1
|
Abstract
PURPOSE OF REVIEW This article provides an overview of mitochondrial and metabolic biology, the genetic mechanisms causing mitochondrial diseases, the clinical features of mitochondrial diseases, lipid myopathies, and glycogen storage diseases, all with a focus on those syndromes and diseases associated with myopathy. Over the past decade, advances in genetic testing have revolutionized patient evaluation. The main goal of this review is to give the clinician the basic understanding to recognize patients at risk of these diseases using the standard history and physical examination. RECENT FINDINGS Primary mitochondrial disease is the current designation for the illnesses resulting from genetic mutations in genes whose protein products are necessary for mitochondrial structure or function. In most circumstances, more than one organ system is involved in mitochondrial disease, and the value of the classic clinical features as originally described early in the history of mitochondrial diseases has reemerged as being important to identifying patients who may have a primary mitochondrial disease. The use of the genetic laboratory has become the most powerful tool for confirming a diagnosis, and nuances of using genetic results will be discussed in this article. Treatment for mitochondrial disease is symptomatic, with less emphasis on vitamin and supplement therapy than in the past. Clinical trials using pharmacologic agents are in progress, with the field attempting to define proper goals of treatment. Several standard accepted therapies exist for many of the metabolic myopathies. SUMMARY Mitochondrial, lipid, and glycogen diseases are not uncommon causes of multisystem organ dysfunction, with the neurologic features, especially myopathy, occurring as a predominant feature. Early recognition requires basic knowledge of the varied clinical phenotypes before moving forward with a screening evaluation and possibly a genetic evaluation. Aside from a few specific diseases for which there are recommended interventions, treatment for the majority of these disorders remains symptomatic, with clinical trials currently in progress that will hopefully result in standard treatments.
Collapse
|
2
|
Ahmed A, Ruzieh M, Kanjwal S, Kanjwal K. Syndrome of Supine Hypertension with Orthostatic Hypotension: Pathophysiology and Clinical Approach. Curr Cardiol Rev 2019; 16:48-54. [PMID: 31215392 PMCID: PMC7393597 DOI: 10.2174/1573403x15666190617095032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022] Open
Abstract
This article is intended to provide guidance and clinical considerations for physicians managing patients suffering from supine hypertension with orthostatic hypotension, referred to as “SH-OH”. We review the normal physiologic response to orthostasis, focusing on the appropriate changes to autonomic output in this state. Autonomic failure is discussed with a generalized overview of the disease and examination of specific syndromes that help shed light on the pathophysiology of SH-OH. The goal of this review is to provide a better framework for clinical evaluation of these patients, review treatment options, and ultimately work toward achieving a better quality of life for patients afflicted with this disease.
Collapse
Affiliation(s)
- Aamir Ahmed
- Department of Internal Medicine, Rush University, Chicago, IL 60612, United States
| | - Mohammed Ruzieh
- Penn State Heart and Vascular Institute. Hershey, PA 17033, United States
| | | | - Khalil Kanjwal
- McLaren Greater Lansing Hospital, Lansing, MI 48910, United States
| |
Collapse
|
3
|
Extracellular Interactions of Alpha-Synuclein in Multiple System Atrophy. Int J Mol Sci 2018; 19:ijms19124129. [PMID: 30572656 PMCID: PMC6320782 DOI: 10.3390/ijms19124129] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022] Open
Abstract
Multiple system atrophy, characterized by atypical Parkinsonism, results from central nervous system (CNS) cell loss and dysfunction linked to aggregates of the normally pre-synaptic α-synuclein protein. Mostly cytoplasmic pathological α-synuclein inclusion bodies occur predominantly in oligodendrocytes in affected brain regions and there is evidence that α-synuclein released by neurons is taken up preferentially by oligodendrocytes. However, extracellular α-synuclein has also been shown to interact with other neural cell types, including astrocytes and microglia, as well as extracellular factors, mediating neuroinflammation, cell-to-cell spread and other aspects of pathogenesis. Here, we review the current evidence for how α-synuclein present in the extracellular milieu may act at the cell surface to drive components of disease progression. A more detailed understanding of the important extracellular interactions of α-synuclein with neuronal and non-neuronal cell types both in the brain and periphery may provide new therapeutic targets to modulate the disease process.
Collapse
|
4
|
Epothilone D inhibits microglia-mediated spread of alpha-synuclein aggregates. Mol Cell Neurosci 2018; 89:80-94. [PMID: 29673913 DOI: 10.1016/j.mcn.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/19/2018] [Accepted: 04/13/2018] [Indexed: 11/21/2022] Open
Abstract
Multiple System Atrophy (MSA) is a progressive neurodegenerative disease characterized by chronic neuroinflammation and widespread α-synuclein (α-syn) cytoplasmic inclusions. Neuroinflammation associated with microglial cells is typically located in brain regions with α-syn deposits. The potential link between microglial cell migration and the transport of pathological α-syn protein in MSA was investigated. Qualitative analysis via immunofluorescence of MSA cases (n = 4) revealed microglial cells bearing α-syn inclusions distal from oligodendrocytes bearing α-syn cytoplasmic inclusions, as well as close interactions between microglia and oligodendrocytes bearing α-syn, suggestive of a potential transfer mechanism between microglia and α-syn bearing cells in MSA and the possibility of microglia acting as a mobile vehicle to spread α-syn between anatomically connected brain regions. Further In vitro experiments using microglial-like differentiated THP-1 cells were conducted to investigate if microglial cells could act as potential transporters of α-syn. Monomeric or aggregated α-syn was immobilized at the centre of glass coverslips and treated with either cell free medium, undifferentiated THP-1 cells or microglial-like phorbol-12-myristate-13-acetate differentiated THP-1 cells (48 h; n = 3). A significant difference in residual immobilized α-syn density was observed between cell free controls and differentiated (p = 0.016) as well as undifferentiated and differentiated THP-1 cells (p = 0.032) when analysed by quantitative immunofluorescence. Furthermore, a significantly greater proportion of differentiated cells were observed bearing α-syn aggregates distal from the immobilized protein than their non-differentiated counterparts (p = 0.025). Similar results were observed with Highly Aggressive Proliferating Immortalised (HAPI) microglial cells, with cells exposed to aggregated α-syn yielding lower residual immobilized α-syn (p = 0.004) and a higher proportion of α-syn positive distal cells (p = 0.001) than cells exposed to monomeric α-syn. Co-treatment of THP-1 groups with the tubulin depolymerisation inhibitor, Epothilone D (EpoD; 10 nM), was conducted to investigate if inhibition of microtubule activity had an effect on cell migration and residual immobilized α-syn density. There was a significant increase in both residual immobilized α-syn between EpoD treated and non-treated differentiated cells exposed to monomeric (p = 0.037) and aggregated (p = 0.018) α-syn, but not with undifferentiated cells. Differentiated THP-1 cells exposed to immobilized aggregated α-syn showed a significant difference in the proportion of distal aggregate bearing cells between EpoD treated and untreated (p = 0.027). The results suggest microglia could play a role in α-syn transport in MSA, a role which could potentially be inhibited therapeutically by EpoD.
Collapse
|
5
|
Huang HJ, Zhu XY, Wang X, Wang ZY, Zhang WL, Chen BC, Liu CF. The Bulbocavernosus Reflex in the Differential Diagnosis of Multiple System Atrophy with Predominant Parkinsonism and Parkinson's Disease. Front Neurol 2018; 8:697. [PMID: 29379463 PMCID: PMC5770797 DOI: 10.3389/fneur.2017.00697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/05/2017] [Indexed: 01/12/2023] Open
Abstract
Multiple system atrophy with predominant parkinsonism (MSA-P) is a degenerative disorder that presents with autonomic dysfunction, atypical parkinsonism, and ataxia. Parkinson's disease (PD) is an age-related neurological disorder of the central nervous system. Differentiation between MSA-P and PD is important because treatments, complications, and prognoses differ. The bulbocavernosus reflex (BCR) tests the afferent and efferent signals of the pudendal nerve as well as the sacral cord. In this study, we investigated differences in BCR parameters between MSA-P and PD patients. Thirty-eight MSA-P patients and 32 PD patients were selected to participate in our electrophysiological investigations. The Keypoint EMG/EP system was used to induce the BCR, and latencies and amplitudes were recorded for systematic statistical analyses. Area under the curve of the receiver operating characteristic was used to assess the specificity and sensitivity of the BCR parameters. A BCR was elicited in 76.32% of MSA-P patients and 93.75% of PD patients. The BCR latencies of the MSA-P group were longer than those of the PD group (p < 0.001). In addition, the MSA-P group had a lower BCR amplitude compared to the PD and control groups (p < 0.001). We discovered the difference between MSA-P and PD through BCR latencies and amplitudes. Compared to PD patients, MSA-P patients have longer latencies and lower amplitudes. Therefore, the BCR may be used to discriminate between MSA-P and PD in some cases.
Collapse
Affiliation(s)
- Huan-Jie Huang
- Department of Neurology, Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Neurology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xing-Yu Zhu
- Department of Neurology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.,School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xun Wang
- Department of Neurology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhang-Yang Wang
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wan-Li Zhang
- Department of Neurology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Bi-Cheng Chen
- Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chun-Feng Liu
- Department of Neurology, Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Abstract
Multiple system atrophy (MSA) is an orphan, fatal, adult-onset neurodegenerative disorder of uncertain etiology that is clinically characterized by various combinations of parkinsonism, cerebellar, autonomic, and motor dysfunction. MSA is an α-synucleinopathy with specific glioneuronal degeneration involving striatonigral, olivopontocerebellar, and autonomic nervous systems but also other parts of the central and peripheral nervous systems. The major clinical variants correlate with the morphologic phenotypes of striatonigral degeneration (MSA-P) and olivopontocerebellar atrophy (MSA-C). While our knowledge of the molecular pathogenesis of this devastating disease is still incomplete, updated consensus criteria and combined fluid and imaging biomarkers have increased its diagnostic accuracy. The neuropathologic hallmark of this unique proteinopathy is the deposition of aberrant α-synuclein in both glia (mainly oligodendroglia) and neurons forming glial and neuronal cytoplasmic inclusions that cause cell dysfunction and demise. In addition, there is widespread demyelination, the pathogenesis of which is not fully understood. The pathogenesis of MSA is characterized by propagation of misfolded α-synuclein from neurons to oligodendroglia and cell-to-cell spreading in a "prion-like" manner, oxidative stress, proteasomal and mitochondrial dysfunction, dysregulation of myelin lipids, decreased neurotrophic factors, neuroinflammation, and energy failure. The combination of these mechanisms finally results in a system-specific pattern of neurodegeneration and a multisystem involvement that are specific for MSA. Despite several pharmacological approaches in MSA models, addressing these pathogenic mechanisms, no effective neuroprotective nor disease-modifying therapeutic strategies are currently available. Multidisciplinary research to elucidate the genetic and molecular background of the deleterious cycle of noxious processes, to develop reliable biomarkers and targets for effective treatment of this hitherto incurable disorder is urgently needed.
Collapse
|
7
|
Abstract
A neurodegenerative disorder displaying an altered α-synuclein (αS) in the brain tissue is called α-synucleinopathy (αS-pathy) and incorporates clinical entities such as Parkinson disease (PD), PD with dementia, dementia with Lewy bodies, and multiple-system atrophy. Neuroradiologic techniques visualizing αS pathology in the brain or assays of αS in the cerebrospinal fluid or blood are probably available and will be implemented in the near future but currently the definite diagnosis of αS-pathy relies on a postmortem examination of the brain. Since the 1980s immunohistochemical technique based on the use of antibodies directed to proteins of interest has become a method of choice for neuropathologic diagnosis. Furthermore, since the 1990s it has been acknowledged that progressions of most neurodegenerative pathologies follow a certain predictable time-related neuroanatomic distribution. Currently, for Lewy body disease, two staging techniques are commonly used: McKeith and Braak staging. Thus, the neuropathologic diagnosis of a αS-pathy is based on detection of altered αS in the tissue and registration of the neuroanatomic distribution of this alteration in the brain. The clinicopathologic correlation is not absolute due to the quite frequent observation of incidental and concomitant αS pathology.
Collapse
Affiliation(s)
- Irina Alafuzoff
- Department of Immunology, Genetics and Pathology, Uppsala University, Department of Pathology, Uppsala University Hospital and Rudbeck Laboratory, Uppsala, Sweden.
| | - Päivi Hartikainen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
8
|
Zhang LY, Cao B, Zou YT, Wei QQ, Ou RW, Zhao B, Wu Y, Shang HF. Depression and anxiety in multiple system atrophy. Acta Neurol Scand 2018; 137:33-37. [PMID: 28748633 DOI: 10.1111/ane.12804] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND It has been noticed that the patients with multiple system atrophy (MSA) can accompany with depression and anxiety. This study aimed to establish the incidence and determinants of depression and anxiety symptoms in Chinese MSA patients. METHODS A total of 237 MSA patients were enrolled in the study. Neuropsychological assessment was performed using Hamilton Depression Rating Scale-24 items and Hamilton Anxiety Rating Scale. RESULTS We found that 62.0% and 71.7% patients had at least mild depression and anxiety symptoms, respectively. The severity of depression of MSA patients was associated with lower educational years (P=.024), longer disease duration (P<.001), and disease severity (P<.001). The severity of anxiety was associated with increased disease duration (P<.001), disease severity (P=.013), and orthostatic hypotension (P=.005). Binary logistic regression showed the determinants of depression and anxiety were female gender, longer disease duration, and disease severity. CONCLUSION Depression and anxiety symptoms are common in patients with MSA. Neurologists should pay attention to depression and anxiety in patients with MSA, especially in female patients and those with longer disease duration and severe disease condition.
Collapse
Affiliation(s)
- L.-Y. Zhang
- Department of Neurology; West China Hospital; Sichuan University; Chengdu China
| | - B. Cao
- Department of Neurology; West China Hospital; Sichuan University; Chengdu China
| | - Y.-T. Zou
- West China School of Medicine; Sichuan University; Chengdu China
| | - Q.-Q. Wei
- Department of Neurology; West China Hospital; Sichuan University; Chengdu China
| | - R.-W. Ou
- Department of Neurology; West China Hospital; Sichuan University; Chengdu China
| | - B. Zhao
- Department of Neurology; West China Hospital; Sichuan University; Chengdu China
| | - Y. Wu
- Department of Neurology; West China Hospital; Sichuan University; Chengdu China
| | - H.-F. Shang
- Department of Neurology; West China Hospital; Sichuan University; Chengdu China
| |
Collapse
|
9
|
Watano C, Shiota Y, Onoda K, Sheikh AM, Mishima S, Nitta E, Yano S, Yamaguchi S, Nagai A. Evaluation of autonomic functions of patients with multiple system atrophy and Parkinson's disease by head-up tilt test. J Neural Transm (Vienna) 2017; 125:153-162. [PMID: 29185078 DOI: 10.1007/s00702-017-1816-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/16/2017] [Indexed: 01/08/2023]
Abstract
The aim of this study was to evaluate the autonomic neural function in Parkinson's disease (PD) and multiple system atrophy (MSA) with head-up tilt test and spectral analysis of cardiovascular parameters. This study included 15 patients with MSA, 15 patients with PD, and 29 healthy control (HC) subjects. High frequency power of the RR interval (RR-HF), the ratio of low frequency power of RR interval to RR-HF (RR-LF/HF) and LF power of systolic BP were used to evaluate parasympathetic, cardiac sympathetic and vasomotor sympathetic functions, respectively. Both patients with PD and MSA showed orthostatic hypotension and lower parasympathetic function (RR-HF) at tilt position as compared to HC subjects. Cardiac sympathetic function (RR-LF/HF) was significantly high in patients with PD than MSA at supine position. RR-LF/HF tended to increase in MSA and HC, but decreased in PD by tilting. Consequently, the change of the ratio due to tilting (ΔRR-LF/HF) was significantly lower in patients with PD than in HC subjects. Further analysis showed that compared to mild stage of PD, RR-LF/HF at the supine position was significantly higher in advanced stage. By tilting, it was increased in mild stage and decreased in the advanced stage of PD, causing ΔRR-LF/HF to decrease significantly in the advanced stage. Thus, we demonstrated that spectral analysis of cardiovascular parameters is useful to identify sympathetic and parasympathetic disorders in MSA and PD. High cardiac sympathetic function at the supine position, and its reduction by tilting might be a characteristic feature of PD, especially in the advanced stage.
Collapse
Affiliation(s)
- Chikako Watano
- Clinical Laboratory Division, Shimane University Hospital, Izumo, Japan
| | - Yuri Shiota
- Clinical Laboratory Division, Shimane University Hospital, Izumo, Japan
| | - Keiichi Onoda
- Department of Internal Medicine III, Shimane University Faculty of Medicine, Izumo, Japan
| | - Abdullah Md Sheikh
- Department of Laboratory Medicine, Shimane University School of Medicine, 89-1 Enya Cho, Izumo, 693-8501, Japan
| | - Seiji Mishima
- Clinical Laboratory Division, Shimane University Hospital, Izumo, Japan
| | - Eri Nitta
- Clinical Laboratory Division, Shimane University Hospital, Izumo, Japan
| | - Shozo Yano
- Department of Laboratory Medicine, Shimane University School of Medicine, 89-1 Enya Cho, Izumo, 693-8501, Japan
| | - Shuhei Yamaguchi
- Department of Internal Medicine III, Shimane University Faculty of Medicine, Izumo, Japan
| | - Atsushi Nagai
- Clinical Laboratory Division, Shimane University Hospital, Izumo, Japan. .,Department of Laboratory Medicine, Shimane University School of Medicine, 89-1 Enya Cho, Izumo, 693-8501, Japan.
| |
Collapse
|
10
|
Jellinger KA. Potential clinical utility of multiple system atrophy biomarkers. Expert Rev Neurother 2017; 17:1189-1208. [DOI: 10.1080/14737175.2017.1392239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
The Diagnosis and Natural History of Multiple System Atrophy, Cerebellar Type. THE CEREBELLUM 2017; 15:663-679. [PMID: 26467153 DOI: 10.1007/s12311-015-0728-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The objective of this study was to identify key features differentiating multiple system atrophy cerebellar type (MSA-C) from idiopathic late-onset cerebellar ataxia (ILOCA). We reviewed records of patients seen in the Massachusetts General Hospital Ataxia Unit between 1992 and 2013 with consensus criteria diagnoses of MSA-C or ILOCA. Twelve patients had definite MSA-C, 53 had possible/probable MSA-C, and 12 had ILOCA. Autonomic features, specifically urinary urgency, frequency, and incontinence with erectile dysfunction in males, differentiated MSA-C from ILOCA throughout the disease course (p = 0.005). Orthostatic hypotension developed later and differentiated MSA-C from ILOCA (p < 0.01). REM sleep behavior disorder (RBD) occurred early in possible/probable MSA-C (p < 0.01). Late MSA-C included pathologic laughing and crying (PLC, p < 0.01), bradykinesia (p = 0.01), and corticospinal findings (p = 0.01). MRI distinguished MSA-C from ILOCA by atrophy of the brainstem (p < 0.01) and middle cerebellar peduncles (MCP, p = 0.02). MSA-C progressed faster than ILOCA: by 6 years, MSA-C walker dependency was 100 % and ILOCA 33 %. MSA-C survival was 8.4 ± 2.5 years. Mean length of ILOCA illness to date is 15.9 ± 6.4 years. A sporadic onset, insidiously developing cerebellar syndrome in midlife, with autonomic features of otherwise unexplained bladder dysfunction with or without erectile dysfunction in males, and atrophy of the cerebellum, brainstem, and MCP points strongly to MSA-C. RBD and postural hypotension confirm the diagnosis. Extrapyramidal findings, corticospinal tract signs, and PLC are helpful but not necessary for diagnosis. Clarity in early MSA-C diagnosis can prevent unnecessary investigations and facilitate therapeutic trials.
Collapse
|
12
|
Curry-Hyde A, Chen BJ, Ueberham U, Arendt T, Janitz M. Multiple System Atrophy: Many Lessons from the Transcriptome. Neuroscientist 2017; 24:294-307. [PMID: 28770651 DOI: 10.1177/1073858417723915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multiple system atrophy (MSA) is a complex, multifactorial, debilitating neurodegenerative disease that is often misdiagnosed and misunderstood. MSA has two subclasses, MSA-P and MSA-C, defined by the dominance of parkinsonism or cerebellar dysfunction in the earlier stages of disease, coupled with dysautonomia. This distinction between subclasses becomes largely redundant as the disease progresses. Aggregation of α-synuclein is a clinical marker used to confirm MSA diagnoses, which can only be performed postmortem. Transcriptome profiling provides in-depth information about the diseased state and can contribute to further understanding of MSA, enabling easier and more rapid diagnosis as well as contributing to improving the quality of life of people with MSA. Currently, there is no method of diagnosing MSA with certainty, and there is no cure for this disease. This review provides an update on current advances in investigations of molecular pathology of MSA with particular focus on perturbation of individual gene expression and MSA transcriptome.
Collapse
Affiliation(s)
- Ashton Curry-Hyde
- 1 School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Bei Jun Chen
- 1 School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Uwe Ueberham
- 2 Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Thomas Arendt
- 2 Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Michael Janitz
- 1 School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.,2 Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| |
Collapse
|
13
|
Yang W, Yu S. Synucleinopathies: common features and hippocampal manifestations. Cell Mol Life Sci 2017; 74:1485-1501. [PMID: 27826641 PMCID: PMC11107502 DOI: 10.1007/s00018-016-2411-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD), dementia with Lewy Bodies (DLB), and multiple system atrophy (MSA) are three major synucleinopathies characterized by α-synuclein-containing inclusions in the brains of patients. Because the cell types and brain structures that are affected vary markedly between the disorders, the patients have different clinical manifestations in addition to some overlapping symptoms, which are the basis for differential diagnosis. Cognitive impairment and depression associated with hippocampal dysfunction are frequently observed in these disorders. While various α-synuclein-containing inclusions are found in the hippocampal formation, increasing evidence supports that small α-synuclein aggregates or oligomers may be the real culprit, causing deficits in neurotransmission and neurogenesis in the hippocampus and related brain regions, which constitute the major mechanism for the hippocampal dysfunctions and associated neuropsychiatric manifestations in synucleinopathies.
Collapse
Affiliation(s)
- Weiwei Yang
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Shun Yu
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China.
- Beijing Key Laboratory for Parkinson's Disease, Beijing, China.
| |
Collapse
|
14
|
Potential Modes of Intercellular α-Synuclein Transmission. Int J Mol Sci 2017; 18:ijms18020469. [PMID: 28241427 PMCID: PMC5344001 DOI: 10.3390/ijms18020469] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 12/15/2022] Open
Abstract
Intracellular aggregates of the α-synuclein protein result in cell loss and dysfunction in Parkinson’s disease and atypical Parkinsonism, such as multiple system atrophy and dementia with Lewy bodies. Each of these neurodegenerative conditions, known collectively as α-synucleinopathies, may be characterized by a different suite of molecular triggers that initiate pathogenesis. The mechanisms whereby α-synuclein aggregates mediate cytotoxicity also remain to be fully elucidated. However, recent studies have implicated the cell-to-cell spread of α-synuclein as the major mode of disease propagation between brain regions during disease progression. Here, we review the current evidence for different modes of α-synuclein cellular release, movement and uptake, including exocytosis, exosomes, tunneling nanotubes, glymphatic flow and endocytosis. A more detailed understanding of the major modes by which α-synuclein pathology spreads throughout the brain may provide new targets for therapies that halt the progression of disease.
Collapse
|
15
|
Ferini-Strambi L, Marelli S, Combi R. Does the Type of Multisystem Atrophy, Parkinsonism, or Cerebellar Ataxia Impact on the Nature of Sleep Disorders? Curr Neurol Neurosci Rep 2016; 16:105. [DOI: 10.1007/s11910-016-0704-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Robertson EE, Hall DA, McAsey AR, O'Keefe JA. Fragile X-associated tremor/ataxia syndrome: phenotypic comparisons with other movement disorders. Clin Neuropsychol 2016; 30:849-900. [PMID: 27414076 PMCID: PMC7336900 DOI: 10.1080/13854046.2016.1202239] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/12/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The purpose of this paper is to review the typical cognitive and motor impairments seen in fragile X-associated tremor/ataxia syndrome (FXTAS), essential tremor (ET), Parkinson disease (PD), spinocerebellar ataxias (SCAs), multiple system atrophy (MSA), and progressive supranuclear palsy (PSP) in order to enhance diagnosis of FXTAS patients. METHODS We compared the cognitive and motor phenotypes of FXTAS with each of these other movement disorders. Relevant neuropathological and neuroimaging findings are also reviewed. Finally, we describe the differences in age of onset, disease severity, progression rates, and average lifespan in FXTAS compared to ET, PD, SCAs, MSA, and PSP. We conclude with a flow chart algorithm to guide the clinician in the differential diagnosis of FXTAS. RESULTS By comparing the cognitive and motor phenotypes of FXTAS with the phenotypes of ET, PD, SCAs, MSA, and PSP we have clarified potential symptom overlap while elucidating factors that make these disorders unique from one another. In summary, the clinician should consider a FXTAS diagnosis and testing for the Fragile X mental retardation 1 (FMR1) gene premutation if a patient over the age of 50 (1) presents with cerebellar ataxia and/or intention tremor with mild parkinsonism, (2) has the middle cerebellar peduncle (MCP) sign, global cerebellar and cerebral atrophy, and/or subcortical white matter lesions on MRI, or (3) has a family history of fragile X related disorders, intellectual disability, autism, premature ovarian failure and has neurological signs consistent with FXTAS. Peripheral neuropathy, executive function deficits, anxiety, or depression are supportive of the diagnosis. CONCLUSIONS Distinct profiles in the cognitive and motor domains between these movement disorders may guide practitioners in the differential diagnosis process and ultimately lead to better medical management of FXTAS patients.
Collapse
Affiliation(s)
- Erin E Robertson
- a Department of Anatomy and Cell Biology , Rush University , Chicago , IL , USA
| | - Deborah A Hall
- b Department of Neurological Sciences , Rush University , Chicago , IL , USA
| | - Andrew R McAsey
- a Department of Anatomy and Cell Biology , Rush University , Chicago , IL , USA
| | - Joan A O'Keefe
- a Department of Anatomy and Cell Biology , Rush University , Chicago , IL , USA
- b Department of Neurological Sciences , Rush University , Chicago , IL , USA
| |
Collapse
|
17
|
Kuzdas-Wood D, Irschick R, Theurl M, Malsch P, Mair N, Mantinger C, Wanschitz J, Klimaschewski L, Poewe W, Stefanova N, Wenning GK. Involvement of Peripheral Nerves in the Transgenic PLP-α-Syn Model of Multiple System Atrophy: Extending the Phenotype. PLoS One 2015; 10:e0136575. [PMID: 26496712 PMCID: PMC4619736 DOI: 10.1371/journal.pone.0136575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/05/2015] [Indexed: 11/18/2022] Open
Abstract
Multiple system atrophy (MSA) is a fatal, rapidly progressive neurodegenerative disease with (oligodendro-)glial cytoplasmic α-synuclein (α-syn) inclusions (GCIs). Peripheral neuropathies have been reported in up to 40% of MSA patients, the cause remaining unclear. In a transgenic MSA mouse model featuring GCI-like inclusion pathology based on PLP-promoter driven overexpression of human α-syn in oligodendroglia motor and non-motor deficits are associated with MSA-like neurodegeneration. Since α-syn is also expressed in Schwann cells we aimed to investigate whether peripheral nerves are anatomically and functionally affected in the PLP-α-syn MSA mouse model.
Collapse
Affiliation(s)
- Daniela Kuzdas-Wood
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Regina Irschick
- Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Anatomy, Histology and Embryology, Division of Neuroanatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus Theurl
- Department of Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Philipp Malsch
- Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Norbert Mair
- Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Christine Mantinger
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Julia Wanschitz
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Lars Klimaschewski
- Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Gregor K. Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Tirol, Austria
- * E-mail:
| |
Collapse
|
18
|
Urbizu A, Canet-Pons J, Munoz-Marmol AM, Aldecoa I, Lopez MT, Compta Y, Alvarez R, Ispierto L, Tolosa E, Ariza A, Beyer K. Cystatin C is differentially involved in multiple system atrophy phenotypes. Neuropathol Appl Neurobiol 2015; 41:507-19. [DOI: 10.1111/nan.12134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/04/2014] [Indexed: 01/11/2023]
Affiliation(s)
- Aintzane Urbizu
- Servicio de Anatomía Patológica; Instituto de Investigación en Ciencias de la Salud Germans Trias i Pujol; Hospital Universitario Germans Trias i Pujol; Barcelona Spain
| | - Julia Canet-Pons
- Servicio de Anatomía Patológica; Instituto de Investigación en Ciencias de la Salud Germans Trias i Pujol; Hospital Universitario Germans Trias i Pujol; Barcelona Spain
| | - Ana M. Munoz-Marmol
- Servicio de Anatomía Patológica; Instituto de Investigación en Ciencias de la Salud Germans Trias i Pujol; Hospital Universitario Germans Trias i Pujol; Barcelona Spain
| | - Iban Aldecoa
- Pathology Department; Hospital Clínic Barcelona; Universitat de Barcelona; Barcelona Spain
| | - Maria T. Lopez
- Servicio de Anatomía Patológica; Instituto de Investigación en Ciencias de la Salud Germans Trias i Pujol; Hospital Universitario Germans Trias i Pujol; Barcelona Spain
| | - Yaroslau Compta
- Unitat de Parkinson i Trastorns del Moviment; Servicio de Neurología; Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED); Hospital Clínic/IDIBAPS; Universitat de Barcelona; Barcelona Spain
| | - Ramiro Alvarez
- Servicio de Neurología; Hospital Universitario Germans Trias i Pujol; Barcelona Spain
| | - Lourdes Ispierto
- Servicio de Neurología; Hospital Universitario Germans Trias i Pujol; Barcelona Spain
| | - Eduardo Tolosa
- Unitat de Parkinson i Trastorns del Moviment; Servicio de Neurología; Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED); Hospital Clínic/IDIBAPS; Universitat de Barcelona; Barcelona Spain
| | - Aurelio Ariza
- Servicio de Anatomía Patológica; Instituto de Investigación en Ciencias de la Salud Germans Trias i Pujol; Hospital Universitario Germans Trias i Pujol; Barcelona Spain
- Universidad Autónoma de Barcelona; Barcelona Spain
| | - Katrin Beyer
- Servicio de Anatomía Patológica; Instituto de Investigación en Ciencias de la Salud Germans Trias i Pujol; Hospital Universitario Germans Trias i Pujol; Barcelona Spain
| |
Collapse
|
19
|
Brück D, Wenning GK, Stefanova N, Fellner L. Glia and alpha-synuclein in neurodegeneration: A complex interaction. Neurobiol Dis 2015; 85:262-274. [PMID: 25766679 DOI: 10.1016/j.nbd.2015.03.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/23/2015] [Accepted: 03/03/2015] [Indexed: 02/07/2023] Open
Abstract
α-Synucleinopathies (ASP) comprise adult-onset, progressive neurodegenerative disorders such as Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA) that are characterized by α-synuclein (AS) aggregates in neurons or glia. PD and DLB feature neuronal AS-positive inclusions termed Lewy bodies (LB) whereas glial cytoplasmic inclusions (GCIs, Papp-Lantos bodies) are recognized as the defining hallmark of MSA. Furthermore, AS-positive cytoplasmic aggregates may also be seen in astroglial cells of PD/DLB and MSA brains. The glial AS-inclusions appear to trigger reduced trophic support resulting in neuronal loss. Moreover, microgliosis and astrogliosis can be found throughout the neurodegenerative brain and both are key players in the initiation and progression of ASP. In this review, we will highlight AS-dependent alterations of glial function and their impact on neuronal vulnerability thereby providing a detailed summary on the multifaceted role of glia in ASP.
Collapse
Affiliation(s)
- Dominik Brück
- Division of Neurobiology, Department of Neurology, Innsbruck Medical University, Innrain 66, 6020 Innsbruck, Austria
| | - Gregor K Wenning
- Division of Neurobiology, Department of Neurology, Innsbruck Medical University, Innrain 66, 6020 Innsbruck, Austria
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Innsbruck Medical University, Innrain 66, 6020 Innsbruck, Austria
| | - Lisa Fellner
- Division of Neurobiology, Department of Neurology, Innsbruck Medical University, Innrain 66, 6020 Innsbruck, Austria.
| |
Collapse
|
20
|
Perez-Lloret S, Flabeau O, Fernagut PO, Pavy-Le Traon A, Rey MV, Foubert-Samier A, Tison F, Rascol O, Meissner WG. Current Concepts in the Treatment of Multiple System Atrophy. Mov Disord Clin Pract 2015; 2:6-16. [PMID: 30363880 DOI: 10.1002/mdc3.12145] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/13/2014] [Accepted: 12/18/2014] [Indexed: 12/21/2022] Open
Abstract
MSA is a progressive neurodegenerative disorder characterized by autonomic failure and a variable combination of poor levodopa-responsive parkinsonism and cerebellar ataxia (CA). Current therapeutic management is based on symptomatic treatment. Almost one third of MSA patients may benefit from l-dopa for the symptomatic treatment of parkinsonism, whereas physiotherapy remains the best therapeutic option for CA. Only midodrine and droxidopa were found to be efficient for neurogenic hypotension in double-blind, controlled studies, whereas other symptoms of autonomic failure may be managed with off-label treatments. To date, no curative treatment is available for MSA. Recent results of neuroprotective and -restorative trials have provided some hope for future advances. Considerations for future clinical trials are also discussed in this review.
Collapse
Affiliation(s)
- Santiago Perez-Lloret
- Laboratory of Epidemiology and Experimental Pharmacology Institute for Biomedical Research (BIOMED) School of Medical Sciences Pontifical Catholic University of Argentina (UCA) Buenos Aires Argentina.,The National Scientific and Technical Research Council (CONICET) Buenos Aires Argentina
| | - Olivier Flabeau
- Department of Neurology Center Hospitalier de la Côte Basque Bayonne France
| | - Pierre-Olivier Fernagut
- Institut des Maladies Neurodégénératives Université de Bordeaux Bordeaux France.,CNRS Institut des Maladies Neurodégénératives Bordeaux France
| | - Anne Pavy-Le Traon
- Departments of Clinical Pharmacology and Neurosciences University Hospital and University of Toulouse 3 Toulouse France.,French Reference Center for MSA Toulouse University Hospital Toulouse France
| | - María Verónica Rey
- Laboratory of Epidemiology and Experimental Pharmacology Institute for Biomedical Research (BIOMED) School of Medical Sciences Pontifical Catholic University of Argentina (UCA) Buenos Aires Argentina.,The National Scientific and Technical Research Council (CONICET) Buenos Aires Argentina
| | - Alexandra Foubert-Samier
- Institut des Maladies Neurodégénératives Université de Bordeaux Bordeaux France.,CNRS Institut des Maladies Neurodégénératives Bordeaux France.,French Reference Center for MSA Bordeaux University Hospital Bordeaux France
| | - Francois Tison
- Institut des Maladies Neurodégénératives Université de Bordeaux Bordeaux France.,CNRS Institut des Maladies Neurodégénératives Bordeaux France.,French Reference Center for MSA Bordeaux University Hospital Bordeaux France
| | - Olivier Rascol
- Departments of Clinical Pharmacology and Neurosciences University Hospital and University of Toulouse 3 Toulouse France.,French Reference Center for MSA Toulouse University Hospital Toulouse France
| | - Wassilios G Meissner
- Institut des Maladies Neurodégénératives Université de Bordeaux Bordeaux France.,CNRS Institut des Maladies Neurodégénératives Bordeaux France.,French Reference Center for MSA Bordeaux University Hospital Bordeaux France
| |
Collapse
|
21
|
Sturm E, Stefanova N. Multiple system atrophy: genetic or epigenetic? Exp Neurobiol 2014; 23:277-91. [PMID: 25548529 PMCID: PMC4276800 DOI: 10.5607/en.2014.23.4.277] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 02/06/2023] Open
Abstract
Multiple system atrophy (MSA) is a rare, late-onset and fatal neurodegenerative disease including multisystem neurodegeneration and the formation of α-synuclein containing oligodendroglial cytoplasmic inclusions (GCIs), which present the hallmark of the disease. MSA is considered to be a sporadic disease; however certain genetic aspects have been studied during the last years in order to shed light on the largely unknown etiology and pathogenesis of the disease. Epidemiological studies focused on the possible impact of environmental factors on MSA disease development. This article gives an overview on the findings from genetic and epigenetic studies on MSA and discusses the role of genetic or epigenetic factors in disease pathogenesis.
Collapse
Affiliation(s)
- Edith Sturm
- Division of Neurobiology, Department of Neurology, Innsbruck Medical University, Innsbruck A-6020, Austria
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Innsbruck Medical University, Innsbruck A-6020, Austria
| |
Collapse
|
22
|
Ciolli L, Krismer F, Nicoletti F, Wenning GK. An update on the cerebellar subtype of multiple system atrophy. CEREBELLUM & ATAXIAS 2014; 1:14. [PMID: 26331038 PMCID: PMC4552412 DOI: 10.1186/s40673-014-0014-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/24/2014] [Indexed: 01/05/2023]
Abstract
Multiple system atrophy is a rare and fatal neurodegenerative disorder characterized by progressive autonomic failure, ataxia and parkinsonism in any combination. The clinical manifestations reflect central autonomic and striatonigral degeneration as well as olivopontocerebellar atrophy. Glial cytoplasmic inclusions, composed of α-synuclein and other proteins are considered the cellular hallmark lesion. The cerebellar variant of MSA (MSA-C) denotes a distinctive motor subtype characterized by progressive adult onset sporadic gait ataxia, scanning dysarthria, limb ataxia and cerebellar oculomotor dysfunction. In addition, there is autonomic failure and variable degrees of parkinsonism. A range of other disorders may present with MSA-C like features and therefore the differential diagnosis of MSA-C is not always straightforward. Here we review key aspects of MSA-C including pathology, pathogenesis, diagnosis, clinical features and treatment, paying special attention to differential diagnosis in late onset sporadic cerebellar ataxias.
Collapse
Affiliation(s)
- Ludovico Ciolli
- Sapienza University, Via di Grottarossa, 1035-00189 Rome, Italy ; Department of Neurology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Florian Krismer
- Department of Neurology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Ferdinando Nicoletti
- IRCSS NEUROMED, Pozzilli, Isernia Italy ; Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, School of Medicine and Psychology, Rome, Italy
| | - Gregor K Wenning
- Department of Neurology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| |
Collapse
|
23
|
Jellinger KA. Neuropathology of multiple system atrophy: New thoughts about pathogenesis. Mov Disord 2014; 29:1720-41. [DOI: 10.1002/mds.26052] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/29/2014] [Accepted: 09/16/2014] [Indexed: 12/14/2022] Open
|
24
|
Gatto E, Demey I, Sanguinetti A, Parisi V, Etcheverry JL, Rojas G, Wenning GK. Cognition in a multiple system atrophy series of cases from Argentina. ARQUIVOS DE NEURO-PSIQUIATRIA 2014; 72:773-6. [DOI: 10.1590/0004-282x20140127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/21/2014] [Indexed: 11/21/2022]
Abstract
Cognitive dysfunction may occur in 17-40% of patients with multiple system atrophy (MSA). It has been suggested a milder cognitive impairment in cerebellar (MSA-C) than in parkinsonian variant (MSA-P). However, differences in cognitive profiles remain under discussion. Objective To evaluate cognitive features in a series of patients with “probable MSA” from Argentina. Method After informed consent was obtained, an extensive cognitive tests battery was administered. Nine patients (6 MSA-P and 3 MSA-C) composed the sample. Results Depression was detected in 43% of patients. Seven patients showed at least one cognitive domain impairment. Temporospatial orientation, visuospatial abilities, executive and attentional functions, episodic memory and language were compromised in MSA-P, while MSA-C dysfunction was restricted to attentional and executive domains. Conclusion Despite the small sample size, our findings could suggest a more widespread cognitive impairment in MSA-P than MSA-C.
Collapse
Affiliation(s)
- Emilia Gatto
- Instituto Neurociencias de Buenos Aires, Argentina; Sanatorio de la Trinidad Mitre, Argentina
| | | | | | | | | | - Galeno Rojas
- Instituto Neurociencias de Buenos Aires, Argentina
| | - Gregor K. Wenning
- Sanatorio de la Trinidad Mitre, Argentina; Department of Neurology Medical University Innsbruck, Austria
| |
Collapse
|
25
|
Ferini-Strambi L, Oertel W, Dauvilliers Y, Postuma RB, Marelli S, Iranzo A, Arnulf I, Högl B, Birgit H, Manni R, Miyamoto T, Fantini ML, Puligheddu M, Jennum P, Sonka K, Santamaria J, Zucconi M, Rancoita PMV, Leu-Semenescu S, Frauscher B, Terzaghi M, Miyamoto M, Unger M, Stiasny-Kolster K, Desautels A, Wolfson C, Pelletier A, Montplaisir J. Autonomic symptoms in idiopathic REM behavior disorder: a multicentre case-control study. J Neurol 2014; 261:1112-8. [PMID: 24687894 DOI: 10.1007/s00415-014-7317-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
Abstract
Patients with idiopathic REM sleep behavior disorder (iRBD) are at very high risk of developing neurodegenerative synucleinopathies, which are disorders with prominent autonomic dysfunction. Several studies have documented autonomic dysfunction in iRBD, but large-scale assessment of autonomic symptoms has never been systematically performed. Patients with polysomnography-confirmed iRBD (318 cases) and controls (137 healthy volunteers and 181 sleep center controls with sleep diagnoses other than RBD) were recruited from 13 neurological centers in 10 countries from 2008 to 2011. A validated scale to study the disorders of the autonomic nervous system in Parkinson's disease (PD) patients, the SCOPA-AUT, was administered to all the patients and controls. The SCOPA-AUT consists of 25 items assessing the following domains: gastrointestinal, urinary, cardiovascular, thermoregulatory, pupillomotor, and sexual dysfunction. Our results show that compared to control subjects with a similar overall age and sex distribution, patients with iRBD experience significantly more problems with gastrointestinal, urinary, and cardiovascular functioning. The most prominent differences in severity of autonomic symptoms between our iRBD patients and controls emerged in the gastrointestinal domain. Interestingly, it has been reported that an altered gastrointestinal motility can predate the motor phase of PD. The cardiovascular domain SCOPA-AUT score in our study in iRBD patients was intermediate with respect to the scores reported in PD patients by other authors. Our findings underline the importance of collecting data on autonomic symptoms in iRBD. These data may be used in prospective studies for evaluating the risk of developing neurodegenerative disorders.
Collapse
Affiliation(s)
- Luigi Ferini-Strambi
- Department of Clinical Neuroscience, Sleep Disorders Center, Università Vita-Salute San Raffaele, Via Stamira d' Ancona 20, 20127, Milan, Italy,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Takahashi H, Shimoda K. Coenzyme Q10 in neurodegenerative disorders: Potential benefit of CoQ10 supplementation for multiple system atrophy. World J Neurol 2014; 4:1-6. [DOI: 10.5316/wjn.v4.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/03/2013] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
Coenzyme Q10 (CoQ10) is an essential cofactor in the mitochondrial respiratory pathway and also functions as a lipid-soluble antioxidant. CoQ10 deficiency has been implicated in many clinical disorders and aging. Primary CoQ10 deficiency is a group of recessively inherited diseases caused by mutations in any gene involved in the CoQ10 biosynthesis pathway. Although primary CoQ10 deficiency is rare, its diagnosis is important because it is potentially treatable with exogenous CoQ10. Multiple system atrophy (MSA) was recently shown to be linked to mutations in the COQ2 gene, one of the genes involved in the CoQ10 biosynthesis pathway. MSA is relatively common in adult-onset neurodegenerative diseases characterized by Parkinsonism, cerebellar ataxia and autonomic failures. Because COQ2 mutations are associated with an increased risk of MSA, oral CoQ10 supplementation may be beneficial for MSA, as for other primary CoQ10 deficiencies. Statins are 3-hydroxy-3-methylglutaryl coenzyme A inhibitors that inhibit the biosynthesis of cholesterol, as well as the synthesis of mevalonate, a critical intermediate in cholesterol synthesis. Statin therapy has been associated with a variety of muscle complaints from myalgia to rhabdomyolysis. Statin treatment carries a potential risk of CoQ10 deficiency, although no definite evidence has implicated CQ10 deficiency as the cause of statin-related myopathy.
Collapse
|
27
|
Kuzdas-Wood D, Stefanova N, Jellinger KA, Seppi K, Schlossmacher MG, Poewe W, Wenning GK. Towards translational therapies for multiple system atrophy. Prog Neurobiol 2014; 118:19-35. [PMID: 24598411 PMCID: PMC4068324 DOI: 10.1016/j.pneurobio.2014.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 02/07/2014] [Accepted: 02/21/2014] [Indexed: 12/28/2022]
Abstract
Multiple system atrophy (MSA) is a fatal adult-onset neurodegenerative disorder of uncertain etiopathogenesis manifesting with autonomic failure, parkinsonism, and ataxia in any combination. The underlying neuropathology affects central autonomic, striatonigral and olivopontocerebellar pathways and it is associated with distinctive glial cytoplasmic inclusions (GCIs, Papp-Lantos bodies) that contain aggregates of α-synuclein. Current treatment options are very limited and mainly focused on symptomatic relief, whereas disease modifying options are lacking. Despite extensive testing, no neuroprotective drug treatment has been identified up to now; however, a neurorestorative approach utilizing autologous mesenchymal stem cells has shown remarkable beneficial effects in the cerebellar variant of MSA. Here, we review the progress made over the last decade in defining pathogenic targets in MSA and summarize insights gained from candidate disease-modifying interventions that have utilized a variety of well-established preclinical MSA models. We also discuss the current limitations that our field faces and suggest solutions for possible approaches in cause-directed therapies of MSA.
Collapse
Affiliation(s)
- Daniela Kuzdas-Wood
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria
| | - Nadia Stefanova
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria
| | | | - Klaus Seppi
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria
| | - Michael G Schlossmacher
- Divisions of Neuroscience and Neurology, The Ottawa Hospital Research Institute, University of Ottawa, 451 Smyth Road, RGH #1412, Ottawa, ON, K1H 8M5, Canada
| | - Werner Poewe
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria
| | - Gregor K Wenning
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria.
| |
Collapse
|
28
|
Lin DJ, Hermann KL, Schmahmann JD. Multiple system atrophy of the cerebellar type: clinical state of the art. Mov Disord 2014; 29:294-304. [PMID: 24615754 DOI: 10.1002/mds.25847] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/27/2013] [Accepted: 01/27/2014] [Indexed: 01/21/2023] Open
Abstract
Multiple system atrophy (MSA) is a late-onset, sporadic neurodegenerative disorder clinically characterized by autonomic failure and either poorly levodopa-responsive parkinsonism or cerebellar ataxia. It is neuropathologically defined by widespread and abundant central nervous system α-synuclein-positive glial cytoplasmic inclusions and striatonigral and/or olivopontocerebellar neurodegeneration. There are two clinical subtypes of MSA distinguished by the predominant motor features: the parkinsonian variant (MSA-P) and the cerebellar variant (MSA-C). Despite recent progress in understanding the pathobiology of MSA, investigations into the symptomatology and natural history of the cerebellar variant of the disease have been limited. MSA-C presents a unique challenge to both clinicians and researchers alike. A key question is how to distinguish early in the disease course between MSA-C and other causes of adult-onset cerebellar ataxia. This is a particularly difficult question, because the clinical framework for conceptualizing and studying sporadic adult-onset ataxias continues to undergo flux. To date, several investigations have attempted to identify clinical features, imaging, and other biomarkers that may be predictive of MSA-C. This review presents a clinically oriented overview of our current understanding of MSA-C with a focus on evidence for distinguishing MSA-C from other sporadic, adult-onset ataxias.
Collapse
Affiliation(s)
- David J Lin
- Ataxia Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | |
Collapse
|
29
|
Suzuki Y, Jin C, Yazawa I. Cystatin C triggers neuronal degeneration in a model of multiple system atrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:790-9. [PMID: 24405769 DOI: 10.1016/j.ajpath.2013.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 11/04/2013] [Accepted: 11/04/2013] [Indexed: 01/17/2023]
Abstract
Multiple system atrophy is an intractable neurodegenerative disease caused by α-synuclein (α-syn) accumulation in oligodendrocytes and neurons. With the use of a transgenic mouse model overexpressing human α-syn in oligodendrocytes, we demonstrated that oligodendrocytic α-syn inclusions induce neuronal α-syn accumulation, resulting in progressive neuronal degeneration. The mechanism through which oligodendrocytic α-syn inclusions trigger neuronal α-syn accumulation leading to multiple system atrophy is unknown. In this study, we identified cystatin C, an oligodendrocyte-derived secretory protein that triggers α-syn up-regulation and insoluble α-syn accumulation, in neurons of the mouse central nervous system. Cystatin C was released by mouse oligodendrocytes overexpressing human α-syn, and extracellular cystatin C increased the expression of the endogenous α-syn gene in wild-type mouse neurons. These neurons then accumulate insoluble α-syn and may undergo apoptosis. Cystatin C is a potential pathogenic signal triggering neurodegeneration in multiple system atrophy.
Collapse
Affiliation(s)
- Yasuyo Suzuki
- Laboratory of Research Resources, Research Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Chenghua Jin
- Laboratory of Research Resources, Research Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Ikuru Yazawa
- Laboratory of Research Resources, Research Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Aichi, Japan.
| |
Collapse
|
30
|
Abstract
Mitochondrial diseases are a diverse group of inherited and acquired disorders that result in inadequate energy production. They can be caused by inheritable genetic mutations, acquired somatic mutations, and exposure to toxins (including some prescription medications). Normal mitochondrial physiology is responsible, in part, for the aging process itself, as free radical production within the mitochondria results in a lifetime burden of oxidative damage to DNA, especially the mitochondrial DNA that, in turn, replicate the mutational burden in future copies of itself, and lipid membranes. Primary mitochondrial diseases are those caused by mutations in genes that encode for mitochondrial structural and enzymatic proteins, and those proteins required for mitochondrial assembly and maintenance. A number of common adult maladies are associated with defective mitochondrial energy production and function, including diabetes, obesity, hyperthyroidism, hypothyroidism, and hyperlipidemia. Mitochondrial dysfunction has been demonstrated in many neurodegenerative disorders, including Alzheimer's disease, Parkinson disease, amyotrophic lateral sclerosis, and some cancers. Polymorphisms in mitochondrial DNA have been linked to disease susceptibility, including death from sepsis and survival after head injury. There is considerable overlap in symptoms caused by primary mitochondrial diseases and those illnesses that affect mitochondrial function, but are not caused by primary mutations, as well as disorders that mimic mitochondrial diseases, but are caused by other identified mutations. Evaluation of these disorders is complex, expensive, and not without false-negative and false-positive results that can mislead the physician. Most of the common heritable mitochondrial disorders have been well-described in the literature, but can be overlooked by many clinicians if they are uneducated about these disorders. In general, the evaluation of the classic mitochondrial disorders has become straightforward if the clinician recognized the phenotype and orders appropriate confirmatory testing. However, the majority of patients referred for a mitochondrial evaluation do not have a clear presentation that allows for rapid identification and testing. This article provides introductory comments on mitochondrial structure, physiology, and genetics, but will focus on the presentation and evaluation of adults with mitochondrial symptoms, but who may not have a primary mitochondrial disease.
Collapse
Affiliation(s)
- Bruce H Cohen
- NeuroDevelopmental Science Center, Children's Hospital Medical Center of Akron, 215 West Bowery Street, Suite 4400, Akron, OH 44308, USA.
| |
Collapse
|
31
|
Oligodendroglial alpha-synucleinopathy and MSA-like cardiovascular autonomic failure: experimental evidence. Exp Neurol 2013; 247:531-6. [PMID: 23399889 PMCID: PMC3748345 DOI: 10.1016/j.expneurol.2013.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/30/2013] [Accepted: 02/01/2013] [Indexed: 11/23/2022]
Abstract
Multiple system atrophy (MSA) is a fatal, rapidly progressive neurodegenerative disease with limited symptomatic treatment options. Discrimination of MSA from other degenerative disorders crucially depends on the presence of early and severe cardiovascular autonomic failure (CAF). We have previously shown that neuropathologic lesions in the central autonomic nuclei similar to the human disease are present in transgenic MSA mice generated by targeted oligodendroglial overexpression of α-syn using the PLP promoter. We here explore whether such lesions result in abnormalities of heart rate variability (HRV) and circadian rhythmicity which are typically impaired in MSA patients. HRV analysis was performed in five month old transgenic PLP-α-syn (tg) MSA mice and age-matched wild type controls. Decreased HRV and alterations in the circadian rhythmicity were detected in the tg MSA group. The number of choline-acetyltransferase-immunoreactive neurons in the nucleus ambiguus was significantly decreased in the tg group, whereas the levels of arginine-vasopressin neurons in the suprachiasmatic and paraventricular nucleus were not affected. Our finding of impaired HRV and circadian rhythmicity in tg MSA mice associated with degeneration of the nucleus ambiguus suggests that a cardinal non-motor feature of human MSA can be reproduced in the mouse model strengthening its role as a valuable testbed for studying selective vulnerability and assessing translational therapies.
Collapse
|
32
|
Wenning GK, Geser F, Krismer F, Seppi K, Duerr S, Boesch S, Köllensperger M, Goebel G, Pfeiffer KP, Barone P, Pellecchia MT, Quinn NP, Koukouni V, Fowler CJ, Schrag A, Mathias CJ, Giladi N, Gurevich T, Dupont E, Ostergaard K, Nilsson CF, Widner H, Oertel W, Eggert KM, Albanese A, del Sorbo F, Tolosa E, Cardozo A, Deuschl G, Hellriegel H, Klockgether T, Dodel R, Sampaio C, Coelho M, Djaldetti R, Melamed E, Gasser T, Kamm C, Meco G, Colosimo C, Rascol O, Meissner WG, Tison F, Poewe W. The natural history of multiple system atrophy: a prospective European cohort study. Lancet Neurol 2013; 12:264-74. [PMID: 23391524 PMCID: PMC3581815 DOI: 10.1016/s1474-4422(12)70327-7] [Citation(s) in RCA: 366] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Multiple system atrophy (MSA) is a fatal and still poorly understood degenerative movement disorder that is characterised by autonomic failure, cerebellar ataxia, and parkinsonism in various combinations. Here we present the final analysis of a prospective multicentre study by the European MSA Study Group to investigate the natural history of MSA. METHODS Patients with a clinical diagnosis of MSA were recruited and followed up clinically for 2 years. Vital status was ascertained 2 years after study completion. Disease progression was assessed using the unified MSA rating scale (UMSARS), a disease-specific questionnaire that enables the semiquantitative rating of autonomic and motor impairment in patients with MSA. Additional rating methods were applied to grade global disease severity, autonomic symptoms, and quality of life. Survival was calculated using a Kaplan-Meier analysis and predictors were identified in a Cox regression model. Group differences were analysed by parametric tests and non-parametric tests as appropriate. Sample size estimates were calculated using a paired two-group t test. FINDINGS 141 patients with moderately severe disease fulfilled the consensus criteria for MSA. Mean age at symptom onset was 56·2 (SD 8·4) years. Median survival from symptom onset as determined by Kaplan-Meier analysis was 9·8 years (95% CI 8·1-11·4). The parkinsonian variant of MSA (hazard ratio [HR] 2·08, 95% CI 1·09-3·97; p=0·026) and incomplete bladder emptying (HR 2·10, 1·02-4·30; p=0·044) predicted shorter survival. 24-month progression rates of UMSARS activities of daily living, motor examination, and total scores were 49% (9·4 [SD 5·9]), 74% (12·9 [8·5]), and 57% (21·9 [11·9]), respectively, relative to baseline scores. Autonomic symptom scores progressed throughout the follow-up. Shorter symptom duration at baseline (OR 0·68, 0·5-0·9; p=0·006) and absent levodopa response (OR 3·4, 1·1-10·2; p=0·03) predicted rapid UMSARS progression. Sample size estimation showed that an interventional trial with 258 patients (129 per group) would be able to detect a 30% effect size in 1-year UMSARS motor examination decline rates at 80% power. INTERPRETATION Our prospective dataset provides new insights into the evolution of MSA based on a follow-up period that exceeds that of previous studies. It also represents a useful resource for patient counselling and planning of multicentre trials.
Collapse
Affiliation(s)
- Gregor K Wenning
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Supine hypertension is a common finding in autonomic failure that can worsen orthostatic hypotension and predispose to end-organ damage. This review focuses on nonpharmacologic and pharmacologic approaches to manage hypertension in these patients in the face of disabling orthostatic hypotension. RECENT FINDINGS The hypertension of autonomic failure can be driven by sympathetic-dependent or independent mechanisms, contingent on the site of autonomic lesions. Management of supine hypertension should include simple nonpharmacologic approaches including avoiding the supine position during the daytime and sleeping in a head-up tilt position at night. Most patients, however, require pharmacologic treatment. Several antihypertensive therapies lower nighttime pressure in autonomic failure, but none improve nocturnal volume depletion or morning orthostatic tolerance. Regardless, treatment may still be beneficial in some patients but must be decided on an individual basis. Blood pressure monitoring is helpful in this regard, as well as titration of doses, as these patients are hypersensitive to depressor agents due to loss of baroreceptor reflexes. SUMMARY Autonomic failure provides a unique opportunity to study blood pressure regulation independent of autonomic influences. Understanding mechanisms driving supine hypertension will have important implications for the treatment of autonomic failure and will improve our knowledge of cardiovascular regulation in other populations, including essential hypertension and elderly hypertensive individuals with comorbid orthostatic hypotension.
Collapse
|
34
|
SUMO-1 is Associated with a Subset of Lysosomes in Glial Protein Aggregate Diseases. Neurotox Res 2012; 23:1-21. [DOI: 10.1007/s12640-012-9358-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/19/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022]
|
35
|
Higginson IJ, Gao W, Saleem TZ, Chaudhuri KR, Burman R, McCrone P, Leigh PN. Symptoms and quality of life in late stage Parkinson syndromes: a longitudinal community study of predictive factors. PLoS One 2012; 7:e46327. [PMID: 23144781 PMCID: PMC3492372 DOI: 10.1371/journal.pone.0046327] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 08/29/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Palliative care is increasingly offered earlier in the cancer trajectory but rarely in Idiopathic Parkinson's Disease(IPD), Progressive Supranuclear Palsy(PSP) or Multiple System Atrophy(MSA). There is little longitudinal data of people with late stage disease to understand levels of need. We aimed to determine how symptoms and quality of life of these patients change over time; and what demographic and clinical factors predicted changes. METHODS We recruited 82 patients into a longitudinal study, consenting patients with a diagnosis of IPD, MSA or PSP, stages 3-5 Hoehn and Yahr(H&Y). At baseline and then on up to 3 occasions over one year, we collected self-reported demographic, clinical, symptom, palliative and quality of life data, using Parkinson's specific and generic validated scales, including the Palliative care Outcome Scale (POS). We tested for predictors using multivariable analysis, adjusting for confounders. FINDINGS Over two thirds of patients had severe disability, over one third being wheelchair-bound/bedridden. Symptoms were highly prevalent in all conditions - mean (SD) of 10.6(4.0) symptoms. More than 50% of the MSA and PSP patients died over the year. Over the year, half of the patients showed either an upward (worsening, 24/60) or fluctuant (8/60) trajectory for POS and symptoms. The strongest predictors of higher levels of symptoms at the end of follow-up were initial scores on POS (AOR 1.30; 95%CI:1.05-1.60) and being male (AOR 5.18; 95% CI 1.17 to 22.92), both were more predictive than initial H&Y scores. INTERPRETATION The findings point to profound and complex mix of non-motor and motor symptoms in patients with late stage IPD, MSA and PSP. Symptoms are not resolved and half of the patients deteriorate. Palliative problems are predictive of future symptoms, suggesting that an early palliative assessment might help screen for those in need of earlier intervention.
Collapse
Affiliation(s)
- Irene J. Higginson
- Cicely Saunders Institute, King's College London, London, United Kingdom
- * E-mail: (IJH); (WG)
| | - Wei Gao
- Cicely Saunders Institute, King's College London, London, United Kingdom
- * E-mail: (IJH); (WG)
| | | | - K. Ray Chaudhuri
- Institute of Psychiatry, King's College London, London, United Kingdom
- National Parkinson Foundation International Centre of Excellence, Kings College Hospital, London, United Kingdom
| | - Rachel Burman
- Cicely Saunders Institute, King's College London, London, United Kingdom
| | - Paul McCrone
- Institute of Psychiatry, King's College London, London, United Kingdom
| | - Peter Nigel Leigh
- Institute of Psychiatry, King's College London, London, United Kingdom
| |
Collapse
|
36
|
Novak P, Williams A, Ravin P, Zurkiya O, Abduljalil A, Novak V. Treatment of multiple system atrophy using intravenous immunoglobulin. BMC Neurol 2012; 12:131. [PMID: 23116538 PMCID: PMC3551813 DOI: 10.1186/1471-2377-12-131] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 10/30/2012] [Indexed: 11/18/2022] Open
Abstract
Background Multiple system atrophy (MSA) is a progressive neurodegenerative disorder of unknown etiology, manifesting as combination of parkinsonism, cerebellar syndrome and dysautonomia. Disease-modifying therapies are unavailable. Activation of microglia and production of toxic cytokines suggest a role of neuroinflammation in MSA pathogenesis. This pilot clinical trial evaluated safety and tolerability of intravenous immunoglobulin (IVIG) in MSA. Methods This was a single-arm interventional, single-center, open-label pilot study. Interventions included monthly infusions of the IVIG preparation Privigen®, dose 0.4 gram/kg, for 6 months. Primary outcome measures evaluated safety and secondary outcome measures evaluated preliminary efficacy of IVIG. Unified MSA Rating Scale (UMSARS) was measured monthly. Quantitative brain imaging using 3T MRI was performed before and after treatment. Results Nine subjects were enrolled, and seven (2 women and 5 men, age range 55–64 years) completed the protocol. There were no serious adverse events. Systolic blood pressure increased during IVIG infusions (p<0.05). Two participants dropped out from the study because of a non-threatening skin rash. The UMSARS-I (activities of daily living) and USMARS-II (motor functions) improved significantly post-treatment. UMSARS-I improved in all subjects (pre-treatment 23.9 ± 6.0 vs. post-treatment 19.0±5.9 (p=0.01). UMSARS-II improved in 5 subjects, was unchanged in 1 and worsened in 1 (pre-treatment 26.1±7.5 vs. post-treatment 23.3±7.3 (p=0.025). The MR imaging results were not different comparing pre- to post-treatment. Conclusions Treatment with IVIG appears to be safe, feasible and well tolerated and may improve functionality in MSA. A larger, placebo-controlled study is needed.
Collapse
Affiliation(s)
- Peter Novak
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Mattison HA, Stewart T, Zhang J. Applying bioinformatics to proteomics: is machine learning the answer to biomarker discovery for PD and MSA? Mov Disord 2012; 27:1595-7. [PMID: 23115026 DOI: 10.1002/mds.25189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 08/05/2012] [Indexed: 11/10/2022] Open
Abstract
Bioinformatics tools are increasingly being applied to proteomic data to facilitate the identification of biomarkers and classification of patients. In the June, 2012 issue, Ishigami et al. used principal component analysis (PCA) to extract features and support vector machine (SVM) to differentiate and classify cerebrospinal fluid (CSF) samples from two small cohorts of patients diagnosed with either Parkinson's disease (PD) or multiple system atrophy (MSA) based on differences in the patterns of peaks generated with matrix-assisted desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). PCA accurately segregated patients with PD and MSA from controls when the cohorts were combined, but did not perform well when segregating PD from MSA. On the other hand, SVM, a machine learning classification model, correctly classified the samples from patients with early PD or MSA, and the peak at m/z 6250 was identified as a strong contributor to the ability of SVM to distinguish the proteomic profiles of either cohort when trained on one cohort. This study, while preliminary, provides promising results for the application of bioinformatics tools to proteomic data, an approach that may eventually facilitate the ability of clinicians to differentiate and diagnose closely related parkinsonian disorders.
Collapse
Affiliation(s)
- Hayley A Mattison
- Department of Pathology, University of Washington, Seattle, Washington 98104, USA
| | | | | |
Collapse
|
38
|
Panda A, Begum T, Ghosh TC. Insights into the evolutionary features of human neurodegenerative diseases. PLoS One 2012; 7:e48336. [PMID: 23118989 PMCID: PMC3484049 DOI: 10.1371/journal.pone.0048336] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/24/2012] [Indexed: 02/06/2023] Open
Abstract
Comparative analyses between human disease and non-disease genes are of great interest in understanding human disease gene evolution. However, the progression of neurodegenerative diseases (NDD) involving amyloid formation in specific brain regions is still unknown. Therefore, in this study, we mainly focused our analysis on the evolutionary features of human NDD genes with respect to non-disease genes. Here, we observed that human NDD genes are evolutionarily conserved relative to non-disease genes. To elucidate the conserved nature of NDD genes, we incorporated the evolutionary attributes like gene expression level, number of regulatory miRNAs, protein connectivity, intrinsic disorder content and relative aggregation propensity in our analysis. Our studies demonstrate that NDD genes have higher gene expression levels in favor of their lower evolutionary rates. Additionally, we observed that NDD genes have higher number of different regulatory miRNAs target sites and also have higher interaction partners than the non-disease genes. Moreover, miRNA targeted genes are known to have higher disorder content. In contrast, our analysis exclusively established that NDD genes have lower disorder content. In favor of our analysis, we found that NDD gene encoded proteins are enriched with multi interface hubs (party hubs) with lower disorder contents. Since, proteins with higher disorder content need to adapt special structure to reduce their aggregation propensity, NDD proteins found to have elevated relative aggregation propensity (RAP) in support of their lower disorder content. Finally, our categorical regression analysis confirmed the underlined relative dominance of protein connectivity, 3'UTR length, RAP, nature of hubs (singlish/multi interface) and disorder content for such evolutionary rates variation between human NDD genes and non-disease genes.
Collapse
Affiliation(s)
- Arup Panda
- Bioinformatics Centre, Bose Institute, Kolkata, India
| | - Tina Begum
- Bioinformatics Centre, Bose Institute, Kolkata, India
| | | |
Collapse
|
39
|
Abstract
Movement disorders that are infrequently seen in clinical practice can be difficult to recognize and accurately diagnose. Familiarity with these disorders can help the clinician distinguish them from more common movement disorders, such as Parkinson disease, which is associated with a significantly different prognosis and treatment approach. Rare disorders with predominate parkinsonism include multiple system atrophy, progressive supranuclear palsy, and corticobasal degeneration, whereas Huntington disease is the primary movement disorder characterized by chorea. This chapter will provide an overview of the diagnostic, pathologic, and imaging advances from recent literature as well as discuss current treatments for these rare movement disorders.
Collapse
|
40
|
Lee PH, Lee JE, Kim HS, Song SK, Lee HS, Nam HS, Cheong JW, Jeong Y, Park HJ, Kim DJ, Nam CM, Lee JD, Kim HO, Sohn YH. A randomized trial of mesenchymal stem cells in multiple system atrophy. Ann Neurol 2012; 72:32-40. [DOI: 10.1002/ana.23612] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Ferini-Strambi L. Does idiopathic REM sleep behavior disorder (iRBD) really exist? What are the potential markers of neurodegeneration in iRBD? Sleep Med 2012; 12 Suppl 2:S43-9. [PMID: 22136899 DOI: 10.1016/j.sleep.2011.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/11/2011] [Accepted: 10/11/2011] [Indexed: 11/28/2022]
Abstract
REM sleep behavior disorder (RBD) may be idiopathic or associated with other neurologic disorders. A strong association between RBD and α-synucleinopathies has recently been observed, with the parasomnia often heralding the clinical onset of the neurodegenerative disease. The idiopathic form accounts for up to 60% of the cases reported in the three largest series of patients with RBD. Some clinical follow-up studies revealed that a large proportion of these patients will eventually develop a parkinsonian syndrome or a dementia of the Lewy bodies type in the years following the RBD diagnosis. The estimated 10-year risk of neurodegenerative disease for idiopathic RBD is about 40%. Moreover, it has been reported that the median interval between RBD and subsequent neurologic syndrome is 25years. Several studies have looked at neurophysiologic and neuropsychological functions in idiopathic RBD and have found evidence of CNS dysfunction during both wakefulness and sleep in a variable proportion of these patients, challenging the concept of idiopathic RBD. Identifying subjects with a high risk of developing a neurodegenerative process may be crucial to develop early intervention strategies. Prospective studies in idiopathic RBD showed that potential markers of neurodegeneration include: (1) marked EEG slowing on spectral analysis; (2) decreased striatal 123I-FP-CIT binding and substantia nigra hyperechogenicity; (3) impaired olfactory function; (4) impaired color vision.
Collapse
|
42
|
Ahmed Z, Asi YT, Sailer A, Lees AJ, Houlden H, Revesz T, Holton JL. The neuropathology, pathophysiology and genetics of multiple system atrophy. Neuropathol Appl Neurobiol 2012; 38:4-24. [PMID: 22074330 DOI: 10.1111/j.1365-2990.2011.01234.x] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multiple system atrophy (MSA) is an unrelenting, sporadic, adult-onset, neurodegenerative disease of unknown aetiology. Its clinically progressive course is characterized by a variable combination of parkinsonism, cerebellar ataxia and/or autonomic dysfunction. Neuropathological examination often reveals gross abnormalities of the striatonigral and/or olivopontocerebellar systems, which upon microscopic examination are associated with severe neuronal loss, gliosis, myelin pallor and axonal degeneration. MSA is a member of a diverse group of neurodegenerative disorders termed α-synucleinopathies, due to the presence of abnormal α-synuclein positive cytoplasmic inclusions in oligodendrocytes, termed glial cytoplasmic inclusions. These are the hallmark neuropathological lesion of MSA and are thought to play a central role in the pathogenesis of the disease. In this review, neuropathological features of MSA are described in detail, along with recent advances in the pathophysiology and genetics of the disease. Our current knowledge of the expression and accumulation of α-synuclein, and efforts to model the disease in vitro and in vivo, are emphasized in this paper and have helped formulate a working hypothesis for the pathogenesis of MSA.
Collapse
Affiliation(s)
- Z Ahmed
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Kaindlstorfer C, García J, Winkler C, Wenning GK, Nikkhah G, Döbrössy MD. Behavioral and histological analysis of a partial double-lesion model of parkinson-variant multiple system atrophy. J Neurosci Res 2012; 90:1284-95. [PMID: 22488729 DOI: 10.1002/jnr.23021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/30/2011] [Accepted: 12/02/2011] [Indexed: 01/23/2023]
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disease with progressive autonomic failure, cerebellar ataxia (MSA-C), and parkinsonism (MSA-P) resulting from neuronal loss in multiple brain areas associated with oligodendroglial cytoplasmic α-synuclein inclusion bodies. No effective treatments exists, and MSA-P patients often fail to respond to L-DOPA because of the loss of striatal dopaminergic receptors. Rendering MSA-P patients sensitive to L-DOPA administration following striatal tissue transplantation has been proposed as a possible novel therapeutic strategy to improve the clinical condition. Here we describes simple, skilled, and sensorimotor behavior deficits in a unilateral partial double-lesion (DL) rat model of MSA-P. The sequential striatal double-lesion model mimicks early MSA-P pathology by combining partial 6-hydroxydopamine (6-OHDA) followed by striatal quinolinic acid (QA) lesion. Animals were tested on spontaneous, learned, or drug-induced behavioral tasks on multiple occasions pre- and postsurgery. The data show robust, lateralized deficits, and the partial 6-OHDA and the double-lesioned animals were most impaired. Importantly, this study identified a behavioral deficit profile unique to the double-lesion animals and distinctive from the single 6-OHDA- or the QA-lesioned animals. Histology confirmed an approximately 40% dopamine loss in the striatum in the 6-OHDA and double-lesion animals as well as a similar loss of striatal projection neurons in the QA and double-lesion animals. In summary, we have established the behavioral deficit profile of a partial double-lesion rat model mimicking the early stage of MSA-P.
Collapse
|
44
|
Abstract
AbstractGenetic, neuropathological and biochemical evidence implicates α-synuclein, a 140 amino acid presynaptic neuronal protein, in the pathogenesis of Parkinson’s disease and other neurodegenerative disorders. The aggregated protein inclusions mainly containing aberrant α-synuclein are widely accepted as morphological hallmarks of α-synucleinopathies, but their composition and location vary between disorders along with neuronal networks affected. α-Synuclein exists physiologically in both soluble and membran-bound states, in unstructured and α-helical conformations, respectively, while posttranslational modifications due to proteostatic deficits are involved in β-pleated aggregation resulting in formation of typical inclusions. The physiological function of α-synuclein and its role linked to neurodegeneration, however, are incompletely understood. Soluble oligomeric, not fully fibrillar α-synuclein is thought to be neurotoxic, main targets might be the synapse, axons and glia. The effects of aberrant α-synuclein include alterations of calcium homeostasis, mitochondrial dysfunction, oxidative and nitric injuries, cytoskeletal effects, and neuroinflammation. Proteasomal dysfunction might be a common mechanism in the pathogenesis of neuronal degeneration in α-synucleinopathies. However, how α-synuclein induces neurodegeneration remains elusive as its physiological function. Genome wide association studies demonstrated the important role for genetic variants of the SNCA gene encoding α-synuclein in the etiology of Parkinson’s disease, possibly through effects on oxidation, mitochondria, autophagy, and lysosomal function. The neuropathology of synucleinopathies and the role of α-synuclein as a potential biomarker are briefly summarized. Although animal models provided new insights into the pathogenesis of Parkinson disease and multiple system atrophy, most of them do not adequately reproduce the cardinal features of these disorders. Emerging evidence, in addition to synergistic interactions of α-synuclein with various pathogenic proteins, suggests that prionlike induction and seeding of α-synuclein could lead to the spread of the pathology and disease progression. Intervention in the early aggregation pathway, aberrant cellular effects, or secretion of α-synuclein might be targets for neuroprotection and disease-modifying therapy.
Collapse
|
45
|
Halliday GM, Holton JL, Revesz T, Dickson DW. Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathol 2011; 122:187-204. [PMID: 21720849 DOI: 10.1007/s00401-011-0852-9] [Citation(s) in RCA: 310] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/18/2011] [Accepted: 06/20/2011] [Indexed: 01/31/2023]
Abstract
Abnormal aggregates of the synaptic protein, α-synuclein, are the dominant pathology in syndromes known as the synucleinopathies. The cellular aggregation of the protein occurs in three distinct types of inclusions in three main clinical syndromes. α-Synuclein deposits in neuronal Lewy bodies and Lewy neurites in idiopathic Parkinson's disease (PD) and dementia with Lewy bodies (DLB), as well as incidentally in a number of other conditions. In contrast, α-synuclein deposits largely in oligodendroglial cytoplasmic inclusions in multiple system atrophy (MSA). Lastly, α-synuclein also deposits in large axonal spheroids in a number of rarer neuroaxonal dystrophies. Disorders are usually defined by their most dominant pathology, but for the synucleinopathies, clinical heterogeneity within the main syndromes is well documented. MSA was originally viewed as three different clinical phenotypes due to different anatomical localization of the lesions. In PD, recent meta-analyses have identified four main clinical phenotypes, and clinicopathological correlations suggest that more severe and more rapid progression of pathology with chronological age, as well as the involvement of additional neuropathologies, differentiates these phenotypes. In DLB, recent large studies show that clinical diagnosis is too insensitive to identify the syndrome itself, although clinicopathological studies suggest variable clinical features occur in the different pathological forms of this syndrome (pure DLB, DLB with Alzheimer's disease (AD), and AD with amygdala predominant Lewy pathology). The recognition of considerable heterogeneity within the synucleinopathy syndromes is important for the identification of factors involved in changing their pathological phenotype.
Collapse
Affiliation(s)
- Glenda M Halliday
- Neuroscience Research Australia, University of New South Wales, Randwick, Sydney, Australia.
| | | | | | | |
Collapse
|
46
|
Flabeau O, Meissner WG, Tison F. Multiple system atrophy: current and future approaches to management. Ther Adv Neurol Disord 2011; 3:249-63. [PMID: 21179616 DOI: 10.1177/1756285610375328] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multiple system atrophy (MSA) is a rare neurodegenerative disorder without any effective treatment in slowing or stopping disease progression. It is characterized by poor levodopa responsive Parkinsonism, cerebellar ataxia, pyramidal signs and autonomic failure in any combination. Current therapeutic strategies are primarily based on dopamine replacement and improvement of autonomic failure. However, symptomatic management remains disappointing and no curative treatment is yet available. Recent experimental evidence has confirmed the key role of alpha-synuclein aggregation in the pathogenesis of MSA. Referring to this hypothesis, transgenic and toxic animal models have been developed to assess candidate drugs for MSA. The standardization of diagnosis criteria and assessment procedures will allow large multicentre clinical trials to be conducted. In this article we review the available symptomatic treatment, recent results of studies investigating potential neuroprotective drugs, and future approaches for the management in MSA.
Collapse
Affiliation(s)
- Olivier Flabeau
- Department of Neurology, University Hospital of Bordeaux, Bordeaux, France
| | | | | |
Collapse
|
47
|
Masui K, Nakata Y, Fujii N, Iwaki T. Extensive distribution of glial cytoplasmic inclusions in an autopsied case of multiple system atrophy with a prolonged 18-year clinical course. Neuropathology 2011; 32:69-76. [PMID: 21615514 DOI: 10.1111/j.1440-1789.2011.01222.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe herein an autopsied case of multiple system atrophy (MSA) with prolonged clinical course of 18 years, and evaluate the extent of neurodegeneration and glial cytoplasmic inclusions (GCIs) in the entire brain of this rare case. A 64-year-old woman presented with typical neurological symptoms and imaging features of MSA. Thereafter, she became bedridden, and breathing was assisted through a tracheostomy for 12 years. She died at the age of 82 after 18 years from the initial symptom. Post mortem examination revealed severe neurodegeneration in the inferior olive, pontine nuclei, substantia nigra, locus ceruleus, putamen and cerebellum. Notably, phosphorylated α-synuclein (p-α-syn)-positive GCIs were found in these areas, but their number was very low. In contrast, the density of GCIs was much higher in such regions as the tectum/tegmentum of the brainstem, pyramidal tracts, neocortices and limbic system, which usually contain a small number of GCIs. Another constituent of GCIs, ubiquitin (Ub) and Ub-associated autophagy substrate p62, were also positive in some GCIs, and distribution of Ub/p62 immunoreactivity was proportionate to that of p-α-syn+ GCIs despite the very long duration of the disease. Furthermore, this case had complicated hypoxic encephalopathy, but p-α-syn+ GCIs were also found in the damaged white matter, indicating the contribution of α-syncleinopathy as well as hypoxic effect to the secondary myelin and axonal loss in the white matter. Together, this rare case suggests the contribution of the disease duration to the prevalence of GCIs, and the possible involvement of the limbic system in extensive-stage disease.
Collapse
Affiliation(s)
- Kenta Masui
- Department of Neuropathology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Japan
| | | | | | | |
Collapse
|
48
|
Stemberger S, Jamnig A, Stefanova N, Lepperdinger G, Reindl M, Wenning GK. Mesenchymal stem cells in a transgenic mouse model of multiple system atrophy: immunomodulation and neuroprotection. PLoS One 2011; 6:e19808. [PMID: 21625635 PMCID: PMC3097217 DOI: 10.1371/journal.pone.0019808] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 04/04/2011] [Indexed: 12/19/2022] Open
Abstract
Background Mesenchymal stem cells (MSC) are currently strong candidates for cell-based therapies. They are well known for their differentiation potential and immunoregulatory properties and have been proven to be potentially effective in the treatment of a large variety of diseases, including neurodegenerative disorders. Currently there is no treatment that provides consistent long-term benefits for patients with multiple system atrophy (MSA), a fatal late onset α-synucleinopathy. Principally neuroprotective or regenerative strategies, including cell-based therapies, represent a powerful approach for treating MSA. In this study we investigated the efficacy of intravenously applied MSCs in terms of behavioural improvement, neuroprotection and modulation of neuroinflammation in the (PLP)-αsynuclein (αSYN) MSA model. Methodology/Principal Findings MSCs were intravenously applied in aged (PLP)-αSYN transgenic mice. Behavioural analyses, defining fine motor coordination and balance capabilities as well as stride length analysis, were performed to measure behavioural outcome. Neuroprotection was assessed by quantifying TH neurons in the substantia nigra pars compacta (SNc). MSC treatment on neuroinflammation was analysed by cytokine measurements (IL-1α, IL-2, IL-4, IL-5, IL-6, IL-10, IL-17, GM-CSF, INFγ, MCP-1, TGF-β1, TNF-α) in brain lysates together with immunohistochemistry for T-cells and microglia. Four weeks post MSC treatment we observed neuroprotection in the SNc, as well as downregulation of cytokines involved in neuroinflammation. However, there was no behavioural improvement after MSC application. Conclusions/Significance To our knowledge this is the first experimental approach of MSC treatment in a transgenic MSA mouse model. Our data suggest that intravenously infused MSCs have a potent effect on immunomodulation and neuroprotection. Our data warrant further studies to elucidate the efficacy of systemically administered MSCs in transgenic MSA models.
Collapse
Affiliation(s)
- Sylvia Stemberger
- Divison of Clinical Neurobiology, Department of Neurology, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
49
|
Winter Y, Stamelou M, Cabanel N, Sixel-Döring F, Eggert K, Höglinger GU, Herting B, Klockgether T, Reichmann H, Oertel WH, Dodel R, Spottke AE. Cost-of-illness in multiple system atrophy and progressive supranuclear palsy. J Neurol 2011; 258:1827-34. [PMID: 21479850 DOI: 10.1007/s00415-011-6028-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 03/23/2011] [Indexed: 11/27/2022]
Abstract
Multiple system atrophy and progressive supranuclear palsy are disabling neurodegenerative disorders, also known as atypical parkinsonian syndromes. Currently, no health economic evaluations of these diseases are available. The objective of this study was to evaluate disease-related costs in German patients with multiple system atrophy and progressive supranuclear palsy and to identify cost-driving factors. We recruited 101 consecutive patients with multiple system atrophy (n = 54) and progressive supranuclear palsy (n = 47) in four German specialised movement disorder clinics. The health economic data were collected using comprehensive health economic questionnaires ("bottom-up" approach). Costs were calculated from the societal perspective in 2010 Euros. Independent cost-driving factors were identified in multiple regression analysis. The total semi-annual costs of atypical parkinsonian syndromes were EUR 16,670 (95% CI: 13,470-21,850). Direct costs accounted for 73% (inpatient care 31%, special equipment 24%, copayments of patients 21%, others 24%) and indirect costs for 27% of total costs. The economic burden imposed on patients by atypical parkinsonian syndromes accounted for 36% of their income. Independent cost-driving factors were younger age, disease severity, living without a partner and depression. The disease-related costs of atypical parkinsonian syndromes in Germany are high and above the costs reported for idiopathic Parkinson's disease. Disease-specific patterns of cost distributions in atypical parkinsonian syndromes and independent cost-drivers should be considered in future health economic evaluations and healthcare programs. The early diagnosis and treatment of depression in patients with atypical parkinsonian syndromes as well as programs aimed to improve social support will reduce disease-related costs.
Collapse
Affiliation(s)
- Yaroslav Winter
- Department of Neurology, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Takado Y, Igarashi H, Terajima K, Shimohata T, Ozawa T, Okamoto K, Nishizawa M, Nakada T. Brainstem metabolites in multiple system atrophy of cerebellar type: 3.0-T magnetic resonance spectroscopy study. Mov Disord 2011; 26:1297-302. [PMID: 21370263 DOI: 10.1002/mds.23550] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/13/2010] [Accepted: 11/01/2010] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The aim of this study was to find biomarkers of disease severity in multiple system atrophy of cerebellar type by imaging disease specific regions using proton magnetic resonance spectroscopy on a 3.0 T system. METHODS We performed proton magnetic resonance spectroscopy separately in the pons and medulla on 12 multiple system atrophy of cerebellar type patients and 12 age and gender matched control subjects. The metabolite concentrations were estimated from single-voxel proton magnetic resonance spectra measured by point resolved spectroscopy, which were then correlated with clinical severity using Part I, II, and IV of the unified multiple system atrophy rating scale. RESULTS Proton magnetic resonance spectroscopy showed that myo-inositol concentrations in both the pons and medulla were significantly higher in multiple system atrophy of cerebellar type patients compared to those of the control subjects (P < 0.05). By contrast, total N-acetylaspartate (the sum of N-acetylaspartate and N-acetylaspartylglutamate) and total choline compounds concentrations in both the pons and medulla were significantly lower in multiple system atrophy of cerebellar type patients compared to control subjects (P < 0.05). Creatine concentration in the pons was significantly higher in multiple system atrophy of cerebellar type patients compared to the control subjects (P < 0.05). Furthermore, a significant correlation was found between the myo-inositol/creatine ratio in the pons and clinical severity, defined by the sum score of unified multiple system atrophy rating scale (I+II+IV) (r = 0.76, P < 0.01). CONCLUSION Proton magnetic resonance spectroscopy, in conjunction with a 3.0 T system, can be feasible to detect part of pathological changes in the brainstem, such as gliosis and neuronal cell loss, and the metabolites can be used as biomarkers of clinical severity in multiple system atrophy of cerebellar type patients.
Collapse
Affiliation(s)
- Yuhei Takado
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata, Japan
| | | | | | | | | | | | | | | |
Collapse
|