1
|
Fang T, Yue L, Longlong Z, Longda M, Fang H, Yehui L, Yang L, Yiwu Z. Peripherin: A proposed biomarker of traumatic axonal injury triggered by mechanical force. Eur J Neurosci 2023; 58:3206-3225. [PMID: 37574217 DOI: 10.1111/ejn.16111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023]
Abstract
Traumatic axonal injury (TAI) is one of the most common pathological features of severe traumatic brain injury (TBI). Our previous study using proteomics suggested that peripherin (PRPH) should be a potential candidate as a biomarker for TAI diagnosis. This study is to further elucidate the role and association of PRPH with TAI. In the animal study, we performed immunohistochemistry, ELISA and morphological analysis to evaluate PRPH level and distribution following a severe impact. PRPH-positive regions were widely distributed in the axonal tract throughout the whole brain. Axonal injuries with PRPH inclusion were observed post-TBI. Besides, PRPH was significantly increased in both cerebral spinal fluid and plasma at the early phase post-TBI. Colocalization analysis based on microscopy revealed that PRPH represents an immunohistological biomarker in the neuropathological diagnosis of TAI. Brain samples from patients with TBI were included to further test whether PRPH is feasible in the real practice of neuropathology. Immunohistochemistry of PRPH, NFH, APP and NFL on human brain tissues further confirmed PRPH as an immunohistological biomarker that could be applied in practice. Collectively, we conclude that PRPH mirrors the cytoskeleton injury of axons and could represent a neuropathological biomarker for TAI.
Collapse
Affiliation(s)
- Tong Fang
- Department of Neurology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Physiology and Biochemistry, College of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Yue
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathology, Shanghai Medicilon Inc., Shanghai, China
| | - Zhu Longlong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ma Longda
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huang Fang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lv Yehui
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Human Anatomy and Histology, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Li Yang
- Institute of Forensic Science, Ministry of Public Security, People's Republic of China, Beijing, China
| | - Zhou Yiwu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Role of integrin and its potential as a novel postmortem biomarker in traumatic axonal injury. Int J Legal Med 2022; 137:843-849. [PMID: 36562807 DOI: 10.1007/s00414-022-02938-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Traumatic axonal injury (TAI) accounts for a large proportion of the mortality of traumatic brain injury (TBI). The diagnosis of TAI is currently of limited use for medicolegal purposes. It is known that axons in TAI are diffusely damaged by secondary processes other than direct head injury. However, the physiopathological mechanism of TAI is still elusive. The present study used RGD peptide, an antagonist of the mechanotransduction protein integrin, to explore the role of integrin-transmitted mechanical signalling in the pathogenesis of rat TAI. The rats were subjected to a linearly accelerating load, and changes in beta-amyloid precursor protein (β-APP) expression, skeleton ultrastructure, skeleton protein neurofilament light (NF-L), and α-tubulin in the brainstem were observed, indicating that RGD could relieve the severity of axonal injury in TAI rats. In addition, the expression of β-integrin was stronger and centralized in the brainstem of the deceased died from TAI compared to other nonviolent causes. This study examined the pathophysiology and biomechanics of TAI and assessed the role of integrin in the injury of microtubules and neurofilaments in TAI. Thus, we propose that integrin-mediated cytoskeletal injury plays an important role in TAI and that integrin has the potential as a biomarker for TAI.
Collapse
|
3
|
Shah JS, Macaitis J, Lundquist B, Johnstone B, Coleman M, Jefferson MA, Glaser J, Rodriguez AR, Cardin S, Wang HC, Burdette A. Evaluating Thera-101 as a Low-Volume Resuscitation Fluid in a Model of Polytrauma. Int J Mol Sci 2022; 23:ijms232012664. [PMID: 36293520 PMCID: PMC9604349 DOI: 10.3390/ijms232012664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Traumatic brain injury (TBI) and hemorrhage remain challenging to treat in austere conditions. Developing a therapeutic to mitigate the associated pathophysiology is critical to meet this treatment gap, especially as these injuries and associated high mortality are possibly preventable. Here, Thera-101 (T-101) was evaluated as low-volume resuscitative fluid in a rat model of TBI and hemorrhage. The therapeutic, T-101, is uniquely situated as a TBI and hemorrhage intervention. It contains a cocktail of proteins and microvesicles from the secretome of adipose-derived mesenchymal stromal cells that can act on repair and regenerative mechanisms associated with poly-trauma. T-101 efficacy was determined at 4, 24, 48, and 72 h post-injury by evaluating blood chemistry, inflammatory chemo/cytokines, histology, and diffusion tensor imaging. Blood chemistry indicated that T-101 reduced the markers of liver damage to Sham levels while the levels remained elevated with the control (saline) resuscitative fluid. Histology supports the potential protective effects of T-101 on the kidneys. Diffusion tensor imaging showed that the injury caused the most damage to the corpus callosum and the fimbria. Immunohistochemistry suggests that T-101 may mitigate astrocyte activation at 72 h. Together, these data suggest that T-101 may serve as a potential field deployable low-volume resuscitation therapeutic.
Collapse
Affiliation(s)
- Jessica Stukel Shah
- Naval Medical Research Unit San Antonio, Fort Sam Houston, San Antonio, TX 78234, USA
| | - Joseph Macaitis
- Naval Medical Research Unit San Antonio, Fort Sam Houston, San Antonio, TX 78234, USA
| | - Bridney Lundquist
- Naval Medical Research Unit San Antonio, Fort Sam Houston, San Antonio, TX 78234, USA
| | | | | | - Michelle A. Jefferson
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Veterinary Science Branch, San Antonio, TX 78234, USA
| | - Jacob Glaser
- Naval Medical Research Unit San Antonio, Fort Sam Houston, San Antonio, TX 78234, USA
| | - Annette R. Rodriguez
- Naval Medical Research Unit San Antonio, Fort Sam Houston, San Antonio, TX 78234, USA
| | - Sylvain Cardin
- Naval Medical Research Unit San Antonio, Fort Sam Houston, San Antonio, TX 78234, USA
| | - Heuy-Ching Wang
- Naval Medical Research Unit San Antonio, Fort Sam Houston, San Antonio, TX 78234, USA
- Correspondence: (H.-C.W.); (A.B.); Tel.: +1-210-539-7017 (H.-C.W.); +1-210-325-2668 (A.B.)
| | - Alexander Burdette
- Naval Medical Research Unit San Antonio, Fort Sam Houston, San Antonio, TX 78234, USA
- Correspondence: (H.-C.W.); (A.B.); Tel.: +1-210-539-7017 (H.-C.W.); +1-210-325-2668 (A.B.)
| |
Collapse
|
4
|
Hidden Truth in Cerebral Concussion—Traumatic Axonal Injury: A Narrative Mini-Review. Healthcare (Basel) 2022; 10:healthcare10050931. [PMID: 35628068 PMCID: PMC9141295 DOI: 10.3390/healthcare10050931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 01/25/2023] Open
Abstract
This study reviewed traumatic axonal injury (TAI) in patients with concussion. Concussion refers to transient changes in the neurological function of the brain resulting from head trauma that should not involve any organic brain injury. On the other hand, TAI has been reported in autopsy studies of the human brain and histopathological studies of animal brains following concussion before the development of diffusion tensor imaging (DTI). The diagnosis of TAI in live patients with concussion is limited because of the low resolution of conventional brain magnetic resonance imaging. Since the first study by Arfanakis et al. in 2002, several hundred studies have reported TAI in patients with concussion using DTI. Furthermore, dozens of studies have demonstrated TAI using diffusion tensor tractography for various neural tracts in individual patients with concussion. Hence, DTI provides valuable data for the diagnosis of TAI in patients with concussion. Nevertheless, the confirmation of TAI in live patients with concussion can be limited because a histopathological study via a brain biopsy is required to confirm TAI. Accordingly, further studies for a diagnostic approach to TAI using DTI without a histopathological test in individual patients with concussion will be necessary in the clinical field.
Collapse
|
5
|
Kamal SR, Potukutchi S, Gelovani DJ, Bonomi RE, Kallakuri S, Cavanaugh JM, Mangner T, Conti A, Liu RS, Pasqualini R, Arap W, Sidman RL, Perrine SA, Gelovani JG. Spatial and temporal dynamics of HDACs class IIa following mild traumatic brain injury in adult rats. Mol Psychiatry 2022; 27:1683-1693. [PMID: 35027678 PMCID: PMC11629393 DOI: 10.1038/s41380-021-01369-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 11/09/2022]
Abstract
The fundamental role of epigenetic regulatory mechanisms involved in neuroplasticity and adaptive responses to traumatic brain injury (TBI) is gaining increased recognition. TBI-induced neurodegeneration is associated with several changes in the expression-activity of various epigenetic regulatory enzymes, including histone deacetylases (HDACs). In this study, PET/CT with 6-([18F]trifluoroacetamido)-1- hexanoicanilide ([18F]TFAHA) to image spatial and temporal dynamics of HDACs class IIa expression-activity in brains of adult rats subjected to a weight drop model of diffuse, non-penetrating, mild traumatic brain injury (mTBI). The mTBI model was validated by histopathological and immunohistochemical analyses of brain tissue sections for localization and magnitude of expression of heat-shock protein-70 kDa (HSP70), amyloid precursor protein (APP), cannabinoid receptor-2 (CB2), ionized calcium-binding adapter protein-1 (IBA1), histone deacetylase-4 and -5 (HDAC4 and HDAC5). In comparison to baseline, the expression-activities of HDAC4 and HDAC5 were downregulated in the hippocampus, nucleus accumbens, peri-3rd ventricular part of the thalamus, and substantia nigra at 1-3 days post mTBI, and remained low at 7-8 days post mTBI. Reduced levels of HDAC4 and HDAC5 expression observed in neurons of these brain regions post mTBI were associated with the reduced nuclear and neuropil levels of HDAC4 and HDAC5 with the shift to perinuclear localization of these enzymes. These results support the rationale for the development of therapeutic strategies to upregulate expression-activity of HDACs class IIa post-TBI. PET/CT (MRI) with [18F]TFAHA can facilitate the development and clinical translation of unique therapeutic approaches to upregulate the expression and activity of HDACs class IIa enzymes in the brain after TBI.
Collapse
Affiliation(s)
- Swatabdi R Kamal
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Shreya Potukutchi
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - David J Gelovani
- School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Robin E Bonomi
- School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Srinivasu Kallakuri
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - John M Cavanaugh
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Thomas Mangner
- Cyclotron-Radiochemistry Facility, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Alana Conti
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, 48201, USA
- Departments of Neurosurgery and Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Ren-Shyan Liu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
- Department of Nuclear Medicine, Cheng-Hsin General Hospital, Taipei, 112, Taiwan
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Renata Pasqualini
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
- Rutgers Cancer Institute of New Jersey, Newark, NJ, 07103, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ, 07103, USA
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Richard L Sidman
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Juri G Gelovani
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI, 48201, USA.
- Molecular Imaging Program, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA.
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE.
| |
Collapse
|
6
|
Mi Z, Liu H, Rose ME, Ma J, Reay DP, Ma X, Henchir JJ, Dixon CE, Graham SH. Mutation of a Ubiquitin Carboxy Terminal Hydrolase L1 Lipid Binding Site Alleviates Cell Death, Axonal Injury, and Behavioral Deficits After Traumatic Brain Injury in Mice. Neuroscience 2021; 475:127-136. [PMID: 34508847 DOI: 10.1016/j.neuroscience.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/19/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022]
Abstract
Ubiquitin carboxy terminal hydrolase L1 (UCHL1) is a protein highly expressed in neurons that may play important roles in the ubiquitin proteasome pathway (UPP) in neurons, axonal integrity, and motor function after traumatic brain injury (TBI). Binding of reactive lipid species to cysteine 152 of UCHL1 results in unfolding, aggregation, and inactivation of the enzyme. To test the role of this mechanism in TBI, mice bearing a cysteine to alanine mutation at site 152 (C152A mice) that renders UCHL1 resistant to inactivation by reactive lipids were subjected to the controlled cortical impact model (CCI) of TBI and compared to wild type (WT) controls. Alterations in protein ubiquitination and activation of autophagy pathway markers in traumatized brain were detected by immunoblotting. Cell death and axonal injury were determined by histological assessment and anti-amyloid precursor protein (APP) immunohistochemistry. Behavioral outcomes were determined using the beam balance and Morris water maze tests. C152A mice had reduced accumulation of ubiquitinated proteins, decreased activation of the autophagy markers Beclin-1 and LC3B, a decreased number of abnormal axons, decreased CA1 cell death, and improved motor and cognitive function compared to WT controls after CCI; no significant change in spared tissue volume was observed. These results suggest that binding of lipid substrates to cysteine 152 of UCHL1 is important in the pathogenesis of injury and recovery after TBI and may be a novel target for future therapeutic approaches.
Collapse
Affiliation(s)
- Zhiping Mi
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA; Department of Neurology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15213, USA.
| | - Hao Liu
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA; Department of Neurology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15213, USA
| | - Marie E Rose
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA; Department of Neurology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15213, USA.
| | - Jie Ma
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA; Department of Neurology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15213, USA.
| | - Daniel P Reay
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA; Department of Neurology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15213, USA.
| | - Xiecheng Ma
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA; Department of Neurosurgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Jeremy J Henchir
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA; Department of Neurosurgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA.
| | - C Edward Dixon
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA; Department of Neurosurgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA.
| | - Steven H Graham
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA; Department of Neurology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
7
|
Ndode-Ekane XE, Puigferrat Pérez MDM, Di Sapia R, Lapinlampi N, Pitkänen A. Reorganization of Thalamic Inputs to Lesioned Cortex Following Experimental Traumatic Brain Injury. Int J Mol Sci 2021; 22:6329. [PMID: 34199241 PMCID: PMC8231773 DOI: 10.3390/ijms22126329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/27/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022] Open
Abstract
Traumatic brain injury (TBI) disrupts thalamic and cortical integrity. The effect of post-injury reorganization and plasticity in thalamocortical pathways on the functional outcome remains unclear. We evaluated whether TBI causes structural changes in the thalamocortical axonal projection terminals in the primary somatosensory cortex (S1) that lead to hyperexcitability. TBI was induced in adult male Sprague Dawley rats with lateral fluid-percussion injury. A virus carrying the fluorescent-tagged opsin channel rhodopsin 2 transgene was injected into the ventroposterior thalamus. We then traced the thalamocortical pathways and analyzed the reorganization of their axonal terminals in S1. Next, we optogenetically stimulated the thalamocortical relays from the ventral posterior lateral and medial nuclei to assess the post-TBI functionality of the pathway. Immunohistochemical analysis revealed that TBI did not alter the spatial distribution or lamina-specific targeting of projection terminals in S1. TBI reduced the axon terminal density in the motor cortex by 44% and in S1 by 30%. A nematic tensor-based analysis revealed that in control rats, the axon terminals in layer V were orientated perpendicular to the pial surface (60.3°). In TBI rats their orientation was more parallel to the pial surface (5.43°, difference between the groups p < 0.05). Moreover, the level of anisotropy of the axon terminals was high in controls (0.063) compared with TBI rats (0.045, p < 0.05). Optical stimulation of the sensory thalamus increased alpha activity in electroencephalography by 312% in controls (p > 0.05) and 237% (p > 0.05) in TBI rats compared with the baseline. However, only TBI rats showed increased beta activity (33%) with harmonics at 5 Hz. Our findings indicate that TBI induces reorganization of thalamocortical axonal terminals in the perilesional cortex, which alters responses to thalamic stimulation.
Collapse
Affiliation(s)
- Xavier Ekolle Ndode-Ekane
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (M.d.M.P.P.); (R.D.S.); (N.L.); (A.P.)
| | | | | | | | | |
Collapse
|
8
|
Sinke MRT, Otte WM, Meerwaldt AE, Franx BAA, Ali MHM, Rakib F, van der Toorn A, van Heijningen CL, Smeele C, Ahmed T, Blezer ELA, Dijkhuizen RM. Imaging Markers for the Characterization of Gray and White Matter Changes from Acute to Chronic Stages after Experimental Traumatic Brain Injury. J Neurotrauma 2021; 38:1642-1653. [PMID: 33198560 DOI: 10.1089/neu.2020.7151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite clinical symptoms, a large majority of people with mild traumatic brain injury (TBI) have normal computed tomography (CT) and magnetic resonance imaging (MRI) scans. Therefore, present-day neuroimaging tools are insufficient to diagnose or classify low grades of TBI. Advanced neuroimaging techniques, such as diffusion-weighted and functional MRI, may yield novel biomarkers that may aid in the diagnosis of TBI. Therefore, the present study had two aims: first, to characterize the development of MRI-based measures of structural and functional changes in gray and white matter regions from acute to chronic stages after mild and moderate TBI; and second, to identify the imaging markers that can most accurately predict outcome after TBI. To these aims, 52 rats underwent serial functional (resting-state) and structural (T1-, T2-, and diffusion-weighted) MRI before and 1 h, 1 day, 1 week, 1 month and 3-4 months after mild or moderate experimental TBI. All rats underwent behavioral testing. Histology was performed in subgroups of rats at different time points. Early after moderate TBI, axial and radial diffusivities were increased, and fractional anisotropy was reduced in the corpus callosum and bilateral hippocampi, which normalized over time and was paralleled by recovery of sensorimotor function. Correspondingly, histology revealed decreased myelin staining early after TBI, which was not detected at chronic stages. No significant changes in individual outcome measures were detected after mild TBI. However, multivariate analysis showed a significant additive contribution of diffusion parameters in the distinction between control and different grades of TBI-affected brains. Therefore, combining multiple imaging markers may increase the sensitivity for TBI-related pathology.
Collapse
Affiliation(s)
- Michel R T Sinke
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Willem M Otte
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078.,UMC Utrecht Brain Center, Department of Child Neurology, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Anu E Meerwaldt
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Bart A A Franx
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Mohamed H M Ali
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Fazle Rakib
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Annette van der Toorn
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Caroline L van Heijningen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Christel Smeele
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Tariq Ahmed
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Erwin L A Blezer
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| |
Collapse
|
9
|
Xia X, Zhou C, Sun X, He X, Liu C, Wang G. Estrogen improved the regeneration of axons after subcortical axon injury via regulation of PI3K/Akt/CDK5/Tau pathway. Brain Behav 2020; 10:e01777. [PMID: 32755041 PMCID: PMC7507494 DOI: 10.1002/brb3.1777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
AIM To investigate the effect of estrogen on axon regeneration and neurological recovery after subcortical axon injury, and further explore its underlying molecular mechanisms. METHOD Subcortical axonal fiber injury model was used in this study. Morris water maze was conducted to detect the learning and memory ability of the rats; modified neurological severity score (mNSS) and beam walking test were performed to evaluate the behavioral; and diffusion tensor imaging (DTI) was used for the determination of recovery after subcortical axonal injury, while Western blotting was performed to detect the expression of p-Akt, CDK5, p-Ser262, p-Ser404, and p-Thr205. RESULTS Compared with the Sham group, the injury of subcortical axonal fiber resulted in higher mNSS, higher beam walking scores, longer time of escape latency, less number, time and shorter distance of crossing the quadrant, and less FA values. After ovariectomy, the mNSS, beam walking scores, and escape latency reached the peak; inversely, the others reached a minimum. High estrogen treatment reduced the mNSS, beam walking score, and escape latency; improved the number, time, and distance of crossing the quadrant; and increased the FA value. Western blotting results showed that estrogen increased the expression of p-Akt and decreased the expression of CDK5, p-Ser262, p-Ser404, and p-Thr205. All the changes were counteracted to some extent by Akt inhibitor LY294002. CONCLUSION After subcortical axonal injury, estrogen could improve the regeneration of axons and improve their functions via regulating the PI3K/Akt/CDK5/Tau pathway.
Collapse
Affiliation(s)
- Xiaohui Xia
- Department of NeurosurgeryYongchuan HospitalChongqing Medical UniversityChongqingChina
| | - Changlong Zhou
- Department of NeurosurgeryYongchuan HospitalChongqing Medical UniversityChongqingChina
| | - Xiaochuan Sun
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xuenong He
- Department of NeurosurgeryYongchuan HospitalChongqing Medical UniversityChongqingChina
| | - Chang Liu
- Department of NeurosurgeryYongchuan HospitalChongqing Medical UniversityChongqingChina
| | - Guanyu Wang
- Department of NeurosurgeryYongchuan HospitalChongqing Medical UniversityChongqingChina
| |
Collapse
|
10
|
Müller HP, Roselli F, Rasche V, Kassubek J. Diffusion Tensor Imaging-Based Studies at the Group-Level Applied to Animal Models of Neurodegenerative Diseases. Front Neurosci 2020; 14:734. [PMID: 32982659 PMCID: PMC7487414 DOI: 10.3389/fnins.2020.00734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
The understanding of human and non-human microstructural brain alterations in the course of neurodegenerative diseases has substantially improved by the non-invasive magnetic resonance imaging (MRI) technique of diffusion tensor imaging (DTI). Animal models (including disease or knockout models) allow for a variety of experimental manipulations, which are not applicable to humans. Thus, the DTI approach provides a promising tool for cross-species cross-sectional and longitudinal investigations of the neurobiological targets and mechanisms of neurodegeneration. This overview with a systematic review focuses on the principles of DTI analysis as used in studies at the group level in living preclinical models of neurodegeneration. The translational aspect from in-vivo animal models toward (clinical) applications in humans is covered as well as the DTI-based research of the non-human brains' microstructure, the methodological aspects in data processing and analysis, and data interpretation at different abstraction levels. The aim of integrating DTI in multiparametric or multimodal imaging protocols will allow the interrogation of DTI data in terms of directional flow of information and may identify the microstructural underpinnings of neurodegeneration-related patterns.
Collapse
Affiliation(s)
| | - Francesco Roselli
- Department of Neurology, University of Ulm, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal MRI, University of Ulm, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| |
Collapse
|
11
|
Joubert C, Mathais Q, Faivre A, Dagain A. Post-traumatic central non-pupil-sparing oculomotor palsy: a case report. Acta Neurol Belg 2020; 120:765-767. [PMID: 32048229 DOI: 10.1007/s13760-020-01293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 01/30/2020] [Indexed: 11/26/2022]
Affiliation(s)
- C Joubert
- Department of Neurosurgery, Sainte Anne Military Hospital, 2 Boulevard Sainte Anne, BP 600, 83000, Toulon, France.
| | - Q Mathais
- Intensive Care Unit, Sainte Anne Military Hospital, Toulon, France
| | - A Faivre
- Department of Neurology, Sainte Anne Military Hospital, Toulon, France
| | - A Dagain
- Department of Neurosurgery, Sainte Anne Military Hospital, 2 Boulevard Sainte Anne, BP 600, 83000, Toulon, France
| |
Collapse
|
12
|
Huang ZJ, Cao F, Wu Y, Peng JH, Zhong JJ, Jiang Y, Yin C, Guo ZD, Sun XC, Jiang L, Cheng CJ. Apolipoprotein E promotes white matter remodeling via the Dab1-dependent pathway after traumatic brain injury. CNS Neurosci Ther 2020; 26:698-710. [PMID: 32115899 PMCID: PMC7298982 DOI: 10.1111/cns.13298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/24/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction Axonal injury results in long‐term neurological deficits in traumatic brain injury (TBI) patients. Apolipoprotein E (ApoE) has been reported to activate intracellular adaptor protein Disabled‐1 (Dab1) phosphorylation via its interaction with ApoE receptors. The Dab1 pathway acts as a regulator of axonal outgrowth and growth cone formation in the brain. Aims We hypothesized that ApoE may alleviate axonal injury and regulate axonal regeneration via the Dab1 pathway after TBI. Results In this study, we established a model of controlled cortical impact (CCI) to mimic TBI in vivo. Using diffusion tensor imaging to detect white matter integrity, we demonstrated that APOE‐deficient mice exhibited lower fractional anisotropy (FA) values than APOE+/+ mice at 28 days after injury. The expression levels of axonal regeneration and synapse plasticity biomarkers, including growth‐associated protein 43 (GAP43), postsynaptic density protein 95 (PSD‐95), and synaptophysin, were also lower in APOE‐deficient mice. In contrast, APOE deficiency exerted no effects on the levels of myelin basic protein (MBP) expression, oligodendrocyte number, or oligodendrocyte precursor cell number. Neurological severity score (NSS) and behavioral measurements in the rotarod, Morris water maze, and Y maze tests revealed that APOE deficiency caused worse neurological deficits in CCI mice. Furthermore, Dab1 activation downregulation by the ApoE receptor inhibitor receptor‐associated protein (RAP) or Dab1 shRNA lentivirus attenuated the beneficial effects of ApoE on FA values, GAP43, PSD‐95, and synaptophysin expression, and neurological function tests. Additionally, the effects of ApoE on axonal regeneration were further validated in vitro. In a mechanical scratch injury model of primary cultured neurons, recombinant ApoE protein treatment enhanced axonal outgrowth and growth cone formation in injured neurons; however, these effects were attenuated by Dab1 shRNA, consistent with the in vivo results. Conclusion Collectively, these data suggest that ApoE promotes axonal regeneration partially through the Dab1 pathway, thereby contributing to functional recovery following TBI.
Collapse
Affiliation(s)
- Zhi-Jian Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fang Cao
- Department of Cerebrovascular, The Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Yue Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Hua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian-Jun Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cheng Yin
- Department of Neurosurgery, Affiliated Hospital of the University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, China
| | - Zong-Duo Guo
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Chuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chong-Jie Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Castaño-Leon AM, Cicuendez M, Navarro B, Paredes I, Munarriz PM, Cepeda S, Hilario A, Ramos A, Gomez PA, Lagares A. Longitudinal Analysis of Corpus Callosum Diffusion Tensor Imaging Metrics and Its Association with Neurological Outcome. J Neurotrauma 2019; 36:2785-2802. [PMID: 30963801 DOI: 10.1089/neu.2018.5978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Traumatic axonal injury (TAI) is the main cause of cognitive and psychological disfunction after a traumatic brain injury (TBI). Diffusion tensor imaging (DTI) is considered a useful technique for indirect assessment of white matter (WM) integrity after a TBI. Scattered WM alterations and its relationship with patient severity have been discovered in normal appearing conventional magnetic resonance imaging (MRI) studies based on DTI sequences. However, there is a lack of large sample studies on the longitudinal changes of DTI metrics to be used to determine the temporal profile after head injury and its association with patient outcome. We performed a prospective observational study in 118 moderate-to-severe TBI patients. The study included clinical outcome assessment based on the Glasgow Outcome Scale Extended (GOSE) and serial DTI studies in the early subacute setting (< 60 days) and 6 and 12 months after injury. Fractional anisotropy (FA) and axial and radial diffusivities (AD and RD, respectively) were measured in the three portions of corpus callosum (genu, body, splenium) at each time-point and compared with normalized values from an age-matched control group. Longitudinal FA analysis and its correlation with patient improvement also was done by non-parametric testing and ordinal regression analysis. Our main results indicated that between all the time-points, dynamic changes in DTI metrics in all three portions of corpus callosum were detected, but TBI patients continued to show significantly lower FA and AD values and higher RD values compared with controls. We also have discovered differences in the change of DTI metrics among different time-points in patient subgroups according with their outcome improvement. In conclusion, even without normalization of DTI metrics in the long-term, knowledge of the temporal profile of change in DTI metrics can provide important information about patients' clinical recovery after TBI.
Collapse
Affiliation(s)
- Ana M Castaño-Leon
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Marta Cicuendez
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Blanca Navarro
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Igor Paredes
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Pablo M Munarriz
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Santiago Cepeda
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Amaya Hilario
- Department of Radiology, Hospital Universitario 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Ana Ramos
- Department of Radiology, Hospital Universitario 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Pedro A Gomez
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Alfonso Lagares
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
14
|
Agoston DV, Vink R, Helmy A, Risling M, Nelson D, Prins M. How to Translate Time: The Temporal Aspects of Rodent and Human Pathobiological Processes in Traumatic Brain Injury. J Neurotrauma 2019; 36:1724-1737. [PMID: 30628544 PMCID: PMC7643768 DOI: 10.1089/neu.2018.6261] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) triggers multiple pathobiological responses with differing onsets, magnitudes, and durations. Identifying the therapeutic window of individual pathologies is critical for successful pharmacological treatment. Dozens of experimental pharmacotherapies have been successfully tested in rodent models, yet all of them (to date) have failed in clinical trials. The differing time scales of rodent and human biological and pathological processes may have contributed to these failures. We compared rodent versus human time scales of TBI-induced changes in cerebral glucose metabolism, inflammatory processes, axonal integrity, and water homeostasis based on published data. We found that the trajectories of these pathologies run on different timescales in the two species, and it appears that there is no universal "conversion rate" between rodent and human pathophysiological processes. For example, the inflammatory process appears to have an abbreviated time scale in rodents versus humans relative to cerebral glucose metabolism or axonal pathologies. Limitations toward determining conversion rates for various pathobiological processes include the use of differing outcome measures in experimental and clinical TBI studies and the rarity of longitudinal studies. In order to better translate time and close the translational gap, we suggest 1) using clinically relevant outcome measures, primarily in vivo imaging and blood-based proteomics, in experimental TBI studies and 2) collecting data at multiple post-injury time points with a frequency exceeding the expected information content by two or three times. Combined with a big data approach, we believe these measures will facilitate the translation of promising experimental treatments into clinical use.
Collapse
Affiliation(s)
- Denes V. Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland
| | - Robert Vink
- Division of Health Science, University of South Australia, Adelaide, Australia
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - David Nelson
- Department of Physiology and Pharmacology, Section of Perioperative Medicine and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Mayumi Prins
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
15
|
Ubukata S, Oishi N, Sugihara G, Aso T, Fukuyama H, Murai T, Ueda K. Transcallosal Fiber Disruption and its Relationship with Corresponding Gray Matter Alteration in Patients with Diffuse Axonal Injury. J Neurotrauma 2019; 36:1106-1114. [DOI: 10.1089/neu.2018.5823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Shiho Ubukata
- Department of Psychiatry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
- Medical Innovation Center, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Naoya Oishi
- Medical Innovation Center, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Genichi Sugihara
- Department of Psychiatry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Toshihiko Aso
- Department of Psychiatry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
- Human Brain Research Center, Graduate School of Medicine, and Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Hidenao Fukuyama
- Beijing Institute of Technology, Beijing, China
- Research and Educational Unit of Leaders for Integrated Medical System, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Toshiya Murai
- Department of Psychiatry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Keita Ueda
- Department of Psychiatry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Agoston DV, Kamnaksh A. Protein biomarkers of epileptogenicity after traumatic brain injury. Neurobiol Dis 2019; 123:59-68. [PMID: 30030023 PMCID: PMC6800147 DOI: 10.1016/j.nbd.2018.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 12/15/2022] Open
Abstract
Traumatic brain injury (TBI) is a major risk factor for acquired epilepsy. Post-traumatic epilepsy (PTE) develops over time in up to 50% of patients with severe TBI. PTE is mostly unresponsive to traditional anti-seizure treatments suggesting distinct, injury-induced pathomechanisms in the development of this condition. Moderate and severe TBIs cause significant tissue damage, bleeding, neuron and glia death, as well as axonal, vascular, and metabolic abnormalities. These changes trigger a complex biological response aimed at curtailing the physical damage and restoring homeostasis and functionality. Although a positive correlation exists between the type and severity of TBI and PTE, there is only an incomplete understanding of the time-dependent sequelae of TBI pathobiologies and their role in epileptogenesis. Determining the temporal profile of protein biomarkers in the blood (serum or plasma) and cerebrospinal fluid (CSF) can help to identify pathobiologies underlying the development of PTE, high-risk individuals, and disease modifying therapies. Here we review the pathobiological sequelae of TBI in the context of blood- and CSF-based protein biomarkers, their potential role in epileptogenesis, and discuss future directions aimed at improving the diagnosis and treatment of PTE.
Collapse
Affiliation(s)
- Denes V Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, USA.
| | - Alaa Kamnaksh
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
17
|
Braeckman K, Descamps B, Pieters L, Vral A, Caeyenberghs K, Vanhove C. Dynamic changes in hippocampal diffusion and kurtosis metrics following experimental mTBI correlate with glial reactivity. NEUROIMAGE-CLINICAL 2019; 21:101669. [PMID: 30658945 PMCID: PMC6412089 DOI: 10.1016/j.nicl.2019.101669] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 01/05/2023]
Abstract
Diffusion magnetic resonance imaging biomarkers can provide quantifiable information of the brain tissue after a mild traumatic brain injury (mTBI). However, the commonly applied diffusion tensor imaging (DTI) model is not very specific to changes in the underlying cellular structures. To overcome these limitations, other diffusion models have recently emerged to provide a more complete view on the damage profile following TBI. In this study, we investigated longitudinal changes in advanced diffusion metrics following experimental mTBI, utilising three different diffusion models in a rat model of mTBI, including DTI, diffusion kurtosis imaging and a white matter model. Moreover, we investigated the association between the diffusion metrics with histological markers, including glial fibrillary acidic protein (GFAP), neurofilaments and synaptophysin in order to investigate specificity. Our results revealed significant decreases in mean diffusivity in the hippocampus and radial diffusivity and radial extra axonal diffusivity (RadEAD) in the cingulum one week post injury. Furthermore, correlation analysis showed that increased values of fractional anisotropy one day post injury in the hippocampus was highly correlated with GFAP reactivity three months post injury. Additionally, we observed a positive correlation between GFAP on one hand and the kurtosis parameters in the hippocampus on the other hand three months post injury. This result indicated that prolonged glial activation three months post injury is related to higher kurtosis values at later time points. In conclusion, our findings point out to the possible role of kurtosis metrics as well as metrics from the white matter model as prognostic biomarker to monitor prolonged glial reactivity and inflammatory responses after a mTBI not only at early timepoints but also several months after injury. Advanced diffusion metrics show longitudinal changes following mTBI Radial diffusivity (RD) and radial extra-axonal diffusivity ↓ in the cingulum Mean diffusivity ↓ in the hippocampus In the cingulum RD is continuously decreased until three months post injury Glial activity correlates with fractional anisotropy in hippocampus
Collapse
Affiliation(s)
- Kim Braeckman
- Infinity Lab, Medical Imaging and Signal Processing Group, UGent, Ghent, Belgium.
| | - Benedicte Descamps
- Infinity Lab, Medical Imaging and Signal Processing Group, UGent, Ghent, Belgium.
| | - Leen Pieters
- Department of Human Structure and Repair, UGent, Ghent, Belgium.
| | - Anne Vral
- Department of Human Structure and Repair, UGent, Ghent, Belgium.
| | - Karen Caeyenberghs
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia.
| | - Christian Vanhove
- Infinity Lab, Medical Imaging and Signal Processing Group, UGent, Ghent, Belgium.
| |
Collapse
|
18
|
Wang H, Zhu X, Liao Z, Xiang H, Ren M, Xu M, Zhao H. Novel-graded traumatic brain injury model in rats induced by closed head impacts. Neuropathology 2018; 38:484-492. [PMID: 30187543 DOI: 10.1111/neup.12509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Hao Wang
- Department of Neurosurgery, Daping Hospital; Third Military Medical University; Chongqing China
| | - Xiyan Zhu
- Chongqing Key Laboratory of Vehicle Crash/Bio-impact and Traffic Safety, Institute for Traffic Medicine; Third Military Medical University; Chongqing China
| | - Zhikang Liao
- Chongqing Key Laboratory of Vehicle Crash/Bio-impact and Traffic Safety, Institute for Traffic Medicine; Third Military Medical University; Chongqing China
| | - Hongyi Xiang
- Chongqing Key Laboratory of Vehicle Crash/Bio-impact and Traffic Safety, Institute for Traffic Medicine; Third Military Medical University; Chongqing China
| | - Mingliang Ren
- Department of Neurosurgery, Daping Hospital; Third Military Medical University; Chongqing China
| | - Minhui Xu
- Department of Neurosurgery, Daping Hospital; Third Military Medical University; Chongqing China
| | - Hui Zhao
- Chongqing Key Laboratory of Vehicle Crash/Bio-impact and Traffic Safety, Institute for Traffic Medicine; Third Military Medical University; Chongqing China
| |
Collapse
|
19
|
Budde MD, Skinner NP. Diffusion MRI in acute nervous system injury. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 292:137-148. [PMID: 29773299 DOI: 10.1016/j.jmr.2018.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/06/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Diffusion weighted magnetic resonance imaging (DWI) and related techniques such as diffusion tensor imaging (DTI) are uniquely sensitive to the microstructure of the brain and spinal cord. In the acute aftermath of nervous system injury, for example, DWI reveals changes caused by injury that remains invisible on other MRI contrasts such as T2-weighted imaging. This ability has led to a demonstrated clinical utility in cerebral ischemia. However, despite strong promise in preclinical models and research settings, DWI has not been as readily adopted for other acute injuries such as traumatic spinal cord, brain, or peripheral nerve injury. Furthermore, the precise biophysical mechanisms that underlie DWI and DTI changes are not fully understood. In this report, we review the DWI and DTI changes that occur in acute neurological injury of cerebral ischemia, spinal cord injury, traumatic brain injury, and peripheral nerve injury. Their associations with the underlying biology are examined with an emphasis on the role of acute axon and dendrite beading. Lastly, emerging DWI techniques to overcome the limitations of DTI are discussed as these may offer the needed improvements to translate to clinical settings.
Collapse
Affiliation(s)
- Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States.
| | - Nathan P Skinner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States; Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
20
|
Manivannan S, Makwana M, Ahmed AI, Zaben M. Profiling biomarkers of traumatic axonal injury: From mouse to man. Clin Neurol Neurosurg 2018; 171:6-20. [PMID: 29803093 DOI: 10.1016/j.clineuro.2018.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/05/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) poses a major public health problem on a global scale. Its burden results from high mortality and significant morbidity in survivors. This stems, in part, from an ongoing inadequacy in diagnostic and prognostic indicators despite significant technological advances. Traumatic axonal injury (TAI) is a key driver of the ongoing pathological process following TBI, causing chronic neurological deficits and disability. The science underpinning biomarkers of TAI has been a subject of many reviews in recent literature. However, in this review we provide a comprehensive account of biomarkers from animal models to clinical studies, bridging the gap between experimental science and clinical medicine. We have discussed pathogenesis, temporal kinetics, relationships to neuro-imaging, and, most importantly, clinical applicability in order to provide a holistic perspective of how this could improve TBI diagnosis and predict clinical outcome in a real-life setting. We conclude that early and reliable identification of axonal injury post-TBI with the help of body fluid biomarkers could enhance current care of TBI patients by (i) increasing speed and accuracy of diagnosis, (ii) providing invaluable prognostic information, (iii) allow efficient allocation of rehabilitation services, and (iv) provide potential therapeutic targets. The optimal model for assessing TAI is likely to involve multiple components, including several blood biomarkers and neuro-imaging modalities, at different time points.
Collapse
Affiliation(s)
- Susruta Manivannan
- Department of Neurosurgery, University Hospital of Wales, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | - Milan Makwana
- Department of Neurosurgery, University Hospital of Wales, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | - Aminul Islam Ahmed
- Clinical Neurosciences, University of Southampton, Southampton, SO16 6YD, United Kingdom; Wessex Neurological Centre, University Hospitals Southampton, Southampton, SO16 6YD, United Kingdom
| | - Malik Zaben
- Department of Neurosurgery, University Hospital of Wales, Heath Park, Cardiff, CF14 4XN, United Kingdom; Brain Repair & Intracranial Neurotherapeutics (BRAIN) Unit, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, United Kingdom.
| |
Collapse
|
21
|
Defining an Analytic Framework to Evaluate Quantitative MRI Markers of Traumatic Axonal Injury: Preliminary Results in a Mouse Closed Head Injury Model. eNeuro 2017; 4:eN-NWR-0164-17. [PMID: 28966972 PMCID: PMC5616192 DOI: 10.1523/eneuro.0164-17.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/17/2017] [Accepted: 08/05/2017] [Indexed: 01/11/2023] Open
Abstract
Diffuse axonal injury (DAI) is a hallmark of traumatic brain injury (TBI) pathology. Recently, the Closed Head Injury Model of Engineered Rotational Acceleration (CHIMERA) was developed to generate an experimental model of DAI in a mouse. The characterization of DAI using diffusion tensor magnetic resonance imaging (MRI; diffusion tensor imaging, DTI) may provide a useful set of outcome measures for preclinical and clinical studies. The objective of this study was to identify the complex neurobiological underpinnings of DTI features following DAI using a comprehensive and quantitative evaluation of DTI and histopathology in the CHIMERA mouse model. A consistent neuroanatomical pattern of pathology in specific white matter tracts was identified across ex vivo DTI maps and photomicrographs of histology. These observations were confirmed by voxelwise and regional analysis of DTI maps, demonstrating reduced fractional anisotropy (FA) in distinct regions such as the optic tract. Similar regions were identified by quantitative histology and exhibited axonal damage as well as robust gliosis. Additional analysis using a machine-learning algorithm was performed to identify regions and metrics important for injury classification in a manner free from potential user bias. This analysis found that diffusion metrics were able to identify injured brains almost with the same degree of accuracy as the histology metrics. Good agreement between regions detected as abnormal by histology and MRI was also found. The findings of this work elucidate the complexity of cellular changes that give rise to imaging abnormalities and provide a comprehensive and quantitative evaluation of the relative importance of DTI and histological measures to detect brain injury.
Collapse
|
22
|
Application of FTIR spectroscopy for traumatic axonal injury: a possible tool for estimating injury interval. Biosci Rep 2017; 37:BSR20170720. [PMID: 28659494 PMCID: PMC5567294 DOI: 10.1042/bsr20170720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/07/2017] [Accepted: 06/28/2017] [Indexed: 01/03/2023] Open
Abstract
Traumatic axonal injury (TAI) is a progressive and secondary injury following
traumatic brain injury (TBI). Despite extensive investigations in the field of
forensic science and neurology, no effective methods are available to estimate
TAI interval between injury and death. In the present study, Fourier transform
IR (FTIR) spectroscopy with IR microscopy was applied to collect IR spectra in
the corpus callosum (CC) of rats subjected to TAI at 12, 24, and 72 h
post-injury compared with control animals. The classification amongst different
groups was visualized based on the acquired dataset using hierarchical cluster
analysis (HCA) and partial least square (PLS). Furthermore, the established PLS
models were used to predict injury interval of TAI in the unknown sample
dataset. The results showed that samples at different time points post-injury
were distinguishable from each other, and biochemical changes in protein, lipid,
and carbohydrate contributed to the differences. Then, the established PLS
models provided a satisfactory prediction of injury periods between different
sample groups in the external validation. The present study demonstrated the
great potential of FTIR-based PLS algorithm as an objective tool for estimating
injury intervals of TAI in the field of forensic science and neurology.
Collapse
|
23
|
Kikinis Z, Muehlmann M, Pasternak O, Peled S, Kulkarni P, Ferris C, Bouix S, Rathi Y, Koerte IK, Pieper S, Yarmarkovich A, Porter CL, Kristal BS, Shenton ME. Diffusion imaging of mild traumatic brain injury in the impact accelerated rodent model: A pilot study. Brain Inj 2017; 31:1376-1381. [PMID: 28627942 PMCID: PMC5896003 DOI: 10.1080/02699052.2017.1318450] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 04/07/2017] [Indexed: 01/19/2023]
Abstract
PRIMARY OBJECTIVE There is a need to understand pathologic processes of the brain following mild traumatic brain injury (mTBI). Previous studies report axonal injury and oedema in the first week after injury in a rodent model. This study aims to investigate the processes occurring 1 week after injury at the time of regeneration and degeneration using diffusion tensor imaging (DTI) in the impact acceleration rat mTBI model. RESEARCH DESIGN Eighteen rats were subjected to impact acceleration injury, and three rats served as sham controls. Seven days post injury, DTI was acquired from fixed rat brains using a 7T scanner. Group comparison of Fractional Anisotropy (FA) values between traumatized and sham animals was performed using Tract-Based Spatial Statistics (TBSS), a method that we adapted for rats. MAIN OUTCOMES AND RESULTS TBSS revealed white matter regions of the brain with increased FA values in the traumatized versus sham rats, localized mainly to the contrecoup region. Regions of increased FA included the pyramidal tract, the cerebral peduncle, the superior cerebellar peduncle and to a lesser extent the fibre tracts of the corpus callosum, the anterior commissure, the fimbria of the hippocampus, the fornix, the medial forebrain bundle and the optic chiasm. CONCLUSION Seven days post injury, during the period of tissue reparation in the impact acceleration rat model of mTBI, microstructural changes to white matter can be detected using DTI.
Collapse
Affiliation(s)
- Zora Kikinis
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc Muehlmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sharon Peled
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Department of Psychology, Northeastern University, Boston, MA, USA
| | - Craig Ferris
- Center for Translational NeuroImaging, Department of Psychology, Northeastern University, Boston, MA, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Inga K. Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Steve Pieper
- Isomics, Inc., 55 Kirkland Street, Cambridge MA 02138 USA
| | | | - Caryn L. Porter
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruce S. Kristal
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Thomas AW, Watts R, Filippi CG, Nickerson JP, Andrews T, Lieberman G, Naylor MR, Eppstein MJ, Freeman K. Dynamic changes in diffusion measures improve sensitivity in identifying patients with mild traumatic brain injury. PLoS One 2017; 12:e0178360. [PMID: 28604837 PMCID: PMC5467843 DOI: 10.1371/journal.pone.0178360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/11/2017] [Indexed: 12/03/2022] Open
Abstract
The goal of this study was to investigate patterns of axonal injury in the first week after mild traumatic brain injury (mTBI). We performed a prospective cohort study of 20 patients presenting to the emergency department with mTBI, using 3.0T diffusion tensor MRI immediately after injury and again at 1 week post-injury. Corresponding data were acquired from 16 controls over a similar time interval. Fractional anisotropy (FA) and other diffusion measures were calculated from 11 a priori selected axon tracts at each time-point, and the change across time in each region was quantified for each subject. Clinical outcomes were determined by standardized neurocognitive assessment. We found that mTBI subjects were significantly more likely to have changes in FA in those 11 regions of interest across the one week time period, compared to control subjects whose FA measurements were stable across time. Longitudinal imaging was more sensitive to these subtle changes in white matter integrity than cross-sectional assessments at either of two time points, alone. Analyzing the sources of variance in our control population, we show that this increased sensitivity is likely due to the smaller within-subject variability obtained by longitudinal analysis with each subject as their own control. This is in contrast to the larger between-subject variability obtained by cross-sectional analysis of each individual subject to normalized data from a control group. We also demonstrated that inclusion of all a priori ROIs in an analytic model as opposed to measuring individual ROIs improves detection of white matter changes by overcoming issues of injury heterogeneity. Finally, we employed genetic programming (a bio-inspired computational method for model estimation) to demonstrate that longitudinal changes in FA have utility in predicting the symptomatology of patients with mTBI. We conclude concussive brain injury caused acute, measurable changes in the FA of white matter tracts consistent with evolving axonal injury and/or edema, which may contribute to post-concussive symptoms.
Collapse
Affiliation(s)
- Alexander W. Thomas
- Department of Surgery, University of Vermont, Burlington, Vermont, United States of America
| | - Richard Watts
- Department of Radiology, University of Vermont, Burlington, Vermont, United States of America
| | - Christopher G. Filippi
- Department of Neurology, University of Vermont, Burlington, Vermont, United States of America
- Hofstra North Shore LIJ School of Medicine; Hempstead, New York, United States of America
| | - Joshua P. Nickerson
- Department of Radiology, University of Vermont, Burlington, Vermont, United States of America
| | - Trevor Andrews
- Department of Radiology, University of Vermont, Burlington, Vermont, United States of America
- Philips HealthTech, Cleveland, Ohio, United States of America
| | - Gregory Lieberman
- Department of Psychiatry, University of Vermont, Burlington, Vermont, United States of America
- U.S. Army Research Laboratory, Human Research and Engineering Directorate, Aberdeen Proving Ground, Aberdeen, Maryland, United States of America
| | - Magdalena R. Naylor
- Department of Psychiatry, University of Vermont, Burlington, Vermont, United States of America
| | - Margaret J. Eppstein
- Department of Computer Science, University of Vermont, Burlington, Vermont, United States of America
| | - Kalev Freeman
- Department of Surgery, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
25
|
Bjork JM, Burroughs TK, Franke LM, Pickett TC, Johns SE, Moeller FG, Walker WC. Laboratory impulsivity and depression in blast-exposed military personnel with post-concussion syndrome. Psychiatry Res 2016; 246:321-325. [PMID: 27750113 DOI: 10.1016/j.psychres.2016.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/08/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
Abstract
In military populations, traumatic brain injury (TBI) also holds potential to increase impulsivity and impair mood regulation due to blast injury effects on ventral frontal cortex - to put military personnel at risk for suicide or substance abuse. We assessed a linkage between depression and impaired behavioral inhibition in 117 blast-exposed service members (SM) and veterans with post-concussion syndrome (PCS), where PCS was defined using a Rivermead Postconcussive Symptom Questionnaire (RPQ) modified to clarify whether each symptom worsened compared to pre-blast. Center for Epidemiological Studies-Depression Scale (CES-D) scores, PTSD Checklist 5 (PCL-5) scores, and RPQ raw subscale scores correlated positively with commission and perseverative errors on the continuous performance test II (CPT-II). In contrast, the number of RPQ symptoms ostensibly worsened post-blast did not correlate with impulsive errors on the CPT-II. These data replicate earlier findings that link increased affective symptomatology to impaired behavior inhibition in military TBI populations, but where additional effects on impulsivity from the blast itself remain equivocal.
Collapse
Affiliation(s)
- James M Bjork
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, USA; Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA.
| | - Thomas K Burroughs
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, USA
| | - Laura M Franke
- Defense and Veterans Brain Injury Center, Richmond, VA, USA; Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Treven C Pickett
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, USA; Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Sade E Johns
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - F Gerard Moeller
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - William C Walker
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, USA; Defense and Veterans Brain Injury Center, Richmond, VA, USA; Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
26
|
De Giglio L, Upadhyay N, De Luca F, Prosperini L, Tona F, Petsas N, Pozzilli C, Pantano P. Corpus callosum microstructural changes associated with Kawashima Nintendo Brain Training in patients with multiple sclerosis. J Neurol Sci 2016; 370:211-213. [DOI: 10.1016/j.jns.2016.09.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 12/24/2022]
|
27
|
Merchant-Borna K, Asselin P, Narayan D, Abar B, Jones CMC, Bazarian JJ. Novel Method of Weighting Cumulative Helmet Impacts Improves Correlation with Brain White Matter Changes After One Football Season of Sub-concussive Head Blows. Ann Biomed Eng 2016; 44:3679-3692. [PMID: 27350072 DOI: 10.1007/s10439-016-1680-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 06/14/2016] [Indexed: 01/05/2023]
Abstract
One football season of sub-concussive head blows has been shown to be associated with subclinical white matter (WM) changes on diffusion tensor imaging (DTI). Prior research analyses of helmet-based impact metrics using mean and peak linear and rotational acceleration showed relatively weak correlations to these WM changes; however, these analyses failed to account for the emerging concept that neuronal vulnerability to successive hits is inversely related to the time between hits (TBH). To develop a novel method for quantifying the cumulative effects of sub-concussive head blows during a single season of collegiate football by weighting helmet-based impact measures for time between helmet impacts. We further aim to compare correlations to changes in DTI after one season of collegiate football using weighted cumulative helmet-based impact measures to correlations using non-weighted cumulative helmet-based impact measures and non-cumulative measures. We performed a secondary analysis of DTI and helmet impact data collected on ten Division III collegiate football players during the 2011 season. All subjects underwent diffusion MR imaging before the start of the football season and within 1 week of the end of the football season. Helmet impacts were recorded at each practice and game using helmet-mounted accelerometers, which computed five helmet-based impact measures for each hit: linear acceleration (LA), rotational acceleration (RA), Gadd Severity Index (GSI), Head Injury Criterion (HIC15), and Head Impact Technology severity profile (HITsp). All helmet-based impact measures were analyzed using five methods of summary: peak and mean (non-cumulative measures), season sum-totals (cumulative unweighted measures), and season sum-totals weighted for time between hits (TBH), the interval of time from hit to post-season DTI assessment (TUA), and both TBH and TUA combined. Summarized helmet-based impact measures were correlated to statistically significant changes in fractional anisotropy (FA) using bivariate and multivariable correlation analyses. The resulting R 2 values were averaged in each of the five summary method groups and compared using one-way ANOVA followed by Tukey post hoc tests for multiple comparisons. Total head hits for the season ranged from 431 to 1850. None of the athletes suffered a clinically evident concussion during the study period. The mean R 2 value for the correlations using cumulative helmet-based impact measures weighted for both TUA and TBH combined (0.51 ± 0.03) was significantly greater than the mean R 2 value for correlations using non-cumulative HIMs (vs. 0.19 ± 0.04, p < 0.0001), unweighted cumulative helmet-based impact measures (vs. 0.27 + 0.03, p < 0.0001), and cumulative helmet-based impact measures weighted for TBH alone (vs. 0.34 ± 0.02, p < 0.001). R 2 values for weighted cumulative helmet-based impact measures ranged from 0.32 to 0.77, with 60% of correlations being statistically significant. Cumulative GSI weighted for TBH and TUA explained 77% of the variance in the percent of white matter voxels with statistically significant (PWMVSS) increase in FA from pre-season to post-season, while both cumulative GSI and cumulative HIC15 weighted for TUA accounted for 75% of the variance in PWMVSS decrease in FA. A novel method for weighting cumulative helmet-based impact measures summed over the course of a football season resulted in a marked improvement in the correlation to brain WM changes observed after a single football season of sub-concussive head blows. Our results lend support to the emerging concept that sub-concussive head blows can result in sub-clinical brain injury, and this may be influenced by the time between hits. If confirmed in an independent data set, our novel method for quantifying the cumulative effects of sub-concussive head blows could be used to develop threshold-based countermeasures to prevent the accumulation of WM changes with multiple seasons of play.
Collapse
Affiliation(s)
- Kian Merchant-Borna
- Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry, 265 Crittenden Blvd, Box 655C, Rochester, NY, 14642, USA.
| | - Patrick Asselin
- Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry, 265 Crittenden Blvd, Box 655C, Rochester, NY, 14642, USA
| | - Darren Narayan
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Beau Abar
- Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry, 265 Crittenden Blvd, Box 655C, Rochester, NY, 14642, USA
| | - Courtney M C Jones
- Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry, 265 Crittenden Blvd, Box 655C, Rochester, NY, 14642, USA
| | - Jeffrey J Bazarian
- Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry, 265 Crittenden Blvd, Box 655C, Rochester, NY, 14642, USA
| |
Collapse
|
28
|
Herrera JJ, Bockhorst K, Kondraganti S, Stertz L, Quevedo J, Narayana PA. Acute White Matter Tract Damage after Frontal Mild Traumatic Brain Injury. J Neurotrauma 2016; 34:291-299. [PMID: 27138134 DOI: 10.1089/neu.2016.4407] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Our understanding of mild traumatic brain injury (mTBI) is still in its infancy and to gain a greater understanding, relevant animal models should replicate many of the features seen in human mTBI. These include changes to diffusion tensor imaging (DTI) parameters, absence of anatomical lesions on conventional neuroimaging, and neurobehavioral deficits. The Maryland closed head TBI model causes anterior-posterior plus sagittal rotational acceleration of the brain, frequently observed with motor vehicle and sports-related TBI injuries. The injury reflects a concussive injury model without skull fracture. The goal of our study was to characterize the acute (72 h) pathophysiological changes occurring following a single mTBI using magnetic resonance imaging (MRI), behavioral assays, and histology. We assessed changes in fractional anisotropy (FA), mean (MD), longitudinal (LD), and radial (RD) diffusivities relative to pre-injury baseline measures. Significant differences were observed in both the longitudinal and radial diffusivities in the fimbria compared with baseline. A significant difference in radial diffusivity was also observed in the splenium of the corpus callosum compared with baseline. The exploratory activity of the mTBI animals was also assessed using computerized activity monitoring. A significant decrease was observed in ambulatory distance, average velocity, stereotypic counts, and vertical counts compared with baseline. Histological examination of the mTBI brain sections indicated a significant decrease in the expression of myelin basic protein in the fimbria, splenium, and internal capsule. Our findings demonstrate the vulnerability of the white matter tracts, specifically the fimbria and splenium, and the ability of DTI to identify changes to the integrity of the white matter tracts following mTBI.
Collapse
Affiliation(s)
- Juan J Herrera
- 1 Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston (UTHealth) , McGovern Medical School, Houston, Texas
| | - Kurt Bockhorst
- 1 Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston (UTHealth) , McGovern Medical School, Houston, Texas
| | - Shakuntala Kondraganti
- 1 Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston (UTHealth) , McGovern Medical School, Houston, Texas
| | - Laura Stertz
- 2 Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) , McGovern Medical School, Houston, Texas
| | - João Quevedo
- 2 Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) , McGovern Medical School, Houston, Texas.,3 Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) , McGovern Medical School, Houston, Texas
| | - Ponnada A Narayana
- 1 Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston (UTHealth) , McGovern Medical School, Houston, Texas
| |
Collapse
|
29
|
Tu TW, Williams RA, Lescher JD, Jikaria N, Turtzo LC, Frank JA. Radiological-pathological correlation of diffusion tensor and magnetization transfer imaging in a closed head traumatic brain injury model. Ann Neurol 2016; 79:907-20. [PMID: 27230970 DOI: 10.1002/ana.24641] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Metrics of diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI) can detect diffuse axonal injury in traumatic brain injury (TBI). The relationship between the changes in these imaging measures and the underlying pathologies is still relatively unknown. This study investigated the radiological-pathological correlation between these imaging techniques and immunohistochemistry using a closed head rat model of TBI. METHODS TBI was performed on female rats followed longitudinally by magnetic resonance imaging (MRI) out to 30 days postinjury, with a subset of animals selected for histopathological analyses. A MRI-based finite element analysis was generated to characterize the pattern of the mechanical insult and estimate the extent of brain injury to direct the pathological correlation with imaging findings. RESULTS DTI axial diffusivity and fractional anisotropy (FA) were sensitive to axonal integrity, whereas radial diffusivity showed significant correlation to the myelin compactness. FA was correlated with astrogliosis in the gray matter, whereas mean diffusivity was correlated with increased cellularity. Secondary inflammatory responses also partly affected the changes of these DTI metrics. The magnetization transfer ratio (MTR) at 3.5ppm demonstrated a strong correlation with both axon and myelin integrity. Decrease in MTR at 20ppm correlated with the extent of astrogliosis in both gray and white matter. INTERPRETATION Although conventional T2-weighted MRI did not detect abnormalities following TBI, DTI and MTI afforded complementary insight into the underlying pathologies reflecting varying injury states over time, and thus may substitute for histology to reveal diffusive axonal injury pathologies in vivo. This correlation of MRI and histology furthers understanding of the microscopic pathology underlying DTI and MTI changes in TBI. Ann Neurol 2016;79:907-920.
Collapse
Affiliation(s)
- Tsang-Wei Tu
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Rashida A Williams
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Jacob D Lescher
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Neekita Jikaria
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD
| | - L Christine Turtzo
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD.,Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Joseph A Frank
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD.,National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD
| |
Collapse
|
30
|
Wright AD, Jarrett M, Vavasour I, Shahinfard E, Kolind S, van Donkelaar P, Taunton J, Li D, Rauscher A. Myelin Water Fraction Is Transiently Reduced after a Single Mild Traumatic Brain Injury--A Prospective Cohort Study in Collegiate Hockey Players. PLoS One 2016; 11:e0150215. [PMID: 26913900 PMCID: PMC4767387 DOI: 10.1371/journal.pone.0150215] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/10/2016] [Indexed: 12/12/2022] Open
Abstract
Impact-related mild traumatic brain injuries (mTBI) are a major public health concern, and remain as one of the most poorly understood injuries in the field of neuroscience. Currently, the diagnosis and management of such injuries are based largely on patient-reported symptoms. An improved understanding of the underlying pathophysiology of mTBI is urgently needed in order to develop better diagnostic and management protocols. Specifically, dynamic post-injury changes to the myelin sheath in the human brain have not been examined, despite ‘compromised white matter integrity’ often being described as a consequence of mTBI. In this preliminary cohort study, myelin water imaging was used to prospectively evaluate changes in myelin water fraction, derived from the T2 decay signal, in two varsity hockey teams (45 players) over one season of athletic competition. 11 players sustained a concussion during competition, and were scanned at 72 hours, 2 weeks, and 2 months post-injury. Results demonstrated a reduction in myelin water fraction at 2 weeks post-injury in several brain areas relative to preseason scans, including the splenium of the corpus callosum, right posterior thalamic radiation, left superior corona radiata, left superior longitudinal fasciculus, and left posterior limb of the internal capsule. Myelin water fraction recovered to pre-season values by 2 months post-injury. These results may indicate transient myelin disruption following a single mTBI, with subsequent remyelination of affected neurons. Myelin disruption was not apparent in the athletes who did not experience a concussion, despite exposure to repetitive subconcussive trauma over a season of collegiate hockey. These findings may help to explain many of the metabolic and neurological deficits observed clinically following mTBI.
Collapse
Affiliation(s)
- Alexander D. Wright
- MD/PhD Program, University of British Columbia, Vancouver, Canada
- Southern Medical Program, University of British Columbia Okanagan, Kelowna, Canada
- Department of Experimental Medicine, University of British Columbia, Vancouver, Canada
| | - Michael Jarrett
- UBC MRI Research Centre, University of British Columbia, Vancouver, Canada
| | - Irene Vavasour
- UBC MRI Research Centre, University of British Columbia, Vancouver, Canada
| | - Elham Shahinfard
- UBC MRI Research Centre, University of British Columbia, Vancouver, Canada
| | - Shannon Kolind
- Faculty of Medicine, Division of Neurology, University of British Columbia, Vancouver, Canada
| | - Paul van Donkelaar
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, Canada
| | - Jack Taunton
- Faculty of Medicine, Division of Sports Medicine, University of British Columbia, Vancouver, Canada
| | - David Li
- Faculty of Medicine, Department of Radiology, University of British Columbia, Vancouver, Canada
| | - Alexander Rauscher
- UBC MRI Research Centre, University of British Columbia, Vancouver, Canada
- Department of Pediatrics, Division of Neurology, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
31
|
Hayashi T, Ago K, Nakamae T, Higo E, Ogata M. Two different immunostaining patterns of beta-amyloid precursor protein (APP) may distinguish traumatic from nontraumatic axonal injury. Int J Legal Med 2015; 129:1085-90. [PMID: 26249371 DOI: 10.1007/s00414-015-1245-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/28/2015] [Indexed: 11/29/2022]
Abstract
Immunostaining for beta-amyloid precursor protein (APP) is recognized as an effective tool for detecting traumatic axonal injury, but it also detects axonal injury due to ischemic or other metabolic causes. Previously, we reported two different patterns of APP staining: labeled axons oriented along with white matter bundles (pattern 1) and labeled axons scattered irregularly (pattern 2) (Hayashi et al. (Leg Med (Tokyo) 11:S171-173, 2009). In this study, we investigated whether these two patterns are consistent with patterns of trauma and hypoxic brain damage, respectively. Sections of the corpus callosum from 44 cases of blunt head injury and equivalent control tissue were immunostained for APP. APP was detected in injured axons such as axonal bulbs and varicose axons in 24 of the 44 cases of head injuries that also survived for three or more hours after injury. In 21 of the 24 APP-positive cases, pattern 1 alone was observed in 14 cases, pattern 2 alone was not observed in any cases, and both patterns 1 and 2 were detected in 7 cases. APP-labeled injured axons were detected in 3 of the 44 control cases, all of which were pattern 2. These results suggest that pattern 1 indicates traumatic axonal injury, while pattern 2 results from hypoxic insult. These patterns may be useful to differentiate between traumatic and nontraumatic axonal injuries.
Collapse
Affiliation(s)
- Takahito Hayashi
- Department of Legal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan,
| | | | | | | | | |
Collapse
|
32
|
Cattaneo C, Maderna E, Rendinelli A, Gibelli D. Animal experimentation in forensic sciences: How far have we come? Forensic Sci Int 2015. [PMID: 26216717 DOI: 10.1016/j.forsciint.2015.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the third millennium where ethical, ethological and cultural evolution seem to be leading more and more towards an inter-species society, the issue of animal experimentation is a moral dilemma. Speaking from a self-interested human perspective, avoiding all animal testing where human disease and therapy are concerned may be very difficult or even impossible; such testing may not be so easily justifiable when suffering-or killing-of non human animals is inflicted for forensic research. In order to verify how forensic scientists are evolving in this ethical issue, we undertook a systematic review of the current literature. We investigated the frequency of animal experimentation in forensic studies in the past 15 years and trends in publication in the main forensic science journals. Types of species, lesions inflicted, manner of sedation or anesthesia and euthanasia were examined in a total of 404 articles reviewed, among which 279 (69.1%) concerned studies involving animals sacrificed exclusively for the sake of the experiment. Killing still frequently includes painful methods such as blunt trauma, electrocution, mechanical asphyxia, hypothermia, and even exsanguination; of all these animals, apparently only 60.8% were anesthetized. The most recent call for a severe reduction if not a total halt to the use of animals in forensic sciences was made by Bernard Knight in 1992. In fact the principle of reduction and replacement, frequently respected in clinical research, must be considered the basis for forensic science research needing animals.
Collapse
Affiliation(s)
- C Cattaneo
- LABANOF, Laboratorio di Antropologia e Odontologia Forense Sezione di Medicina Legale Dipartimento di Scienze Biomediche per la Salute Università degli Studi di Milano, V. Mangiagalli 37, 20133 Milan, Italy.
| | - E Maderna
- LABANOF, Laboratorio di Antropologia e Odontologia Forense Sezione di Medicina Legale Dipartimento di Scienze Biomediche per la Salute Università degli Studi di Milano, V. Mangiagalli 37, 20133 Milan, Italy
| | - A Rendinelli
- LABANOF, Laboratorio di Antropologia e Odontologia Forense Sezione di Medicina Legale Dipartimento di Scienze Biomediche per la Salute Università degli Studi di Milano, V. Mangiagalli 37, 20133 Milan, Italy
| | - D Gibelli
- LABANOF, Laboratorio di Antropologia e Odontologia Forense Sezione di Medicina Legale Dipartimento di Scienze Biomediche per la Salute Università degli Studi di Milano, V. Mangiagalli 37, 20133 Milan, Italy
| |
Collapse
|
33
|
Logsdon AF, Lucke-Wold BP, Turner RC, Huber JD, Rosen CL, Simpkins JW. Role of Microvascular Disruption in Brain Damage from Traumatic Brain Injury. Compr Physiol 2015; 5:1147-60. [PMID: 26140712 PMCID: PMC4573402 DOI: 10.1002/cphy.c140057] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Traumatic brain injury (TBI) is acquired from an external force, which can inflict devastating effects to the brain vasculature and neighboring neuronal cells. Disruption of vasculature is a primary effect that can lead to a host of secondary injury cascades. The primary effects of TBI are rapidly occurring while secondary effects can be activated at later time points and may be more amenable to targeting. Primary effects of TBI include diffuse axonal shearing, changes in blood-brain barrier (BBB) permeability, and brain contusions. These mechanical events, especially changes to the BBB, can induce calcium perturbations within brain cells producing secondary effects, which include cellular stress, inflammation, and apoptosis. These secondary effects can be potentially targeted to preserve the tissue surviving the initial impact of TBI. In the past, TBI research had focused on neurons without any regard for glial cells and the cerebrovasculature. Now a greater emphasis is being placed on the vasculature and the neurovascular unit following TBI. A paradigm shift in the importance of the vascular response to injury has opened new avenues of drug-treatment strategies for TBI. However, a connection between the vascular response to TBI and the development of chronic disease has yet to be elucidated. Long-term cognitive deficits are common amongst those sustaining severe or multiple mild TBIs. Understanding the mechanisms of cellular responses following TBI is important to prevent the development of neuropsychiatric symptoms. With appropriate intervention following TBI, the vascular network can perhaps be maintained and the cellular repair process possibly improved to aid in the recovery of cellular homeostasis.
Collapse
Affiliation(s)
- Aric F Logsdon
- Department of Pharmaceutical Sciences, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Brandon P Lucke-Wold
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Ryan C Turner
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Jason D Huber
- Department of Pharmaceutical Sciences, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Charles L Rosen
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - James W Simpkins
- Department of Physiology and Pharmacology, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| |
Collapse
|
34
|
Magnoni S, Mac Donald CL, Esparza TJ, Conte V, Sorrell J, Macrì M, Bertani G, Biffi R, Costa A, Sammons B, Snyder AZ, Shimony JS, Triulzi F, Stocchetti N, Brody DL. Quantitative assessments of traumatic axonal injury in human brain: concordance of microdialysis and advanced MRI. Brain 2015; 138:2263-77. [PMID: 26084657 DOI: 10.1093/brain/awv152] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/09/2015] [Indexed: 11/14/2022] Open
Abstract
Axonal injury is a major contributor to adverse outcomes following brain trauma. However, the extent of axonal injury cannot currently be assessed reliably in living humans. Here, we used two experimental methods with distinct noise sources and limitations in the same cohort of 15 patients with severe traumatic brain injury to assess axonal injury. One hundred kilodalton cut-off microdialysis catheters were implanted at a median time of 17 h (13-29 h) after injury in normal appearing (on computed tomography scan) frontal white matter in all patients, and samples were collected for at least 72 h. Multiple analytes, such as the metabolic markers glucose, lactate, pyruvate, glutamate and tau and amyloid-β proteins, were measured every 1-2 h in the microdialysis samples. Diffusion tensor magnetic resonance imaging scans at 3 T were performed 2-9 weeks after injury in 11 patients. Stability of diffusion tensor imaging findings was verified by repeat scans 1-3 years later in seven patients. An additional four patients were scanned only at 1-3 years after injury. Imaging abnormalities were assessed based on comparisons with five healthy control subjects for each patient, matched by age and sex (32 controls in total). No safety concerns arose during either microdialysis or scanning. We found that acute microdialysis measurements of the axonal cytoskeletal protein tau in the brain extracellular space correlated well with diffusion tensor magnetic resonance imaging-based measurements of reduced brain white matter integrity in the 1-cm radius white matter-masked region near the microdialysis catheter insertion sites. Specifically, we found a significant inverse correlation between microdialysis measured levels of tau 13-36 h after injury and anisotropy reductions in comparison with healthy controls (Spearman's r = -0.64, P = 0.006). Anisotropy reductions near microdialysis catheter insertion sites were highly correlated with reductions in multiple additional white matter regions. We interpret this result to mean that both microdialysis and diffusion tensor magnetic resonance imaging accurately reflect the same pathophysiological process: traumatic axonal injury. This cross-validation increases confidence in both methods for the clinical assessment of axonal injury. However, neither microdialysis nor diffusion tensor magnetic resonance imaging have been validated versus post-mortem histology in humans. Furthermore, future work will be required to determine the prognostic significance of these assessments of traumatic axonal injury when combined with other clinical and radiological measures.
Collapse
Affiliation(s)
- Sandra Magnoni
- 1 Department of Anaesthesiology and Intensive Care, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milano, Italy
| | - Christine L Mac Donald
- 2 Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
| | - Thomas J Esparza
- 3 Department of Neurology, Washington University, St Louis, MO, USA
| | - Valeria Conte
- 1 Department of Anaesthesiology and Intensive Care, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milano, Italy
| | - James Sorrell
- 3 Department of Neurology, Washington University, St Louis, MO, USA
| | | | - Giulio Bertani
- 5 Department of Neurosurgery, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milano, Italy
| | - Riccardo Biffi
- 6 Department of Neuroradiology, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milano, Italy
| | - Antonella Costa
- 6 Department of Neuroradiology, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milano, Italy
| | - Brian Sammons
- 3 Department of Neurology, Washington University, St Louis, MO, USA
| | - Abraham Z Snyder
- 7 Mallinckrodt Institute of Radiology, Washington University, St Louis, MO, USA
| | - Joshua S Shimony
- 7 Mallinckrodt Institute of Radiology, Washington University, St Louis, MO, USA
| | - Fabio Triulzi
- 6 Department of Neuroradiology, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milano, Italy
| | - Nino Stocchetti
- 1 Department of Anaesthesiology and Intensive Care, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milano, Italy 4 Milan University, Milano, Italy
| | - David L Brody
- 3 Department of Neurology, Washington University, St Louis, MO, USA 8 Hope Centre for Neurological Disorders, Washington University, St Louis, MO, USA
| |
Collapse
|
35
|
Armstrong RC, Mierzwa AJ, Marion CM, Sullivan GM. White matter involvement after TBI: Clues to axon and myelin repair capacity. Exp Neurol 2015; 275 Pt 3:328-333. [PMID: 25697845 DOI: 10.1016/j.expneurol.2015.02.011] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/15/2015] [Accepted: 02/06/2015] [Indexed: 11/17/2022]
Abstract
Impact-acceleration forces to the head cause traumatic brain injury (TBI) with damage in white matter tracts comprised of long axons traversing the brain. White matter injury after TBI involves both traumatic axonal injury (TAI) and myelin pathology that evolves throughout the post-injury time course. The axon response to initial mechanical forces and secondary insults follows the process of Wallerian degeneration, which initiates as a potentially reversible phase of intra-axonal damage and proceeds to an irreversible phase of axon fragmentation. Distal to sites of axon disconnection, myelin sheaths remain for prolonged periods, which may activate neuroinflammation and inhibit axon regeneration. In addition to TAI, TBI can cause demyelination of intact axons. These evolving features of axon and myelin pathology also represent opportunities for repair. In experimental TBI, demyelinated axons exhibit remyelination, which can serve to both protect axons and facilitate recovery of function. Myelin remodeling may also contribute to neuroplasticity. Efficient clearance of myelin debris is a potential target to attenuate the progression of chronic pathology. During the early phase of Wallerian degeneration, interventions that prevent the transition from reversible damage to axon disconnection warrant the highest priority, based on the poor regenerative capacity of axons in the CNS. Clinical evaluation of TBI will need to address the challenge of accurately detecting the extent and stage of axon damage. Distinguishing the complex white matter changes associated with axons and myelin is necessary for interpreting advanced neuroimaging approaches and for identifying a broader range of therapeutic opportunities to improve outcome after TBI.
Collapse
Affiliation(s)
- Regina C Armstrong
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Amanda J Mierzwa
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Christina M Marion
- Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Genevieve M Sullivan
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
36
|
Squarcina L, De Luca A, Bellani M, Brambilla P, Turkheimer FE, Bertoldo A. Fractal analysis of MRI data for the characterization of patients with schizophrenia and bipolar disorder. Phys Med Biol 2015; 60:1697-716. [PMID: 25633275 DOI: 10.1088/0031-9155/60/4/1697] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fractal geometry can be used to analyze shape and patterns in brain images. With this study we use fractals to analyze T1 data of patients affected by schizophrenia or bipolar disorder, with the aim of distinguishing between healthy and pathological brains using the complexity of brain structure, in particular of grey matter, as a marker of disease. 39 healthy volunteers, 25 subjects affected by schizophrenia and 11 patients affected by bipolar disorder underwent an MRI session. We evaluated fractal dimension of the brain cortex and its substructures, calculated with an algorithm based on the box-count algorithm. We modified this algorithm, with the aim of avoiding the segmentation processing step and using all the information stored in the image grey levels. Moreover, to increase sensitivity to local structural changes, we computed a value of fractal dimension for each slice of the brain or of the particular structure. To have reference values in comparing healthy subjects with patients, we built a template by averaging fractal dimension values of the healthy volunteers data. Standard deviation was evaluated and used to create a confidence interval. We also performed a slice by slice t-test to assess the difference at slice level between the three groups. Consistent average fractal dimension values were found across all the structures in healthy controls, while in the pathological groups we found consistent differences, indicating a change in brain and structures complexity induced by these disorders.
Collapse
Affiliation(s)
- Letizia Squarcina
- Department of Public Health and Community Medicine, Section of Psychiatry and Section of Clinical Psychology, InterUniversity Centre for Behavioural Neurosciences, University of Verona, Verona, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Long JA, Watts LT, Chemello J, Huang S, Shen Q, Duong TQ. Multiparametric and longitudinal MRI characterization of mild traumatic brain injury in rats. J Neurotrauma 2015; 32:598-607. [PMID: 25203249 DOI: 10.1089/neu.2014.3563] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This study reports T2 and diffusion-tensor magnetic resonance imaging (MRI) studies of a mild open-skull, controlled cortical impact injury in rats (n=6) from 3 h to up to 14 d after traumatic brain injury (TBI). Comparison was made with longitudinal behavioral measurements and end-point histology. The impact was applied over the left primary forelimb somatosensory cortex (S1FL). The major findings were: 1) In the S1FL, T2 increased and fractional anisotropy (FA) decreased at 3 h after TBI and gradually returned toward normal by Day 14; 2) in the S1FL, the apparent diffusion coefficient (ADC) increased at 3 h, peaked on Day 2, and gradually returned toward normal at Day 14; 3) in the corpus callosum underneath the S1FL, FA decreased at 3 h to Day 2 but returned to normal at Day 7 and 14, whereas T2 and ADC were normal throughout; 4) heterogeneous hyperintense and hypointense T2 map intensities likely indicated the presence of hemorrhage but were not independently verified; 5) lesion volumes defined by abnormal T2, ADC, and FA showed similar temporal patterns, peaking around Day 2 and returning toward normal on Day 14; 6) the temporal profiles of lesion volumes were consistent with behavioral scores assessed by forelimb placement and forelimb foot fault tests; and 7) at 14 d post-TBI, there was substantial tissue recovery by MRI, which could either reflect true tissue recovery or reabsorption of edema. Histology performed 14 d post-TBI, however, showed a small cavitation and significant neuronal degeneration surrounding the cavitation in S1FL. Thus, the observed improvement of behavioral scores likely involves both functional recovery and functional compensation.
Collapse
Affiliation(s)
- Justin Alexander Long
- 1 Research Imaging Institute, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | | | | | | | | | | |
Collapse
|
38
|
Håberg AK, Olsen A, Moen KG, Schirmer-Mikalsen K, Visser E, Finnanger TG, Evensen KAI, Skandsen T, Vik A, Eikenes L. White matter microstructure in chronic moderate-to-severe traumatic brain injury: Impact of acute-phase injury-related variables and associations with outcome measures. J Neurosci Res 2014; 93:1109-26. [PMID: 25641684 DOI: 10.1002/jnr.23534] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/29/2014] [Accepted: 11/20/2014] [Indexed: 12/20/2022]
Abstract
This study examines how injury mechanisms and early neuroimaging and clinical measures impact white matter (WM) fractional anisotropy (FA), mean diffusivity (MD), and tract volumes in the chronic phase of traumatic brain injury (TBI) and how WM integrity in the chronic phase is associated with different outcome measures obtained at the same time. Diffusion tensor imaging (DTI) at 3 T was acquired more than 1 year after TBI in 49 moderate-to-severe-TBI survivors and 50 matched controls. DTI data were analyzed with tract-based spatial statistics and automated tractography. Moderate-to-severe TBI led to widespread FA decreases, MD increases, and tract volume reductions. In severe TBI and in acceleration/deceleration injuries, a specific FA loss was detected. A particular loss of FA was also present in the thalamus and the brainstem in all grades of diffuse axonal injury. Acute-phase Glasgow Coma Scale scores, number of microhemorrhages on T2*, lesion volume on fluid-attenuated inversion recovery, and duration of posttraumatic amnesia were associated with more widespread FA loss and MD increases in chronic TBI. Episodes of cerebral perfusion pressure <70 mmHg were specifically associated with reduced MD. Neither episodes of intracranial pressure >20 mmHg nor acute-phase Rotterdam CT scores were associated with WM changes. Glasgow Outcome Scale Extended scores and performance-based cognitive control functioning were associated with FA and MD changes, but self-reported cognitive control functioning was not. In conclusion, FA loss specifically reflects the primary injury severity and mechanism, whereas FA and MD changes are associated with objective measures of general and cognitive control functioning.
Collapse
Affiliation(s)
- A K Håberg
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Medical Imaging, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - A Olsen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - K G Moen
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurosurgery, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - K Schirmer-Mikalsen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Anaesthesia and Intensive Care, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - E Visser
- FMRIB Centre, University of Oxford, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - T G Finnanger
- Regional Centre for Child and Youth Mental Health and Child Welfare-Central Norway, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Division of Mental Healthcare, Department of Child and Adolescent Psychiatry, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - K A I Evensen
- Department of Public Health and General Practice, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Physiotherapy, Trondheim Municipality, Trondheim, Norway
| | - T Skandsen
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - A Vik
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurosurgery, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - L Eikenes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
39
|
Perez AM, Adler J, Kulkarni N, Strain JF, Womack KB, Diaz-Arrastia R, Marquez de la Plata CD. Longitudinal white matter changes after traumatic axonal injury. J Neurotrauma 2014; 31:1478-85. [PMID: 24738754 DOI: 10.1089/neu.2013.3216] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Diffusion tensor imaging (DTI) has been useful in showing compromise after traumatic axonal injury (TAI) at the chronic stage; however, white matter (WM) compromise from acute stage of TAI to chronic stage is not yet well understood. This study aims to examine changes in WM integrity following TAI by obtaining DTI, on average, 1 d post injury and again approximately seven months post-injury. Sixteen patients with complicated mild to severe brain injuries consistent with TAI were recruited in the intensive care unit of a Level I trauma center. Thirteen of these patients were studied longitudinally over the course of the first seven months post-injury. The first scan occurred, on average, 1 d after injury and the second an average of seven months post-injury. Ten healthy individuals, similar to the cohort of patients, were recruited as controls. Whole brain WM and voxel-based analyses of DTI data were conducted. DTI metrics of interest included: fractional anisotropy (FA), mean diffusivity, axial diffusivity (AD), and radial diffusivity (RD). tract-based spatial statistics were used to examine DTI metrics spatially. Acutely, AD and RD increased and RD positively correlated with injury severity. Longitudinal analysis showed reduction in FA and AD (p<0.01), but no change in RD. Possible explanations for the microstructural changes observed over time are discussed.
Collapse
Affiliation(s)
- Alison M Perez
- 1 Center for BrainHealth at the University of Texas at Dallas , Dallas, Texas
| | | | | | | | | | | | | |
Collapse
|
40
|
Donovan V, Kim C, Anugerah AK, Coats JS, Oyoyo U, Pardo AC, Obenaus A. Repeated mild traumatic brain injury results in long-term white-matter disruption. J Cereb Blood Flow Metab 2014; 34:715-23. [PMID: 24473478 PMCID: PMC3982100 DOI: 10.1038/jcbfm.2014.6] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 12/18/2013] [Accepted: 12/23/2013] [Indexed: 01/17/2023]
Abstract
Mild traumatic brain injury (mTBI) is an increasing public health concern as repetitive injuries can exacerbate existing neuropathology and result in increased neurologic deficits. In contrast to other models of repeated mTBI (rmTBI), our study focused on long-term white-matter abnormalities after bilateral mTBIs induced 7 days apart. A controlled cortical impact (CCI) was used to induce an initial mTBI to the right cortex of Single and rmTBI Sprague Dawley rats, followed by a second injury to the left cortex of rmTBI animals. Shams received only a craniectomy. Ex vivo diffusion tensor imaging (DTI), transmission electron microscopy (TEM), and histology were performed on the anterior corpus callosum at 60 days after injury. The rmTBI animals showed a significant bilateral increase in radial diffusivity (myelin), while only modest changes in axial diffusivity (axonal) were seen between the groups. Further, the rmTBI group showed an increased g-ratio and axon caliber in addition to myelin sheath abnormalities using TEM. Our DTI results indicate ongoing myelin changes, while the TEM data show continuing axonal changes at 60 days after rmTBI. These data suggest that bilateral rmTBI induced 7 days apart leads to progressive alterations in white matter that are not observed after a single mTBI.
Collapse
Affiliation(s)
- Virginia Donovan
- Cell, Molecular and Developmental Biology Program, University of California, Riverside, California, USA
| | - Claudia Kim
- School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Ariana K Anugerah
- School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Jacqueline S Coats
- Department of Pediatrics, Loma Linda University, Loma Linda, California, USA
| | - Udochuwku Oyoyo
- Department of Radiology, Loma Linda University, Loma Linda, California, USA
| | - Andrea C Pardo
- Department of Pediatrics, Loma Linda University, Loma Linda, California, USA
| | - Andre Obenaus
- Cell, Molecular and Developmental Biology Program, University of California, Riverside, California, USA
- Department of Pediatrics, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
41
|
Turner RC, Lucke-Wold BP, Robson MJ, Omalu BI, Petraglia AL, Bailes JE. Repetitive traumatic brain injury and development of chronic traumatic encephalopathy: a potential role for biomarkers in diagnosis, prognosis, and treatment? Front Neurol 2012; 3:186. [PMID: 23335911 PMCID: PMC3547169 DOI: 10.3389/fneur.2012.00186] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 12/21/2012] [Indexed: 02/05/2023] Open
Abstract
The diagnosis of chronic traumatic encephalopathy (CTE) upon autopsy in a growing number of athletes and soldiers alike has resulted in increased awareness, by both the scientific/medical and lay communities, of the potential for lasting effects of repetitive traumatic brain injury. While the scientific community has come to better understand the clinical presentation and underlying pathophysiology of CTE, the diagnosis of CTE remains autopsy-based, which prevents adequate monitoring and tracking of the disease. The lack of established biomarkers or imaging modalities for diagnostic and prognostic purposes also prevents the development and implementation of therapeutic protocols. In this work the clinical history and pathologic findings associated with CTE are reviewed, as well as imaging modalities that have demonstrated some promise for future use in the diagnosis and/or tracking of CTE or repetitive brain injury. Biomarkers under investigation are also discussed with particular attention to the timing of release and potential utility in situations of repetitive traumatic brain injury. Further investigation into imaging modalities and biomarker elucidation for the diagnosis of CTE is clearly both needed and warranted.
Collapse
Affiliation(s)
- Ryan C. Turner
- Department of Neurosurgery, School of Medicine, West Virginia UniversityMorgantown, WV, USA
- Center for Neuroscience, School of Medicine, West Virginia UniversityMorgantown, WV, USA
- *Correspondence: Ryan C. Turner, Department of Neurosurgery, School of Medicine, West Virginia University, One Medical Center Drive, Suite 4300, Health Sciences Center, PO Box 9183, Morgantown, WV 26506-9183, USA. e-mail:
| | - Brandon P. Lucke-Wold
- Department of Neurosurgery, School of Medicine, West Virginia UniversityMorgantown, WV, USA
- Center for Neuroscience, School of Medicine, West Virginia UniversityMorgantown, WV, USA
| | - Matthew J. Robson
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia UniversityMorgantown, WV, USA
| | - Bennet I. Omalu
- Department of Pathology, University of CaliforniaDavis, CA, USA
| | - Anthony L. Petraglia
- Department of Neurosurgery, University of Rochester Medical CenterRochester, NY, USA
| | - Julian E. Bailes
- Department of Neurosurgery, NorthShore University Health SystemEvanston, IL, USA
- Section of Neurosurgery, Department of Surgery, University of Chicago Medical CenterChicago, IL, USA
| |
Collapse
|