1
|
Pu H, Wang L, Liu W, Tan Q, Wan X, Wang W, Su X, Sun H, Zhang S, Yue Q, Gong Q. Metabolic heterogeneity in different subtypes of malformations of cortical development causing epilepsy: a proton magnetic resonance spectroscopy study. Quant Imaging Med Surg 2023; 13:8625-8640. [PMID: 38106257 PMCID: PMC10722015 DOI: 10.21037/qims-23-552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/19/2023] [Indexed: 12/19/2023]
Abstract
Background The most common subtypes of malformations of cortical development (MCDs) are gray matter heterotopia (GMH), focal cortical dysplasia (FCD), and polymicrogyria (PMG). This study aimed to characterize the possible neurometabolic abnormalities and heterogeneity in different MCDs subtypes using proton magnetic resonance spectroscopy (1H-MRS). Methods In this prospective cross-sectional study, we recruited 29 patients with MCDs and epilepsy, including ten with GMH, ten with FCD, and nine with PMG, as well as 25 age- and sex-matched healthy controls (HC) from the Epilepsy Center of West China Hospital of Sichuan University between August 2018 and November 2021. Inclusion criteria for the patients were based upon typical magnetic resonance imaging (MRI) findings of MCDs and full clinical assessment for epilepsy. Single-voxel point-resolved spectroscopy was used to acquire data from both the lesion and the normal-appearing contralateral side (NACS) in patients and from the frontal lobe in HC. Metabolite measures, including N-acetyl aspartate (NAA), myoinositol (Ins), choline (Cho), creatine (Cr), and glutamate + glutamine (Glx) concentrations, were quantitatively estimated with linear combination model (LCModel) software and corrected for the partial volume effect of cerebrospinal fluid (CSF). Results The NAA concentration was lower and the Ins concentration was higher in the MCDs lesions than in the NACS and in HC (P=0.002-0.007), and the Cho and Cr concentrations were higher in MCDs lesions than in HC (P=0.001-0.016). Moreover, the Cho concentration was higher in NACS than in HC (P=0.015). In the GMH lesions, the only metabolic alteration was an NAA reduction (GMH_lesion vs. HC: P=0.001). In the FCD lesions, there were more metabolite abnormalities than in the other two subtypes, particularly a lower NAA and a higher Ins than in HC and NACS (P=0.012-0.042). In the PMG lesions, Cr (lesion vs. HC or NACS: P=0.017-0.021) and Glx (lesion vs. NACS: P=0.043) were increased, while NAA was normal. Correlation analysis revealed that the Cr concentration in MCDs lesions was positively correlated with seizure frequency (r=0.411; P=0.027). Conclusions Based upon 1H-MRS, our study demonstrated that different MCDs subtypes exhibited variable metabolic features, which may be associated with distinct functional and cytoarchitectural properties.
Collapse
Affiliation(s)
- Huaxia Pu
- Department of Radiology and Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Liping Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Wenyu Liu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiaoyue Tan
- Department of Radiology and Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Xinyue Wan
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weina Wang
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaorui Su
- Department of Radiology and Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Huaiqiang Sun
- Department of Radiology and Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Simin Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Yue
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
2
|
Hangel G, Niess E, Lazen P, Bednarik P, Bogner W, Strasser B. Emerging methods and applications of ultra-high field MR spectroscopic imaging in the human brain. Anal Biochem 2022; 638:114479. [PMID: 34838516 DOI: 10.1016/j.ab.2021.114479] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/15/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022]
Abstract
Magnetic Resonance Spectroscopic Imaging (MRSI) of the brain enables insights into the metabolic changes and fluxes in diseases such as tumors, multiple sclerosis, epilepsy, or hepatic encephalopathy, as well as insights into general brain functionality. However, the routine application of MRSI is mostly hampered by very low signal-to-noise ratios (SNR) due to the low concentrations of metabolites, about 10000 times lower than water. Furthermore, MRSI spectra have a dense information content with many overlapping metabolite resonances, especially for proton MRSI. MRI scanners at ultra-high field strengths, like 7 T or above, offer the opportunity to increase SNR, as well as the separation between resonances, thus promising to solve both challenges. Yet, MRSI at ultra-high field strengths is challenged by decreased B0- and B1-homogeneity, shorter T2 relaxation times, stronger chemical shift displacement errors, and aggravated lipid contamination. Therefore, to capitalize on the advantages of ultra-high field strengths, these challenges must be overcome. This review focuses on the challenges MRSI of the human brain faces at ultra-high field strength, as well as the possible applications to this date.
Collapse
Affiliation(s)
- Gilbert Hangel
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria; Department of Neurosurgery, Medical University of Vienna, Austria
| | - Eva Niess
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Philipp Lazen
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Petr Bednarik
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Bernhard Strasser
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria.
| |
Collapse
|
3
|
Liu D, Yang Y, Chen D, Wang Z, Guo D, Bao L, Dong J, Wang X, Qu X. Brain metabolic differences between temporal lobe epileptic seizures and organic non-epileptic seizures in postictal phase: a retrospective study with magnetic resonance spectroscopy. Quant Imaging Med Surg 2021; 11:3781-3791. [PMID: 34341749 DOI: 10.21037/qims-20-1147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/22/2021] [Indexed: 11/06/2022]
Abstract
Magnetic resonance spectroscopy (MRS) is employed to investigate the brain metabolites differences between patients with temporal lobe epileptic seizures (TLES) and organic non-epileptic seizures (ONES) that appear to be epileptic seizures. Twenty-three patients with TLES and nine patients with ONES in postictal phase underwent MRS examinations on a clinical 1.5T system, with 15 healthy controls in comparison. Statistical analyses on the ratios of brain metabolites were performed using the Mann-Whitney U test with age as a covariate. The results showed that N-acetyl-aspartate/Creatine (NAA/Cr) ratio of patients with TLES was statistically different from that of patients with ONES in postictal phase, i.e., TLES 1.422±0.037, ONES 1.640±0.061, P=0.012 in left temporal pole, while TLES 1.470±0.052, ONES 1.687±0.084, P=0.023 in the right temporal pole. Besides, compared with healthy controls, patients with TLES in postictal phase present significant differences in ratios of NAA/Cr, N-acetyl-aspartate/Choline (NAA/Cho) and NAA/(Cho + Cr). Experimental results demonstrate that NAA/Cr can be used to discriminate TLES from ONES, which has not been found in the references to the best of our knowledge. Although a prospective controlled validation is needed in the future, this retrospective study reveals that MRS may provide useful metabolites information to facilitate the epilepsy diagnosis.
Collapse
Affiliation(s)
- Dongbao Liu
- Department of Electronic Science, Biomedical Intelligent Cloud R&D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Yonggui Yang
- Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Dicheng Chen
- Department of Electronic Science, Biomedical Intelligent Cloud R&D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Zi Wang
- Department of Electronic Science, Biomedical Intelligent Cloud R&D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Di Guo
- School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China
| | - Lijun Bao
- Department of Electronic Science, Biomedical Intelligent Cloud R&D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Jiyang Dong
- Department of Electronic Science, Biomedical Intelligent Cloud R&D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Xin Wang
- Department of Electronic Science, Biomedical Intelligent Cloud R&D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Xiaobo Qu
- Department of Electronic Science, Biomedical Intelligent Cloud R&D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Maudsley AA, Andronesi OC, Barker PB, Bizzi A, Bogner W, Henning A, Nelson SJ, Posse S, Shungu DC, Soher BJ. Advanced magnetic resonance spectroscopic neuroimaging: Experts' consensus recommendations. NMR IN BIOMEDICINE 2021; 34:e4309. [PMID: 32350978 PMCID: PMC7606742 DOI: 10.1002/nbm.4309] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 02/01/2020] [Accepted: 03/10/2020] [Indexed: 05/04/2023]
Abstract
Magnetic resonance spectroscopic imaging (MRSI) offers considerable promise for monitoring metabolic alterations associated with disease or injury; however, to date, these methods have not had a significant impact on clinical care, and their use remains largely confined to the research community and a limited number of clinical sites. The MRSI methods currently implemented on clinical MRI instruments have remained essentially unchanged for two decades, with only incremental improvements in sequence implementation. During this time, a number of technological developments have taken place that have already greatly benefited the quality of MRSI measurements within the research community and which promise to bring advanced MRSI studies to the point where the technique becomes a true imaging modality, while making the traditional review of individual spectra a secondary requirement. Furthermore, the increasing use of biomedical MR spectroscopy studies has indicated clinical areas where advanced MRSI methods can provide valuable information for clinical care. In light of this rapidly changing technological environment and growing understanding of the value of MRSI studies for biomedical studies, this article presents a consensus from a group of experts in the field that reviews the state-of-the-art for clinical proton MRSI studies of the human brain, recommends minimal standards for further development of vendor-provided MRSI implementations, and identifies areas which need further technical development.
Collapse
Affiliation(s)
- Andrew A Maudsley
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ovidiu C Andronesi
- Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, Massachusetts
| | - Peter B Barker
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, and the Kennedy Krieger Institute, F.M. Kirby Center for Functional Brain Imaging, Baltimore, Maryland
| | - Alberto Bizzi
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria
| | - Anke Henning
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sarah J Nelson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Stefan Posse
- Department of Neurology, University of New Mexico, Albuquerque, New Mexico
| | - Dikoma C Shungu
- Department of Neuroradiology, Weill Cornell Medical College, New York, New York
| | - Brian J Soher
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
5
|
Quantitative 1H-MRS reveals metabolic difference between subcategories of malformations of cortical development. Neuroradiology 2021; 63:1539-1548. [PMID: 33758963 DOI: 10.1007/s00234-021-02694-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/16/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE To figure out the spectra features of malformations of cortical development (MCDs) and the differences between MCDs subcategories. METHODS Twenty patients and 18 controls were studied. The patients included two subcategories: disorders of migration (DOM) and postmigration (DOPM). Spectra of patients were acquired from both the lesion and the normal-appearing contralateral side (NACS), and they were compared to those of the controls obtained from the frontal lobe. RESULTS Compared to the controls, a decreased NAA (P = 0.002) was identified in MCDs. After dividing the MCDs into the DOM and DOPM, we found that NAA reduction was only notable in the DOM (P = 0.007). Moreover, Ins and Cr of the DOPM were higher than those of the controls (P = 0.017 and 0.013) and the DOM (P = 0.027 and 0.001). Compared to the NACS, a decreased NAA (P = 0.042) and an increased Ins (P = 0.039) were identified in the lesion of MCDs. After dividing the MCDs into the DOM and DOPM, we found no significant differences in the DOM, but Ins, Cr, and Glx of the lesion were higher than those of the NACS (P = 0.007, 0.005 and 0.047) in the DOPM. In addition, we found that Cr and Glx correlated positively to the seizure frequency (P = 0.003 and 0.016). CONCLUSION Decreased NAA was the prominent abnormality confirmed in MCDs. Spectra of different MCDs subcategories were different: the DOM was characterized by decreased NAA, while the DOPM was characterized by increased Ins.
Collapse
|
6
|
Lee M, Kim EJ, Woo DC, Shim WH, Yum MS. In vivo MRI Successfully Reveals the Malformation of Cortical Development in Infant Rats. Front Neurosci 2020; 14:510. [PMID: 32508585 PMCID: PMC7251149 DOI: 10.3389/fnins.2020.00510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/24/2020] [Indexed: 01/02/2023] Open
Abstract
Objective: Malformations of cortical development (MCDs) are major causes of intractable epilepsies. To characterize the early neuroimaging findings of MCDs, we tried to identify the MRI features consistent with pathological findings in an infant rat MCD model, prenatally exposed to methylazoxymethanol (MAM), by using newly developed MRI techniques. Methods: At gestational day 15, two doses of MAM (15 mg/kg intraperitoneally) or normal saline were injected into pregnant rats. The offspring underwent in vivo MRI, including glutamate chemical exchange saturation transfer (GluCEST), 1H-MR spectroscopy, and diffusion tensor imaging, at postnatal day (P) 15 using a 7T small-animal imaging system. Another set of prenatally MAM-exposed rats were sacrificed for histological staining. Results: At P15, the retrosplenial cortex (RSC) of rats with MCDs showed decreased neuronal nuclei, parvalbumin, and reelin expressions. Moreover, dendritic arborization of pyramidal cells in the RSC significantly decreased in infant rats with MCDs. In vivo MRI showed significantly decreased GluCEST (%) in the RSC of rats with MCDs (p = 0.000) and a significant correlation between GluCEST (%) and RSC thickness (r = 0.685, p = 0.003). The rats with MCDs showed reduced glutamate (p = 0.002), N-acetylaspartate (p = 0.002), and macromolecule and lipid levels (p = 0.027) and significantly reduced fractional anisotropy values in the RSC. Conclusion: In vivo MRI revealed reduced neuronal population and dendritic arborization in the RSC of infant rats with MCDs during the early postnatal period. These pathological changes of the cortex could serve as clinical imaging biomarkers of MCDs in infants.
Collapse
Affiliation(s)
- Minyoung Lee
- Department of Pediatrics, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea.,Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Eun-Jin Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Dong-Cheol Woo
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Woo-Hyun Shim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea.,Department of Radiology, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Ulsan, South Korea
| | - Mi-Sun Yum
- Department of Pediatrics, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea.,Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| |
Collapse
|
7
|
Kielbinski M, Setkowicz Z, Gzielo K, Janeczko K. Profiles of gene expression in the hippocampal formation of rats with experimentally-induced brain dysplasia. Dev Neurobiol 2018; 78:718-735. [DOI: 10.1002/dneu.22595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Michal Kielbinski
- Department of Neuroanatomy; Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9; Krakow 30-387 Poland
| | - Zuzanna Setkowicz
- Department of Neuroanatomy; Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9; Krakow 30-387 Poland
| | - Kinga Gzielo
- Department of Neuroanatomy; Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9; Krakow 30-387 Poland
| | - Krzysztof Janeczko
- Department of Neuroanatomy; Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9; Krakow 30-387 Poland
| |
Collapse
|
8
|
Kielbinski M, Gzielo K, Soltys Z. Review: Roles for astrocytes in epilepsy: insights from malformations of cortical development. Neuropathol Appl Neurobiol 2018; 42:593-606. [PMID: 27257021 DOI: 10.1111/nan.12331] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/25/2016] [Accepted: 06/03/2016] [Indexed: 12/25/2022]
Abstract
Malformations of cortical development (MCDs), such as cortical dysplasia and tuberous sclerosis complex, are common causes of intractable epilepsy, especially in paediatric patients. Recently, mounting evidence points to a common pathology of these disorders. Hyperactivation of mammalian target of rapamycin (mTOR) has been proposed as a central mechanism in most, if not all, MCDs. The transition from mTOR hyperactivation and cellular abnormalities to large-scale functional changes and seizure is, however, not fully understood. In this article we set out to review currently available information regarding MCD pathology, focusing on glial cells - especially astrocytes - and their interactions with the brain vascular system. A large body of evidence points to these elements as potential targets in MCD. Here, we attempt to provide a review of this evidence and propose some hypotheses regarding the possible chain of events linking primary glial dysfunction and epilepsy. We focus on extracellular matrix remodelling, blood-brain barrier leakage and failure of astrocyte-dependent removal of extracellular debris. We posit that the failure of these systems results in a chronically pro-inflammatory environment, maintaining local astrocytes in a state of gliosis, with increased susceptibility to seizures as a consequence.
Collapse
Affiliation(s)
- M Kielbinski
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - K Gzielo
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Z Soltys
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
9
|
Computational analysis in epilepsy neuroimaging: A survey of features and methods. NEUROIMAGE-CLINICAL 2016; 11:515-529. [PMID: 27114900 PMCID: PMC4833048 DOI: 10.1016/j.nicl.2016.02.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/11/2016] [Accepted: 02/22/2016] [Indexed: 12/15/2022]
Abstract
Epilepsy affects 65 million people worldwide, a third of whom have seizures that are resistant to anti-epileptic medications. Some of these patients may be amenable to surgical therapy or treatment with implantable devices, but this usually requires delineation of discrete structural or functional lesion(s), which is challenging in a large percentage of these patients. Advances in neuroimaging and machine learning allow semi-automated detection of malformations of cortical development (MCDs), a common cause of drug resistant epilepsy. A frequently asked question in the field is what techniques currently exist to assist radiologists in identifying these lesions, especially subtle forms of MCDs such as focal cortical dysplasia (FCD) Type I and low grade glial tumors. Below we introduce some of the common lesions encountered in patients with epilepsy and the common imaging findings that radiologists look for in these patients. We then review and discuss the computational techniques introduced over the past 10 years for quantifying and automatically detecting these imaging findings. Due to large variations in the accuracy and implementation of these studies, specific techniques are traditionally used at individual centers, often guided by local expertise, as well as selection bias introduced by the varying prevalence of specific patient populations in different epilepsy centers. We discuss the need for a multi-institutional study that combines features from different imaging modalities as well as computational techniques to definitively assess the utility of specific automated approaches to epilepsy imaging. We conclude that sharing and comparing these different computational techniques through a common data platform provides an opportunity to rigorously test and compare the accuracy of these tools across different patient populations and geographical locations. We propose that these kinds of tools, quantitative imaging analysis methods and open data platforms for aggregating and sharing data and algorithms, can play a vital role in reducing the cost of care, the risks of invasive treatments, and improve overall outcomes for patients with epilepsy. We introduce common epileptogenic lesions encountered in patients with drug resistant epilepsy. We discuss state of the art computational techniques used to detect lesions. There is a need for multi-institutional studies that combine these techniques. Clinically validated pipelines alongside the advances in imaging and electrophysiology will improve outcomes.
Collapse
Key Words
- DRE, drug resistant epilepsy
- DTI, diffusion tensor imaging
- DWI, diffusion weighted imaging
- Drug resistant epilepsy
- Epilepsy
- FCD, focal cortical dysplasia
- FLAIR, fluid-attenuated inversion recovery
- Focal cortical dysplasia
- GM, gray matter
- GW, gray-white junction
- HARDI, high angular resolution diffusion imaging
- MEG, magnetoencephalography
- MRS, magnetic resonance spectroscopy imaging
- Machine learning
- Malformations of cortical development
- Multimodal neuroimaging
- PET, positron emission tomography
- PNH, periventricular nodular heterotopia
- SBM, surface-based morphometry
- T1W, T1-weighted MRI
- T2W, T2-weighted MRI
- VBM, voxel-based morphometry
- WM, white matter
Collapse
|
10
|
Battal B, Ince S, Akgun V, Kocaoglu M, Ozcan E, Tasar M. Malformations of cortical development: 3T magnetic resonance imaging features. World J Radiol 2015; 7:329-335. [PMID: 26516429 PMCID: PMC4620113 DOI: 10.4329/wjr.v7.i10.329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 07/07/2015] [Accepted: 08/21/2015] [Indexed: 02/06/2023] Open
Abstract
Malformation of cortical development (MCD) is a term representing an inhomogeneous group of central nervous system abnormalities, referring particularly to embriyological aspect as a consequence of any of the three developmental stages, i.e., cell proliferation, cell migration and cortical organization. These include cotical dysgenesis, microcephaly, polymicrogyria, schizencephaly, lissencephaly, hemimegalencephaly, heterotopia and focal cortical dysplasia. Since magnetic resonance imaging is the modality of choice that best identifies the structural anomalies of the brain cortex, we aimed to provide a mini review of MCD by using 3T magnetic resonance scanner images.
Collapse
|
11
|
Proton magnetic resonance spectroscopy in focal cortical dysplasia at 3T. Seizure 2015; 32:23-9. [PMID: 26552557 DOI: 10.1016/j.seizure.2015.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/12/2015] [Accepted: 08/22/2015] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Focal cortical dysplasia (FCD) type II is a frequent cause of medically intractable epilepsy. On conventional MRI diagnosis may be difficult. The purpose of our study was to assess the metabolic characteristics of MRI-typical or neuropathologically confirmed FCD II lesions at 3T. METHODS In a prospective study, 13 patients with drug-resistant epilepsy and MRI diagnosis of FCD II (seven neuropathologically confirmed) were investigated by single-volume proton magnetic resonance spectroscopy ((1)H MRS). We performed an intra-individual comparison placing spectroscopic volumes of interest in the lesion and in the apparently normal contralateral hemisphere. Spectroscopic results were correlated with clinical data. RESULTS Matched pair analysis revealed a significant increase in absolute choline (Cho) concentration in the lesion volume (+32%, p=0.015) compared to the control volume. This increase was associated with a significant decrease in N-acetyl-aspartate (NAA) concentration (-13%; p=0.008). Mean myo-inositol (Ins) levels were distinctly (+36%) but not significantly (p=0.051) elevated. Lesional creatine (Cr) concentration correlated significantly with the frequency of seizures (Spearman-Rho r=0.898; p=0.002), while concentrations of NAA, Cho and Ins did not correlate with clinical or imaging parameters. CONCLUSION MR spectroscopy revealed a characteristic metabolic pattern in FCD II lesions that helps to distinguish normal from epileptogenic tissue.
Collapse
|
12
|
Widespread pH abnormalities in patients with malformations of cortical development and epilepsy: a phosphorus-31 brain MR spectroscopy study. Brain Dev 2014; 36:899-906. [PMID: 24485900 DOI: 10.1016/j.braindev.2013.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/26/2013] [Accepted: 12/27/2013] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Neuroimaging studies demonstrate that not only the lesions of malformations of cortical development (MCD) but also the normal-appearing parenchyma (NAP) present metabolic impairments, as revealed with (1)H-MRS. We have previously detected biochemical disturbances in MCD lesions with phosphorus-31 magnetic resonance spectroscopy (31P-MRS). Our hypothesis is that pH abnormalities extend beyond the visible lesions. METHODS Three-dimensional 31P-MRS at 3.0 T was performed in 37 patients with epilepsy and MCD, and in 31 matched-control subjects. The patients were assigned into three main MCD subgroups: cortical dysplasia (n=10); heterotopia (n=14); schizencephaly/polymicrogyria (n=13). Voxels (12.5 cm3) were selected in five homologous regions containing NAP: right putamen; left putamen; frontoparietal parasagittal cortex; right centrum semiovale; and left centrum semiovale. Robust methods of quantification were applied, and the intracellular pH was calculated with the chemical shifts of inorganic phosphate (Pi) relative to phosphocreatine (PCr). RESULTS In comparison to controls and considering a Bonferroni adjusted p-value <0.01, MCD patients presented significant reduction in intracellular pH in the frontoparietal parasagittal cortex (6.985±0.022), right centrum semiovale (7.004±0.029), and left centrum semiovale (6.995±0.030), compared to controls (mean values±standard deviations of 7.087±0.048, 7.096±0.042, 7.088±0.045, respectively). Dunnet and Dunn tests demonstrated that the differences in pH values remained statistically significant in all MCD subgroups. No significant differences were found for the putamina. CONCLUSION The present study demonstrates widespread acidosis in the NAP, and reinforces the idea that MCD visible lesions are only the tip of the iceberg.
Collapse
|
13
|
Andrade CS, Otaduy MCG, Valente KDR, Maia DF, Park EJ, Valério RMF, Tsunemi MH, Leite CC. Phosphorus magnetic resonance spectroscopy in malformations of cortical development. Epilepsia 2011; 52:2276-84. [PMID: 21973076 DOI: 10.1111/j.1528-1167.2011.03281.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE The aim of this study was to evaluate phospholipid metabolism in patients with malformations of cortical development (MCDs). METHODS Thirty-seven patients with MCDs and 31 control subjects were studied using three-dimensional phosphorus magnetic resonance spectroscopy ((31)P-MRS) at 3.0 T. The voxels in the lesions and in the frontoparietal cortex of the control subjects were compared (the effective volumes were 12.5 cm(3)). Robust quantification methods were applied to fit the time-domain data to the following resonances: phosphoethanolamine (PE); phosphocholine (PC); inorganic phosphate (Pi); glycerophosphoethanolamine (GPE); glycerophosphocholine (GPC); phosphocreatine (PCr); and α-, β-, and γ-adenosine triphosphate (ATP). We also estimated the total ATP (ATP(t) = α-+β-+γ-ATP), phosphodiesters (PDE = GPC+GPE), phosphomonoesters (PME = PE+PC), and the PME/PDE, PCr/ATP(t) and PCr/Pi ratios. The magnesium (Mg(2+)) levels and pH values were calculated based on PCr, Pi, and β-ATP chemical shifts. KEY FINDINGS Compared to controls and assuming that a p-value < 0.05 indicates statistical significance, the patients with MCDs exhibited significantly lower pH values and higher Mg(2+) levels. In addition, the patients with MCDs had lower GPC and PDE and an increased PME/PDE ratio. SIGNIFICANCE Mg(2+) and pH are important in the regulation of bioenergetics and are involved in many electrical activity pathways in the brain. Our data support the idea that neurometabolic impairments occur during seizure onset and propagation. The GPC, PDE, and PME/PDE abnormalities also demonstrate that there are membrane turnover disturbances in patients with MCDs.
Collapse
Affiliation(s)
- Celi S Andrade
- Department of Radiology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Andrade CS, Leite CDC. Malformations of cortical development: current concepts and advanced neuroimaging review. ARQUIVOS DE NEURO-PSIQUIATRIA 2011; 69:130-8. [DOI: 10.1590/s0004-282x2011000100024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 08/12/2010] [Indexed: 11/22/2022]
Abstract
Malformations of cortical development (MCD) result from disruptions in the complex process of the human brain cortex formation and are highly associated to severe epilepsy, neurodevelopmental delay and motor dysfunction. Nowadays, magnetic resonance imaging (MRI) is the cornerstone of the work-up of patients with epilepsy and modern advanced imaging techniques have improved not only our ability to detect and characterize cortical malformations, but also in identifying associated functional abnormalities that are far beyond the structural visualized lesions. Herein, we address the most currently used classifications of MCD and make a concise review of the embryological process of cortical development. Our main goal is to summarize recent advances and new trends in diagnostic imaging techniques concerning MCD. Thereafter, follows a brief discussion of specific disorders and their radiological features.
Collapse
|
15
|
Abstract
Neuroimaging in epilepsy is a very large and growing field. Researchers in this area have quickly adopted new methods, resulting in a lively literature. Basic features of common epilepsies are well known, but, outside of the specific area of epilepsy surgery evaluation, new methods evolving in the last few years have had limited new beneficial clinical impact. Here, an overview of the epilepsy neuroimaging literature of the last 5 years, with an emphasis on mesial temporal lobe epilepsy, idiopathic generalized epilepsies, presurgical evaluation and new developments in functional MRI is presented. The need for attention to clinical translation, as well as immediate opportunities and future trends in this field, are discussed.
Collapse
Affiliation(s)
- Mark Richardson
- P043 Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK.
| |
Collapse
|
16
|
Richardson M. Current themes in neuroimaging of epilepsy: brain networks, dynamic phenomena, and clinical relevance. Clin Neurophysiol 2010; 121:1153-75. [PMID: 20185365 DOI: 10.1016/j.clinph.2010.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 12/24/2009] [Accepted: 01/05/2010] [Indexed: 11/15/2022]
Abstract
Brain scanning methods were first applied in patients with epilepsy more than 30years ago. A very substantial literature now exists in this field, which is exponentially increasing. Contemporary neuroimaging studies in epilepsy reflect new concepts in the epilepsies, as well as current methodological developments. In particular, this area is emphasising the role of networks in epileptogenicity, the existence of dynamic phenomena which can be captured by imaging, and is beginning to validate the implementation of neuroimaging in the clinic. Here, recent studies of the last 5years are reviewed, covering the full range of neuroimaging methods with SPECT, PET and MRI in epilepsy.
Collapse
Affiliation(s)
- Mark Richardson
- P043 Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK.
| |
Collapse
|
17
|
Maudsley AA, Domenig C, Ramsay RE, Bowen BC. Application of volumetric MR spectroscopic imaging for localization of neocortical epilepsy. Epilepsy Res 2009; 88:127-38. [PMID: 19926450 DOI: 10.1016/j.eplepsyres.2009.10.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 10/07/2009] [Accepted: 10/15/2009] [Indexed: 12/11/2022]
Abstract
PURPOSE The aim of this study was to evaluate volumetric proton magnetic resonance spectroscopic imaging (MRSI) for localization of epileptogenic foci in neocortical epilepsy. METHODS Twenty-five subjects reporting seizures considered to be of neocortical origin were recruited to take part in a 3-T MR study that included high-resolution structural MRI and a whole-brain MRSI acquisition. Using a fully automated MRSI processing protocol, maps for signal intensity normalized N-acetylaspartate (NAA), creatine, and choline were created, together with the relative volume fraction of grey-matter, white-matter, and CSF within each MRSI voxel. Analyses were performed using visual observation of the metabolite and metabolite ratio maps; voxel-based calculation of differences in these metabolite maps relative to normal controls; comparison of average grey-matter and white-matter metabolite values over each lobar volume; and examination of relative left-right asymmetry factors by brain region. RESULTS Data from 14 subjects were suitable for inclusion in the analysis. Eight subjects had MRI-visible pathologies that were associated with decreases in NAA/creatine, which extended beyond the volume indicated by the MRI. Five subjects demonstrated no significant metabolic alterations using any of the analysis methods, and one subject had no findings on MRI or MRSI. CONCLUSIONS This proof of principle study supports previous evidence that alterations of MR-detected brain metabolites can be detected in tissue areas affected by neocortical seizure activity, while additionally demonstrating advantages of the volumetric MRSI approach.
Collapse
Affiliation(s)
- Andrew A Maudsley
- Department of Radiology, University of Miami School of Medicine, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
18
|
Imaging malformations of cortical development. HANDBOOK OF CLINICAL NEUROLOGY 2008. [PMID: 18809040 DOI: 10.1016/s0072-9752(07)87026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
19
|
Abstract
Significant progress has been made in identifying neuroprotective agents and their translation to patients with neurological disorders. While the direct causative pathways of neurodegeneration remain unclear, they are under great clinical and experimental investigation. There are a number of interrelated pathogenic mechanisms triggering molecular events that lead to neuronal death. One putative mechanism reported to play a prominent role in the pathogenesis of neurological diseases is impaired energy metabolism. If reduced energy stores play a role in neuronal loss, then therapeutic strategies that buffer intracellular energy levels may prevent or impede the neurodegenerative process. Recent studies suggest that impaired energy production promotes neurological disease onset and progression. Sustained ATP levels are critical to cellular homeostasis and may have both direct and indirect influence on pathogenic mechanisms associated with neurological disorders. Creatine is a critical component in maintaining cellular energy homeostasis, and its administration has been reported to be neuroprotective in a wide number of both acute and chronic experimental models of neurological disease. In the context of this chapter, we will review the experimental evidence for creatine supplementation as a neurotherapeutic strategy in patients with neurological disorders, including Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Alzheimer's disease, as well as in ischemic stroke, brain and spinal cord trauma, and epilepsy.
Collapse
|
20
|
Widerström-Noga E, Cardenas D. The Role of Brain Imaging in SCI-Related Pain. Top Spinal Cord Inj Rehabil 2007. [DOI: 10.1310/sci1302-81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Leite CC, Lucato LT, Sato JR, Valente KD, Otaduy MCG. Multivoxel proton MR spectroscopy in malformations of cortical development. AJNR Am J Neuroradiol 2007; 28:1071-5; discussion 1076-7. [PMID: 17569960 PMCID: PMC8134160 DOI: 10.3174/ajnr.a0511] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 11/02/2006] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Malformations of cortical development (MCD) are traditionally considered as a cause of epilepsy. Our aim was to study patients with focal MCD, by using multivoxel proton MR spectroscopy; we focused not only on the lesion but also on the normal-appearing contralateral side (NACS). Our hypothesis was that the metabolic abnormality extends to the NACS; therefore, it would be inadequate to consider NACS as an internal control. MATERIALS AND METHODS We studied 16 patients with focal MCD. MR spectroscopy was performed by using a point-resolved spectroscopy sequence technique, including the MCD area and the NACS. In each volume of interest, a smaller volume of interest of 2.25 cm(3) centered on the MCD was selected to study the N-acetylaspartate/creatine (NAA/Cr) ratio. In NACS, this ratio was studied by placing a symmetric voxel in comparison with the smaller MCD volume of interest. A control group (n=30) was also studied to evaluate both white and gray matter by using the same MR spectroscopy protocol. RESULTS From 16 analyzed volumes of interest with MCD, 9 were composed of gray matter heterotopia and 7 of cortical dysplasia. MR spectroscopy of both MCD lesions and NACS (n=10) showed decreased NAA/Cr compared with that of the control group. NACS in these patients did not present significant differences regarding NAA/Cr in comparison with the affected side. CONCLUSIONS MR spectroscopy demonstrated abnormal NAA/Cr in both MCD lesions and NACS in patients harboring focal MCD, giving support to the hypothesis that in MCD metabolic abnormalities extend far away from the limits of the lesion, reaching the contralateral side.
Collapse
Affiliation(s)
- C C Leite
- Department of Radiology, University of São Paulo School of Medicine, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
22
|
Simister RJ, McLean MA, Barker GJ, Duncan JS. Proton magnetic resonance spectroscopy of malformations of cortical development causing epilepsy. Epilepsy Res 2007; 74:107-15. [PMID: 17379481 DOI: 10.1016/j.eplepsyres.2007.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 01/15/2007] [Accepted: 02/14/2007] [Indexed: 12/21/2022]
Abstract
PURPOSE To use proton magnetic resonance spectroscopy (MRS) to measure concentrations of gamma-aminobutyric acid (GABA) and glutamate plus glutamine (GLX) in adult patients with refractory epilepsy associated with malformations of cortical development (MCD). METHODS We used MRS to measure N-acetyl aspartate (NAA), creatine plus phosphocreatine (Cr) and choline containing compounds (Cho), as well as GLX, and GABA. Fifteen patients with epilepsy attributable to MCD and 15 healthy controls were studied. Nine of the MCD group had heterotopia and six had polymicrogyria. Quantitative short echo time MRS [echo time (TE)=30 ms, repetition time (TR)=3000 ms] was performed in the MRI evident MCD and in the occipital lobes of the control group and the concentrations of NAA, Cr, Cho, and GLX were measured. GABA plus homocarnosine (GABA+) was measured in the same regions using a double quantum filter. RESULTS The dominant abnormalities in the patient group were elevation of Cho and GLX and reduction in NAAt compared to the control group. The ratios GLX/NAAt and GABA+/Cr were also increased in the patient group whilst the ratio NAAt/Cr was decreased. NAAt was significantly lower in polymicrogyria than heterotopia. CONCLUSIONS Large cortical malformations had abnormal levels of both GLX and GABA+/Cr. Low NAAt and high Cho were also observed. These results indicate that MCD show spectroscopic features of primitive tissue and abnormal metabolism of both inhibitory and excitatory neurotransmitters.
Collapse
Affiliation(s)
- Robert J Simister
- MRI Unit, The National Society for Epilepsy and Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London WC1N 3BG, UK
| | | | | | | |
Collapse
|