in a rat model. The fabricated scaffolds were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and then analyzed for porosity and degradation rate. The release profile of CBD from the PLGA microsphere and CBD-PLGA-G/nHAp scaffold was analyzed by fluorescence spectroscopy. We performed an in vitro assessment of the effects of CBD on cellular behaviors of viability and osteogenic differentiation. Radiological evaluation, histomorphometry, and immunohistochemistry (IHC) analysis of all defects in the scaffold and control groups were conducted following transplantation into the radial bone defects. An in vitro migration assay showed that CBD considerably increased MSCs migration. qRT-PCR results showed upregulated expression of osteogenic markers in the presence of CBD. Histological and immunohistochemical findings confirmed new bone formation and reconstruction of the defect at 4 and 12 week post-surgery (WPS) in the CBD-PLGA-G/nHAp group. Immunofluorescent analysis revealed enhanced migration of MSCs into the defect areas in the CBD-PLGA-G/nHAp group in vivo. Based on the results of the current study, we concluded that CBD improved bone healing and showed a critical role for MSC migration in the bone regeneration process.
Collapse
Affiliation(s)
- Amir Kamali
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Hossein Ghanian
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Alizadeh
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
15
|
Li N, Du Q, Bai R, Sun J. Vitality and wound-age estimation in forensic pathology: review and future prospects. Forensic Sci Res 2018; 5:15-24. [PMID: 32490306 PMCID: PMC7241561 DOI: 10.1080/20961790.2018.1445441] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/12/2018] [Indexed: 01/01/2023] Open
Abstract
Determining the age of a wound is challenging in forensic pathology, but it can contribute to the reconstruction of crime scenes and lead to arrest of suspects. Forensic scholars have tended to focus on evaluating wound vitality and determining the time elapsed since the wound was sustained. Recent progress in forensic techniques, particularly high-throughput analyses, has enabled evaluation of materials at the cellular and molecular levels, as well as simultaneous assessment of multiple markers. This paper provides an update on wound-age estimation in forensic pathology, summarizes the recent literature, and considers useful additional information provided by each marker. Finally, the future prospects for estimating wound age in forensic practise are discussed with the hope of providing something useful for further study.
Collapse
Affiliation(s)
- Na Li
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Forensic Science, Shanxi Medical University, Taiyuan, China
| | - Qiuxiang Du
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Forensic Science, Shanxi Medical University, Taiyuan, China
| | - Rufeng Bai
- Key Laboratory of Evidence Science, China University of Political Science and Law, Beijing, China.,Collaborative Innovation Centre of Judicial Civilization, Beijing, China
| | - Junhong Sun
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Forensic Science, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
16
|
Lüder E, Ramer R, Peters K, Hinz B. Decisive role of P42/44 mitogen-activated protein kinase in Δ 9-tetrahydrocannabinol-induced migration of human mesenchymal stem cells. Oncotarget 2017; 8:105984-105994. [PMID: 29285308 PMCID: PMC5739695 DOI: 10.18632/oncotarget.22517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/28/2017] [Indexed: 12/29/2022] Open
Abstract
In past years, medical interest in Δ9-tetrahydrocannabinol (THC), the major psychoactive ingredient of the Cannabis plant, has been renewed due to the elucidation of the endocannabinoid system and diverse other receptor targets involved in biological cannabinoid effects. The present study therefore investigates the impact of THC on the migration of mesenchymal stem cells (MSCs) which are known to be involved in various regenerative processes such as bone healing. Using Boyden chamber assays, THC was found to increase the migration of adipose-derived MSCs. Migration by THC was almost completely suppressed by the CB1 receptor antagonist AM-251 and to a lesser extent by the CB2 receptor antagonist AM-630. By contrast, the TRPV1 antagonist capsazepine as well as the G protein-coupled receptor 55 (GRP55) agonist O-1602 did not significantly interfere with the promigratory effect of THC. Furthermore, increased migration by THC was fully suppressed by PD98059, an inhibitor of p42/44 mitogen-activated protein kinase (MAPK) activation, and was accompanied by a time-dependent activation of this pathway accordingly. In line with the migration data, additional inhibitor experiments pointed towards a decisive role of the CB1 receptor in conferring THC-induced activation of p42/44 MAPK. Collectively, this study demonstrates THC to exert a promigratory effect on MSCs via a CB1 receptor-dependent activation of p42/44 MAPK phosphorylation. This pathway may be involved in regenerative effects of THC and could be a target of pharmacological intervention.
Collapse
Affiliation(s)
- Ellen Lüder
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany.,Department of Cell Biology, Rostock University Medical Center, Rostock, Germany
| | - Robert Ramer
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Kirsten Peters
- Department of Cell Biology, Rostock University Medical Center, Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
17
|
Sun JH, Zhu XY, Dong TN, Zhang XH, Liu QQ, Li SQ, Du QX. An “up, no change, or down” system: Time-dependent expression of mRNAs in contused skeletal muscle of rats used for wound age estimation. Forensic Sci Int 2017; 272:104-110. [DOI: 10.1016/j.forsciint.2017.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 01/02/2017] [Accepted: 01/09/2017] [Indexed: 12/18/2022]
|
18
|
Detection of RAGE expression and its application to diabetic wound age estimation. Int J Legal Med 2017; 131:691-698. [PMID: 28078446 DOI: 10.1007/s00414-016-1529-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/28/2016] [Indexed: 12/23/2022]
Abstract
With the prevalence of diabetes, it is becoming important to analyze the diabetic wound age in forensic practice. The present study investigated the time-dependent expression of receptor for advanced glycation end products (RAGE) during diabetic wound healing in mice and its applicability to wound age determination by immunohistochemistry, double immunofluorescence, and Western blotting. After an incision was created in genetically diabetic db/db mice and control mice, mice were killed at posttraumatic intervals ranging from 6 h to 14 days, followed by the sampling of wound margin. Compared with control mice, diabetic mice showed the delayed wound healing. In control and diabetic wound specimens, RAGE immunoreactivity was observed in a small number of polymorphonuclear cells (PMNs), a number of macrophages, and fibroblasts. Morphometrically, the positive ratios of RAGE in macrophages or fibroblasts considerably increased in diabetic wounds during late repair, which exceeded 60% at 7 and 10 days post-injury. There were no control wound specimens to show a ratio of >60% in macrophages or fibroblasts. By Western blotting analysis, the ratios of RAGE to GAPDH were >1.4 in all diabetic wound samples from 7 to 10 days post-injury, which were >1.8 at 10 days after injury. By comparison, no control wound specimens indicated a ratio of >1.4. In conclusion, the expression of RAGE is upregulated and temporally distributed in macrophages and fibroblasts during diabetic wound healing, which might be closely involved in prolonged inflammation and deficient healing. Moreover, RAGE is promising as a useful marker for diabetic wound age determination.
Collapse
|
19
|
α7nAChR is expressed in satellite cells at different myogenic status during skeletal muscle wound healing in rats. J Mol Histol 2016; 46:499-509. [PMID: 26498641 DOI: 10.1007/s10735-015-9641-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
Recent study has reported that α7 nicotine acetylcholine receptor (α7nAChR) is expressed in regenerated multinucleated myotubes. But the distribution of α7nAChR in satellite cells in different myogenic status is unknown. A preliminary study on the dynamic distribution of α7nAChR in satellite cells was performed by double indirect immunofluorescent procedures during skeletal muscle wound healing in rats. An animal model of skeletal muscle contusion was established in 40 Sprague-Dawley male rats. Samples were taken at 1, 3, 5, 7, 9, 13, 17 and 21 days after injury, respectively (five rats in each posttraumatic interval). Five rats were employed as control. In normal muscle specimens, weak immunoreactivity for α7nAChR was detected in a few satellite cells (considered as quiescent). α7nAChR-positive signals were observed in proliferated and differentiated satellite cells and regenerated multinucleated myotubes in the wounded areas. By morphometric analysis, the average number of α7nAChR+/Pax7+ and α7nAChR+/MyoD+ cells climaxed at 5 days post-injury. The average number of α7nAChR+/myogenin+ cells was significantly increased from 3 to 9 days post-injury as compared with other posttraumatic intervals. The protein level of α7nAChR maximized at 9 days post-injury, which implies that α7nAChR was associated with the satellite cells status. Our observations on expression of α7nAChR in satellite cells from quiescence to myotube formation suggest that α7nAChR may be involved in muscle regeneration by regulating satellite cell status.
Collapse
|
20
|
Wang LL, Zhao R, Liu CS, Liu M, Li SS, Li JY, Jiang SK, Zhang M, Tian ZL, Wang M, Zhang MZ, Guan DW. A fundamental study on the dynamics of multiple biomarkers in mouse excisional wounds for wound age estimation. J Forensic Leg Med 2016; 39:138-46. [DOI: 10.1016/j.jflm.2016.01.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/14/2015] [Accepted: 01/24/2016] [Indexed: 12/18/2022]
|
21
|
Yu TS, Li Z, Zhao R, Zhang Y, Zhang ZH, Guan DW. Time-dependent Expression of MMP-2 and TIMP-2 after Rats Skeletal Muscle Contusion and Their Application to Determine Wound Age. J Forensic Sci 2016; 61:527-533. [PMID: 27404628 DOI: 10.1111/1556-4029.13001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/02/2015] [Accepted: 05/24/2015] [Indexed: 12/01/2022]
Abstract
The ability to determine vitality and estimate the survival period after a wound is critical in routine forensic practice. The mRNA levels of MMP-2 and TIMP-2 were examined using quantitative real-time RT-PCR to determine the age of a wound. Furthermore, the colocalization of them with Macrophage Marker, respectively, was detected by double immunofluorescence, and a standardized rat model of skeletal muscle contusion was established. In the antemortem contused groups, a large number of macrophages showed positive staining for MMP-2 and TIMP-2, and the expression of MMP-2 and TIMP-2 mRNA increased sharply at 3 days postinjury, with relative quantities of 5.75 and 2.98. No samples in the other groups showed relative quantities of >5.75 and 2.98; therefore, relative quantities exceeding 5.75 and 2.98 were strongly indicated 3 days after contusion. In addition, there was a significant decrease in the relative quantity in the postmortem contused groups, indicating that they were useful for diagnosing vitality.
Collapse
Affiliation(s)
- Tian-Shui Yu
- Collaborative Innovation Center of Judicial Civilization, Beijing, 100088, China.,Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, 100088, China
| | - Zhuang Li
- Department of Regional Anatomy, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Rui Zhao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, 110001, China
| | - Yan Zhang
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, 100088, China
| | - Zhen-Hua Zhang
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, 100088, China
| | - Da-Wei Guan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, 110001, China
| |
Collapse
|
22
|
Diao L, Patsouris D, Sadri AR, Dai X, Amini-Nik S, Jeschke MG. Alternative Mechanism for White Adipose Tissue Lipolysis after Thermal Injury. Mol Med 2015; 21:959-968. [PMID: 26736177 DOI: 10.2119/molmed.2015.00123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 12/29/2015] [Indexed: 12/18/2022] Open
Abstract
Extensively burned patients often suffer from sepsis, a complication that enhances postburn hypermetabolism and contributes to increased incidence of multiple organ failure, morbidity and mortality. Despite the clinical importance of burn sepsis, the molecular and cellular mechanisms of such infection-related metabolic derangements and organ dysfunction are still largely unknown. We recently found that upon endoplasmic reticulum (ER) stress, the white adipose tissue (WAT) interacts with the liver via inflammatory and metabolic signals leading to profound hepatic alterations, including hepatocyte apoptosis and hepatic fatty infiltration. We therefore hypothesized that burn plus infection causes an increase in lipolysis of WAT after major burn, partially through induction of ER stress, contributing to hyperlipidemia and profound hepatic lipid infiltration. We used a two-hit rat model of 60% total body surface area scald burn, followed by intraperitoneal (IP) injection of Pseudomonas Aeruginosa-derived lipopolysaccharide (LPS) 3 d postburn. One day later, animals were euthanized and liver and epididymal WAT (EWAT) samples were collected for gene expression, protein analysis and histological study of inflammasome activation, ER stress, apoptosis and lipid metabolism. Our results showed that burn plus LPS profoundly increased lipolysis in WAT associated with significantly increased hepatic lipid infiltration. Burn plus LPS augmented ER stress by upregulating CHOP and activating ATF6, inducing NLRP3 inflammasome activation and leading to increased apoptosis and lipolysis in WAT with a distinct enzymatic mechanism related to inhibition of AMPK signaling. In conclusion, burn sepsis causes profound alterations in WAT and liver that are associated with changes in organ function and structure.
Collapse
Affiliation(s)
- Li Diao
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | | | - Xiaojing Dai
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Saeid Amini-Nik
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Surgery, Division of Plastic Surgery, Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Marc G Jeschke
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Surgery, Division of Plastic Surgery, Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Ross Tilley Burn Center, Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Tian ZL, Jiang SK, Zhang M, Wang M, Li JY, Zhao R, Wang LL, Li SS, Liu M, Zhang MZ, Guan DW. Detection of satellite cells during skeletal muscle wound healing in rats: time-dependent expressions of Pax7 and MyoD in relation to wound age. Int J Legal Med 2015; 130:163-72. [PMID: 26311174 DOI: 10.1007/s00414-015-1251-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/12/2015] [Indexed: 12/20/2022]
Abstract
The study was focused on time-dependent expressions of paired-box transcription factor 7 (Pax7) and myoblast determination protein (MyoD) during skeletal muscle wound healing. An animal model of skeletal muscle contusion was established in 40 Sprague-Dawley male rats. Samples were taken at 1, 3, 5, 7, 9, 13, 17, and 21 days after injury, respectively (five rats in each posttraumatic interval). Five rats were employed as control. By morphometric analysis, the data based on the number of Pax7(+)/MyoD(-), Pax7(+)/MyoD(+), and Pax7(-)/MyoD(+) cells were highly correlated with the wound age. Pax7 and MyoD expressions were upregulated after injury by Western blot and quantitative real-time PCR assays. The relative quantity of Pax7 protein peaked at 5 days after injury, which was >1.13, and decreased thereafter. Similarly, the relative quantity of MyoD mRNA expression peaked at 3 days after injury, which was >2.59. The relative quantity of Pax7 protein >0.73 or mRNA expression >2.38 or the relative quantity of MyoD protein >1.33 suggested a wound age of 3 to 7 days. The relative quantity of MyoD mRNA expression >2.02 suggested a wound age of 1 to 7 days post-injury. In conclusion, the expressions of Pax7 and MyoD are upregulated in a time-dependent manner during skeletal muscle wound healing, suggesting that Pax7 and MyoD may be potential markers for wound age estimation in skeletal muscle.
Collapse
Affiliation(s)
- Zhi-Ling Tian
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77, Puhe Road, Shenbei New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Shu-Kun Jiang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77, Puhe Road, Shenbei New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Miao Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77, Puhe Road, Shenbei New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Meng Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77, Puhe Road, Shenbei New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Jiao-Yong Li
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77, Puhe Road, Shenbei New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Rui Zhao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77, Puhe Road, Shenbei New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Lin-Lin Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77, Puhe Road, Shenbei New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Shan-Shan Li
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77, Puhe Road, Shenbei New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Min Liu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77, Puhe Road, Shenbei New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Meng-Zhou Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77, Puhe Road, Shenbei New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Da-Wei Guan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77, Puhe Road, Shenbei New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
24
|
Wollank Y, Ramer R, Ivanov I, Salamon A, Peters K, Hinz B. Inhibition of FAAH confers increased stem cell migration via PPARα. J Lipid Res 2015; 56:1947-60. [PMID: 26263913 DOI: 10.1194/jlr.m061473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Indexed: 02/07/2023] Open
Abstract
Regenerative activity in tissues of mesenchymal origin depends on the migratory potential of mesenchymal stem cells (MSCs). The present study focused on inhibitors of the enzyme fatty acid amide hydrolase (FAAH), which catalyzes the degradation of endocannabinoids (anandamide, 2-arachidonoylglycerol) and endocannabinoid-like substances (N-oleoylethanolamine, N-palmitoylethanolamine). Boyden chamber assays, the FAAH inhibitors, URB597 and arachidonoyl serotonin (AA-5HT), were found to increase the migration of human adipose-derived MSCs. LC-MS analyses revealed increased levels of all four aforementioned FAAH substrates in MSCs incubated with either FAAH inhibitor. Following addition to MSCs, all FAAH substrates mimicked the promigratory action of FAAH inhibitors. Promigratory effects of FAAH inhibitors and substrates were causally linked to activation of p42/44 MAPKs, as well as to cytosol-to-nucleus translocation of the transcription factor, PPARα. Whereas PPARα activation by FAAH inhibitors and substrates became reversed upon inhibition of p42/44 MAPK activation, a blockade of PPARα left p42/44 MAPK phosphorylation unaltered. Collectively, these data demonstrate FAAH inhibitors and substrates to cause p42/44 MAPK phosphorylation, which subsequently activates PPARα to confer increased migration of MSCs. This novel pathway may be involved in regenerative effects of endocannabinoids whose degradation could be a target of pharmacological intervention by FAAH inhibitors.
Collapse
Affiliation(s)
- Yvonne Wollank
- Institute of Toxicology and Pharmacology, Rostock University Medical Center, D-18057 Rostock, Germany Department of Cell Biology, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Robert Ramer
- Institute of Toxicology and Pharmacology, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Igor Ivanov
- Institute of Toxicology and Pharmacology, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Achim Salamon
- Department of Cell Biology, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Kirsten Peters
- Department of Cell Biology, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Burkhard Hinz
- Institute of Toxicology and Pharmacology, Rostock University Medical Center, D-18057 Rostock, Germany
| |
Collapse
|
25
|
The monoacylglycerol lipase inhibitor JZL184 decreases inflammatory response in skeletal muscle contusion in rats. Eur J Pharmacol 2015; 761:1-10. [PMID: 25912803 DOI: 10.1016/j.ejphar.2015.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/10/2015] [Accepted: 04/15/2015] [Indexed: 11/22/2022]
Abstract
Muscle wound healing process is a typical inflammation-evoked event. The monoacylglycerol lipase (MAGL) inhibitor (4-nitrophenyl)4-[bis(1,3-benzodioxol -5-yl)-hydroxymethyl]piperidine-1-carboxylate (JZL184) has been previously reported to reduce inflammation in colitis and acute lung injury in mice, which provide a new strategy for primary care of skeletal muscle injury. We investigated the effect of JZL184 on inflammation in rat muscle contusion model, and found decreased neutrophil and macrophage infiltration and pro-inflammatory cytokine expression. With extension of post-traumatic interval, myofiber regeneration was significantly hindered with increased collagen types I and ІІІ mRNAfibroblast infiltration as well as promoted fibrosis. Furthermore, 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-morpholin-4-ylpyrazole-3-carboxamide (AM281, a selective cannabinoid CB1 receptor antagonist) and [6-iodo-2-methyl-1-(2-morpholin-4-ylethyl)indol-3-yl]-(4-methoxyphenyl)methanone (AM630, a selective cannabinoid CB2 receptor antagonist) treatment alleviated the anti-inflammatory effect of JZL184. Our findings demonstrate that JZL184 is able to inhibit the inflammatory response and interfere with contused muscle healing, in which the anti-inflammatory action may be mediated through cannabinoid CB1 and CB2 receptors.
Collapse
|
26
|
Fan YY, Zhang ST, Yu LS, Ye GH, Lin KZ, Wu SZ, Dong MW, Han JG, Feng XP, Li XB. The time-dependent expression of α7nAChR during skeletal muscle wound healing in rats. Int J Legal Med 2014; 128:779-86. [PMID: 24781786 DOI: 10.1007/s00414-014-1001-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/16/2014] [Indexed: 11/30/2022]
Abstract
The study on time-dependent expression of α7 nicotine acetylcholine receptor (α7nAChR) was performed by immunohistochemistry, Western blotting, and real-time PCR during skeletal muscle wound healing in rats. Furthermore, co-localization of α7nAChR with macrophage or myofibroblast marker was detected by double immunofluorescence. A total of 50 Sprague-Dawley male rats were divided into control and contusion groups (3 h, 6 h, 12 h, 1 day, 3 days, 5 days, 7 days, 10 days, and 14 days post-injury). In the uninjured controls, α7nAChR positive staining was observed in the sarcolemma and sarcoplasm of normal myofibers. In wounded specimens, a small number of polymorphonuclear cells, a number of macrophages and myofibroblasts showed positive reaction for α7nAChR in contused zones. Morphometrically, the average ratios of α7nAChR-positive cells were over 50 % from 3 to 10 days after contusion, and exceeded 60 % at 5 and 7 days post-injury. Besides, the positive ratios of α7nAChR were <50 % at the other posttraumatic intervals. By Western blotting analysis, the average ratio of α7nAChR protein expression maximized at 7 days after injury, which was >2.13. Similarly, the relative quantity of α7nAChR mRNA expression peaked at 7 days post-wounding as compared with control by real-time PCR detection, showing a relative quantity of >2.65. In conclusion, the expression of α7nAChR is upregulated and temporally distributed in macrophages and myofibroblasts during skeletal muscle wound healing, which might be closely involved in inflammatory response and fibrotic repair after injury. Moreover, α7nAChR is promising as a useful marker for wound age determination of skeletal muscle.
Collapse
Affiliation(s)
- Yan-Yan Fan
- Department of Forensic Medicine, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, People's Republic of China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Schmuhl E, Ramer R, Salamon A, Peters K, Hinz B. Increase of mesenchymal stem cell migration by cannabidiol via activation of p42/44 MAPK. Biochem Pharmacol 2014; 87:489-501. [DOI: 10.1016/j.bcp.2013.11.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/22/2013] [Accepted: 11/22/2013] [Indexed: 12/27/2022]
|
28
|
Descalzi F, Ulivi V, Cancedda R, Piscitelli F, Luongo L, Guida F, Gatta L, Maione S, Di Marzo V. Platelet-Rich Plasma Exerts Antinociceptive Activity by a Peripheral Endocannabinoid-Related Mechanism. Tissue Eng Part A 2013; 19:2120-9. [DOI: 10.1089/ten.tea.2012.0557] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
| | - Valentina Ulivi
- DIMES, University of Genova, Genova, Italy
- IRCCS A.O.U. San Martino–IST, National Cancer Research Institute, Genova, Italy
| | - Ranieri Cancedda
- DIMES, University of Genova, Genova, Italy
- IRCCS A.O.U. San Martino–IST, National Cancer Research Institute, Genova, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group at the Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli (NA), Italy
| | - Livio Luongo
- Endocannabinoid Research Group at the Department of Experimental Medicine, Division of Pharmacology “L. Donatelli,” The Second University of Naples, Naples, Italy
| | - Francesca Guida
- Endocannabinoid Research Group at the Department of Experimental Medicine, Division of Pharmacology “L. Donatelli,” The Second University of Naples, Naples, Italy
| | - Luisa Gatta
- Endocannabinoid Research Group at the Department of Experimental Medicine, Division of Pharmacology “L. Donatelli,” The Second University of Naples, Naples, Italy
| | - Sabatino Maione
- Endocannabinoid Research Group at the Department of Experimental Medicine, Division of Pharmacology “L. Donatelli,” The Second University of Naples, Naples, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group at the Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli (NA), Italy
| |
Collapse
|
29
|
Du QX, Sun JH, Zhang LY, Liang XH, Guo XJ, Gao CR, Wang YY. Time-dependent expression of SNAT2 mRNA in the contused skeletal muscle of rats: a possible marker for wound age estimation. Forensic Sci Med Pathol 2013; 9:528-33. [PMID: 24045877 DOI: 10.1007/s12024-013-9482-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2013] [Indexed: 02/05/2023]
Abstract
To estimate the age of skeletal muscle contusion, the expression of SNAT2 mRNA in contused skeletal muscle of rats was detected by real-time polymerase chain reaction (PCR). In total, 78 Sprague-Dawley male rats were divided into control and contusion groups. At 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, and 48 h (n = 6) after contusion, the rats were sacrificed with a lethal dose of pentobarbital. Another 24 rats received contusion injuries at 6, 12, 18, and 24 h (n = 6) after death. Total RNA was isolated from muscle specimens using the TRIzol reagent and reverse-transcribed into first-strand cDNA. Sequence-specific primers and TaqMan fluorogenic probes for SNAT2 mRNA and RPL13 mRNA were designed using the AlleleID 6 software, and the expression levels of SNAT2 mRNA were determined by real-time PCR. At 4, 16, 20, and 24 h after contusion, expression levels of SNAT2 mRNA normalized to RPL13 mRNA increased by 2.07 (P < 0.05), 2.53 (P < 0.05), 2.68 (P < 0.05), and 2.06 fold (P < 0.05) respectively, versus that in the control group. However, there was no significant change in the expression level of SNAT2 mRNA from 24 to 48 h (P > 0.05) after contusion, when normalized to RPL13 mRNA. There was no change in the expression level of SNAT2 mRNA between the normal skeletal muscle from the left limb of the same injured rat and the control. Also, no degradation of SNAT2 mRNA was detected in the postmortem samples (P > 0.05). This result suggests that the determination of SNAT2 mRNA levels by real-time PCR may be useful for estimating wound age.
Collapse
Affiliation(s)
- Qiu-xiang Du
- Department of Forensic Pathology, Shanxi Medical University, 56 South Xinjian Nan Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
30
|
Zhao H, Liu J, Pan S, Sun Y, Li Q, Li F, Ma L, Guo Q. SOD mRNA and MDA expression in rectus femoris muscle of rats with different eccentric exercise programs and time points. PLoS One 2013; 8:e73634. [PMID: 24058480 PMCID: PMC3772806 DOI: 10.1371/journal.pone.0073634] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 07/30/2013] [Indexed: 01/28/2023] Open
Abstract
Purpose Although superoxide dismutase (SOD) and malondialdehyde (MDA) affect Delayed Onset Muscle Soreness (DOMS), their effects are unclear in rectus femoris muscles (RFM) of rats with different eccentric exercise programs and time points. The purpose of this study is to investigate the effects of the various eccentric exercise programs at different time points on the SOD mRNA expression and MDA using rat as the animal model. Methods 248 male rats were randomly divided into 4 groups: control group (CTL, n = 8), once-only exercise group (OEG, n = 80), continuous exercise group (CEG, n = 80), and intermittent exercise group (IEG, n = 80). Each exercise group was divided into 10 subgroups that exercised 0.5 h, 6 h, 12 h, 24 h, 48 h, 72 h, 96 h, 120 h, 144 h, or 168 h. Rats were sacrificed and their SOD mRNA expression, and MDA concentrations of skeletal muscle tissue were measured. Results The specimen in all eccentric exercise programs showed increased RFM SOD1 mRNA expression levels at 0.5 h (P<0.05), and decreased RFM SOD3 mRNA expression at 0.5 h (P<0.05). The continuous eccentric exercise (CE) significantly enhanced muscle SOD2 mRNA level at 0.5 h (P<0.05). After once-only eccentric exercise (OE), SOD1, SOD2, and SOD3 mRNA expression significantly increased at 96 h, whereas MDA concentrations decreased at 96 h. After CE, the correlation coefficients of SOD1, SOD2, SOD3 mRNA expression levels and MDA concentrations were −0.814, −0.763, −0.845 (all P<0.05) at 12 h. Conclusion Regular eccentric exercise, especially CE could enhance SOD1 and SOD2 mRNA expression in acute stage and the SOD2 mRNA expression correlates to MDA concentration in vivo, which may improve the oxidative adaption ability of skeletal muscles.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiani Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shinong Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
- * E-mail:
| | - Yingwei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Li
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fei Li
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Ma
- Central Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiyong Guo
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
31
|
Molecular pathology of brain edema after severe burns in forensic autopsy cases with special regard to the importance of reference gene selection. Int J Legal Med 2013; 127:881-9. [DOI: 10.1007/s00414-013-0868-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/26/2013] [Indexed: 12/13/2022]
|
32
|
Fan YY, Ye GH, Lin KZ, Yu LS, Wu SZ, Dong MW, Han JG, Feng XP, Li XB. Time-dependent expression and distribution of Egr-1 during skeletal muscle wound healing in rats. J Mol Histol 2012; 44:75-81. [PMID: 22918836 DOI: 10.1007/s10735-012-9445-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 08/14/2012] [Indexed: 12/26/2022]
Abstract
Recent studies have shown that early growth response factor-1 (Egr-1) plays an important role in regulation of inflammation and tissue repair, but little is known about its expression after trauma to skeletal muscles. A preliminary study on time-dependent expression and distribution of Egr-1 was performed by immunohistochemistry, immunofluorescence and Western blotting during skeletal muscle wound healing in rats. An animal model of skeletal muscle contusion was established in 45 Sprague-Dawley male rats. Samples were taken at 6 h, 12 h, 1 day, 3 days, 5 days, 7 days, 10 days, 14 days and 21 days post-injury, respectively (5 rats in each posttraumatic interval). 5 rats were employed as control. In the uninjured controls, Egr-1 positive staining was observed in the sarcoplasm and nuclei of normal myofibers. In wounded specimens, a small number of polymorphonuclear cells (PMNs), a number of mononuclear cells (MNCs), fibroblastic cells (FBCs) and regenerated multinucleated myotubes showed positive reaction for Egr-1 in contused zones. By morphometric analysis, an increase in Egr-1 expression was verified at inflammatory phase after contusion, which reached a peak in the regenerated phase overlapping with the fibrotic phase during skeletal muscle wound healing. The expression tendency was further confirmed by Western blotting assay. By immunofluorescent staining for co-localization, the Egr-1-positive MNCs and FBCs in wounds were identified as macrophages and myofibroblasts. The results demonstrate that the expression of Egr-1 is up-regulated and temporally distributed in certain cell types after trauma to skeletal muscles, which may be closely involved in inflammatory response, fibrotic repair and muscle regeneration during skeletal muscle wound healing.
Collapse
Affiliation(s)
- Yan-Yan Fan
- Department of Forensic Medicine, School of Basic Medical Science, Wenzhou Medical College, Higher Education District, Wenzhou, Zhejiang Province, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang Q, Ishikawa T, Michiue T, Zhu BL, Guan DW, Maeda H. Molecular pathology of pulmonary edema after injury in forensic autopsy cases. Int J Legal Med 2012; 126:875-82. [DOI: 10.1007/s00414-012-0758-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 07/31/2012] [Indexed: 11/30/2022]
|
34
|
Zheng JL, Yu TS, Li XN, Fan YY, Ma WX, Du Y, Zhao R, Guan DW. Cannabinoid receptor type 2 is time-dependently expressed during skin wound healing in mice. Int J Legal Med 2012; 126:807-14. [DOI: 10.1007/s00414-012-0741-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/03/2012] [Indexed: 12/23/2022]
|
35
|
Validation of differential gene expression in muscle engineered from rat groin adipose tissue by quantitative real-time PCR. Biochem Biophys Res Commun 2012; 421:736-42. [DOI: 10.1016/j.bbrc.2012.04.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/13/2012] [Indexed: 11/19/2022]
|
36
|
Ishida Y, Kimura A, Nosaka M, Kuninaka Y, Takayasu T, Eisenmenger W, Kondo T. Immunohistochemical analysis on cyclooxygenase-2 for wound age determination. Int J Legal Med 2012; 126:435-40. [DOI: 10.1007/s00414-012-0685-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 02/21/2012] [Indexed: 12/16/2022]
|
37
|
Validation of reference genes for estimating wound age in contused rat skeletal muscle by quantitative real-time PCR. Int J Legal Med 2011; 126:113-20. [DOI: 10.1007/s00414-011-0604-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/08/2011] [Indexed: 10/17/2022]
|
38
|
Ma WX, Yu TS, Fan YY, Zhang ST, Ren P, Wang SB, Zhao R, Pi JB, Guan DW. Time-dependent expression and distribution of monoacylglycerol lipase during the skin-incised wound healing in mice. Int J Legal Med 2011; 125:549-58. [PMID: 21475958 DOI: 10.1007/s00414-011-0567-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
Abstract
The study investigated the expression of monoacylglycerol lipase (MGL) during the skin-incised wound healing in mice and applicability of the time-dependent expression of MGL to wound age determination by immunofluorescent staining, Western blotting, and real-time PCR. Furthermore, cell types were identified by double immunofluorescence. A total of 45 BALB/c male mice were used in this study. After a 1.5-cm-long incision in the central dorsum skin, mice were killed at intervals ranging from 6 h to 14 days, followed by the sampling of wound margin. In the control, there was a low-level expression of MGL in the epidermis, hair follicles, and glandulae sebaceae. In the injured skin, MGL immunoreactivity was mainly detected in the neutrophils, macrophages, and myofibroblasts. Morphometrically, the average ratios of MGL-positive cells were more than 50% at 5 and 7 days post-wounding, whereas it was <50% at the other posttraumatic intervals. By Western blotting analysis, the average ratio of MGL protein expression was highest at 5 days after injury, which had a ratio of >2.30. Similarly, the relative quantity of MGL mRNA expression maximized at posttraumatic 5 days in comparison with control as detected by real-time PCR, with an average ratio of >2.54. In conclusion, MGL expression is detected in neutrophils, macrophages, and myofibroblasts and significantly up-regulated, suggesting that it may play roles in response to inflammation during skin-incised wound healing. From the viewpoint of forensic pathology, MGL detection is applicable to skin wound age determination.
Collapse
Affiliation(s)
- Wen-Xiang Ma
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.92, Beier Road, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Nicotinic acetylcholine receptor α7 subunit is time-dependently expressed in distinct cell types during skin wound healing in mice. Histochem Cell Biol 2011; 135:375-87. [PMID: 21437621 DOI: 10.1007/s00418-011-0798-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2011] [Indexed: 02/07/2023]
Abstract
Recent studies have shown that nicotinic acetylcholine receptor alpha7 subunit (nAChRα7) plays an important role in regulation of inflammation, angiogenesis and keratinocyte biology, but little is known about its expression after the skin is wounded. A preliminary study on time-dependent expression and distribution of nAChRα7 was performed by immunohistochemistry, Western blotting and RT-PCR during skin wound healing in mice. After a 1-cm-long incision was made in the skin of the central dorsum, mice were killed at intervals ranging from 6 h to 14 days post-injury. In uninjured skin controls, nAChRα7 positive staining was observed in epidermis, hair follicles, sebaceous glands, vessel endothelium and resident dermal fibroblastic cells. In wounded specimens, a small number of polymorphonuclear cells, a large number of mononuclear cells (MNCs) and fibroblastic cells (FBCs) showed positive reaction for nAChRα7 in the wound zones. Simultaneously, nAChRα7 immunoreactivity was evident in endothelial-like cells of regenerated vessels and neoepidermis. By morphometric analysis, an up-regulation of nAChRα7 expression was verified at the inflammatory phase after skin injury and reached a peak at the proliferative phase of wound healing. The expression tendency was further confirmed by Western blotting and RT-PCR assay. By immunofluorescent staining for co-localization, the nAChRα7-positive MNCs and FBCs in skin wounds were identified as macrophages, fibrocytes and myofibroblasts. A number of nAChRα7-positive myofibroblasts were also CD45 positive, indicating that they originated from differentiation of fibrocytes. The results demonstrate that nAChRα7 is time-dependently expressed in distinct cell types, which may be closely involved in inflammatory response and repair process during skin wound healing.
Collapse
|