1
|
Kalinderi K, Papaliagkas V, Fidani L. Surgicogenomics: The Role of Genetics in Deep Brain Stimulation in Parkinson's Disease Patients. Brain Sci 2024; 14:800. [PMID: 39199492 PMCID: PMC11352397 DOI: 10.3390/brainsci14080800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative disease, affecting 1% of people aged over 60. Currently, there is only symptomatic relief for PD patients, with levodopa being the gold standard of PD treatment. Deep brain stimulation (DBS) is a surgical option to treat PD patients. DBS improves motor functions and may also allow a significant reduction in dopaminergic medication. Important parameters for DBS outcomes are the disease duration, the age of disease onset, responsiveness to levodopa and cognitive or psychiatric comorbidities. Emerging data also highlight the need to carefully consider the genetic background in the preoperative assessment of PD patients who are candidates for DBS, as genetic factors may affect the effectiveness of DBS in these patients. This review article discusses the role of genetics in DBS for PD patients, in an attempt to better understand inter-individual variability in DBS response, control of motor PD symptoms and appearance of non-motor symptoms, especially cognitive decline.
Collapse
Affiliation(s)
- Kallirhoe Kalinderi
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Vasileios Papaliagkas
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Liana Fidani
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
2
|
Asimakidou E, Xiromerisiou G, Sidiropoulos C. Motor and Non-motor Outcomes of Deep Brain Stimulation across the Genetic Panorama of Parkinson's Disease: A Multi-Scale Meta-Analysis. Mov Disord Clin Pract 2024; 11:465-477. [PMID: 38318989 PMCID: PMC11078493 DOI: 10.1002/mdc3.13994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND In the era of modern medicine, where high-throughput sequencing techniques are readily available, it is desirable to elucidate the role of genetic background in patients with Parkinson's Disease (PD) undergoing Deep Brain Stimulation (DBS). Genetic stratification of PD patients undergoing DBS may assist in patient selection and prediction of clinical outcomes and complement existing selection procedures such as levodopa challenge testing. OBJECTIVE To capture a broad spectrum of motor and non-motor DBS outcomes in genetic PD patients with data from the recently updated literature. METHODS A multi-scale meta-analysis with 380 genetic PD cases was conducted using the Cochrane Review Manager, JASP software and R. RESULTS This meta-analysis revealed that overall, patients with genetic PD are good candidates for DBS but the outcomes might differ depending on the presence of specific mutations. PRKN carriers benefited the most regarding motor function, daily dose medication and motor complications. However, GBA carriers appeared to be more prone to cognitive decline after subthalamic nucleus DBS accompanied by a low quality of life with variable severity depending on genetic variants and concomitant alterations in other genes. Apart from GBA, cognitive worsening was also observed in SNCA carriers. Pre-operative levodopa responsiveness and a younger age of onset are associated with a favorable motor outcome. CONCLUSION A personalized approach with a variant-based risk stratification within the emerging field of surgicogenomics is needed. Integration of polygenic risk scores in clinical-decision making should be encouraged.
Collapse
|
3
|
Yoon E, Ahmed S, Li R, Bandres-Ciga S, Blauwendraat C, Dustin I, Scholz S, Hallett M, Ehrlich D. Association of polygenic risk score with response to deep brain stimulation in Parkinson's disease. BMC Neurol 2023; 23:143. [PMID: 37016359 PMCID: PMC10071605 DOI: 10.1186/s12883-023-03188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 03/27/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) is a well-established treatment option for select patients with Parkinson's Disease (PD). However, response to DBS varies, therefore, the ability to predict who will have better outcomes can aid patient selection. Some PD-related monogenic mutations have been reported among factors that influence response to DBS. However, monogenic disease accounts for only a minority of patients with PD. The polygenic risk score (PRS) is an indication of cumulative genetic risk for disease. The PRS in PD has also been correlated with age of onset and symptom progression, but it is unknown whether correlations exist between PRS and DBS response. Here, we performed a pilot study to look for any such correlation. METHODS We performed a retrospective analysis of 33 PD patients from the NIH PD Clinic and 13 patients from the Parkinson's Progression Markers Initiative database who had genetic testing and underwent bilateral subthalamic nucleus DBS surgery and clinical follow-up. A PD-specific PRS was calculated for all 46 patients based on the 90 susceptibility variants identified in the latest PD genome-wide association study. We tested associations between PRS and pre- and post-surgery motor and cognitive measures using multiple regression analysis for up to two years after surgery. RESULTS Changes in scores on the Beck Depression Inventory (BDI) were not correlated with PRS when derived from all susceptibility variants, however, when removing pathogenic and high-risk carriers from the calculation, higher PRS was significantly associated with greater reduction in BDI score at 3 months and with similar trend 24 months after DBS. PRS was not a significant predictor of Unified Parkinson's Disease Rating Scale, Dementia Rating Scale, or phenomic and semantic fluency outcomes at 3- and 24-months after DBS surgery. CONCLUSIONS This exploratory study suggests that PRS may predict degree of improvement in depressive symptoms after DBS, though was not predictive of motor and other cognitive outcomes after DBS. Additionally, PRS may be most relevant in predicting DBS outcomes in patients lacking pathogenic or high-risk PD variants. However, this was a small preliminary study and response to DBS treatment is multifactorial, therefore, more standardized high-powered studies are needed.
Collapse
Affiliation(s)
- Esther Yoon
- Parkinson's Disease Clinic, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, NIH, 7D37 10 Center Dr, Bethesda, MD, USA
| | - Sarah Ahmed
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Ryan Li
- Parkinson's Disease Clinic, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, NIH, 7D37 10 Center Dr, Bethesda, MD, USA
| | - Sara Bandres-Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute of Aging, NIH, Bethesda, MD, USA
| | - Cornelis Blauwendraat
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute of Aging, NIH, Bethesda, MD, USA
| | - Irene Dustin
- Parkinson's Disease Clinic, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, NIH, 7D37 10 Center Dr, Bethesda, MD, USA
| | - Sonja Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins Medical Center, Baltimore, MD, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Debra Ehrlich
- Parkinson's Disease Clinic, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, NIH, 7D37 10 Center Dr, Bethesda, MD, USA.
| |
Collapse
|
4
|
Krause P, Reimer J, Kaplan J, Borngräber F, Schneider GH, Faust K, Kühn AA. Deep brain stimulation in Early Onset Parkinson's disease. Front Neurol 2022; 13:1041449. [PMID: 36468049 PMCID: PMC9713840 DOI: 10.3389/fneur.2022.1041449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/24/2022] [Indexed: 10/27/2023] Open
Abstract
INTRODUCTION Subthalamic Deep Brain Stimulation (STN-DBS) is a safe and well-established therapy for the management of motor symptoms refractory to best medical treatment in patients with Parkinson's disease (PD). Early intervention is discussed especially for Early-onset PD (EOPD) patients that present with an age of onset ≤ 45-50 years and see themselves often confronted with high psychosocial demands. METHODS We retrospectively assessed the effect of STN-DBS at 12 months follow-up (12-MFU) in 46 EOPD-patients. Effects of stimulation were evaluated by comparison of disease-specific scores for motor and non-motor symptoms including impulsiveness, apathy, mood, quality of life (QoL), cognition before surgery and in the stimulation ON-state without medication. Further, change in levodopa equivalent dosage (LEDD) after surgery, DBS parameter, lead localization, adverse and serious adverse events as well as and possible additional clinical features were assessed. RESULTS PD-associated gene mutations were found in 15% of our EOPD-cohort. At 12-MFU, mean motor scores had improved by 52.4 ± 17.6% in the STIM-ON/MED-OFF state compared to the MED-OFF state at baseline (p = 0.00; n = 42). These improvements were accompanied by a significant 59% LEDD reduction (p < 0.001), a significant 6.6 ± 16.1 points reduction of impulsivity (p = 0.02; n = 35) and a significant 30 ± 50% improvement of QoL (p = 0.01). At 12-MFU, 9 patients still worked full- and 6 part-time. Additionally documented motor and/or neuropsychiatric features decreased from n = 41 at baseline to n = 14 at 12-MFU. CONCLUSION The present study-results demonstrate that EOPD patients with and without known genetic background benefit from STN-DBS with significant improvement in motor as well as non-motor symptoms. In line with this, patients experienced a meaningful reduction of additional neuropsychiatric features. Physicians as well as patients have an utmost interest in possible predictors for the putative DBS outcome in a cohort with such a highly complex clinical profile. Longitudinal monitoring of DBS-EOPD-patients over long-term intervals with standardized comprehensive clinical assessment, accurate phenotypic characterization and documentation of clinical outcomes might help to gain insights into disease etiology, to contextualize genomic information and to identify predictors of optimal DBS candidates as well as those in danger of deterioration and/or non-response in the future.
Collapse
Affiliation(s)
- Patricia Krause
- Movement Disorder and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany
| | - Johanna Reimer
- Movement Disorder and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany
| | - Jonathan Kaplan
- Movement Disorder and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany
| | - Friederike Borngräber
- Movement Disorder and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany
| | | | - Katharina Faust
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Andrea A. Kühn
- Movement Disorder and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
5
|
Mangone G, Bekadar S, Cormier-Dequaire F, Tahiri K, Welaratne A, Czernecki V, Pineau F, Karachi C, Castrioto A, Durif F, Tranchant C, Devos D, Thobois S, Meissner WG, Navarro MS, Cornu P, Lesage S, Brice A, Welter ML, Corvol JC. Early cognitive decline after bilateral subthalamic deep brain stimulation in Parkinson's disease patients with GBA mutations. Parkinsonism Relat Disord 2020; 76:56-62. [PMID: 32866938 DOI: 10.1016/j.parkreldis.2020.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/25/2020] [Accepted: 04/03/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Subthalamic nucleus deep brain stimulation (STN-DBS) has demonstrated its efficacy on motor complications in advanced Parkinson's disease (PD) but does not modify disease progression. Genetic forms of PD have been associated with different cognitive progression profiles. OBJECTIVE To assess the effect of PD-related genetic mutations on cognitive outcome after STN-DBS. METHODS Patients with STN-DBS were screened for LRRK2, GBA, and PRKN mutations at the Pitié-Salpêtrière Hospital between 1997 and 2009. Patients with known monogenetic forms of PD from six other centers were also included. The Mattis Dementia Rating Scale (MDRS) was used to evaluate cognition at baseline and one-year post-surgery. The standardized Unified PD Rating Scale (UPDRS) evaluation On and Off medication/DBS was also administered. A generalized linear model adjusted for sex, ethnicity, age at onset, and disease duration was used to evaluate the effect of genetic factors on MDRS changes. RESULTS We analyzed 208 patients (131 males, 77 females, 54.3 ± 8.8 years) including 25 GBA, 18 LRRK2, 22 PRKN, and 143 PD patients without mutations. PRKN patients were younger and had a longer disease duration at baseline. A GBA mutation was the only significant genetic factor associated with MDRS change (β = -2.51, p = 0.009). GBA mutation carriers had a more pronounced post-operative MDRS decline (3.2 ± 5.1) than patients with LRRK2 (0.9 ± 4.8), PRKN (0.5 ± 2.7) or controls (1.4 ± 4.4). The motor response to DBS was similar between groups. CONCLUSION GBA mutations are associated with early cognitive decline following STN-DBS. Neuropsychological assessment and discussions on the benefit/risk ratio of DBS are particularly important for this population.
Collapse
Affiliation(s)
- Graziella Mangone
- Sorbonne Université, Inserm U1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, France; Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Neurologie, Clinical Research Center Neurosciences, Paris, France
| | - Samir Bekadar
- Sorbonne Université, Inserm U1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Florence Cormier-Dequaire
- Sorbonne Université, Inserm U1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, France; Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Neurologie, Clinical Research Center Neurosciences, Paris, France
| | - Khadija Tahiri
- Sorbonne Université, Inserm U1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Arlette Welaratne
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Neurologie, Clinical Research Center Neurosciences, Paris, France
| | - Virginie Czernecki
- Sorbonne Université, Inserm U1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, France; Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Neurologie, Clinical Research Center Neurosciences, Paris, France; Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Neurologie, Institut of Memory and Alzheimer's Disease (IM2A), Paris, France
| | - Fanny Pineau
- Sorbonne Université, Inserm U1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, France; Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Neurologie, Clinical Research Center Neurosciences, Paris, France; Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Neurologie, Institut of Memory and Alzheimer's Disease (IM2A), Paris, France
| | - Carine Karachi
- Sorbonne Université, Inserm U1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, France; Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Neurochirurgie, Paris, France
| | - Anna Castrioto
- Unité des Troubles du Mouvement, Département de Neurologie, CHU de Grenoble, Université de Grenoble Alpes, INSERM U1216, F-38000, Grenoble, France
| | - Frank Durif
- Service de Neurologie, CHU Clermont-Ferrand, Université Clermont Auvergne, F-63000, Clermont-Ferrand, France
| | - Christine Tranchant
- Département de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - David Devos
- Département de Neurologie, Centre Expert maladie de Parkinson, Département de Pharmacologie Clinique et des Neurosciences, Université de Lille, Centre Hospitalier Universitaire de Lille, INSERM UMR_S 1171, LICEND, France
| | - Stéphane Thobois
- Neurologie C, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69500, Bron, France; Univ Lyon, Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Sud, Lyon, France; Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, CNRS, Bron, France
| | - Wassilios G Meissner
- Service de Neurologie, Centre Expert Parkinson, IMNc, CHU Bordeaux, 33000, Bordeaux, France; Univ. de Bordeaux, Institut des Maladies Neurodégénératives, CNRS, UMR 5293, 33000, Bordeaux, France; Dept. Medicine, University of Otago, Christchurch, New Zealand; Brain Research Institute, Christchurch, New Zealand
| | - Maria Soledad Navarro
- Sorbonne Université, Inserm U1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, France; Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Neurochirurgie, Paris, France
| | - Philippe Cornu
- Sorbonne Université, Inserm U1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, France; Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Neurochirurgie, Paris, France
| | - Suzanne Lesage
- Sorbonne Université, Inserm U1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, France; Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Neurologie, Clinical Research Center Neurosciences, Paris, France
| | - Alexis Brice
- Sorbonne Université, Inserm U1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, France; Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Neurologie, Clinical Research Center Neurosciences, Paris, France
| | - Marie Laure Welter
- Sorbonne Université, Inserm U1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, France; Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Neurologie, Clinical Research Center Neurosciences, Paris, France; Département de Neurophysiologie, CHU Rouen, Université de Normandie, Rouen, France
| | - Jean-Christophe Corvol
- Sorbonne Université, Inserm U1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, France; Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Neurologie, Clinical Research Center Neurosciences, Paris, France.
| | | |
Collapse
|
6
|
Aasly JO. Long-Term Outcomes of Genetic Parkinson's Disease. J Mov Disord 2020; 13:81-96. [PMID: 32498494 PMCID: PMC7280945 DOI: 10.14802/jmd.19080] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder that affects 1–2% of people by the age of 70 years. Age is the most important risk factor, and most cases are sporadic without any known environmental or genetic causes. Since the late 1990s, mutations in the genes SNCA, PRKN, LRRK2, PINK1, DJ-1, VPS35, and GBA have been shown to be important risk factors for PD. In addition, common variants with small effect sizes are now recognized to modulate the risk for PD. Most studies in genetic PD have focused on finding new genes, but few have studied the long-term outcome of patients with the specific genetic PD forms. Patients with known genetic PD have now been followed for more than 20 years, and we see that they may have distinct and different prognoses. New therapeutic possibilities are emerging based on the genetic cause underlying the disease. Future medication may be based on the pathophysiology individualized to the patient’s genetic background. The challenge is to find the biological consequences of different genetic variants. In this review, the clinical patterns and long-term prognoses of the most common genetic PD variants are presented.
Collapse
Affiliation(s)
- Jan O Aasly
- Department of Neurology, St. Olav's Hospital, Trondheim, Norway.,Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
7
|
Ligaard J, Sannæs J, Pihlstrøm L. Deep brain stimulation and genetic variability in Parkinson's disease: a review of the literature. NPJ Parkinsons Dis 2019; 5:18. [PMID: 31508488 DOI: 10.1038/s41531-0190091-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/12/2019] [Indexed: 05/26/2023] Open
Abstract
Deep brain stimulation is offered as symptomatic treatment in advanced Parkinson's disease, depending on a clinical assessment of the individual patient's risk-benefit profile. Genetics contribute to phenotypic variability in Parkinson's disease, suggesting that genetic testing could have clinical relevance for personalized therapy. Aiming to review current evidence linking genetic variation to deep brain stimulation treatment and outcomes in Parkinson's disease we performed systematic searches in the Embase and PubMed databases to identify relevant publications and summarized the findings. We identified 39 publications of interest. Genetic screening studies indicate that monogenic forms of Parkinson's disease and high-risk variants of GBA may be more common in cohorts treated with deep brain stimulation. Studies assessing deep brain stimulation outcomes in patients carrying mutations in specific genes are limited in size. There are reports suggesting that the phenotype associated with parkin mutations could be suitable for early surgery. In patients with LRRK2 mutations, outcomes of deep brain stimulation seem at least as good as in mutation-negative patients, whereas less favorable outcomes are seen in patients carrying mutations in GBA. Careful assessment of clinical symptoms remains the primary basis for clinical decisions associated with deep brain stimulation surgery in Parkinson's disease, although genetic information could arguably be taken into account in special cases. Current evidence is scarce, but highlights a promising development where genetic profiling may be increasingly relevant for clinicians tailoring personalized medical or surgical therapy to Parkinson's disease patients.
Collapse
Affiliation(s)
| | - Julia Sannæs
- 1Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lasse Pihlstrøm
- 2Department of Neurology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
8
|
Deep brain stimulation and genetic variability in Parkinson's disease: a review of the literature. NPJ PARKINSONS DISEASE 2019; 5:18. [PMID: 31508488 PMCID: PMC6731254 DOI: 10.1038/s41531-019-0091-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/12/2019] [Indexed: 11/29/2022]
Abstract
Deep brain stimulation is offered as symptomatic treatment in advanced Parkinson’s disease, depending on a clinical assessment of the individual patient’s risk-benefit profile. Genetics contribute to phenotypic variability in Parkinson’s disease, suggesting that genetic testing could have clinical relevance for personalized therapy. Aiming to review current evidence linking genetic variation to deep brain stimulation treatment and outcomes in Parkinson’s disease we performed systematic searches in the Embase and PubMed databases to identify relevant publications and summarized the findings. We identified 39 publications of interest. Genetic screening studies indicate that monogenic forms of Parkinson’s disease and high-risk variants of GBA may be more common in cohorts treated with deep brain stimulation. Studies assessing deep brain stimulation outcomes in patients carrying mutations in specific genes are limited in size. There are reports suggesting that the phenotype associated with parkin mutations could be suitable for early surgery. In patients with LRRK2 mutations, outcomes of deep brain stimulation seem at least as good as in mutation-negative patients, whereas less favorable outcomes are seen in patients carrying mutations in GBA. Careful assessment of clinical symptoms remains the primary basis for clinical decisions associated with deep brain stimulation surgery in Parkinson’s disease, although genetic information could arguably be taken into account in special cases. Current evidence is scarce, but highlights a promising development where genetic profiling may be increasingly relevant for clinicians tailoring personalized medical or surgical therapy to Parkinson’s disease patients.
Collapse
|
9
|
Pleiotropic effects for Parkin and LRRK2 in leprosy type-1 reactions and Parkinson's disease. Proc Natl Acad Sci U S A 2019; 116:15616-15624. [PMID: 31308240 PMCID: PMC6681704 DOI: 10.1073/pnas.1901805116] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Type-1 reactions (T1R) are pathological immune responses in leprosy and a frequent cause of peripheral nerve damage. Employing a candidate gene approach combined with deep resequencing, we identified amino acid mutations in the E3 ligase Parkin and the polyfunctional kinase LRRK2 that were associated with T1R. This finding directly linked both proteins with the extent of the immune response in an infectious disease. Moreover, amino acids associated with T1R mutations were significantly enriched for mutations found in patients suffering from Parkinson’s disease (PD). These findings confirm Parkin and LRRK2 as 2 key inflammatory regulators and suggest that T1R and PD share overlapping pathways of pathogenesis. Type-1 reactions (T1R) are pathological inflammatory episodes and main contributors to nerve damage in leprosy. Here, we evaluate the genewise enrichment of rare protein-altering variants in 7 genes where common variants were previously associated with T1R. We selected 474 Vietnamese leprosy patients of which 237 were T1R-affected and 237 were T1R-free matched controls. Genewise enrichment of nonsynonymous variants was tested with both kernel-based (sequence kernel association test [SKAT]) and burden methods. Of the 7 genes tested 2 showed statistical evidence of association with T1R. For the LRRK2 gene an enrichment of nonsynonymous variants was observed in T1R-free controls (PSKAT-O = 1.6 × 10−4). This genewise association was driven almost entirely by the gain-of-function variant R1628P (P = 0.004; odds ratio = 0.29). The second genewise association was found for the Parkin coding gene PRKN (formerly PARK2) where 7 rare variants were enriched in T1R-affected cases (PSKAT-O = 7.4 × 10−5). Mutations in both PRKN and LRRK2 are known causes of Parkinson’s disease (PD). Hence, we evaluated to what extent such rare amino acid changes observed in T1R are shared with PD. We observed that amino acids in Parkin targeted by nonsynonymous T1R-risk mutations were also enriched for mutations implicated in PD (P = 1.5 × 10−4). Hence, neuroinflammation in PD and peripheral nerve damage due to inflammation in T1R share overlapping genetic control of pathogenicity.
Collapse
|
10
|
Rizzone MG, Martone T, Balestrino R, Lopiano L. Genetic background and outcome of Deep Brain Stimulation in Parkinson's disease. Parkinsonism Relat Disord 2019; 64:8-19. [DOI: 10.1016/j.parkreldis.2018.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/26/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022]
|
11
|
de Oliveira LM, Barbosa ER, Aquino CC, Munhoz RP, Fasano A, Cury RG. Deep Brain Stimulation in Patients With Mutations in Parkinson's Disease-Related Genes: A Systematic Review. Mov Disord Clin Pract 2019; 6:359-368. [PMID: 31286005 DOI: 10.1002/mdc3.12795] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/07/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022] Open
Abstract
Background Deep brain stimulation (DBS) is an effective treatment for Parkinson's disease (PD), and careful selection of candidates is a key component of successful therapy. Although it is recognized that factors such as age, disease duration, and levodopa responsiveness can influence outcomes, it is unclear whether genetic background should also serve as a parameter. Objectives The aim of this systematic review is to explore studies that have evaluated DBS in patients with mutations in PD-related genes. Methods We performed a selective literature search for articles regarding the effects of DBS in autosomal dominant or recessive forms of PD or in PD patients with genetic risk factors. Data regarding changes in motor and nonmotor scores and the presence of adverse events after the stimulation were collected. Results A total of 25 studies were included in the systematic review, comprising 135 patients. In the shorter term, most patients showed marked or satisfactory response to subthalamic DBS, although leucine rich repeat kinase 2 carriers of R114G mutations had higher rates of unsatisfactory outcome. Longer term follow-up data were scarce but suggested that motor benefit is sustained. Patients with the glucosidase beta acid (GBA) mutation showed higher rates of cognitive decline after surgery. Motor outcome was scarce for pallidal DBS. Few adverse events were reported. Conclusions Subthalamic DBS results in positive outcomes in the short term in patients with Parkin, GBA, and leucine-rich repeat kinase 2 (non-R144G) mutations, although the small sample size limits the interpretation of our findings. Longer and larger cohorts of follow-up, with broader nonmotor symptom evaluations will be necessary to better customize DBS therapy in this population.
Collapse
Affiliation(s)
- Lais Machado de Oliveira
- The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto Western Hospital, Division of Neurology University of Toronto Toronto Ontario Canada.,Movement Disorders Center, Department of Neurology, School of Medicine University of São Paulo São Paulo Brazil
| | - Egberto Reis Barbosa
- Movement Disorders Center, Department of Neurology, School of Medicine University of São Paulo São Paulo Brazil
| | - Camila Catherine Aquino
- Department Health Research Methods, Evidence, and Impact McMaster University Hamilton Ontario Canada
| | - Renato Puppi Munhoz
- The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto Western Hospital, Division of Neurology University of Toronto Toronto Ontario Canada.,Krembil Brain Institute Toronto Ontario Canada
| | - Alfonso Fasano
- The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto Western Hospital, Division of Neurology University of Toronto Toronto Ontario Canada.,Krembil Brain Institute Toronto Ontario Canada
| | - Rubens Gisbert Cury
- Movement Disorders Center, Department of Neurology, School of Medicine University of São Paulo São Paulo Brazil
| |
Collapse
|
12
|
Artusi CA, Dwivedi AK, Romagnolo A, Pal G, Kauffman M, Mata I, Patel D, Vizcarra JA, Duker A, Marsili L, Cheeran B, Woo D, Contarino MF, Verhagen L, Lopiano L, Espay AJ, Fasano A, Merola A. Association of Subthalamic Deep Brain Stimulation With Motor, Functional, and Pharmacologic Outcomes in Patients With Monogenic Parkinson Disease: A Systematic Review and Meta-analysis. JAMA Netw Open 2019; 2:e187800. [PMID: 30707228 PMCID: PMC6484599 DOI: 10.1001/jamanetworkopen.2018.7800] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
IMPORTANCE Comparative outcomes among different monogenic forms of Parkinson disease after subthalamic nucleus deep brain stimulation (STN DBS) remain unclear. OBJECTIVE To compare clinical outcomes in patients with the most common monogenic forms of Parkinson disease treated with STN DBS. DESIGN, SETTING, AND PARTICIPANTS Systematic review and meta-analysis in which a PubMed search of interventional and noninterventional studies of Parkinson disease with LRRK2, GBA, or PRKN gene mutations published between January 1, 1990, and May 1, 2018, was conducted. Among the inclusion criteria were articles that reported the Motor subscale of the Unified Parkinson's Disease Rating Scale Part III (UPDRS-III) before and after STN DBS treatment, that involved human participants, and that were published in the English language. Studies that used aggregated data from patients with different genetic mutations were excluded, and so were studies with assumed but not confirmed genetic data or incomplete follow-up data. MAIN OUTCOMES AND MEASURES Changes in UPDRS-III scores and levodopa equivalent daily dose (LEDD) were analyzed for each monogenic form of Parkinson disease. Additional end points included activities of daily living (UPDRS-II), motor complications (UPDRS-IV), and cognitive function. RESULTS Of the 611 eligible studies, 17 (2.8%) met the full inclusion criteria; these 17 studies consisted of 8 cohort studies (47.1%), 3 case series (17.6%), and 6 case reports (35.3%), and they involved a total of 518 patients. The UPDRS-III score improved by 46% in LRRK2 (mean change, 23.0 points; 95% CI, 15.2-30.8; P < .001), 49% in GBA (20.0 points; 95% CI, 4.5-35.5; P = .01), 43% in PRKN (24.1 points; 95% CI, 12.4-35.9; P < .001), and 53% in idiopathic Parkinson disease (25.2 points; 95% CI, 21.3-29.2; P < .001). The LEDD was reduced by 61% in LRRK2 (mean change, 711.9 mg/d; 95% CI, 491.8-932.0; P < .001), 22% in GBA (269.2 mg/d; 95% CI, 226.8-311.5; P < .001), 61% in PRKN (494.8 mg/d; 95% CI, -18.1 to -1007.8; P = .06), and 55% in idiopathic Parkinson disease (681.8 mg/d; 95% CI, 544.4-819.1; P < .001). Carriers of the PRKN mutations showed sustained improvements in UPDRS-II and UPDRS-IV, whereas LRRK2 mutation carriers sustained improvements only in UPDRS-IV. Carriers of the GBA mutation showed worse postsurgical cognitive and functional performance. CONCLUSIONS AND RELEVANCE Treatment with STN DBS for patients with Parkinson disease with LRRK2, GBA, or PRKN mutations appears to be associated with similar motor outcomes but different changes in dopaminergic dose, activities of daily living, motor complications, and cognitive functions.
Collapse
Affiliation(s)
- Carlo Alberto Artusi
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Alok K. Dwivedi
- Texas Tech University Health Sciences Center El Paso, El Paso
| | - Alberto Romagnolo
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Gian Pal
- Rush University Medical Center, Chicago, Illinois
| | - Marcelo Kauffman
- Consultorio de Neurogenética-Centro Universitario de Neurologia y Division Neurologia-Hospital J. M. Ramos Mejia-CONICET, Buenos Aires, Argentina
| | - Ignacio Mata
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Dhiren Patel
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio
| | - Joaquin A. Vizcarra
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio
| | - Andrew Duker
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio
| | - Luca Marsili
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio
| | - Binith Cheeran
- Abbott Laboratories, Austin, Texas
- The London Clinic, London, United Kingdom
| | - Daniel Woo
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio
| | - Maria Fiorella Contarino
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurology, Haga Teaching Hospital, The Hague, the Netherlands
| | | | - Leonardo Lopiano
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Alberto J. Espay
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio
| | - Alfonso Fasano
- Morton and Gloria Shulman Movement Disorders Clinic, Edmond J. Safra Program in Parkinson’s Disease, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto, Ontario, Canada
| | - Aristide Merola
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
13
|
Kuusimäki T, Korpela J, Pekkonen E, Martikainen MH, Antonini A, Kaasinen V. Deep brain stimulation for monogenic Parkinson's disease: a systematic review. J Neurol 2019; 267:883-897. [PMID: 30659355 PMCID: PMC7109183 DOI: 10.1007/s00415-019-09181-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 12/17/2022]
Abstract
Deep brain stimulation (DBS) is an effective treatment for Parkinson’s disease (PD) patients with motor fluctuations and dyskinesias. The key DBS efficacy studies were performed in PD patients with unknown genotypes; however, given the estimated monogenic mutation prevalence of approximately 5–10%, most commonly LRRK2, PRKN, PINK1 and SNCA, and risk-increasing genetic factors such as GBA, proper characterization is becoming increasingly relevant. We performed a systematic review of 46 studies that reported DBS effects in 221 genetic PD patients. The results suggest that monogenic PD patients have variable DBS benefit depending on the mutated gene. Outcome appears excellent in patients with the most common LRRK2 mutation, p.G2019S, and good in patients with PRKN mutations but poor in patients with the more rare LRRK2 p.R1441G mutation. The overall benefit of DBS in SNCA, GBA and LRRK2 p.T2031S mutations may be compromised due to rapid progression of cognitive and neuropsychiatric symptoms. In the presence of other mutations, the motor changes in DBS-treated monogenic PD patients appear comparable to those of the general PD population.
Collapse
Affiliation(s)
- Tomi Kuusimäki
- Division of Clinical Neurosciences, Turku University Hospital, Hämeentie 11, POB 52, 20521, Turku, Finland. .,Department of Neurology, University of Turku, Turku, Finland.
| | - Jaana Korpela
- Division of Clinical Neurosciences, Turku University Hospital, Hämeentie 11, POB 52, 20521, Turku, Finland.,Department of Neurology, University of Turku, Turku, Finland
| | - Eero Pekkonen
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland.,Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| | - Mika H Martikainen
- Division of Clinical Neurosciences, Turku University Hospital, Hämeentie 11, POB 52, 20521, Turku, Finland.,Department of Neurology, University of Turku, Turku, Finland
| | - Angelo Antonini
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Valtteri Kaasinen
- Division of Clinical Neurosciences, Turku University Hospital, Hämeentie 11, POB 52, 20521, Turku, Finland.,Department of Neurology, University of Turku, Turku, Finland
| |
Collapse
|
14
|
Kasten M, Marras C, Klein C. Nonmotor Signs in Genetic Forms of Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 133:129-178. [DOI: 10.1016/bs.irn.2017.05.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Successful treatment of Juvenile parkinsonism with bilateral subthalamic deep brain stimulation in a 14-year-old patient with parkin gene mutation. Parkinsonism Relat Disord 2016; 24:137-8. [PMID: 26830385 DOI: 10.1016/j.parkreldis.2016.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 01/13/2016] [Accepted: 01/19/2016] [Indexed: 11/21/2022]
|
16
|
Nakahara K, Ueda M, Yamada K, Koide T, Yoshimochi G, Funayama M, Kim JH, Yamakawa S, Mori A, Misumi Y, Uyama E, Hattori N, Ando Y. Juvenile-onset parkinsonism with digenic parkin and PINK1 mutations treated with subthalamic nucleus stimulation at 45years after disease onset. J Neurol Sci 2014; 345:276-7. [DOI: 10.1016/j.jns.2014.07.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/22/2014] [Accepted: 07/24/2014] [Indexed: 10/25/2022]
|
17
|
He Z, Jiang Y, Xu H, Jiang H, Jia W, Sun P, Xie J. High frequency stimulation of subthalamic nucleus results in behavioral recovery by increasing striatal dopamine release in 6-hydroxydopamine lesioned rat. Behav Brain Res 2014; 263:108-14. [DOI: 10.1016/j.bbr.2014.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 01/07/2014] [Accepted: 01/15/2014] [Indexed: 10/25/2022]
|
18
|
Kim HJ, Yun JY, Kim YE, Lee JY, Kim HJ, Kim JY, Park SS, Paek SH, Jeon BS. Parkin mutation and deep brain stimulation outcome. J Clin Neurosci 2013; 21:107-10. [PMID: 24060625 DOI: 10.1016/j.jocn.2013.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 03/06/2013] [Accepted: 03/09/2013] [Indexed: 11/29/2022]
Abstract
Patients with parkin mutations are expected to be good candidates for deep brain stimulation (DBS) because of an excellent levodopa response and frequent occurrence of levodopa-induced dyskinesia. However, there are insufficient data on surgical outcome in patients with parkin mutations. This study aimed to compare the outcome of subthalamic nucleus DBS in patients with early-onset Parkinson's disease with and without parkin mutations. Fourteen patients with early-onset Parkinson's disease who underwent bilateral subthalamic nucleus DBS surgery were screened for parkin mutations and assessed for surgical outcomes at baseline and 2-5years after surgery. Three patients had homozygote/compound heterozygote mutations; two had single heterozygote mutations; and nine had no mutations. Patients with homozygote/compound heterozygote mutations were younger at disease onset and had longer disease duration than patients without a parkin mutation. Postoperatively, there were no significant differences in improvement on the Unified Parkinson's Disease Rating Scale part II, III, and IV, or the reduction of levodopa equivalent daily doses between patients with and without parkin mutations. The therapeutic effect of DBS did not differ between patients with and without parkin mutations.
Collapse
Affiliation(s)
- Hee Jin Kim
- Department of Neurology, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Ji Young Yun
- Department of Neurology, Seoul National University Hospital, Chongno-Ku Yunkeun-Dong 28, Seoul 110-744, Republic of Korea
| | - Young-Eun Kim
- Department of Neurology, Seoul National University Hospital, Chongno-Ku Yunkeun-Dong 28, Seoul 110-744, Republic of Korea
| | - Jee-Young Lee
- Department of Neurology, Seoul National University Boramae Hospital, Seoul, Republic of Korea
| | - Han-Joon Kim
- Department of Neurology, Seoul National University Hospital, Chongno-Ku Yunkeun-Dong 28, Seoul 110-744, Republic of Korea
| | - Ji-Young Kim
- Department of Neurology, Inje University Seoul Paik Hospital, Seoul, Republic of Korea
| | - Sung Sup Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Beom S Jeon
- Department of Neurology, Seoul National University Hospital, Chongno-Ku Yunkeun-Dong 28, Seoul 110-744, Republic of Korea.
| |
Collapse
|
19
|
Fasano A, Deuschl G. Patients and DBS targets: Is there any rationale for selecting them? ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.baga.2012.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Treatment of motor and non-motor features of Parkinson's disease with deep brain stimulation. Lancet Neurol 2012; 11:429-42. [DOI: 10.1016/s1474-4422(12)70049-2] [Citation(s) in RCA: 274] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
Lohmann E, Dursun B, Lesage S, Hanagasi HA, Sevinc G, Honore A, Bilgic B, Gürvit H, Dogu O, Kaleagası H, Babacan G, Yazici J, Erginel-Unaltuna N, Brice A, Emre M. Genetic bases and phenotypes of autosomal recessive Parkinson disease in a Turkish population. Eur J Neurol 2012; 19:769-75. [DOI: 10.1111/j.1468-1331.2011.03639.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Johansen KK, Jørgensen JV, White LR, Farrer MJ, Aasly JO. Parkinson-related genetics in patients treated with deep brain stimulation. Acta Neurol Scand 2011; 123:201-6. [PMID: 20545633 DOI: 10.1111/j.1600-0404.2010.01387.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To analyze the frequency of mutations associated with Parkinson's disease (PD) in a general PD population compared to patients with PD selected for deep brain stimulation (DBS) and evaluate the outcome of surgery. MATERIAL AND METHODS A total of 630 consecutive patients with PD were genetically screened, and 60 had DBS surgery, 37 subthalamic nucleus (STN), 21 ventrointermediate nucleus of thalamus (VIM), and two globus pallidus internus (GPi). RESULTS Mutations in LRRK2, PRKN, and PINK1 were found: the first two of these being overrepresented in STN-operated patients, but none being found in VIM-operated patients. Clinical outcome of the surgery was similar in patients with mutations compared to those without. CONCLUSIONS In a consecutive PD population, patients treated with STN-DBS are overrepresented for PD-related mutations and they seem to benefit from DBS as well as patients without mutations.
Collapse
Affiliation(s)
- K K Johansen
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | |
Collapse
|
23
|
Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum Mutat 2010; 31:763-80. [PMID: 20506312 PMCID: PMC3056147 DOI: 10.1002/humu.21277] [Citation(s) in RCA: 353] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 04/21/2010] [Accepted: 04/21/2010] [Indexed: 12/13/2022]
Abstract
To date, molecular genetic analyses have identified over 500 distinct DNA variants in five disease genes associated with familial Parkinson disease; alpha-synuclein (SNCA), parkin (PARK2), PTEN-induced putative kinase 1 (PINK1), DJ-1 (PARK7), and Leucine-rich repeat kinase 2 (LRRK2). These genetic variants include approximately 82% simple mutations and approximately 18% copy number variations. Some mutation subtypes are likely underestimated because only few studies reported extensive mutation analyses of all five genes, by both exonic sequencing and dosage analyses. Here we present an update of all mutations published to date in the literature, systematically organized in a novel mutation database (http://www.molgen.ua.ac.be/PDmutDB). In addition, we address the biological relevance of putative pathogenic mutations. This review emphasizes the need for comprehensive genetic screening of Parkinson patients followed by an insightful study of the functional relevance of observed genetic variants. Moreover, while capturing existing data from the literature it became apparent that several of the five Parkinson genes were also contributing to the genetic etiology of other Lewy Body Diseases and Parkinson-plus syndromes, indicating that mutation screening is recommendable in these patient groups.
Collapse
Affiliation(s)
- Karen Nuytemans
- Neurodegenerative Brain Diseases Group, Department of Molecular GeneticsVIB, Antwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of AntwerpAntwerpen, Belgium
| | - Jessie Theuns
- Neurodegenerative Brain Diseases Group, Department of Molecular GeneticsVIB, Antwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of AntwerpAntwerpen, Belgium
| | - Marc Cruts
- Neurodegenerative Brain Diseases Group, Department of Molecular GeneticsVIB, Antwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of AntwerpAntwerpen, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Department of Molecular GeneticsVIB, Antwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of AntwerpAntwerpen, Belgium
| |
Collapse
|
24
|
Abstract
Juvenile parkinsonism, with onset prior to age 21 years, is a relatively rare syndrome. It is caused by a group of heterogeneous entities that can present with a clinical picture similar to idiopathic Parkinson's disease or manifest parkinsonism as part of a spectrum of other signs. Diagnostic testing is guided by the presenting symptoms and aimed at uncovering potentially reversible and/or treatable causes. If an underlying condition is found, treatment is tailored accordingly. Otherwise, treatment is symptomatic and relies on medications commonly employed to treat idiopathic Parkinson's disease. Juvenile parkinsonism patients tend to be plagued by treatment-induced complications, so caution must be employed.
Collapse
Affiliation(s)
- Teri R Thomsen
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
25
|
Whatever the disease duration, stimulation of the subthalamic nucleus improves Parkin disease. Parkinsonism Relat Disord 2010; 16:482-3. [PMID: 20493755 DOI: 10.1016/j.parkreldis.2010.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/16/2010] [Accepted: 04/25/2010] [Indexed: 11/22/2022]
|
26
|
Xiromerisiou G, Dardiotis E, Tsimourtou V, Kountra PM, Paterakis KN, Kapsalaki EZ, Fountas KN, Hadjigeorgiou GM. Genetic basis of Parkinson disease. Neurosurg Focus 2010; 28:E7. [DOI: 10.3171/2009.10.focus09220] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Over the past few years, considerable progress has been made in understanding the molecular mechanisms of Parkinson disease (PD). Mutations in certain genes are found to cause monogenic forms of the disorder, with autosomal dominant or autosomal recessive inheritance. These genes include alpha-synuclein, parkin, PINK1, DJ-1, LRRK2, and ATP13A2. The monogenic variants are important tools in identifying cellular pathways that shed light on the pathogenesis of this disease. Certain common genetic variants are also likely to modulate the risk of PD. International collaborative studies and meta-analyses have identified common variants as genetic susceptibility risk/protective factors for sporadic PD.
Collapse
Affiliation(s)
- Georgia Xiromerisiou
- 1Institute for Biomedical Technology (BIOMED), Centre for Research and Technology—Thessaly (CERETETH)
| | - Efthimios Dardiotis
- 1Institute for Biomedical Technology (BIOMED), Centre for Research and Technology—Thessaly (CERETETH)
- 2Department of Neurology, Laboratory of Neurogenetics
| | | | | | | | - Eftychia Z. Kapsalaki
- 4Department of Diagnostic Radiology, University of Thessaly, University Hospital of Larissa, Greece
| | | | - Georgios M. Hadjigeorgiou
- 1Institute for Biomedical Technology (BIOMED), Centre for Research and Technology—Thessaly (CERETETH)
- 2Department of Neurology, Laboratory of Neurogenetics
| |
Collapse
|
27
|
Wider C, Skipper L, Solida A, Brown L, Farrer M, Dickson D, Wszolek Z, Vingerhoets F. Autosomal dominant dopa-responsive parkinsonism in a multigenerational Swiss family. Parkinsonism Relat Disord 2008; 14:465-70. [DOI: 10.1016/j.parkreldis.2007.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2007] [Revised: 10/27/2007] [Accepted: 11/07/2007] [Indexed: 10/22/2022]
|
28
|
Gómez-Esteban JC, Lezcano E, Zarranz JJ, González C, Bilbao G, Lambarri I, Rodríguez O, Garibi J. Outcome of bilateral deep brain subthalamic stimulation in patients carrying the R1441G mutation in the LRRK2 dardarin gene. Neurosurgery 2008; 62:857-62; discussion 862-3. [PMID: 18496192 DOI: 10.1227/01.neu.0000318171.82719.35] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Deep brain subthalamic stimulation provides symptomatic relief to patients with Parkinson's disease. The present study analyzes the postoperative outcome of deep brain subthalamic stimulation in patients carrying the R1441G mutation in the leucine-rich repeat kinase-2 (LRRK2) (dardarin) gene. METHODS Five of the 48 patients treated in our unit carried a mutation in the LRRK2 (dardarin) gene. All five met the Core Assessment Program for Surgical Interventional Therapies criteria for inclusion in the surgical program. Pre- and postoperative assessment (6 mo) was made using the Unified Parkinson Disease Rating Scale II, Unified Parkinson Disease Rating Scale III, and Parkinson's Disease Questionnaire-39 scores, as well as the type and dosage of drugs used. RESULTS The response to L-dopa after 6 months was similar to the baseline in all four patients. One suffered a stroke four months after surgery and is not eligible for evaluation. The improvements in motor response, daily life activities, and quality of life were limited (18, 22, and 33%, respectively) and were lower than those of the control group (39, 45, and 41%, respectively). DISCUSSION Carriers of the R1441G mutation were clinically analogous to the rest of similarly operated patients with idiopathic Parkinson's disease. However, the response to deep brain subthalamic stimulation was worse among the former. The explanation for this negative result is unclear because all patients maintained an excellent response to L-dopa. Further larger studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Juan C Gómez-Esteban
- Movement Disorders Unit, Neurology Service, Cruces Hospital, Baracaldo, Vizcaya, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Lohmann E, Welter ML, Fraix V, Krack P, Lesage S, Laine S, Tanguy ML, Houeto JL, Mesnage V, Pollak P, Durr A, Agid Y, Brice A. Are parkin patients particularly suited for deep-brain stimulation? Mov Disord 2008; 23:740-3. [PMID: 18228569 DOI: 10.1002/mds.21903] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Patients with parkin mutations are known to have slower PD progression and a better response to levodopa at lower doses than patients with idiopathic Parkinson's disease. To determine the effects of deep brain stimulation (DBS) on such patients, we have compared the follow-up after surgery of 7 patients with one parkin mutation, 7 patients with two parkin mutations, and 39 patients without parkin mutations. Twelve to 24 months after neurosurgery, the daily doses of levodopa equivalent were significantly lower in patients with two parkin mutations, indicating that these patients benefit from DBS, and they might have more durable results.
Collapse
|
30
|
Schüpbach M, Lohmann E, Anheim M, Lesage S, Czernecki V, Yaici S, Worbe Y, Charles P, Welter ML, Pollak P, Dürr A, Agid Y, Brice A. Subthalamic nucleus stimulation is efficacious in patients with Parkinsonism and LRRK2 mutations. Mov Disord 2007; 22:119-22. [PMID: 17080443 DOI: 10.1002/mds.21178] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Stimulation of the subthalamic nucleus (STN) improves motor signs in patients with levodopa-responsive Parkinson's disease (PD). Mutations in the leucine-rich repeat kinase-2 (LRRK2) gene cause Parkinsonism. We assessed 69 patients under STN stimulation and found heterozygous LRRK2 mutations in 9 (G2019S in 8 and T2031S in 1). The age at onset of PD, the clinical characteristics before or after neurosurgery, and the clinical response to STN stimulation were similar in both groups. Two patients with the G2019S LRRK2 mutation still benefited from STN stimulation, 9 and 10 years after surgery. Patients with LRRK2 mutations are, therefore, good candidates for STN stimulation.
Collapse
Affiliation(s)
- Michael Schüpbach
- Centre d'Investigation Clinique, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Halpern C, Hurtig H, Jaggi J, Grossman M, Won M, Baltuch G. Deep brain stimulation in neurologic disorders. Parkinsonism Relat Disord 2007; 13:1-16. [PMID: 17141550 DOI: 10.1016/j.parkreldis.2006.03.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 03/14/2006] [Accepted: 03/14/2006] [Indexed: 10/23/2022]
Abstract
Deep brain stimulation (DBS) is an effective surgical therapy for well-selected patients with medically intractable Parkinson's disease (PD) and essential tremor (ET). The purpose of this review is to describe the success of DBS in these two disorders and its promising application in dystonia, Tourette Syndrome (TS) and epilepsy. In the last 10 years, numerous short- and intermediate-term outcome studies have demonstrated significant relief to patients with PD and ET. A few long-term follow-up studies have also reported sustained benefits. When successful, DBS greatly reduces most of parkinsonian motor symptoms and drug-induced dyskinesia, and it frequently improves patients' ability to perform activities of daily living with less encumbrance from motor fluctuations. Quality of life is enhanced and many patients are able to significantly reduce the amount of antiparkinsonian medications required to still get good pharmacological benefit. Overall, adverse effects associated with DBS tend to be transient, although device-related and other postoperative complications do occur. DBS should be considered the surgical procedure of choice for patients who meet strict criteria with medically intractable PD, ET and selected cases of dystonia.
Collapse
Affiliation(s)
- Casey Halpern
- Department of Neurology, Penn Neurological Institute at Pennsylvania Hospital, Hospital of the University of Pennsylvania, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
32
|
Benabid AL, Chabardès S, Seigneuret E. Deep-brain stimulation in Parkinson's disease: long-term efficacy and safety - What happened this year? Curr Opin Neurol 2006; 18:623-30. [PMID: 16280671 DOI: 10.1097/01.wco.0000186839.53807.93] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Deep-brain high-frequency stimulation of the thalamus was introduced in 1987 to treat tremor, and was applied in 1993 to the subthalamic nucleus to treat advanced Parkinson's disease. High-frequency stimulation of the subthalamic nucleus has become the surgical therapy of choice. This review concentrates on recent data on long-term results and side-effects, after 12 years of practice using this technique. RECENT FINDINGS A literature search produced 260 papers from February 2004 to March 2005. The stable efficacy of high-frequency stimulation of the subthalamic nucleus on Parkinson's disease motor symptoms is confirmed. Evidence for a neuroprotective effect is still lacking. There are transient neuropsychological disturbances, but no cognitive impairment over time. Complications are rare and mild, mortality is extremely low and hardware complications are highly variable. SUMMARY The safety and innocuity of the method legitimizes earlier operations, before impairment of the quality of life. Depression and suicide are related to pre-existing co-morbidities and multifactorial causes that could become contraindications. Neuropsychological effects should be documented, to determine whether they are caused by an alteration of high-frequency stimulation of the subthalamic nucleus, or inappropriate electrode placement. There is an urgent need for the organization of research and reports, and no need to report small series replicating well-established conclusions. Clinical reports should concentrate on unobserved effects in relation to causative parameters, based on the precise location of electrodes, and on clinical reports comparable between teams and on methods to optimize and facilitate the tuning of parameters and postoperative evaluations in order to make this treatment easier to provide for the neurologist.
Collapse
Affiliation(s)
- Alim Louis Benabid
- INSERM U318 'Preclinical Neurosciences' and Joseph Fourier Grenoble University, Centre Hospitalier Universitaire Albert Michallon, Grenoble, France.
| | | | | |
Collapse
|
33
|
Laser literature watch. Photomed Laser Surg 2005; 23:513-24. [PMID: 16262584 DOI: 10.1089/pho.2005.23.513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|