1
|
Pavithra R, Thunnisa AM, Vasanthakumari D, Udhayan A. Unveiling a novel morphometric approach in claws and canines for species discrimination and age stratification in leopard (Panthera pardus fusca). THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2025; 112:4. [PMID: 39775932 DOI: 10.1007/s00114-024-01957-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Eurybiomic big cats are facing significant threats from poaching, which is driven by recreation, taxidermy and wildlife trade. Species identification and age estimation are important for effective conservation management and enforcement of wildlife protection regulations. In this study, we present novel comprehensive morphometric methods for species identification and age estimation in leopards (Panthera pardus fusca) using canine and claw, the major trade articles. The study included 42 canines and 135 claw samples from five known age groups collected during post-mortem examination from all over the state of Tamil Nadu in south India. The samples were visually examined, and key morphological traits were accurately examined. Radiographic assessment of canines revealed the chronological age estimation, and tooth wear observation afforded supportive insight and evidence for the standards. Micro-feature observations of canine and claw samples using a scanning electron microscope ascertained the credibility of the samples. Multi-dimensional assessment of species and age of the samples by morphometric method led to the development of a reliable and accessible tool for dealing with confiscated specimens or samples with limited DNA quality. Notably, our novel methodology demonstrates efficacy in identifying illegally traded leopard canines and claws without causing any damage to the sample, thereby fortifying legal efforts against wildlife trafficking. In conclusion, this research introduces a sophisticated framework for species discrimination and age stratification in Panthera pardus fusca, merging cutting-edge technologies with classical morphometric analyses. The derived insights not only advance our understanding of leopard ecology but also furnish critical tools for conservationists and law enforcement agencies combating the illicit wildlife trade.
Collapse
Affiliation(s)
- Rajkumar Pavithra
- Training & Education), Advanced Institute for Wildlife Conservation (Research, Vandalur, Chennai, Tamil Nadu, India
- Department of Biological Sciences, SRM University AP, Andhra Pradesh, India
| | - Abu Muhsina Thunnisa
- Training & Education), Advanced Institute for Wildlife Conservation (Research, Vandalur, Chennai, Tamil Nadu, India.
| | - Dhayanithi Vasanthakumari
- Training & Education), Advanced Institute for Wildlife Conservation (Research, Vandalur, Chennai, Tamil Nadu, India
| | - A Udhayan
- Training & Education), Advanced Institute for Wildlife Conservation (Research, Vandalur, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Autour A, Merten CA. Fluorescence-activated droplet sequencing (FAD-seq) directly provides sequences of screening hits in antibody discovery. Proc Natl Acad Sci U S A 2024; 121:e2405342121. [PMID: 39240970 PMCID: PMC11406258 DOI: 10.1073/pnas.2405342121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/04/2024] [Indexed: 09/08/2024] Open
Abstract
Droplet microfluidics has become a very powerful tool in high-throughput screening, including antibody discovery. Screens are usually carried out by physically sorting droplets hosting cells of the desired phenotype, breaking them, recovering the encapsulated cells, and sequencing the paired antibody light and heavy chain genes at the single-cell level. This series of multiple consecutive manipulation steps of rare screening hits is complex and challenging, resulting in a significant loss of clones with the desired phenotype or large fractions of cells with incomplete antibody information. Here, we present fluorescence-activated droplet sequencing, in which droplets showing the desired phenotype are selectively picoinjected with reagents for RT-PCR. Subsequently, light and heavy chain genes are natively paired, fused into a single-chain fragment variant format, and amplified before off-chip transfer and downstream nanopore sequencing. This workflow is sufficiently sensitive for obtaining different paired full-length antibody sequences from as little as five droplets, fulfilling the desired phenotype. Replacing physical sorting by specific sequencing overcomes a general bottleneck in droplet microfluidic screening and should be compatible with many more applications.
Collapse
Affiliation(s)
- Alexis Autour
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Christoph A Merten
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
3
|
Kuffel A, Nic Daeid N, Gray A. Impact of swabbing solutions on the recovery of biological material from non-porous surfaces. Forensic Sci Int Synerg 2024; 9:100551. [PMID: 39281425 PMCID: PMC11399651 DOI: 10.1016/j.fsisyn.2024.100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024]
Abstract
Cotton swabs are one of the most effective methods of retrieving biological evidence. The efficiency of swab-based DNA recovery is impacted by many factors, such as the swabbing technique, source of DNA and volume and type of wetting solution used to moisten the swab head. This study aimed to evaluate a series of different swab-moistening solutions. The types of swabbing solutions included buffers, detergent-based solutions, and chelating agents. The DNA deposits, including cell-free DNA, cellular DNA, blood, and saliva, were collected from three non-porous surfaces: plastic, glass, and metal. The difference in the performance of the swab-wetting solutions was heavily influenced by the type of biological fluid, with the chelating agents, EGTA and EDTA, being the most suitable for recovering DNA from saliva and blood samples. Conversely, water and detergent-based solutions were more appropriate for cell-free and cellular DNA material likely to be found in trace DNA deposits.
Collapse
Affiliation(s)
- Agnieszka Kuffel
- Leverhulme Research Centre for Forensic Science, Fleming Gym Building, University of Dundee, Small's Wynd, Dundee, United Kingdom
| | - Niamh Nic Daeid
- Leverhulme Research Centre for Forensic Science, Fleming Gym Building, University of Dundee, Small's Wynd, Dundee, United Kingdom
| | - Alexander Gray
- Leverhulme Research Centre for Forensic Science, Fleming Gym Building, University of Dundee, Small's Wynd, Dundee, United Kingdom
| |
Collapse
|
4
|
Kamberović J, Gligora Udovič M, Kulaš A, Tapolczai K, Orlić S, Jusufović A, Gajić A, Žutinić P, Ahmić A, Kalamujić Stroil B. The Diatom Diversity and Ecological Status of a Tufa-Depositing River through eDNA Metabarcoding vs. a Morphological Approach-A Case Study of the Una River (Bosnia and Herzegovina). Microorganisms 2024; 12:1722. [PMID: 39203564 PMCID: PMC11357282 DOI: 10.3390/microorganisms12081722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
Tufa deposits in karst rivers are unique habitats created by mutual interactions between specific environmental and biotope features and inhabited by diatoms as a highly abundant and diverse algal group. This pilot study aimed to investigate the diversity of diatom communities on tufa depositing habitats and assess the Una River's ecological status using a comparative molecular and morphological approach for diatom identification. The 312 base pairs of the rbcL gene were barcoded and analyzed using MiSeq reads and amplicon sequence variants (ASVs) obtained by the DADA2 pipeline. The reference database Diat.barcode v7 was used for taxonomic assignment. The morphological identification of the diatoms was carried out in parallel. In total, the combined dataset revealed 46 taxa identified at genus rank, 125 on the subgenus, and 145 on combined taxonomy rank. The metabarcoding approach mostly leads to a lower number of identified taxa at species rank (58 in molecular vs. 119 in optical inventory), resulting in higher values of beta diversity and heterogeneity in diatom assemblages in samples obtained by morphological approach. Despite the high percentage of taxonomically not assigned diatom ASVs to the species rank, high Shannon diversity index values and a similar number of taxa per locations compared to the morphological approach were obtained. Taxa Achnanthidium minutissimum (Kützing) Czarnecki, Achnanthidium pyrenaicum (Hustedt) H.Kobayasi, Amphora pediculus (Kützing) Grunow, Diatoma vulgaris Bory, Navicula cryptotenella Lange-Bertalot, and Navicula tripunctata (O.F.Müller) Bory were identified at all locations in both inventories. Although limited consistency in the diatom abundances between the two inventory datasets was found, a similar grouping of samples was observed connected to the river's longitudinal gradient. The data obtained using molecular approach in most sites indicated a mostly lower ecological status (good or moderate) compared to the data obtained from the morphological approach (high, good, and moderate). The potential of environmental DNA (eDNA) diatom metabarcoding for water monitoring and diversity studies is undeniable, but to fully realize the benefits of these methods in the future, it is essential to standardize protocols and expand the reference database for species found in specific habitats, such as tufa deposits.
Collapse
Affiliation(s)
- Jasmina Kamberović
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Tuzla, BA-75000 Tuzla, Bosnia and Herzegovina; (J.K.)
| | - Marija Gligora Udovič
- Department of Biology, Faculty of Science, University of Zagreb, HR-10000 Zagreb, Croatia; (M.G.U.); (A.K.); (P.Ž.)
| | - Antonija Kulaš
- Department of Biology, Faculty of Science, University of Zagreb, HR-10000 Zagreb, Croatia; (M.G.U.); (A.K.); (P.Ž.)
| | - Kálmán Tapolczai
- HUN-REN Balaton Limnological Research Institute, H-8237 Tihany, Hungary
| | - Sandi Orlić
- Institute Ruđer Bošković, HR-10000 Zagreb, Croatia
| | - Amela Jusufović
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Tuzla, BA-75000 Tuzla, Bosnia and Herzegovina; (J.K.)
| | | | - Petar Žutinić
- Department of Biology, Faculty of Science, University of Zagreb, HR-10000 Zagreb, Croatia; (M.G.U.); (A.K.); (P.Ž.)
| | - Adisa Ahmić
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Tuzla, BA-75000 Tuzla, Bosnia and Herzegovina; (J.K.)
| | - Belma Kalamujić Stroil
- Society for Genetic Conservation of B&H Endemic and Autochthonous Resources, BA-71000 Sarajevo, Bosnia and Herzegovina;
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, BA-71000 Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
5
|
Sharma S, Caputi M, Asghar W. Development of a Diagnostic Microfluidic Chip for SARS-CoV-2 Detection in Saliva and Nasopharyngeal Samples. Viruses 2024; 16:1190. [PMID: 39205164 PMCID: PMC11360425 DOI: 10.3390/v16081190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
The novel coronavirus SARS-CoV-2 was first isolated in late 2019; it has spread to all continents, infected over 700 million people, and caused over 7 million deaths worldwide to date. The high transmissibility of the virus and the emergence of novel strains with altered pathogenicity and potential resistance to therapeutics and vaccines are major challenges in the study and treatment of the virus. Ongoing screening efforts aim to identify new cases to monitor the spread of the virus and help determine the danger connected to the emergence of new variants. Given its sensitivity and specificity, nucleic acid amplification tests (NAATs) such as RT-qPCR are the gold standard for SARS-CoV-2 detection. However, due to high costs, complexity, and unavailability in low-resource and point-of-care (POC) settings, the available RT-qPCR assays cannot match global testing demands. An alternative NAAT, RT-LAMP-based SARS-CoV-2 detection offers scalable, low-cost, and rapid testing capabilities. We have developed an automated RT-LAMP-based microfluidic chip that combines the RNA isolation, purification, and amplification steps on the same device and enables the visual detection of SARS-CoV-2 within 40 min from saliva and nasopharyngeal samples. The entire assay is executed inside a uniquely designed, inexpensive disposable microfluidic chip, where assay components and reagents have been optimized to provide precise and qualitative results and can be effectively deployed in POC settings. Furthermore, this technology could be easily adapted for other novel emerging viruses.
Collapse
Affiliation(s)
- Sandhya Sharma
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
| | - Massimo Caputi
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA;
| | - Waseem Asghar
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
- Department of Biological Sciences (Courtesy Appointment), Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
6
|
Czado N, Houston R, Hughes S. Evaluation of metal ions and DNA recovery from the surface of fired and unfired brass ammunition to improve STR profiling. Int J Legal Med 2024; 138:1265-1272. [PMID: 38433135 DOI: 10.1007/s00414-024-03200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
Interest in recovering DNA from the surface of ammunition evidence for genotyping has increased over the past few years. Numerous studies have examined a variety of methods to maximize DNA recovery from these types of challenging samples, but successful DNA profiling has been inconsistent. Low amounts of DNA and PCR inhibition due to metal ions have been suggested as the leading causes of poor results; however, no study quantitatively examined the presence of metal ions at various stages of the DNA analysis workflow from DNA collection through to amplification. In this study, the effectiveness of six different DNA collection and purification methods commonly used by forensic laboratories to process brass ammunition for DNA evidence was investigated. The amount of copper, zinc, and other metals co-recovered from fired and unfired brass casings during DNA collection (using numerous soaking, swabbing, and direct PCR protocols) was quantified via Inductively Coupled Plasma - Optical Emission Spectrometry (ICP-OES). This same panel of metals was subsequently quantified after DNA lysis and purification steps. Results demonstrated that low amounts of DNA, DNA damage, and degradation are more detrimental to STR typing results than PCR inhibition, as metal ions were successfully removed by all DNA purification methods tested. Furthermore, the use of metal ion chelators increased the amount of DNA recovered and number of reportable STR alleles. This research informs the forensic community on the most effective way to collect and process trace amounts of biological material from brass ammunition and similar evidence.
Collapse
Affiliation(s)
- Natalia Czado
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, 1003 Bowers Blvd, Huntsville, TX, USA
| | - Rachel Houston
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, 1003 Bowers Blvd, Huntsville, TX, USA
| | - Sheree Hughes
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, 1003 Bowers Blvd, Huntsville, TX, USA.
| |
Collapse
|
7
|
Mouliou DS. John Cunningham Virus and Progressive Multifocal Leukoencephalopathy: A Falsely Played Diagnosis. Diseases 2024; 12:100. [PMID: 38785755 PMCID: PMC11120163 DOI: 10.3390/diseases12050100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Progressive Multifocal Leukoencephalopathy (PML) is a possibly fatal demyelinating disease and John Cunningham Polyomavirus (JCPyV) is believed to cause this condition. The so-called JCPyV was initially reported in lymphoma and Human Immunodeficiency Virus (HIV) cases, whereas nowadays, its incidence is increasing in Multiple Sclerosis (MS) cases treated with natalizumab (Tysabri). However, there are conflicting literature data on its pathology and diagnosis, whereas some misdiagnosed reports exist, giving rise to further questions towards the topic. In reality, the so-called PML and the supposed JCPyV are not what they seem to be. In addition, novel and more frequent PML-like conditions may be reported, especially after the Coronavirus Disease 2019 (COVID-19) pandemic.
Collapse
|
8
|
Bonsu DNO, Higgins D, Simon C, Henry JM, Austin JJ. Metal-DNA interactions: Exploring the impact of metal ions on key stages of forensic DNA analysis. Electrophoresis 2024; 45:779-793. [PMID: 37638716 DOI: 10.1002/elps.202300070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/15/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Forensic DNA analysis continues to be hampered by the complex interactions between metals and DNA. Metal ions may cause direct DNA damage, inhibit DNA extraction and polymerase chain reaction (PCR) amplification or both. This study evaluated the impact of metal ions on DNA extraction, quantitation, and short tandem repeat profiling using cell-free and cellular (saliva) DNA. Of the 11 metals assessed, brass exhibited the strongest PCR inhibitory effects, for both custom and Quantifiler Trio quantitation assays. Metal ion inhibition varied across the two quantitative PCR assays and the amount of DNA template used. The Quantifiler Trio internal PCR control (IPC) only revealed evidence of PCR inhibition at higher metal ion concentrations, limiting the applicability of IPC as an indicator of the presence of metal inhibitor in a sample. Notably, ferrous ions were found to significantly decrease the extraction efficiency of the DNA-IQ DNA extraction system. The amount of DNA degradation and inhibition in saliva samples caused by metal ions increased with a dilution of the sample, suggesting that the saliva matrix provides protection from metal ion effects.
Collapse
Affiliation(s)
- Dan Nana Osei Bonsu
- Chemistry and Forensic Science, School of Environment and Science, Griffith University, Nathan, Queensland, Australia
- Forensic Research Group, Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Denice Higgins
- Forensic Research Group, Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- School of Dentistry, Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Claire Simon
- Forensic Science SA, Attorney-General's Department, Adelaide, South Australia, Australia
| | - Julianne M Henry
- Forensic Science SA, Attorney-General's Department, Adelaide, South Australia, Australia
| | - Jeremy J Austin
- Forensic Research Group, Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Arsenault H, Kuffel A, Daeid NN, Gray A. Trace DNA and its persistence on various surfaces: A long term study investigating the influence of surface type and environmental conditions - Part one, metals. Forensic Sci Int Genet 2024; 70:103011. [PMID: 38324952 DOI: 10.1016/j.fsigen.2024.103011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
It is imperative for proper evidence triage that forensic biologists understand what kind of results to expect from certain evidence types submitted for DNA analysis. The persistence of trace DNA has been insufficiently investigated and there is little data available pertaining to the persistence of DNA in different environmental conditions and on different materials. The goal of this study is to increase the available data on this topic which would, in turn, help forensic biologists manage expectations when submitting specific evidence types for DNA testing. The work presented herein is a large-scale persistence project aimed to identify trends in the persistence of trace DNA and indicate how different environmental storage conditions and target surface characteristics influence the persistence of cellular and cell free DNA (cfDNA) over time. To eliminate variation within the experiment we used a proxy DNA deposit consisting of a synthetic fingerprint solution, cellular DNA, and/or cfDNA. Samples were collected and analysed from 7 metals over the course of 1 year (27 time points) under 3 different environmental storage conditions. The results of this experiment show that metal type greatly influences DNA persistence. For instance, copper exhibited an expected poor DNA persistence (up to 4 h) which a purification step did not help increase the DNA yield. Alternatively, DNA can persist for up to a year on lead at levels potentially high enough to allow for forensic DNA testing. Additionally, this study showed that the sample storage environment had no impact on DNA persistence in most cases. When considering DNA type, cfDNA was shown to persist for longer than cellular DNA and persistence as a whole appears to be better when DNA is deposited as mixtures over when deposited alone. Unsurprisingly, it can be expected that DNA recovery rates from trace deposits will decrease over time. However, DNA decay is highly dependent on the metal surface and extremely variable at short time points but slightly less variable as time since deposition increases. This data is intended to add to our understanding of DNA persistence and the factors which affect it.
Collapse
Affiliation(s)
- Hilary Arsenault
- Leverhulme Research Center for Forensic Science, University of Dundee, Smalls Wynd, Dundee DD1 4HN, UK.
| | - Agnieszka Kuffel
- Leverhulme Research Center for Forensic Science, University of Dundee, Smalls Wynd, Dundee DD1 4HN, UK
| | - Niamh Nic Daeid
- Leverhulme Research Center for Forensic Science, University of Dundee, Smalls Wynd, Dundee DD1 4HN, UK
| | - Alexander Gray
- Leverhulme Research Center for Forensic Science, University of Dundee, Smalls Wynd, Dundee DD1 4HN, UK
| |
Collapse
|
10
|
Mullins N, Alashraf AR, McDermott K, Brown RS, Payne SJ. Polyethylenimine mediated recovery of SARS-CoV-2 and total viral RNA: Impact of aqueous conditions on behaviour and recovery. WATER RESEARCH 2024; 253:121207. [PMID: 38401469 DOI: 10.1016/j.watres.2024.121207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/28/2023] [Accepted: 01/26/2024] [Indexed: 02/26/2024]
Abstract
Wastewater-based epidemiology (WBE) is an emerging, practical surveillance tool for monitoring community levels of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, SC2). However, a paucity of data exists regarding SARS-CoV-2 and viral biomarker behaviour in aqueous and wastewater environments. Therefore, there is a pressing need to develop efficient and robust methods that both improve method sensitivity and reduce time and cost. We present a novel method for SARS-CoV-2, Human Coronavirus 229E (229E), and Pepper Mild Mottle Virus (PMMoV) recovery utilizing surface charge-based attraction via the branched cationic polymer, polyethylenimine (PEI). Initially, dose-optimization experiments demonstrated that low concentrations of PEI (0.001% w/v) proved most effective at flocculating suspended viruses and viral material, including additional unbound SC2 viral fragments and/or RNA from raw wastewater. A design-of-experiments (DOE) approach was used to optimize virus and/or viral material aggregation behaviour and recovery across varying aqueous conditions, revealing pH as a major influence on recoverability in this system, combinatorially due to both a reduction in viral material surface charge and increased protonation of PEI-bound amine groups. Overall, this method has shown great promise in significantly improving quantitative viral recovery, providing a straightforward and effective augmentation to standard centrifugation techniques.
Collapse
Affiliation(s)
- Nathan Mullins
- Queen's University, Department of Civil Engineering, Kingston, Ontario, K7L 3N6, Canada; McMaster University, Department of Chemical Engineering, Hamilton, Ontario, L8S 4L7, Canada
| | - Abdul Rahman Alashraf
- Queen's University, Department of Civil Engineering, Kingston, Ontario, K7L 3N6, Canada; Queen's University, Beaty Water Research Centre, Department of Civil Engineering, Kingston, Ontario, K7L 3N6, Canada
| | | | - R Stephen Brown
- Queen's University, Department of Chemistry and School of Environmental Studies, Kingston, Ontario, K7L 3N6, Canada; Queen's University, Beaty Water Research Centre, Department of Civil Engineering, Kingston, Ontario, K7L 3N6, Canada.
| | - Sarah Jane Payne
- Queen's University, Department of Civil Engineering, Kingston, Ontario, K7L 3N6, Canada; Queen's University, Beaty Water Research Centre, Department of Civil Engineering, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
11
|
Chan XLS, Lai SM, bin Hamdan DA, Ng YB, Yim OS, Syn CKC. Long-Term Tissue Preservation at Ambient Temperature for Post-Mass Fatality Incident DNA-Based Victim Identification. Genes (Basel) 2024; 15:373. [PMID: 38540432 PMCID: PMC10970238 DOI: 10.3390/genes15030373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 06/14/2024] Open
Abstract
In a mass fatality incident (MFI), effective preservation of tissue samples is the cornerstone for downstream DNA-based identification of victims. This is commonly achieved through freezing of tissue samples excised from bodies/fragmented remains which may be buried or stored in refrigerated containers. This may, however, not be possible depending on the nature of the MFI; in particular, during armed conflict/war where extended periods of electrical outages would be expected. The present study compared the effectiveness of long-term tissue preservation at ambient temperatures using two commercial products (non-iodized kitchen salt and a 40% alcoholic beverage) against a chemical preservative (Allprotect™ Tissue Reagent (Qiagen, Germantown, MD, USA)) and freezing at -20 °C. Bovine muscle tissue, used as a proxy for human tissue, was treated with the four preservation methods and sampled at six different time-points over a 24-month period. All four methods were able to preserve the bovine tissue, generally yielding STR-PCR (Short Tandem Repeat-Polymerase Chain Reaction) amplicons > 200 bp in size even at the end of 24 months. Gel electrophoresis, however, indicated that salt was more effective in preserving DNA integrity with high-molecular-weight DNA clearly visible as compared to the low-molecular-weight DNA smears observed in the other methods. This study also proposes a simple process for the rapid and low-cost preservation of tissue samples for long-term storage at ambient temperatures in support of post-incident victim identification efforts.
Collapse
Affiliation(s)
- Xavier Liang Shun Chan
- DNA Profiling Laboratory, Biology Division, Health Sciences Authority, 11 Outram Road, Singapore 169078, Singapore
| | | | | | | | | | | |
Collapse
|
12
|
Hymus CM, Baxter FO, Ta H, Tran T, de Sousa C, Mountford NS, Tay JW. A comparison of six adhesive tapes as tape lifts for efficient trace DNA recovery without the transfer of PCR inhibitors. Leg Med (Tokyo) 2024; 67:102330. [PMID: 37802731 DOI: 10.1016/j.legalmed.2023.102330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
Tape-lifting is a non-destructive method employed in the laboratory to recover and collect trace DNA evidence from crime scene exhibits with porous surfaces. The success of tape-lifting is a balance between capturing the biological material and compatibility with downstream DNA extraction processes to ensure efficient release of the tape-lifted material during DNA extraction. In this study, six commercially available low-, regular- and high-tack adhesive tapes were evaluated. The low-tack S183 tape and the highly adhesive S-Hold tape were compared for DNA recovery efficiency from different materials commonly encountered in casework. All tape-lifts were processed using PrepFiler Express™ BTA and AutoMate Express™ Forensic DNA extraction systems, DNA samples quantitated by Quantifiler TRIO, amplified using Powerplex® 21 and VeriFiler™ PLUS (VFP), and analysed on a 3500xl genetic analyser to evaluate the quality of the resultant STR profiles obtained. The more adhesive S-Hold tape recovered comparable or more DNA than the low-tack S183 tape from the majority of materials tested. However, STR profiles obtained from S183 tape-lifts were of markedly higher quality compared to S-Hold tape-lifts. This was most evident for towel, denim and printed chiffon, where S-Hold samples exhibited severe PCR inhibition, with VFP internal quality markers confirming the presence of inhibitors. The findings suggest that strong adhesion is not necessarily beneficial for tape-lifting, as the low tack S183 tape was able to efficiently recover cellular material from the surface of porous substrates commonly encountered in casework, while avoiding the co-transfer of PCR-inhibitory substances from the sampled material.
Collapse
Affiliation(s)
- Colby M Hymus
- Forensic Biology Department, PathWest Laboratory Medicine, Western Australia, Australia
| | - Fiona O Baxter
- Forensic Biology Department, PathWest Laboratory Medicine, Western Australia, Australia
| | - Hoan Ta
- Forensic Biology Department, PathWest Laboratory Medicine, Western Australia, Australia
| | - Teresa Tran
- Forensic Biology Department, PathWest Laboratory Medicine, Western Australia, Australia
| | - Clare de Sousa
- Forensic Biology Department, PathWest Laboratory Medicine, Western Australia, Australia
| | - Nicholas S Mountford
- Forensic Biology Department, PathWest Laboratory Medicine, Western Australia, Australia
| | - Jasmine W Tay
- Forensic Biology Department, PathWest Laboratory Medicine, Western Australia, Australia.
| |
Collapse
|
13
|
Scriver M, von Ammon U, Youngbull C, Pochon X, Stanton JAL, Gemmell NJ, Zaiko A. Drop it all: extraction-free detection of targeted marine species through optimized direct droplet digital PCR. PeerJ 2024; 12:e16969. [PMID: 38410796 PMCID: PMC10896080 DOI: 10.7717/peerj.16969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Molecular biomonitoring programs increasingly use environmental DNA (eDNA) for detecting targeted species such as marine non-indigenous species (NIS) or endangered species. However, the current molecular detection workflow is cumbersome and time-demanding, and thereby can hinder management efforts and restrict the "opportunity window" for rapid management responses. Here, we describe a direct droplet digital PCR (direct-ddPCR) approach to detect species-specific free-floating extra-cellular eDNA (free-eDNA) signals, i.e., detection of species-specific eDNA without the need for filtration or DNA extraction, with seawater samples. This first proof-of-concept aquarium study was conducted with three distinct marine species: the Mediterranean fanworm Sabella spallanzanii, the ascidian clubbed tunicate Styela clava, and the brown bryozoan Bugula neritina to evaluate the detectability of free-eDNA in seawater. The detectability of targeted free-eDNA was assessed by directly analysing aquarium marine water samples using an optimized species-specific ddPCR assay. The results demonstrated the consistent detection of S. spallanzanii and B. neritina free-eDNA when these organisms were present in high abundance. Once organisms were removed, the free-eDNA signal exponentially declined, noting that free-eDNA persisted between 24-72 h. Results indicate that organism biomass, specimen characteristics (e.g., stress and viability), and species-specific biological differences may influence free-eDNA detectability. This study represents the first step in assessing the feasibility of direct-ddPCR technology for the detection of marine species. Our results provide information that could aid in the development of new technology, such as a field development of ddPCR systems, which could allow for automated continuous monitoring of targeted marine species, enabling point-of-need detection and rapid management responses.
Collapse
Affiliation(s)
- Michelle Scriver
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Ulla von Ammon
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
| | - Cody Youngbull
- Nucleic Sensing Systems, LCC, Saint Paul, Minnesota, United States
| | - Xavier Pochon
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Jo-Ann L Stanton
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Anastasija Zaiko
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- Sequench Ltd, Nelson, New Zealand
| |
Collapse
|
14
|
Foysal MJ, Salgar-Chaparro SJ. Improving the efficiency of DNA extraction from iron incrustations and oilfield-produced water. Sci Rep 2024; 14:2954. [PMID: 38316948 PMCID: PMC10844625 DOI: 10.1038/s41598-024-53134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024] Open
Abstract
The quantity and quality of DNA isolated from environmental samples are crucial for getting robust high-throughput sequencing data commonly used for microbial community analysis. The differences in the nature and physicochemical properties of environmental samples impact DNA yields, and therefore, an optimisation of the protocols is always recommended. For instance, samples collected from corroded areas contain high concentrations of metals, salts, and hydrocarbons that can interfere with several steps of the DNA extraction protocols, thereby reducing yield and quality. In this study, we compared the efficiency of commercially available DNA extraction kits and laboratory-adopted methods for microbial community analysis of iron incrustations and oilfield-produced water samples. Modifications to the kits manufacturers' protocols were included to maximise the yield and quality. For iron incrustations, the modified protocol for FastDNA Spin Kit for Soil yielded higher DNA and resulted in higher diversity, including the recovery of low-abundant and rare taxa in the samples, compared to DNeasy PowerSoil Pro Kit. The DNA extracted with modified phenol-chloroform methods yielded higher DNA but failed to pass quality control PCR for 16S sequencing with and without purification. The protocols mentioned here can be used to maximise DNA recovery from iron incrustations and oilfield-produced water samples.
Collapse
Affiliation(s)
- Md Javed Foysal
- Curtin Corrosion Centre, Western Australian School of Mines, Minerals and Energy, Curtin University, Bentley, WA, Australia
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Silvia J Salgar-Chaparro
- Curtin Corrosion Centre, Western Australian School of Mines, Minerals and Energy, Curtin University, Bentley, WA, Australia.
| |
Collapse
|
15
|
Hegazy N, Tian X, D'Aoust PM, Pisharody L, Towhid ST, Mercier É, Zhang Z, Wan S, Thakali O, Kabir MP, Fang W, Nguyen TB, Ramsay NT, MacKenzie AE, Graber TE, Guilherme S, Delatolla R. Impact of coagulation on SARS-CoV-2 and PMMoV viral signal in wastewater solids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5242-5253. [PMID: 38112868 DOI: 10.1007/s11356-023-31444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Wastewater surveillance (WWS) of SARS-CoV-2 has become a crucial tool for monitoring COVID-19 cases and outbreaks. Previous studies have indicated that SARS-CoV-2 RNA measurement from testing solid-rich primary sludge yields better sensitivity compared to testing wastewater influent. Furthermore, measurement of pepper mild mottle virus (PMMoV) signal in wastewater allows for precise normalization of SARS-CoV-2 viral signal based on solid content, enhancing disease prevalence tracking. However, despite the widespread adoption of WWS, a knowledge gap remains regarding the impact of ferric sulfate coagulation, commonly used in enhanced primary clarification, the initial stage of wastewater treatment where solids are sedimented and removed, on SARS-CoV-2 and PMMoV quantification in wastewater-based epidemiology. This study examines the effects of ferric sulfate addition, along with the associated pH reduction, on the measurement of SARS-CoV-2 and PMMoV viral measurements in wastewater primary clarified sludge through jar testing. Results show that the addition of Fe3+ concentrations in the conventional 0 to 60 mg/L range caused no effect on SARS-CoV-2 N1 and N2 gene region measurements in wastewater solids. However, elevated Fe3+ concentrations were shown to be associated with a statistically significant increase in PMMoV viral measurements in wastewater solids, which consequently resulted in the underestimation of PMMoV-normalized SARS-CoV-2 viral signal measurements (N1 and N2 copies/copies of PMMoV). The observed pH reduction from coagulant addition did not contribute to the increased PMMoV measurements, suggesting that this phenomenon arises from the partitioning of PMMoV viral particles into wastewater solids.
Collapse
Affiliation(s)
- Nada Hegazy
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Xin Tian
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Lakshmi Pisharody
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | | | - Élisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Zhihao Zhang
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Shen Wan
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Md Pervez Kabir
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Wanting Fang
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Tram B Nguyen
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Nathan T Ramsay
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | | | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
16
|
Frégeau CJ, Laurin N. Processing biological samples from simulated radiological terrorist events using Rapid DNA instruments. Forensic Sci Int 2024; 354:111887. [PMID: 38007870 DOI: 10.1016/j.forsciint.2023.111887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023]
Abstract
Two commercially available portable Rapid DNA instruments were evaluated for their ability to process 1 µL and 10 µL saliva samples deposited on metal and plastic surfaces and contaminated with surrogates of cesium (Cs)-137, strontium (Sr)-90 and cobalt (Co)-60; radioactive materials potentially released during a nuclear weapon accident or a radiological dispersal device detonation. A comparable success rate was noted for both Rapid DNA instruments when considering the number of complete and balanced DNA profiles, the number of profiles with a minimum of 10 autosomal STR loci (out of 23 [FlexPlex™ 27] or 21 [GlobalFiler™ Express]), and the possibility to search a national DNA database in Canada and the United States. Cobalt had an adverse impact on the quality of the megaplex short tandem repeat (STR) DNA profiles derived on each instrument for two of the three contamination levels tested in this study, i.e., 0.05 M and 0.1 M as reflected by a reduced number of detected alleles and decreased profile peak heights. Strontium exhibited some adverse effect on the Rapid DNA results when used at the highest contamination level (0.1 M) whereas cesium had none. No new artifacts were observed in the Rapid DNA profiles of samples spiked with the non-radiogenic surrogates. Importantly, in the context of a radiological/nuclear (RN) event, the ANDE™ 6C offers the possibility to dispose of all radioactive materials associated with contaminated samples quickly using a chip on which all steps of the Rapid DNA process are performed whereas the RapidHIT™ ID accumulates radioactive materials for many days before disposal. An individual handling 25 samples in a week (5 per day) on the RapidHIT™ ID at a 30.5 cm distance with a 5 min exposure to the radioactive source estimated at every run would exceed the 0.042 µSv/5 min limit with gamma dose rates for Cs at 0.13 mSv and for Co at 3.8 mSv. Beta dose rates calculated for the surrogate isotopes at the three concentrations tested were also above the recommended radiation exposure limit of 1 mSv/yr (0.042 µSv/5 min). Various potential mechanisms of action behind the interference noted for Sr and Co at high concentrations are presented. These elements may play a role in the steps prior to PCR (at the DNA molecule by binding to bases or to phosphate groups), during PCR (at the DNA polymerase as cofactors for catalytic sites), or even during amplified DNA fragment detection (as fluorescence quenchers).
Collapse
Affiliation(s)
- Chantal J Frégeau
- Royal Canadian Mounted Police, Forensic Science & Identification Services, National Forensic Laboratory Services, Biology Policy & Program Support, 1200 Vanier Parkway, Ottawa, Ontario K1A 0R2, Canada.
| | - Nancy Laurin
- Royal Canadian Mounted Police, Forensic Science & Identification Services, Science & Strategic Policy, 1200 Vanier Parkway, Ottawa, Ontario K1A 0R2, Canada
| |
Collapse
|
17
|
Song W, Zhang C, Lin H, Zhang T, Liu H, Huang X. Portable rotary PCR system for real-time detection of Pseudomonas aeruginosa in milk. LAB ON A CHIP 2023; 23:4592-4599. [PMID: 37772426 DOI: 10.1039/d3lc00401e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The rapid quantitative detection of Pseudomonas aeruginosa in milk is of great significance to food safety. Quantitative real-time polymerase chain reaction (qPCR) technology is a good choice to meet this requirement. A good qPCR system should show the advantages of being low cost, having low-power consumption, having potential for miniaturization and be portable. However, most of the time-domain-based qPCR systems reported to date do not meet these requirements. In this study, we propose a novel real-time rotary PCR reaction system (RRP) that meets all the abovementioned specifications, and contains four modules: a heating control module, a disposable PCR capillary tube, a mechanical control module, and a photoelectric detection module. The volume of our homemade-PCR capillary tube is only 3 μL. The total manufacturing cost is cheaper than $200, and the capillary tube is about 1.4 cents. The size parameter of the RRP is less than 300 mm × 150 mm × 150 mm, using low mobile power sources to operate. All the features mean that the RRP meets the advantages of low sample volumes, enhanced thermal conductivity and being portable. Through conducting the experimental quantitative detection of Pseudomonas aeruginosa in milk and theoretical simulations by COMSOL, we prove the feasibility of this rotary PCR real-time detection system, which has broad application prospects in the rapid detection of bacteria and food safety.
Collapse
Affiliation(s)
- Weidu Song
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China.
| | - Chuanhao Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China.
| | - Huichao Lin
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China.
| | - Taiyi Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China.
| | - Haixia Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China.
| | - Xiaowen Huang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China.
| |
Collapse
|
18
|
Okella H, Tonooka K, Okello E. A Systematic Review of the Recent Techniques Commonly Used in the Diagnosis of Mycoplasma bovis in Dairy Cattle. Pathogens 2023; 12:1178. [PMID: 37764986 PMCID: PMC10535753 DOI: 10.3390/pathogens12091178] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Early detection of Mycoplasmal mastitis is greatly hampered by late seroconversion, slow growth of Mycoplasma organisms, intermittent shedding, and the high cost of diagnostic tests. To improve future diagnostic development, examining the available techniques is necessary. Accordingly, the present study systematically reviewed M. bovis diagnostic studies published between January 2000 and April 2023 utilizing the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) protocol. The protocol registration was performed according to the Open Science Framework (osf.io/ug79h), and the electronic search was conducted in the World Catalog, Mendeley, ProQuest, ScienceDirect, Semantic Scholar, PubMed, Google Scholar, Prime Scholar, and PubMed Central databases using a Boolean operator and inclusion and exclusion criteria. Of the 1194 pieces of literature retrieved, 67 studies were included. Four broad categories of up to 16 diagnostic approaches were reported: microbial culture, serological, DNA-based, and mass spectrometry. Overall, DNA-based techniques were the most published (48.0%), with recombinase polymerase amplification (RPA) and loop-mediated isothermal amplification (LAMP) as the most promising user-friendly, equipment-free techniques. On the other hand, mass spectrometry was reported as the least utilized (2.9%) given the high equipment cost. Though costly and laboratory-allied, DNA-based techniques, particularly PCRs, were reported as the most rapid and specific approach.
Collapse
Affiliation(s)
- Hedmon Okella
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California Davis, Tulare, CA 93274, USA
| | - Karen Tonooka
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California Davis, Tulare, CA 93274, USA
| | - Emmanuel Okello
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California Davis, Tulare, CA 93274, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
19
|
Vajpayee K, Dash HR, Parekh PB, Shukla RK. PCR inhibitors and facilitators - Their role in forensic DNA analysis. Forensic Sci Int 2023; 349:111773. [PMID: 37399774 DOI: 10.1016/j.forsciint.2023.111773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/01/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
Since its inception, DNA typing technology has been practiced as a robust tool in criminal investigations. Experts usually utilize STR profiles to identify and individualize the suspect. However, mtDNA and Y STR analyses are also considered in some sample-limiting conditions. Based on DNA profiles thus generated, forensic scientists often opine the results as Inclusion, exclusion, and inconclusive. Inclusion and exclusion were defined as concordant results; the inconclusive opinions create problems in conferring justice in a trial- since nothing concrete can be interpreted from the profile generated. The presence of inhibitor molecules in the sample is the primary factor behind these indefinite results. Recently, researchers have been emphasizing studying the sources of PCR inhibitors and their mechanism of inhibition. Furthermore, several mitigation strategies- to facilitate the DNA amplification reaction -have now found their place in the routine DNA typing assays with compromised biological samples. The present review paper attempts to provide a comprehensive review of PCR inhibitors, their source, mechanism of inhibition, and ways to mitigate their effect using PCR facilitators.
Collapse
Affiliation(s)
- Kamayani Vajpayee
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, India
| | - Hirak Ranjan Dash
- National Forensic Science University, New Delhi Campus, New Delhi, India
| | - Prakshal B Parekh
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, India
| | - Ritesh K Shukla
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, India.
| |
Collapse
|
20
|
Tan ZL, Yasuura M, Horiguchi Y, Ashiba H, Fukuda T. Hydrogel capsule-based digital quantitative polymerase chain reaction. Mikrochim Acta 2023; 190:247. [PMID: 37261544 DOI: 10.1007/s00604-023-05827-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023]
Abstract
Droplet digital PCR (ddPCR) is accurate in nucleic acid quantification owing to its linearity and high sensitivity. Amplification of nucleic acid in droplets, however, is limited by the stability of droplets against thermal cycling. While the use of fluorinated oil or supplementation of surfactant could improve the stability of droplets, this process has also greatly increased the cost of ddPCR and limited post-PCR analysis. Here, we report a novel method known as gel capsule-based digital PCR (gc-dPCR) which includes a method to prepare hydrogel capsules encapsulating the PCR reaction mix, conducting PCR reaction, and readout by either quantitative PCR (qPCR) system or fluorescence microplate reader. We have compared the developed method to vortex ddPCR. Our approach results in higher fluorescence intensity compared to ddPCR suggesting higher sensitivity of the system. As hydrogel capsules are more stable than droplets in fluorinated oil throughout thermal cycling, all partitions can be quantified, thus preventing loss of information from low-concentration samples. The new approach should extend to all droplet-based PCR methods. It has greatly improved ddPCR by increasing droplets stability and sensitivity, and reducing the cost of ddPCR, which help to remove the barrier of ddPCR in settings with limited resources.
Collapse
Affiliation(s)
- Zheng Lin Tan
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| | - Masato Yasuura
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Yukichi Horiguchi
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Hiroki Ashiba
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Takashi Fukuda
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| |
Collapse
|
21
|
Wu R, Meng B, Corredig M, Griffiths MW. Rapid Detection of Hepatitis A Virus in Foods Using a Bioluminescent Assay in Real-Time (BART) and Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) Technology. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:144-157. [PMID: 36640204 PMCID: PMC9839959 DOI: 10.1007/s12560-022-09548-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/30/2022] [Indexed: 06/13/2023]
Abstract
Foodborne hepatitis A infections have been considered as a major threat for public health worldwide. Increased incidences of hepatitis A virus (HAV) infection has been associated with growing global trade of food products. Rapid and sensitive detection of HAV in foods is very essential for investigating the outbreaks. Real-time RT-PCR has been most widely used for the detection of HAV by far. However, the technology relies on fluorescence determination of the amplicon and requires sophisticated, high-cost instruments and trained personnel, limiting its use in low resource settings. In this study, a robust, affordable, and simple assay, reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay in combination with a bioluminescence-based determination of amplification in real-time (BART), was developed for the detection of HAV in different food matrices, including green onion, strawberry, mussel, and milk. The efficiencies of a one-step RT-LAMP-BART and a two-step RT-LAMP-BART were investigated for the detection of HAV in different food matrices and was compared with that of real-time RT-PCR. The sensitivity of the RT-LAMP-BART assay was significantly affected by Mg2+ concentration (P < 0.05), in addition to primer quality. The optimal Mg2+ concentration was 2 mM for one-step RT-LAMP-BART and 4 mM for two-step RT-LAMP-BART. Compared with cartridge-purified primers, HPLC-purified primers could greatly improve the sensitivity of the RT-LAMP-BART assay (P < 0.05). For detecting HAV in different food matrices, the performance of two-step RT-LAMP-BART was comparable with that of real-time RT-PCR and was better than that of one-step RT-LAMP-BART. The detection limit of the two-step RT-LAMP-BART for HAV in green onion, strawberry, mussel, and milk was 8.3 × 100 PFU/15 g, 8.3 × 101 PFU/50 g, 8.3 × 100 PFU/5 g, and 8.3 × 100 PFU/40 mL, respectively. The developed RT-LAMP-BART was an effective, simple, sensitive, and robust method for foodborne HAV detection.
Collapse
Affiliation(s)
- Ruiqin Wu
- Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
- Canadian Research Institute for Food Safety, 43 McGilvray Street, Guelph, ON, N1G 2W1, Canada.
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Milena Corredig
- Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Mansel W Griffiths
- Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Canadian Research Institute for Food Safety, 43 McGilvray Street, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
22
|
Wolf-Baca M, Siedlecka A. Seasonal and spatial variations of antibiotic resistance genes and bacterial biodiversity in biofilms covering the equipment at successive stages of drinking water purification. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131660. [PMID: 37210784 DOI: 10.1016/j.jhazmat.2023.131660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/21/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
The presence of ARGs (antibiotic resistance genes) in the aquatic environment is a serious threat to public health especially in environmental biofilms as natural reservoirs of ARGs in water treatment plants (WTP). It has been shown that the treatment technology and source of water have a significant impact on the abundance and type of genes determining antibiotic resistance. The following indicator genes were proposed that should absolutely be controlled in environmental biofilms: intl1, sul2, sul1, tetA, blaOXA, and blaTEM. In both studied WTPs, the highest number of copies was determined for the intI1 gene. Among the tested ARGs, the highest values were obtained for genes sul1 and tetA. The qPCR analysis also revealed that the amounts of determined ARGs decreased in the following order: sulphonamides>carbapenems >tetracyclines > β-lactams >macrolides. The dominant bacterial types in all analysed samples were Proteobacteria and Bacteroidetes. Both ARGs and bacterial biodiversity was determined rather by sampling site (spatial variation) than seasonality. The obtained results show that biofilms are reservoirs of ARGs. This may affect the microbiological quality of water entering the water system. It is therefore necessary to include their analysis in the classical studies of water quality.
Collapse
Affiliation(s)
- Mirela Wolf-Baca
- Department of Environmental Protection Engineering, Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Agata Siedlecka
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
23
|
Szobi A, Buranovská K, Vojtaššáková N, Lovíšek D, Özbaşak HÖ, Szeibeczederová S, Kapustian L, Hudáčová Z, Kováčová V, Drobná D, Putaj P, Bírová S, Čirková I, Čarnecký M, Kilián P, Jurkáček P, Čabanová V, Boršová K, Sláviková M, Vaňová V, Klempa B, Čekan P, Paul ED. Vivid COVID-19 LAMP is an ultrasensitive, quadruplexed test using LNA-modified primers and a zinc ion and 5-Br-PAPS colorimetric detection system. Commun Biol 2023; 6:233. [PMID: 36864129 PMCID: PMC9979146 DOI: 10.1038/s42003-023-04612-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Sensitive and rapid point-of-care assays have been crucial in the global response to SARS-CoV-2. Loop-mediated isothermal amplification (LAMP) has emerged as an important diagnostic tool given its simplicity and minimal equipment requirements, although limitations exist regarding sensitivity and the methods used to detect reaction products. We describe the development of Vivid COVID-19 LAMP, which leverages a metallochromic detection system utilizing zinc ions and a zinc sensor, 5-Br-PAPS, to circumvent the limitations of classic detection systems dependent on pH indicators or magnesium chelators. We make important strides in improving RT-LAMP sensitivity by establishing principles for using LNA-modified LAMP primers, multiplexing, and conducting extensive optimizations of reaction parameters. To enable point-of-care testing, we introduce a rapid sample inactivation procedure without RNA extraction that is compatible with self-collected, non-invasive gargle samples. Our quadruplexed assay (targeting E, N, ORF1a, and RdRP) reliably detects 1 RNA copy/µl of sample (=8 copies/reaction) from extracted RNA and 2 RNA copies/µl of sample (=16 copies/reaction) directly from gargle samples, making it one of the most sensitive RT-LAMP tests and even comparable to RT-qPCR. Additionally, we demonstrate a self-contained, mobile version of our assay in a variety of high-throughput field testing scenarios on nearly 9,000 crude gargle samples. Vivid COVID-19 LAMP can be an important asset for the endemic phase of COVID-19 as well as preparing for future pandemics.
Collapse
Affiliation(s)
- Adrián Szobi
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Katarína Buranovská
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Nina Vojtaššáková
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Daniel Lovíšek
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Halil Önder Özbaşak
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Sandra Szeibeczederová
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Liudmyla Kapustian
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Zuzana Hudáčová
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
- Stanford University, 730 Escondido Rd., Stanford, CA, 94305, USA
| | - Viera Kováčová
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
- University of Cologne, Institute for Biological Physics, Zülpicher Str. 77, 50937, Köln, Germany
| | - Diana Drobná
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Piotr Putaj
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Stanislava Bírová
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Ivana Čirková
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Martin Čarnecký
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Peter Kilián
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Peter Jurkáček
- AstonITM s.r.o., Račianska 153, 831 54, Bratislava, Slovakia
| | - Viktória Čabanová
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Kristína Boršová
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Monika Sláviková
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Veronika Vaňová
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Boris Klempa
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Pavol Čekan
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia.
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA.
| | - Evan D Paul
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia.
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA.
| |
Collapse
|
24
|
González-Plaza JJ, Furlan C, Rijavec T, Lapanje A, Barros R, Tamayo-Ramos JA, Suarez-Diez M. Advances in experimental and computational methodologies for the study of microbial-surface interactions at different omics levels. Front Microbiol 2022; 13:1006946. [PMID: 36519168 PMCID: PMC9744117 DOI: 10.3389/fmicb.2022.1006946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/02/2022] [Indexed: 08/31/2023] Open
Abstract
The study of the biological response of microbial cells interacting with natural and synthetic interfaces has acquired a new dimension with the development and constant progress of advanced omics technologies. New methods allow the isolation and analysis of nucleic acids, proteins and metabolites from complex samples, of interest in diverse research areas, such as materials sciences, biomedical sciences, forensic sciences, biotechnology and archeology, among others. The study of the bacterial recognition and response to surface contact or the diagnosis and evolution of ancient pathogens contained in archeological tissues require, in many cases, the availability of specialized methods and tools. The current review describes advances in in vitro and in silico approaches to tackle existing challenges (e.g., low-quality sample, low amount, presence of inhibitors, chelators, etc.) in the isolation of high-quality samples and in the analysis of microbial cells at genomic, transcriptomic, proteomic and metabolomic levels, when present in complex interfaces. From the experimental point of view, tailored manual and automatized methodologies, commercial and in-house developed protocols, are described. The computational level focuses on the discussion of novel tools and approaches designed to solve associated issues, such as sample contamination, low quality reads, low coverage, etc. Finally, approaches to obtain a systems level understanding of these complex interactions by integrating multi omics datasets are presented.
Collapse
Affiliation(s)
- Juan José González-Plaza
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Burgos, Spain
| | - Cristina Furlan
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Tomaž Rijavec
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleš Lapanje
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Rocío Barros
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Burgos, Spain
| | | | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
25
|
Czado N, Houston R, Hughes S. Comparison of metal ions recovered during DNA analysis of brass ammunition and effects of copper and zinc ions on DNA profiling. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2022. [DOI: 10.1016/j.fsigss.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Zhang X, Guo J, Song B, Zhang F. Spatiotemporal Regulation of Metal Ions in the Polymerase Chain Reaction. ACS OMEGA 2022; 7:33530-33536. [PMID: 36157739 PMCID: PMC9494670 DOI: 10.1021/acsomega.2c04507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
The polymerase chain reaction (PCR) has been widely used in medical diagnosis and forensic identification due to its ultrahigh sensitivity and signal amplification. Metal ions (i.e., Cu2+, Zn2+) have been considered PCR inhibitors and rarely shown their positive roles in PCR amplification until our report, in which we discovered that metal ions can significantly improve the PCR specificity and the yield of target DNA sequences. For an in-depth investigation with taking copper ions as a typical model, here we found an interesting spatiotemporal regulation mechanism of metal ions in PCR. The ionic concentration window for improving PCR specificity not only was independent of annealing temperature but also can be well regulated by both the annealing time and extension time. Using the ionic concentration window as a measure, the time affects either the amount or the sequence length of nonspecific amplicons in the space. The mechanism proposed in this work will deepen our understanding of the unneglectable roles of metal ions in DNA replication and meanwhile provide a new strategy for designing regulation kits for PCR-based biomedical applications.
Collapse
Affiliation(s)
- Xianjing Zhang
- Key
Laboratory of Optical Technology and Instrument for Medicine, Ministry
of Education, School of Optical-Electrical Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Guo
- Key
Laboratory of Optical Technology and Instrument for Medicine, Ministry
of Education, School of Optical-Electrical Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Bo Song
- Key
Laboratory of Optical Technology and Instrument for Medicine, Ministry
of Education, School of Optical-Electrical Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Feng Zhang
- Key
Laboratory of Optical Technology and Instrument for Medicine, Ministry
of Education, School of Optical-Electrical Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Quantum
Biophotonic Lab, Wenzhou Institute, University
of Chinese Academy of Sciences, Wenzhou 325001, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| |
Collapse
|
27
|
Winnepenninckx A, Verhoeven E, Vermeulen S, Jeurissen B, Borgers E, Bekaert B. Time since contact influences DNA profiling success of cartridges and fired cartridge casings. Forensic Sci Int 2022; 340:111474. [PMID: 36174383 DOI: 10.1016/j.forsciint.2022.111474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/18/2022] [Indexed: 11/04/2022]
Abstract
Forensic DNA analysis of cartridges and fired cartridge casings remains challenging, possibly due to the heat and pressure generated during firing of the weapon as well as metal ions from the casings that have been suggested to initiate DNA degradation and inhibit PCR during the DNA profiling process. Even though recently developed DNA recovery protocols have shown to significantly improve DNA yields and DNA profile success rates no information is available on whether the time interval between contact and the DNA recovery process has an influence on these outcomes. In the current study 40 cartridges and 40 fired cartridge casings were left untreated for 24 h or 1 week after which the rinse-and-swab technique was used to collect DNA. Higher DNA yields and higher DNA profile success rates were obtained from cartridges compared to fired cartridge casings. The same general observation was made when cartridges and fired cartridge casings were processed after 24 h compared to after 1 week. In addition, DNA profiles suitable for comparison could still be generated from samples when real-time PCR quantification indicated DNA concentrations < 0.001 ng/μl, suggesting that quantification results may not be reliable when assessing the presence of DNA on such items. In conclusion, the results indicate that cartridges and fired cartridge casings should be processed for DNA profiling as soon as possible and that DNA quantification results should be interpreted with caution as DNA profiles suitable for comparison could be missed.
Collapse
Affiliation(s)
- Astrid Winnepenninckx
- KU Leuven, Forensic Biomedical Sciences, Department of Imaging & Pathology, Leuven, Belgium
| | - Elke Verhoeven
- Technical and Scientific Police, Federal Judicial Police, Leuven, Belgium
| | - Steve Vermeulen
- Technical and Scientific Police, Federal Judicial Police, Leuven, Belgium
| | - Bert Jeurissen
- Technical and Scientific Police, Federal Judicial Police, Leuven, Belgium
| | | | - Bram Bekaert
- KU Leuven, Forensic Biomedical Sciences, Department of Imaging & Pathology, Leuven, Belgium; UZ Leuven, Laboratory of Forensic Genetics, Leuven, Belgium.
| |
Collapse
|
28
|
Kulaš A, Gligora Udovič M, Tapolczai K, Žutinić P, Orlić S, Levkov Z. Diatom eDNA metabarcoding and morphological methods for bioassessment of karstic river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154536. [PMID: 35304150 DOI: 10.1016/j.scitotenv.2022.154536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Karst ecosystems play a unique role as exceptional natural habitats in sustaining biodiversity. This study focuses on diatoms, a diverse group of microeukaryotes in the periphytic community of a karstic river. In a multi-microhabitat study along the Krka River (Croatia), our goal was to obtain a detailed overview of diatom diversity and community structure using morphological and molecular approaches, and to assess the applicability of eDNA metabarcoding as a reliable tool for biomonitoring assessment. The results revealed a relatively low agreement in the diatom community composition between the two approaches, but also provided complementary information, with no differences in beta diversity detected between microhabitats. The SIMPER analysis underlined the importance of the molecular approach in identifying diatom community composition, due to errors in distinguishing between deposited diatom cells that occurred in the morphological analysis. In contrast, the morphological approach indicated a clear diatom community separation along the river with a strong location effect. Despite certain differences, both approaches provided a feasible assessment of the ecological status according to the relationship to environmental pressures, classifying the Krka River as High (morphological approach) or Good (molecular approach) throughout the most of its course. Moreover, diatom diversity based on both approaches provides a reliable dataset applicable in routine monitoring assessment and offers a deeper understanding of the presented ecological status. The incompleteness of a reference database presents one major drawback of the molecular approach, which needs further updating in order to improve routine diatom metabarcoding.
Collapse
Affiliation(s)
- Antonija Kulaš
- University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, HR-10000 Zagreb, Croatia.
| | - Marija Gligora Udovič
- University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Kálmán Tapolczai
- Premium Postdoctoral Research Program, Hungarian Academy of Sciences, Budapest, Hungary; Research Group of Limnology, Center for Natural Science, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary; Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Klebelsberg Kuno u. 3, Tihany, Hungary
| | - Petar Žutinić
- University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Sandi Orlić
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia; Center of Excellence for Science and Technology Integrating Mediterranean Region (STIM), HR-10000 Zagreb, Croatia
| | - Zlatko Levkov
- Institute of Biology, Faculty of Natural Science, Ss Cyril and Methodius University, Skopje, Macedonia
| |
Collapse
|
29
|
Sharma S, Thomas E, Caputi M, Asghar W. RT-LAMP-Based Molecular Diagnostic Set-Up for Rapid Hepatitis C Virus Testing. BIOSENSORS 2022; 12:298. [PMID: 35624599 PMCID: PMC9138684 DOI: 10.3390/bios12050298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Hepatitis C virus (HCV) infections occur in approximately 3% of the world population. The development of an enhanced and extensive-scale screening is required to accomplish the World Health Organization's (WHO) goal of eliminating HCV as a public health problem by 2030. However, standard testing methods are time-consuming, expensive, and challenging to deploy in remote and underdeveloped areas. Therefore, a cost-effective, rapid, and accurate point-of-care (POC) diagnostic test is needed to properly manage the disease and reduce the economic burden caused by high case numbers. Herein, we present a fully automated reverse-transcription loop-mediated isothermal amplification (RT-LAMP)-based molecular diagnostic set-up for rapid HCV detection. The set-up consists of an automated disposable microfluidic chip, a small surface heater, and a reusable magnetic actuation platform. The microfluidic chip contains multiple chambers in which the plasma sample is processed. The system utilizes SYBR green dye to detect the amplification product with the naked eye. The efficiency of the microfluidic chip was tested with human plasma samples spiked with HCV virions, and the limit of detection observed was 500 virions/mL within 45 min. The entire virus detection process was executed inside a uniquely designed, inexpensive, disposable, and self-driven microfluidic chip with high sensitivity and specificity.
Collapse
Affiliation(s)
- Sandhya Sharma
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA;
- Asghar-Lab: Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
| | - Emmanuel Thomas
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, FL 33136, USA;
| | - Massimo Caputi
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA;
| | - Waseem Asghar
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA;
- Asghar-Lab: Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
- Department of Biological Sciences (Courtesy Appointment), Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
30
|
Nkuna R, Ijoma GN, Matambo TS. Applying EDTA in Chelating Excess Metal Ions to Improve Downstream DNA Recovery from Mine Tailings for Long-Read Amplicon Sequencing of Acidophilic Fungi Communities. J Fungi (Basel) 2022; 8:jof8050419. [PMID: 35628675 PMCID: PMC9143545 DOI: 10.3390/jof8050419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/10/2022] Open
Abstract
The hostile environment of mine tailings contains unique microbial life capable of bioleaching. The metagenomic analysis of such an environment provides an in-depth understanding of the microbial life and its potential, especially in biomining operations. However, DNA recovery from samples collected in those environments is challenging due to the presence of metal ions that interfere with the DNA analysis. A varied concentration of EDTA (4–13 µg/µL) to chelate the metal ions of enriched tailing samples prior to DNA extraction was performed. The results show that 9 µg/µL of EDTA was effective in most samples. However, the increasing concentration of EDTA negatively affected the DNA recovery. The sequencing of the successfully extracted DNA revealed a diverse range of fungal genera, some of which have not been previously reported in tailing or bioleaching applications. The dominant genera include Fodinomyces, Penicillium, Recurvomuces, Trichoderma, and Xenoacremonium; their traits were determined using the FungalTraits database. This study demonstrates the need to include a preliminary metal-chelating step using EDTA before DNA extractions for samples collected from metal-rich environments. It further showed the need for optimization but provided a benchmark range, particularly for tailings. However, we caution that a further EDTA removal step from the extracted DNA should be included to avoid its interferences in downstream applications.
Collapse
|
31
|
Sheth N, Duffy KR, Grgicak CM. High-quality data from a forensically relevant single-cell pipeline enabled by low PBS and proteinase K concentrations. J Forensic Sci 2021; 67:697-706. [PMID: 34936089 DOI: 10.1111/1556-4029.14956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022]
Abstract
Interpreting forensic DNA signal is arduous since the total intensity is a cacophony of signal from noise, artifact, and allele from an unknown number of contributors (NOC). An alternate to traditional bulk-processing pipelines is a single-cell one, where the sample is collected, and each cell is sequestered resulting in n single-source, single-cell EPGs (scEPG) that must be interpreted using applicable strategies. As with all forensic DNA interpretation strategies, high quality electropherograms are required; thus, to enhance the credibility of single-cell forensics, it is necessary to produce an efficient direct-to-PCR treatment that is compatible with prevailing downstream laboratory processes. We incorporated the semi-automated micro-fluidic DEPArray™ technology into the single-cell laboratory and optimized its implementation by testing the effects of four laboratory treatments on single-cell profiles. We focused on testing effects of phosphate buffer saline (PBS) since it is an important reagent that mitigates cell rupture but is also a PCR inhibitor. Specifically, we explored the effect of decreasing PBS concentrations on five electropherogram-quality metrics from 241 leukocytes: profile drop-out, allele drop-out, allele peak heights, peak height ratios, and scEPG sloping. In an effort to improve reagent use, we also assessed two concentrations of proteinase K. The results indicate that decreasing PBS concentrations to 0.5X or 0.25X improves scEPG quality, while modest modifications to proteinase K concentrations did not significantly impact it. We, therefore, conclude that a lower than recommended proteinase K concentration coupled with a lower than recommended PBS concentration results in enhanced scEPGs within the semi-automated single-cell pipeline.
Collapse
Affiliation(s)
- Nidhi Sheth
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, USA
| | - Ken R Duffy
- Hamilton Institute, Maynooth University, Maynooth, Ireland
| | - Catherine M Grgicak
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, USA.,Department of Chemistry, Rutgers University, Camden, New Jersey, USA
| |
Collapse
|
32
|
Patterson C, Gray S, Wendt FR, Roy R. Inhibition of DNA amplification caused by metal in extracted bloodstains and in direct amplification. Forensic Sci Int Genet 2021; 55:102598. [DOI: 10.1016/j.fsigen.2021.102598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022]
|
33
|
Liu C, Huang D, Yang L, Wu S, Shen X, Pedersen-Bjergaard S, Huang C. Removal of Polymerase Chain Reaction Inhibitors by Electromembrane Extraction. Anal Chem 2021; 93:11488-11496. [PMID: 34383461 DOI: 10.1021/acs.analchem.1c01689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polymerase chain reaction (PCR) technology has become the cornerstone of DNA analysis. However, special samples (e.g., forensic samples, soil, food, and mineral medicine) may contain powerful PCR inhibitors. High levels of inhibitors can hardly be sufficiently removed by conventional DNA extraction approaches and may result in the complete failure of PCR. In this work, the removal of PCR inhibitors by electromembrane extraction (EME) was investigated for the first time. To demonstrate the universality of the approach, EME formats with and without supported membranes (termed parallel-EME and μ-EME, respectively) were employed, and both anionic [humic acid (HA)] and cationic (Ca2+) PCR inhibitors were used as models. During EME, charged inhibitors in the sample migrate into the liquid membrane in the presence of an electric field and might further leech into the waste solution, while PCR analytes remain in the sample. After EME, the clearance values for HA at 0.2 and 2.5 mg mL-1 were 94 and 85%, respectively, and that for Ca2+ (275 mM) was 63%. Forensic PCR-short tandem repeat (PCR-STR) genotyping showed that EME significantly reduced the interference by HA in PCR-STR analysis and displayed a higher HA purge capability compared to existing methods. Furthermore, by combining EME with liquid-liquid extraction or solid-phase extraction, satisfactory STR profiles were obtained from HA-rich blood samples. In addition, false-negative reports of bacterial detection in mineral medicine and shrimps were avoided after the removal of Ca2+ by μ-EME. Our research demonstrates the great potential of EME for the purification of DNA samples containing high-level PCR inhibitors and opens up a new application direction for EME.
Collapse
Affiliation(s)
- Cong Liu
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, China
| | - Daixin Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, China
| | - Liuqian Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, China
| | - Shifan Wu
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, China
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, China
| | - Stig Pedersen-Bjergaard
- School of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, Oslo 0316, Norway.,Faculty of Health and Medical Sciences, School of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Chuixiu Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, China
| |
Collapse
|
34
|
Mouliou DS, Gourgoulianis KI. False-positive and false-negative COVID-19 cases: respiratory prevention and management strategies, vaccination, and further perspectives. Expert Rev Respir Med 2021; 15:993-1002. [PMID: 33896332 PMCID: PMC8074645 DOI: 10.1080/17476348.2021.1917389] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction: A novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was reported via nucleic acid identification in December, 2019. Accuracy of SARS-CoV-2 diagnostic assays has emerged as a major barrier to COVID-19 diagnosis, particularly in cases requiring urgent or emergent treatment. Areas covered: In this review, we explore the major reasons for false-positive and false-negative SARS-CoV-2 test results. How clinical characteristics, specific respiratory comorbidities and SARS-CoV-2 vaccination impact on existing diagnostic assays are highlighted. Different COVID-19 management algorithms based on each test and limitations are thoroughly presented. Expert opinion: The diagnostic accuracy and the capacity of every available assay, which need to be interpreted in the light of the background incidence of SARS-CoV-2 infection in the communities in which they are used, are essential in order to minimize the number of falsely tested cases. Automated testing platforms may enhance diagnostic accuracy by minimizing the potential for human error in assays’ performance. Prior immunization against SARS-CoV-2 impairs the utility of serologic testing of suspected COVID-19 cases. Future avenues of research to evaluate lung tissue innate immune responses hold promise as a target for research to optimize SARS-CoV-2 and future infections’ testing accuracy.
Collapse
Affiliation(s)
- Dimitra S Mouliou
- Department of Respiratory Medicine, University of Thessaly, Larissa, Greece
| | | |
Collapse
|