1
|
Zhao M, Cai M, Lei F, Yuan X, Liu Q, Fang Y, Zhu B. AI-driven feature selection and epigenetic pattern analysis: A screening strategy of CpGs validated by pyrosequencing for body fluid identification. Forensic Sci Int 2024; 367:112339. [PMID: 39729807 DOI: 10.1016/j.forsciint.2024.112339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 12/29/2024]
Abstract
Identification of body fluid stain at crime scene is one of the important tasks of forensic evidence analysis. Currently, body fluid-specific CpGs detected by DNA methylation microarray screening, have been widely studied for forensic body fluid identification. However, some CpGs have limited ability to distinguish certain body fluid types. The ongoing need is to discover novel methylation markers and fully validate them to enhance their evidentiary strength in complex forensic scenarios. This research gathered forensic-related DNA methylation microarrays data from the Gene Expression Omnibus (GEO) database. A novel screening strategy for marker selection was developed, combining feature selection algorithms (elastic net, information gain ratio, feature importance based on Random Forest, and mutual information coefficient) with epigenetic pattern analysis, to identify CpG markers for body fluid identification. The selected CpGs were validated through pyrosequencing on peripheral blood, saliva, semen, vaginal secretions, and menstrual blood samples, and machine learning classification models were constructed based on the sequencing results. Pyrosequencing results revealed 14 CpGs with high specificity in five types of body fluid samples. A machine learning classification model, developed based on the pyrosequencing results, could effectively distinguish five types of body fluid samples, achieving 100 % accuracy on the test set. Utilizing six CpG markers, it was also feasible to attain ideal efficacy in identifying body fluid stains. Our research proposes a systematic and scientific strategy for screening body fluid-specific CpGs, contributing new insights and methods to forensic body fluid identification.
Collapse
Affiliation(s)
- Ming Zhao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Meiming Cai
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Fanzhang Lei
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xi Yuan
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qinglin Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yating Fang
- School of Basic Medical Science, Anhui Medical University, Hefei 230031, China.
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Su CW, Hsu YC, Tsai LC, Lee JCI, Linacre A, Hsieh HM. Rapid detection of blood using a novel application of RT-RPA integrated with CRISPR-Cas: ALAS2 detection as a model. Forensic Sci Int Genet 2024; 73:103098. [PMID: 39089060 DOI: 10.1016/j.fsigen.2024.103098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/02/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
A rapid, sensitive and specific test for blood is reported based on a novel application of recombinase polymerase amplification integrated with CRISPR-Cas and lateral flow assay (LFA). The blood specific marker ALAS2 was used as the target to record the presence of blood. The assay used either RNA extracted from a body fluid as a template, or omitting this extraction step and using a direct approach where the questioned body fluid was added directly to the assay. The assay only detected blood (all peripheral blood and some menstrual blood samples) and no other body fluid (semen, saliva, or vaginal fluid). The limit of detection varied from an initial template of 0.195 ng extracted RNA (27 dilution) or 0.0218 μL (26 dilution) liquid peripheral blood. The assay gave the expected result when peripheral blood was mixed with saliva: ratios of peripheral blood/saliva at 19:1, 3:1, 1:1, 1:3 and 1:19 all gave a positive result using extracted RNA. By contrast, only three ratios of peripheral blood and saliva gave a positive result for blood (19:1, 3:1 and 1:1) when adding these two body fluids directly. When peripheral blood was mixed with semen there was a strong inhibition of the assay and ALAS2 could only be detected at ratio of 19:1 using RNA. Using reconstituted peripheral bloodstains gave comparable results to liquid peripheral blood. This is the first application of RT-RPA integrated CRISPR and combined with a LFA assay to detect body fluid-specific RNA. The proposed method opens up the potential to perform this method remote from laboratories such as at crime scenes.
Collapse
Affiliation(s)
- Chih-Wen Su
- Forensic Biology Division, Criminal Investigation Bureau, National Police Agency, 5 Lane 553, Chung Hsiao East Road Section 4, Xinyi District, Taipei 110055, Taiwan, ROC
| | - Yi-Che Hsu
- Department of Forensic Science, Central Police University, 56 Shu-Jen Road, Kwei-San, Taoyuan 333322, Taiwan, ROC
| | - Li-Chin Tsai
- Department of Forensic Science, Central Police University, 56 Shu-Jen Road, Kwei-San, Taoyuan 333322, Taiwan, ROC
| | - James Chun-I Lee
- Department of Forensic Medicine, College of Medicine, National Taiwan University, 1 Jen-Ai Road Section 1, Taipei 100233, Taiwan, ROC
| | - Adrian Linacre
- College of Science & Engineering, Flinders University, Adelaide 5001, Australia
| | - Hsing-Mei Hsieh
- Department of Forensic Science, Central Police University, 56 Shu-Jen Road, Kwei-San, Taoyuan 333322, Taiwan, ROC.
| |
Collapse
|
3
|
Gerra MC, Dallabona C, Cecchi R. Epigenetic analyses in forensic medicine: future and challenges. Int J Legal Med 2024; 138:701-719. [PMID: 38242965 PMCID: PMC11003920 DOI: 10.1007/s00414-024-03165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
The possibility of using epigenetics in forensic investigation has gradually risen over the last few years. Epigenetic changes with their dynamic nature can either be inherited or accumulated throughout a lifetime and be reversible, prompting investigation of their use across various fields. In forensic sciences, multiple applications have been proposed, such as the discrimination of monozygotic twins, identifying the source of a biological trace left at a crime scene, age prediction, determination of body fluids and tissues, human behavior association, wound healing progression, and determination of the post-mortem interval (PMI). Despite all these applications, not all the studies considered the impact of PMI and post-sampling effects on the epigenetic modifications and the tissue-specificity of the epigenetic marks.This review aims to highlight the substantial forensic significance that epigenetics could support in various forensic investigations. First, basic concepts in epigenetics, describing the main epigenetic modifications and their functions, in particular, DNA methylation, histone modifications, and non-coding RNA, with a particular focus on forensic applications, were covered. For each epigenetic marker, post-mortem stability and tissue-specificity, factors that should be carefully considered in the study of epigenetic biomarkers in the forensic context, have been discussed. The advantages and limitations of using post-mortem tissues have been also addressed, proposing directions for these innovative strategies to analyze forensic specimens.
Collapse
Affiliation(s)
- Maria Carla Gerra
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11a, Viale Delle Scienze 11a, 43124, Parma, PR, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11a, Viale Delle Scienze 11a, 43124, Parma, PR, Italy.
| | - Rossana Cecchi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, PR, Italy
| |
Collapse
|
4
|
Tang X, Wen D, Jin X, Wang C, Xu W, Qu W, Xu R, Jia H, Liu Y, Li X, Chen S, Fu X, Liang B, Li J, Liu Y, Zha L. A preliminary study on identification of the blood donor in a body fluid mixture using a novel compound genetic marker blood-specific methylation-microhaplotype. Forensic Sci Int Genet 2024; 70:103031. [PMID: 38493735 DOI: 10.1016/j.fsigen.2024.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Blood-containing mixtures are frequently encountered at crime scenes involving violence and murder. However, the presence of blood, and the association of blood with a specific donor within these mixtures present significant challenges in forensic analysis. In light of these challenges, this study sought to address these issues by leveraging blood-specific methylation sites and closely linked microhaplotype sites, proposing a novel composite genetic marker known as "blood-specific methylation-microhaplotype". This marker was designed to the detection of blood and the determination of blood donor within blood-containing mixtures. According to the selection criteria mentioned in the Materials and Methods section, we selected 10 blood-specific methylation-microhaplotype loci for inclusion in this study. Among these loci, eight exhibited blood-specific hypomethylation, while the remaining two displayed blood-specific hypermethylation. Based on data obtained from 124 individual samples in our study, the combined discrimination power (CPD) of these 10 successfully sequenced loci was 0.999999298. The sample allele methylation rate (Ram) was obtained from massive parallel sequencing (MPS), which was defined as the proportion of methylated reads to the total clustered reads that were genotyped to a specific allele. To develop an allele type classification model capable of identifying the presence of blood and the blood donor, we used the Random Forest algorithm. This model was trained and evaluated using the Ram distribution of individual samples and the Ram distribution of simulated shared alleles. Subsequently, we applied the developed allele type classification model to predict alleles within actual mixtures, trying to exclude non-blood-specific alleles, ultimately allowing us to identify the presence of blood and the blood donor in the blood-containing mixtures. Our findings demonstrate that these blood-specific methylation-microhaplotype loci have the capability to not only detect the presence of blood but also accurately associate blood with the true donor in blood-containing mixtures with the mixing ratios of 1:29, 1:19, 1:9, 1:4, 1:2, 2:1, 7:1, 8:1, 31:1 and 36:1 (blood:non-blood) by DNA mixture interpretation methods. In addition, the presence of blood and the true blood donor could be identified in a mixture containing four body fluids (blood:vaginal fluid:semen:saliva = 1:1:1:1). It is important to note that while these loci exhibit great potential, the impact of allele dropouts and alleles misidentification must be considered when interpreting the results. This is a preliminary study utilising blood-specific methylation-microhaplotype as a complementary tool to other well-established genetic markers (STR, SNP, microhaplotype, etc.) for the analysis in blood-containing mixtures.
Collapse
Affiliation(s)
- Xuan Tang
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Dan Wen
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Xin Jin
- Department of Public Security of Hainan Province, Haikou, Hainan Province, PR China
| | - Chudong Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Wei Xu
- Central Laboratory, Hunan Provincal People's Hospital (The First Affiliated Hospitak of Hunan Normal University), Changsha, Hunan Province 410000, PR China
| | - Weifeng Qu
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Ruyi Xu
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Hongtao Jia
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Yi Liu
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Xue Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, PR China
| | - Siqi Chen
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Xiaoyi Fu
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Bin Liang
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Jienan Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Ying Liu
- Xiangya Stomatological Collage, Central South University, No72. Xiangya Road, Changsha, Hunan 410013, PR China.
| | - Lagabaiyila Zha
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China; Hebei Key Laboratory of Forensic Medicine, School of Forensic Medicine, Hebei Medical University, Shijiazhuang, PR China.
| |
Collapse
|
5
|
Castagnola MJ, Medina-Paz F, Zapico SC. Uncovering Forensic Evidence: A Path to Age Estimation through DNA Methylation. Int J Mol Sci 2024; 25:4917. [PMID: 38732129 PMCID: PMC11084977 DOI: 10.3390/ijms25094917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Age estimation is a critical aspect of reconstructing a biological profile in forensic sciences. Diverse biochemical processes have been studied in their correlation with age, and the results have driven DNA methylation to the forefront as a promising biomarker. DNA methylation, an epigenetic modification, has been extensively studied in recent years for developing age estimation models in criminalistics and forensic anthropology. Epigenetic clocks, which analyze DNA sites undergoing hypermethylation or hypomethylation as individuals age, have paved the way for improved prediction models. A wide range of biomarkers and methods for DNA methylation analysis have been proposed, achieving different accuracies across samples and cell types. This review extensively explores literature from the past 5 years, showing scientific efforts toward the ultimate goal: applying age prediction models to assist in human identification.
Collapse
Affiliation(s)
- María Josefina Castagnola
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Tiernan Hall 365, Newark, NJ 07102, USA; (M.J.C.); (F.M.-P.)
| | - Francisco Medina-Paz
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Tiernan Hall 365, Newark, NJ 07102, USA; (M.J.C.); (F.M.-P.)
| | - Sara C. Zapico
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Tiernan Hall 365, Newark, NJ 07102, USA; (M.J.C.); (F.M.-P.)
- Department of Anthropology and Laboratories of Analytical Biology, National Museum of Natural History, MRC 112, Smithsonian Institution, Washington, DC 20560, USA
| |
Collapse
|
6
|
Rothe J, Becker JM, Charchinezhadamouei M, Mähr S, Lembeck F, Dannemann N, Nagy M. Expanding the scope of methylation-sensitive restriction enzyme (MSRE) PCR for forensic identification of body fluids through the novel use of methylation-dependent restriction enzymes (MDRE) and the combination of autosomal and Y-chromosomal markers. Int J Legal Med 2024; 138:375-393. [PMID: 37875742 PMCID: PMC10861701 DOI: 10.1007/s00414-023-03097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023]
Abstract
Methylation-sensitive/-dependent restriction enzyme (MSRE/MDRE) PCR can be performed to detect hypomethylated or hypermethylated CpG sites. With the combined use of different tissue-specific CpG markers, MSRE/MDRE-PCR leads to tissue-specific methylation patterns (TSMPs), enabling the correlation of DNA samples to their source tissue. MSRE/MDRE assays can use the same platform as forensic STR typing and offer many advantages in the field of forensic body fluid detection. In the present study, we aimed to establish MSRE assays for the detection of blood, saliva, vaginal secretion, and semen, using markers from literature and from our own database search. We designed two different MSRE test-sets, which include two novel Y-chromosomal non-semen markers, and enable differentiation between female and male non-semen samples. Furthermore, we established an MSRE/MDRE semen approach, which includes only Y-chromosomal non-semen and semen markers. This Y-semen multiplex PCR utilizes the novel combination of the methylation-sensitive enzyme SmaI and the methylation-dependent enzyme GlaI, which enables more sensitive detection of male body fluids within male/female DNA mixtures. Our validation tests confirmed that MSRE/MDRE assays exhibit high sensitivity, similar to that of STR typing.
Collapse
Affiliation(s)
- Jessica Rothe
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Jessica Maria Becker
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Maral Charchinezhadamouei
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sophia Mähr
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Felizitas Lembeck
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Nora Dannemann
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Marion Nagy
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
7
|
Marcante B, Delicati A, Onofri M, Tozzo P, Caenazzo L. Estimation of Human Chronological Age from Buccal Swab Samples through a DNA Methylation Analysis Approach of a Five-Locus Multiple Regression Model. Int J Mol Sci 2024; 25:935. [PMID: 38256009 PMCID: PMC10815300 DOI: 10.3390/ijms25020935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Recent advancements in forensic genetics have facilitated the extraction of additional characteristics from unidentified samples. This study delves into the predictive potential of a five-gene (ELOVL2, FHL2, KLF14, C1orf132, and TRIM59) methylation rate analysis for human age estimation using buccal swabs collected from 60 Italian volunteers. The methylation levels of specific CpG sites in the five genes were analyzed through bisulfite conversion, single-base extension, and capillary electrophoresis. A multivariate linear regression model was crafted on the training set, then the test set was employed to validate the predictive model. The multivariate predictive model revealed a mean absolute deviation of 3.49 years in the test set of our sample. While limitations include a modest sample size, the study provides valuable insights into the potential of buccal swab-based age prediction, aiding in criminal investigations where accurate age determination is crucial. Our results also highlight that it is necessary to investigate the effectiveness of predictive models specific to biological tissues and individual populations, since models already proven effective for other populations or different tissues did not show the same effectiveness in our study.
Collapse
Affiliation(s)
- Beatrice Marcante
- Legal Medicine Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (B.M.); (A.D.); (P.T.)
| | - Arianna Delicati
- Legal Medicine Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (B.M.); (A.D.); (P.T.)
| | - Martina Onofri
- Section of Legal Medicine, Department of Medicine and Surgery, Santa Maria Hospital, University of Perugia, 05100 Terni, Italy;
| | - Pamela Tozzo
- Legal Medicine Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (B.M.); (A.D.); (P.T.)
| | - Luciana Caenazzo
- Legal Medicine Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (B.M.); (A.D.); (P.T.)
| |
Collapse
|
8
|
Konrad H, Jürgens L, Hartung B, Poetsch M. More than just blood, saliva, or sperm-setup of a workflow for body fluid identification by DNA methylation analysis. Int J Legal Med 2023; 137:1683-1692. [PMID: 37535091 PMCID: PMC10567870 DOI: 10.1007/s00414-023-03069-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
The determination of cellular origin of DNA is a useful method in forensic genetics and complements identification of the DNA donor by STR analysis, since it could provide helpful information for the reconstruction of crime scenes and verify or disprove the descriptions of involved people. There already exist several rapid/pre-tests for several secretions (blood, sperm secretion, saliva, and urine), RNA-based expression analyses (blood, menstrual blood, saliva, vaginal secretion, nasal secretion, and sperm secretion), or specific CpG methylation analyses (nasal blood, blood, saliva, vaginal secretion, nasal secretion, and sperm secretion) for determining the cell type.To identify and to discriminate seven different body fluids and mixtures thereof in a simple workflow from each other, assays based on specific methylation patterns at several CpGs combined with pre-/rapid tests were set up in this study. For each of the seven secretions listed above, we selected the CpG marker achieving the highest possible discrimination (out of 30 markers tested). Validation studies confirmed a definite identification for saliva, vaginal secretion, and semen secretion in 100% of samples as well as discrimination from all other secretions. Moreover, the unambiguously correctly determined proportion of nasal samples, blood and menstrual blood varied between 61% (nasal blood) and 85% (nasal secretion).In summary, our workflow proved to be an easy and useful tool in forensic analysis for the identification and discrimination of seven different body fluids often found at a crime scene.
Collapse
Affiliation(s)
- Helen Konrad
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Leandra Jürgens
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Benno Hartung
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Micaela Poetsch
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany.
| |
Collapse
|
9
|
Wang HX, Liu XZ, He XM, Xiao C, Huang DX, Yi SH. Identification of Mixtures of Two Types of Body Fluids Using the Multiplex Methylation System and Random Forest Models. Curr Med Sci 2023; 43:908-918. [PMID: 37700190 DOI: 10.1007/s11596-023-2770-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/08/2023] [Indexed: 09/14/2023]
Abstract
OBJECTIVE Body fluid mixtures are complex biological samples that frequently occur in crime scenes, and can provide important clues for criminal case analysis. DNA methylation assay has been applied in the identification of human body fluids, and has exhibited excellent performance in predicting single-source body fluids. The present study aims to develop a methylation SNaPshot multiplex system for body fluid identification, and accurately predict the mixture samples. In addition, the value of DNA methylation in the prediction of body fluid mixtures was further explored. METHODS In the present study, 420 samples of body fluid mixtures and 250 samples of single body fluids were tested using an optimized multiplex methylation system. Each kind of body fluid sample presented the specific methylation profiles of the 10 markers. RESULTS Significant differences in methylation levels were observed between the mixtures and single body fluids. For all kinds of mixtures, the Spearman's correlation analysis revealed a significantly strong correlation between the methylation levels and component proportions (1:20, 1:10, 1:5, 1:1, 5:1, 10:1 and 20:1). Two random forest classification models were trained for the prediction of mixture types and the prediction of the mixture proportion of 2 components, based on the methylation levels of 10 markers. For the mixture prediction, Model-1 presented outstanding prediction accuracy, which reached up to 99.3% in 427 training samples, and had a remarkable accuracy of 100% in 243 independent test samples. For the mixture proportion prediction, Model-2 demonstrated an excellent accuracy of 98.8% in 252 training samples, and 98.2% in 168 independent test samples. The total prediction accuracy reached 99.3% for body fluid mixtures and 98.6% for the mixture proportions. CONCLUSION These results indicate the excellent capability and powerful value of the multiplex methylation system in the identification of forensic body fluid mixtures.
Collapse
Affiliation(s)
- Han-Xiao Wang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Zhao Liu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi-Miao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chao Xiao
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dai-Xin Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shao-Hua Yi
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
10
|
Naue J. Getting the chronological age out of DNA: using insights of age-dependent DNA methylation for forensic DNA applications. Genes Genomics 2023; 45:1239-1261. [PMID: 37253906 PMCID: PMC10504122 DOI: 10.1007/s13258-023-01392-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/15/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND DNA analysis for forensic investigations has a long tradition with important developments and optimizations since its first application. Traditionally, short tandem repeats analysis has been the most powerful method for the identification of individuals. However, in addition, epigenetic changes, i.e., DNA methylation, came into focus of forensic DNA research. Chronological age prediction is one promising application to allow for narrowing the pool of possible individuals who caused a trace, as well as to support the identification of unknown bodies and for age verification of living individuals. OBJECTIVE This review aims to provide an overview of the current knowledge, possibilities, and (current) limitations about DNA methylation-based chronological age prediction with emphasis on forensic application. METHODS The development, implementation and application of age prediction tools requires a deep understanding about the biological background, the analysis methods, the age-dependent DNA methylation markers, as well as the mathematical models for age prediction and their evaluation. Furthermore, additional influences can have an impact. Therefore, the literature was evaluated in respect to these diverse topics. CONCLUSION The numerous research efforts in recent years have led to a rapid change in our understanding of the application of DNA methylation for chronological age prediction, which is now on the way to implementation and validation. Knowledge of the various aspects leads to a better understanding and allows a more informed interpretation of DNAm quantification results, as well as the obtained results by the age prediction tools.
Collapse
Affiliation(s)
- Jana Naue
- Institute of Forensic Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
11
|
Fang Y, Chen M, Zhu B. Construction and evaluation of in-house methylation-sensitive SNaPshot system and three classification prediction models for identifying the tissue origin of body fluid. J Zhejiang Univ Sci B 2023; 24:839-852. [PMID: 37701959 PMCID: PMC10500097 DOI: 10.1631/jzus.b2200555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/06/2023] [Indexed: 06/27/2023]
Abstract
The identification of tissue origin of body fluid can provide clues and evidence for criminal case investigations. To establish an efficient method for identifying body fluid in forensic cases, eight novel body fluid-specific DNA methylation markers were selected in this study, and a multiplex singlebase extension reaction (SNaPshot) system for these markers was constructed for the identification of five common body fluids (venous blood, saliva, menstrual blood, vaginal fluid, and semen). The results indicated that the in-house system showed good species specificity, sensitivity, and ability to identify mixed biological samples. At the same time, an artificial body fluid prediction model and two machine learning prediction models based on the support vector machine (SVM) and random forest (RF) algorithms were constructed using previous research data, and these models were validated using the detection data obtained in this study (n=95). The accuracy of the prediction model based on experience was 95.79%; the prediction accuracy of the SVM prediction model was 100.00% for four kinds of body fluids except saliva (96.84%); and the prediction accuracy of the RF prediction model was 100.00% for all five kinds of body fluids. In conclusion, the in-house SNaPshot system and RF prediction model could achieve accurate tissue origin identification of body fluids.
Collapse
Affiliation(s)
- Yating Fang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230031, China
| | - Man Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
12
|
Refn MR, Kampmann ML, Morling N, Tfelt-Hansen J, Børsting C, Pereira V. Prediction of chronological age and its applications in forensic casework: methods, current practices, and future perspectives. Forensic Sci Res 2023; 8:85-97. [PMID: 37621446 PMCID: PMC10445583 DOI: 10.1093/fsr/owad021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/28/2023] [Indexed: 08/26/2023] Open
Abstract
Estimating an individual's age can be relevant in several areas primarily related to the clinical and forensic fields. In the latter, estimation of an individual's chronological age from biological material left by the perpetrator at a crime scene may provide helpful information for police investigation. Estimation of age is also beneficial in immigration cases, where age can affect the person's protection status under the law, or in disaster victim identification to narrow the list of potential missing persons. In the last decade, research has focused on establishing new approaches for age prediction in the forensic field. From the first forensic age estimations based on morphological inspections of macroscopic changes in bone and teeth, the focus has shifted to molecular methods for age estimation. These methods allow the use of samples from human biological material that does not contain morphological age features and can, in theory, be investigated in traces containing only small amounts of biological material. Molecular methods involving DNA analyses are the primary choice and estimation of DNA methylation levels at specific sites in the genome is the most promising tool. This review aims to provide an overview of the status of forensic age prediction using molecular methods, with particular focus in DNA methylation. The frequent challenges that impact forensic age prediction model development will be addressed, together with the importance of validation efforts within the forensic community.
Collapse
Affiliation(s)
- Mie Rath Refn
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie-Louise Kampmann
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Tfelt-Hansen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen , Denmark
| | - Claus Børsting
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vania Pereira
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Konrad H, Lawniczek J, Bajramjan C, Weber L, Bajanowski T, Poetsch M. Knife wound or nosebleed-where does the blood at the crime scene come from? Int J Legal Med 2023:10.1007/s00414-023-03012-2. [PMID: 37148347 PMCID: PMC10247842 DOI: 10.1007/s00414-023-03012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/14/2023] [Indexed: 05/08/2023]
Abstract
Secretion analysis is a useful tool in forensic genetics, since it establishes the (cellular) origin of the DNA prior in addition to the identification of the DNA donor. This information can be crucial for the construction of the crime sequence or verification of statements of people involved in the crime. For some secretions, rapid/pretests already exist (blood, semen, urine, and saliva) or can be determined via published methylation analyses or expression analyses (blood, saliva vaginal secretions, menstrual blood, and semen). To discriminate nasal secretion/blood from other secretions (like oral mucosa/saliva, blood, vaginal secretion, menstrual blood, and seminal fluid), assays based on specific methylation patterns at several CpGs were set up in this study. Out of an initial 54 different CpG markers tested, two markers showed a specific methylation value for nasal samples: N21 and N27 with a methylation mean value of 64.4% ± 17.6% and 33.2% ± 8.7%, respectively. Although identification or discrimination was not possible for all nasal samples (due to partial overlap in methylation values to other secretions), 63% and 26% of the nasal samples could be unambiguously identified and distinguished from the other secretions using the CpG marker N21 and N27, respectively. In combination with a blood pretest/rapid test, a third marker (N10) was able to detect nasal cells in 53% of samples. Moreover, the employment of this pretest increases the proportion of identifiable or discriminable nasal secretion samples using marker N27 to 68%. In summary, our CpG assays proved to be promising tools in forensic analysis for the detection of nasal cells in samples from a crime scene.
Collapse
Affiliation(s)
- Helen Konrad
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Janina Lawniczek
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Christine Bajramjan
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Lisa Weber
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Thomas Bajanowski
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Micaela Poetsch
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany.
| |
Collapse
|
14
|
Ghemrawi M, Tejero NF, Duncan G, McCord B. Pyrosequencing: Current forensic methodology and future applications-a review. Electrophoresis 2023; 44:298-312. [PMID: 36168852 DOI: 10.1002/elps.202200177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 02/01/2023]
Abstract
The recent development of small, single-amplicon-based benchtop systems for pyrosequencing has opened up a host of novel procedures for applications in forensic science. Pyrosequencing is a sequencing by synthesis technique, based on chemiluminescent inorganic pyrophosphate detection. This review explains the pyrosequencing workflow and illustrates the step-by-step chemistry, followed by a description of the assay design and factors to keep in mind for an exemplary assay. Existing and potential forensic applications are highlighted using this technology. Current applications include identifying species, identifying bodily fluids, and determining smoking status. We also review progress in potential applications for the future, including research on distinguishing monozygotic twins, detecting alcohol and drug abuse, and other phenotypic characteristics such as diet and body mass index. Overall, the versatility of the pyrosequencing technologies renders it a useful tool in forensic genomics.
Collapse
Affiliation(s)
- Mirna Ghemrawi
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Nicole Fernandez Tejero
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - George Duncan
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, Florida, USA
| | - Bruce McCord
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| |
Collapse
|
15
|
Butler JM. Recent advances in forensic biology and forensic DNA typing: INTERPOL review 2019-2022. Forensic Sci Int Synerg 2022; 6:100311. [PMID: 36618991 PMCID: PMC9813539 DOI: 10.1016/j.fsisyn.2022.100311] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review paper covers the forensic-relevant literature in biological sciences from 2019 to 2022 as a part of the 20th INTERPOL International Forensic Science Managers Symposium. Topics reviewed include rapid DNA testing, using law enforcement DNA databases plus investigative genetic genealogy DNA databases along with privacy/ethical issues, forensic biology and body fluid identification, DNA extraction and typing methods, mixture interpretation involving probabilistic genotyping software (PGS), DNA transfer and activity-level evaluations, next-generation sequencing (NGS), DNA phenotyping, lineage markers (Y-chromosome, mitochondrial DNA, X-chromosome), new markers and approaches (microhaplotypes, proteomics, and microbial DNA), kinship analysis and human identification with disaster victim identification (DVI), and non-human DNA testing including wildlife forensics. Available books and review articles are summarized as well as 70 guidance documents to assist in quality control that were published in the past three years by various groups within the United States and around the world.
Collapse
Affiliation(s)
- John M. Butler
- National Institute of Standards and Technology, Special Programs Office, 100 Bureau Drive, Mail Stop 4701, Gaithersburg, MD, USA
| |
Collapse
|
16
|
Raman Spectroscopy for the Determination of Forensically Important Bio-fluids. Forensic Sci Int 2022; 340:111441. [DOI: 10.1016/j.forsciint.2022.111441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/30/2022] [Accepted: 08/21/2022] [Indexed: 11/23/2022]
|
17
|
Tsai LC, Liu KL, Lin WY, Lin YC, Huang NE, Lee JCI, Linacre A, Hsieh HM. Evaluation of three commercial kits effective identification of menstrual blood based on the D-dimer. Forensic Sci Int 2022; 338:111389. [PMID: 35849993 DOI: 10.1016/j.forsciint.2022.111389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
Abstract
Blood or bloodstains are encountered frequently in forensic investigations. Presumptive and more confirmatory tests for peripheral blood are well established, however, similar methods for menstrual blood identification are less so. D-dimer is a fibrin degradation product that occurs at high concentration in menstrual blood and therefore a potential target to screen for this body fluid. We evaluated three rapid tests to determine if they can discriminate menstrual blood from peripheral remote from a laboratory setting. Their sensitivity, specificity and robustness were also assessed. The assays were: a latex agglutination (Dade Dimertest Latex Assay), SERATEC PMB test and OneStep D-dimer RapidCard InstaTest, both of which are based on lateral flow immunochromatographic analysis. Of the three, greater sensitivity was observed using the OneStep D-dimer RapidCard InstaTest, regardless of whether liquid or a stain was used. This test also detected a result using the smallest volume of menstrual blood, 0.003125 μL. Specificity testing was based on six different body fluids (urine, saliva, peripheral blood, semen, sweats and vaginal fluid) resulting in all 30 samples testing negative for the D-dimer using the OneStep D-dimer RapidCard InstaTest. Mixtures at ratios 1:1, 1:3 and 1:9 (menstrual blood: the other biofluid or PBS) were tested and the results showed that D-dimer could be detected for all samples using either the Dade Dimertest Latex Assay or the OneStep D-dimer RapidCard InstaTest. The body fluids were exposed to environmental stresses such as various temperature (-20 °C, 4 °C, room temperature and 37 °C for 30, 90, 180 and 360 days) and fluctuations in humidity (42%, 76% and 100% humidity at room temperature for 1, 3, 5, 10 and 20 days): all samples were D-dimer positive using the OneStep D-dimer RapidCard InstaTest though the strength decreased relative to the increase of storage time and temperature or humidity. All 6 postmortem blood samples gave a positive result for D-dimer using the OneStep D-dimer RapidCard InstaTest and 2 samples gave a positive response using the Dade Dimertest Latex Assay and the SERATEC PMB test; peripheral blood postmortem samples can show an increase in D-dimer. Menstrual blood was recovered from the pads under the sample wells after testing using the two immunochromatographic assays from which STR alleles could be amplified successfully. The results presented here support the application of these commercial kits for effective identification of menstrual blood.
Collapse
Affiliation(s)
- Li-Chin Tsai
- Department of Forensic Science, Central Police University, No.56 Shu-Jen Road, Kwei-San, Taoyuan 333322, Taiwan, ROC
| | - Kuo-Lan Liu
- Forensic Examination Division, Criminal Investigation Bureau, National Police Agency, No.5 Lane 553, Chung Hsiao East Road Section 4, Xinyi District, Taipei 110055, Taiwan, ROC
| | - Wan-Ying Lin
- Department of Forensic Science, Central Police University, No.56 Shu-Jen Road, Kwei-San, Taoyuan 333322, Taiwan, ROC
| | - Yu-Chih Lin
- Taichung City Government Police Department, No.500 Fengxing Road Section 1, Tanzi District, Taichung City 427003, Taiwan, ROC
| | - Nu-En Huang
- Forensic Biology Division, Criminal Investigation Bureau, National Police Agency, No.5 Lane 553, Chung Hsiao East Road Section 4, Xinyi District, Taipei 110055, Taiwan, ROC
| | - James Chun-I Lee
- Department of Forensic Medicine, College of Medicine, National Taiwan University, No.1 Jen-Ai Road Section 1, Taipei 100233, Taiwan, ROC
| | - Adrian Linacre
- College of Science & Engineering, Flinders University, Adelaide 5001, Australia
| | - Hsing-Mei Hsieh
- Department of Forensic Science, Central Police University, No.56 Shu-Jen Road, Kwei-San, Taoyuan 333322, Taiwan, ROC.
| |
Collapse
|
18
|
Wen D, Shi J, Liu Y, He W, Qu W, Wang C, Xing H, Cao Y, Li J, Zha L. DNA methylation analysis for smoking status prediction in the Chinese population based on the methylation-sensitive single-nucleotide primer extension method. Forensic Sci Int 2022; 339:111412. [DOI: 10.1016/j.forsciint.2022.111412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/04/2022]
|
19
|
Li Z, Li Y, Liu N, Yuan F, Liu F, Liu J, Yun K, Yan J, Zhang G. Typing of semen-containing mixtures using ARMS-based semen-specific CpG-InDel/STR markers. Int J Legal Med 2022; 136:1163-1176. [PMID: 35633397 DOI: 10.1007/s00414-022-02843-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
Mixed traces are common biological materials found at crime scenes, and their identification remains a significant challenge in the field of forensic genetics. In recent years, DNA methylation has been considered as a promising approach for body fluid identification, and length polymorphic loci are still the preferred markers for personal identification. In this study, we used tissue-specific CpG sites with linked insertion or deletion (InDel) or short tandem repeat (STR) markers (CpG-InDel/STR) for both body fluid and individual identification. The tissue-specific CpG loci, which were all selected from the previous reports, were analyzed using a combination of bisulfite conversion and amplification refractory mutation system-multiprimer-PCR technology. InDels or STRs, which were selected within 400 bp upstream or downstream of the semen-specific CpG loci, were analyzed using a capillary electrophoresis platform. Eventually, we successfully constructed a panel containing 17 semen-specific CpG-InDel/STR compound markers compassing 21 InDels/STRs, 3 body-fluid positive controls (vaginal secretion-, saliva-, and blood-specific CpG), and 1 gender identification locus. Using this panel, full genotyping of individuals could be obtained successfully with 50 ng DNA input. Semen stains stored at room temperature for 7 months and degraded samples that were heat treated for up to 6 h were still identified efficiently. For semen containing mixed stains, it is also useful when the semen content is as low as 3.03%. Moreover, the cumulative discrimination power of this panel is 0.9999998. In conclusion, it is a robust panel enabling the validation of both the tissue source and individual identification of semen containing mixed stains and can be employed as an alternative solution for forensic case investigation.
Collapse
Affiliation(s)
- Zeqin Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030619, People's Republic of China
| | - Yidan Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030619, People's Republic of China
| | - Na Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030619, People's Republic of China
| | - Fang Yuan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030619, People's Republic of China
| | - Feng Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030619, People's Republic of China
| | - Jinding Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030619, People's Republic of China
| | - Keming Yun
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030619, People's Republic of China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030619, People's Republic of China.
| | - Gengqian Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030619, People's Republic of China.
| |
Collapse
|
20
|
Mei S, Zhao M, Liu Y, Zhao C, Xu H, Fang Y, Zhu B. Evaluations and comparisons of microbial diversities in four types of body fluids based on two 16S rRNA gene sequencing methods. Forensic Sci Int 2021; 331:111128. [PMID: 34959019 DOI: 10.1016/j.forsciint.2021.111128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Body fluids are one of the common biological traces at crime scenes. Understanding the types of these biological traces could provide key clues for the investigations of the forensic cases. In recent years, partial hypervariable regions of 16S rRNA gene sequencing and full-length 16S rRNA gene sequencing have attracted the interests of researchers and we intend to explore which method can be better applied to forensic researches. METHODS In this study, the 16S rRNA gene V3-V4 (short-read) sequencing based on next-generation sequencing and the full-length 16S rRNA gene sequencing based on single molecule real-time sequencing were used to classify microbes in saliva, peripheral blood, vaginal secretion and menstrual blood samples. RESULTS Alpha diversity metrics in short-read sequencing were larger than those of full-length sequencing. Phylum-level bacteria in four kinds of body fluids obtained from the two platforms were similar, while their abundances were different. The results of principal coordinates analysis and analysis of molecular variance indicated the microbial compositions of vaginal secretion and menstrual blood samples were similar, and the microbial compositions among saliva, peripheral blood, vaginal secretion or menstrual blood samples were significantly different. The linear discriminant analysis effect size showed the differential bacteria screened among the four kinds of body fluids were variant in two sequencing results. CONCLUSION Both sequencing methods could be used to detect bacterial diversities in four different types of body fluids and provide potential tools for microbes to identify the four kinds of body fluids in forensic investigation, in which full-length sequencing could provide more accurate taxonomy.
Collapse
Affiliation(s)
- Shuyan Mei
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ming Zhao
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yanfang Liu
- School of Nursing, Guangdong Medical University, Dongguan 523808, P. R. China
| | - Congying Zhao
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Hui Xu
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yating Fang
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Bofeng Zhu
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, P. R. China.
| |
Collapse
|
21
|
Sijen T, Harbison S. On the Identification of Body Fluids and Tissues: A Crucial Link in the Investigation and Solution of Crime. Genes (Basel) 2021; 12:1728. [PMID: 34828334 PMCID: PMC8617621 DOI: 10.3390/genes12111728] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Body fluid and body tissue identification are important in forensic science as they can provide key evidence in a criminal investigation and may assist the court in reaching conclusions. Establishing a link between identifying the fluid or tissue and the DNA profile adds further weight to this evidence. Many forensic laboratories retain techniques for the identification of biological fluids that have been widely used for some time. More recently, many different biomarkers and technologies have been proposed for identification of body fluids and tissues of forensic relevance some of which are now used in forensic casework. Here, we summarize the role of body fluid/ tissue identification in the evaluation of forensic evidence, describe how such evidence is detected at the crime scene and in the laboratory, elaborate different technologies available to do this, and reflect real life experiences. We explain how, by including this information, crucial links can be made to aid in the investigation and solution of crime.
Collapse
Affiliation(s)
- Titia Sijen
- Division Human Biological Traces, Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB The Hague, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - SallyAnn Harbison
- Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland 1142, New Zealand;
- Department of Statistics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
22
|
Vibration as a pitfall in pyrosequencing analyses. Int J Legal Med 2021; 136:103-105. [PMID: 34637025 PMCID: PMC8813862 DOI: 10.1007/s00414-021-02716-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022]
Abstract
Since methylation analysis has become an important tool in forensic genetics, the reliability and credibility of the method must be ensured. After a successful validation and establishment of several pyrosequencing assays using a PyroMark® Q48 Autoprep instrument (Qiagen, Hilden, Germany), we decided to expand the method further purchasing a second instrument. But after initializing this second instrument side by side with the first, the majority of analyses failed (97 samples of 133 samples (73%)). The number of error messages increased rapidly and the average RFU values decreased. After purchasing two anti-vibration weighing tables for the PyroMark® instruments and repeating the analyses under the same conditions and with identical samples the results improved considerably, 115 samples of 130 samples (88%) showed successful and reproducible results. These findings demonstrate the impact of vibrations and percussions on PyroMark® Q48 Autoprep performance and the reliability of methylation analyses.
Collapse
|
23
|
Huang H, Liu X, Cheng J, Xu L, He X, Xiao C, Huang D, Yi S. A novel multiplex assay system based on 10 methylation markers for forensic identification of body fluids. J Forensic Sci 2021; 67:136-148. [PMID: 34431515 DOI: 10.1111/1556-4029.14872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/12/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022]
Abstract
Identifying the source of body fluids found at a crime scene is an essential forensic step. Some methods based on DNA methylation played significant role in body fluids identification. Since DNA methylation is related to multiple factors, such as race, age, and diseases, it is necessary to know the methylation profile of a given population. In this study, we tested 19 body fluid-specific methylation markers in a Chinese Han population. A novel multiplex assay system based on the selected markers with smaller variation in methylation and stronger tissue-specific methylation were developed for the identification of body fluids. The multiplex assay were tested in 265 body fluid samples. A random forest model was established to predict the tissue source based on the methylation data of the 10 markers. The multiplex assay was evaluated by testing the sensitivity, the mixtures, and old samples. For the result, the novel multiplex assay based on 10 selected methylation markers presented good methylation profiles in all tested samples. The random forest model worked extremely well in predicting the source of body fluids, with an accuracy of 100% and 97.5% in training data and test data, respectively. The multiplex assay could accurately predict the tissue source from 0.5 ng genomic DNA, six-months-old samples and distinguish the minor component from a mixture of two components. Our results indicated that the methylation multiplex assay and the random forest model could provide a convenient tool for forensic practitioners in body fluid identification.
Collapse
Affiliation(s)
- Hongzhi Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Key Laboratory of the Forensic Science, Hubei University of Police, Wuhan, Hubei, China
| | - Xiaozhao Liu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juanbo Cheng
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linxia Xu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ximiao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Xiao
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Daixin Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shaohua Yi
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
24
|
Spectroscopy as a useful tool for the identification of changes with time in post-mortem vitreous humor for forensic toxicology purposes. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02786-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractVitreous humor (VH) is an alternative biological matrix with a great advantage of longer availability for analysis due to the lack of many enzymes. The use of VH in forensic toxicology may have an added benefit, however, this application requires rapid, simple, non-destructive, and relatively portable analytical analysis methods. These requirements may be met by Fourier transform infrared spectroscopy technique (FT-IR) equipped with attenuated total reflection accessory (ATR). FT-IR spectra of vitreous humor samples, deposited on glass slides, were collected and subsequent chemometric data analysis by means of Hierarchical Cluster Analysis and Principal Component Analysis was conducted. Differences between animal and human VH samples and human VH samples stored for diverse periods of time were detected. A kinetic study of changes in the VH composition up to 2 weeks showed the distinction of FT-IR spectra collected on the 1st and 14th day of storage. In addition, data obtained for the most recent human vitreous humor samples—collected 3 and 2 years before the study, presented successful discrimination of all time points studied. The method introduced was unable to detect mephedrone addition to VH in the concentration of 10 µg/cm3.
Graphic abstract
Collapse
|
25
|
Gomaa R, Nader L, Jamal J. Application of DNA methylation-based markers in identification of mixed body fluid evidences simulating crime scene scenarios. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2021. [DOI: 10.1186/s41935-021-00226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Epigenetic modifications are heritable and follow a non-mendelian inheritance pattern. They do not alter the DNA sequence but affect the gene expression at the transcriptional level. DNA methylation is one of these epigenetic changes and it is characteristic to each tissue and shows specificity with respect to developmental stage and age. Due to its specificity and reliability, it has emerged as a valuable tool in forensic investigation. Biological samples, such as blood, saliva, semen, or hair found at the crime scene can be used to isolate DNA and study the methylation pattern. Recent developments in molecular biology techniques allowed the study of the effects of methylation in specific tissues. DNA methylation specificity is very intense. These specific markers can be used to identify the tissue type such as blood, saliva, or semen at the crime scene and helps in the identification of the culprit. The present study aimed to validate the use of DNA methylation body fluid-specific markers in the identification of peripheral blood, menstrual blood, and semen. Additionally, it aimed to investigate the potential use of such DNA methylation markers for the identification of different body fluids mixtures simulating forensic science scenarios. Different DNA methylation markers were studied in different body fluid samples (peripheral blood, menstrual blood, and semen) individually and as mixtures. DNA extraction and bisulfite conversion were performed and followed by real-time PCR.
Results
The results of real-time PCR and the statistical analysis showed that the SPERM2 marker was better than SEU2 in the identification of semen DNA in mixed samples. However, in the identification of individual semen samples, the later marker showed better results than the first one, whereas BLM1 and MENS1 markers were successful in identifying the peripheral and menstrual blood samples, respectively.
Conclusions
This data can be readily used and applied on different forensic samples for tissue identification. Further sequencing studies are strongly recommended.
Collapse
|
26
|
Application of fragment analysis based on methylation status mobility difference to identify vaginal secretions. Sci Justice 2021; 61:384-390. [PMID: 34172127 DOI: 10.1016/j.scijus.2021.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/16/2021] [Accepted: 03/13/2021] [Indexed: 11/21/2022]
Abstract
Identifying vaginal secretions attaching or adhering to a suspect's belongings would be beneficial for reconstructing the events that have taken place during a sexual assault. The present study describes a novel approach to identify vaginal secretions by fragment analysis using capillary electrophoresis, based on the mobility differences of PCR amplicons from bisulfite-treated DNA depending on methylation status. We targeted three genome regions including each of three vaginal secretion-specific methylated CpG sites reported previously: cg25416153, cg09765089, and cg14991487. In all three genome regions, the amplicon peaks for methylated genomic DNA (gDNA) sequences were only detected in vaginal samples, whereas samples of other body fluids (blood, saliva, semen, and deposit on skin surface) only showed amplicon peaks for unmethylated gDNA sequences. In vaginal secretions, the methylation ratio of each of the three targeted regions between samples was variable, while the ratios at the three regions in each sample were similar. Furthermore, commercial vaginal epithelial cells were completely methylated at the three regions. Therefore, vaginal secretion-specific methylation may derive from vaginal epithelial cells present in the sample. In forensic cases with a limited amount of DNA, the reproducibility of a detected peak using the present method is not high due to degradation of DNA by bisulfite treatment and subsequent stochastic PCR bias. However, it was possible to detect peaks from methylated DNA sequences by performing PCR and capillary electrophoresis in triplicate after bisulfite treatment, even when bisulfite treatment was performed using 0.5 ng of gDNA from vaginal secretions. In addition, the level of methylation at each targeted region was found to be stable in vaginal secretions stored for 1 year at room temperature. Therefore, we conclude that detection of the visual peak from vaginal secretion-specific methylated DNA sequence is useful to prove the presence of vaginal secretions. This approach has the potential to analyze multiple marker regions simultaneously, and may provide a new multiplex assay to identify various body fluids.
Collapse
|
27
|
Liu J, Cheng X, Liu F, Hao T, Wang J, Guo J, Li J, Liu Z, Li W, Shi J, Zhang X, Li J, Yan J, Zhang G. Identification of coding region SNPs from specific and sensitive mRNA biomarkers for the deconvolution of the semen donor in a body fluid mixture. Forensic Sci Int Genet 2021; 52:102483. [PMID: 33610949 DOI: 10.1016/j.fsigen.2021.102483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/27/2021] [Accepted: 02/10/2021] [Indexed: 11/29/2022]
Abstract
mRNA markers provide a very promising method for the identification of human body fluids or tissues in the context of forensic investigations. Previous studies have shown that different body fluids can be distinguished from each other according to their specific mRNA biomarkers. In this study, we evaluated eight semen-specific mRNA markers (KLK3, NKX3-1, CKB, KLK2, PRAC1, SEMG1, TGM4, and SORD) that encompass 12 coding single nucleotide polymorphisms (cSNPs) to identify the semen contributor in a mixed stain. Five highly specific and sensitive mRNA markers for blood, menstrual blood, saliva, vaginal secretions, and skin were also incorporated into the PCR system as body fluid-positive controls. Reverse transcription polymerase chain reaction (RT-PCR), multiplex PCR and SNaPshot mini-sequencing assays were established for the identification of semen-specific mRNA. The amplicon size ranged from 133 to 337 bp. The semen-specific system was examined against blood, menstrual blood, saliva, vaginal secretions, and skin swabs. The eight mRNA biomarkers were semen-specific and could be successfully typed in laboratory-generated mixtures composed of different body fluids supplemented with 1 ng of semen cDNA. This system possessed a high sensitivity that ranged from 1:10-1:100 for detecting trace amounts of semen in semen-containing body fluid mixtures. Additionally, our results demonstrated that the cSNPs polymorphisms included in the mRNA markers were concordant with genomic DNA (gDNA). Despite the presence of other body fluids, the system exhibited high sensitivity and specificity to the semen in the mixture. In future studies, we will add other cSNPs from the semen-specific genes using massively parallel sequencing to further improve our system.
Collapse
Affiliation(s)
- Jinding Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Xiaojuan Cheng
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Feng Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Ting Hao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jiaqi Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jiangling Guo
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jintao Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Zidong Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Wenyan Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jie Shi
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Xiuying Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jing Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China.
| | - Gengqian Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China.
| |
Collapse
|
28
|
MicroRNAs: An Update of Applications in Forensic Science. Diagnostics (Basel) 2020; 11:diagnostics11010032. [PMID: 33375374 PMCID: PMC7823886 DOI: 10.3390/diagnostics11010032] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs containing 18–24 nucleotides that are involved in the regulation of many biochemical mechanisms in the human body. The level of miRNAs in body fluids and tissues increases because of altered pathophysiological mechanisms, thus they are employed as biomarkers for various diseases and conditions. In recent years, miRNAs obtained a great interest in many fields of forensic medicine given their stability and specificity. Several specific miRNAs have been studied in body fluid identification, in wound vitality in time of death determination, in drowning, in the anti-doping field, and other forensic fields. However, the major problems are (1) lack of universal protocols for diagnostic expression testing and (2) low reproducibility of independent studies. This review is an update on the application of these molecular markers in forensic biology.
Collapse
|
29
|
Ghai M, Naidoo N, Evans DL, Kader F. Identification of novel semen and saliva specific methylation markers and its potential application in forensic analysis. Forensic Sci Int Genet 2020; 49:102392. [PMID: 32979622 DOI: 10.1016/j.fsigen.2020.102392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022]
Abstract
Differential DNA methylation in human tissues has been widely used to develop markers for body fluid identification in forensics. In the present study, identification of potential tissue specific differentially methylated regions (tDMRs) was based on mining differentially expressed genes in surrogate tissues for blood, saliva, semen and vaginal fluid. Genes specifically over expressed in one of the surrogate tissues viz: blood, salivary glands, testis, prostrate, cervix, uterus and ovary were identified from genome wide expression datasets. We hypothesized that over expression in surrogate tissues for body fluids could be correlated with differential methylation. Methylation information from two methylation datasets, NGSmethDB and ENCODE were integrated and heavily methylated gene body CpG islands (CGI) representing the body fluids were extracted. From a total of 53 potential genes the present study reports, two genes, ZNF282 and HPCAL1 which were preferentially expressed in cervix with comparatively reduced expression in other surrogate tissues. Methylated CGIs were targeted to design primers for methylation specific PCR (MSP) and bisulphite sequencing (BS). The ZNF282 CpG sites displayed semen-specific hypomethylation while HPCAL1 CpGs showed saliva-specific hypomethylation. Clone-based bisulphite sequencing also revealed significant hypomethylation in the target body fluids. To evaluate the stability of methylation profiles, the ZNF282 tDMR was tested and each body fluid was subjected to five different forensic simulated conditions (dry at room temperature, wet in an exicator, outside on the ground, sprayed with alcohol and sprayed with bleach) for 50 days. Under the condition "outside on the ground", saliva showed a significant decrease in methylation level by bisulphite sequencing analysis over time. Complete methylation profiles were obtained only for vaginal fluid under all conditions and no differences in methylation levels were observed for this fluid after 50 days. Thus, ZNF282 and HPCAL1 tDMRs can be used as reliable semen and saliva identification markers respectively.
Collapse
Affiliation(s)
- Meenu Ghai
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.
| | - Natalie Naidoo
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.
| | - Dyfed Lloyd Evans
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa; South African Sugarcane Research Institute, Durban, South Africa.
| | - Farzeen Kader
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.
| |
Collapse
|
30
|
Kader F, Ghai M, Zhou M. Ethnicity, age and disease-associated variation in body fluid-specific CpG sites in a diverse South African cohort. Forensic Sci Int 2020; 314:110372. [PMID: 32623090 DOI: 10.1016/j.forsciint.2020.110372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022]
Abstract
Tissue-specific differential DNA methylation has been an attractive target for the development of markers for discrimination of body fluids found at crime scenes. Though mostly stable, DNA methylation patterns have been shown to vary between different ethnic groups, in different age groups as well as between healthy and diseased individuals. To the best of our knowledge, none of the markers for body fluid identification have been applied to different ethnic groups to ascertain if variability exists. In the present study, saliva and blood were collected to determine the effects of ethnicity (Blacks, Whites, Coloureds and Indians), age (20-30 years, 40-50years and above 60 years) and diabetes on methylation profiles of potential saliva- and blood-specific DMSs. Both DMSs were previously shown to exhibit hypermethylation in their target body fluids at single CpG sites, however in the present study, additional CpG sites flanking the reported sites were also screened. Bisulfite sequencing revealed that Coloureds showed highest methylation levels for both body fluids, and blacks displayed significant differences between other ethnic groups in the blood-specific CpG sites. A decline in methylation for both potential DMRs was observed with increasing age. Heavily methylated CpG sites in different ethnic groups and previously reported DMSs displayed hypomethylation with increasing age and disease status. Diabetic status did not show any significant difference in methylation when compared to healthy counterparts. Thus, the use of methylation markers for forensics needs thorough investigation of influence of external factors and ideally, several CpG sites should be co-analysed instead of a single DMS.
Collapse
Affiliation(s)
- Farzeen Kader
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.
| | - Meenu Ghai
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.
| | - Marvellous Zhou
- South African Sugarcane Research Institute, Mount Edgecombe, Durban, South Africa; University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa.
| |
Collapse
|