1
|
Marei HE, Khan MUA, Hasan A. Potential use of iPSCs for disease modeling, drug screening, and cell-based therapy for Alzheimer's disease. Cell Mol Biol Lett 2023; 28:98. [PMID: 38031028 PMCID: PMC10687886 DOI: 10.1186/s11658-023-00504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic illness marked by increasing cognitive decline and nervous system deterioration. At this time, there is no known medication that will stop the course of Alzheimer's disease; instead, most symptoms are treated. Clinical trial failure rates for new drugs remain high, highlighting the urgent need for improved AD modeling for improving understanding of the underlying pathophysiology of disease and improving drug development. The development of induced pluripotent stem cells (iPSCs) has made it possible to model neurological diseases like AD, giving access to an infinite number of patient-derived cells capable of differentiating neuronal fates. This advance will accelerate Alzheimer's disease research and provide an opportunity to create more accurate patient-specific models of Alzheimer's disease to support pathophysiological research, drug development, and the potential application of stem cell-based therapeutics. This review article provides a complete summary of research done to date on the potential use of iPSCs from AD patients for disease modeling, drug discovery, and cell-based therapeutics. Current technological developments in AD research including 3D modeling, genome editing, gene therapy for AD, and research on familial (FAD) and sporadic (SAD) forms of the disease are discussed. Finally, we outline the issues that need to be elucidated and future directions for iPSC modeling in AD.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35116, Egypt.
| | - Muhammad Umar Aslam Khan
- Biomedical Research Center, Qatar University, 2713, Doha, Qatar
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Muacevic A, Adler JR. Young-Onset Dementia and Neurodegenerative Disorders of the Young With an Emphasis on Clinical Manifestations. Cureus 2022; 14:e30025. [PMID: 36381805 PMCID: PMC9637441 DOI: 10.7759/cureus.30025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/07/2022] [Indexed: 01/25/2023] Open
Abstract
Young-onset dementia (YOD) refers to a neurological ailment primarily affecting people below 65 years of age in roughly about 8% of cases found through various researches. The high rate of prevalence of secondary dementias among older patients proves that younger people show a better prognosis of the conditions causing dementia than older people. However, effective interventions have to be usually provided early in the course of cognitive decline to help facilitate cognitive improvement. The risk of development of prodromal dementia is high if there is a development of psychoses in middle-aged or older people. When there is a development of psychoses in middle to late life, the likelihood of this indicates prodromal dementia is high. The clinical presentation is quite variable and often subtle in frontotemporal dementia (FTD) but may be dominated by personality change, behavioral disturbances, motivation, or the loss of empathy. There is great heterogeneity in the probable causes of dementia in young age as compared to dementia in old age, and some observed differences also exist in the course and characteristics of the disease. These causes may range from the most probable cause such as Alzheimer's disease (AD) to causes with low probability, such as metabolic disorders and prion diseases. The symptoms of young-onset dementia include a gradual development of personality and behavioral changes over a period of years. However, in the initial stages of young-onset dementia, this change can be attributed to various issues, such as depression, marital problems, and menopause. Other neurodegenerative diseases such as Huntington's disease show presentations such as changes in personality, chorea, and depression that can be observed in patients in their early adulthood. A few other neurodegenerative disorders are myoclonic epilepsy with ragged red fibers (MERRF) and mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) with presentations such as characterized muscle weakness, poor growth, problems with vision and hearing, and the involvement of the multi-organ system, including the central nervous system to name a few. There is also the prevalence of juvenile parkinsonism in the community, which represents a group of clinicopathological entities present before the age of 21. Young-onset Parkinson's disease (PD) (YOPD) appears to have the same pathological presentation as late-onset Parkinson's disease (LOPD). Recent researches have proved that "gene therapy" can be useful in the treatment and in preventing the progression of symptoms in cases of neurodegenerative diseases.
Collapse
|
3
|
Buckles VD, Xiong C, Bateman RJ, Hassenstab J, Allegri R, Berman SB, Chhatwal JP, Danek A, Fagan AM, Ghetti B, Goate A, Graff-Radford N, Jucker M, Levin J, Marcus DS, Masters CL, McCue L, McDade E, Mori H, Moulder KL, Noble JM, Paumier K, Preische O, Ringman JM, Fox NC, Salloway S, Schofield PR, Martins R, Vöglein J, Morris JC. Different rates of cognitive decline in autosomal dominant and late-onset Alzheimer disease. Alzheimers Dement 2022; 18:1754-1764. [PMID: 34854530 PMCID: PMC9160203 DOI: 10.1002/alz.12505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/13/2021] [Accepted: 09/22/2021] [Indexed: 01/28/2023]
Abstract
As prevention trials advance with autosomal dominant Alzheimer disease (ADAD) participants, understanding the similarities and differences between ADAD and "sporadic" late-onset AD (LOAD) is critical to determine generalizability of findings between these cohorts. Cognitive trajectories of ADAD mutation carriers (MCs) and autopsy-confirmed LOAD individuals were compared to address this question. Longitudinal rates of change on cognitive measures were compared in ADAD MCs (n = 310) and autopsy-confirmed LOAD participants (n = 163) before and after symptom onset (estimated/observed). LOAD participants declined more rapidly in the presymptomatic (preclinical) period and performed more poorly at symptom onset than ADAD participants on a cognitive composite. After symptom onset, however, the younger ADAD MCs declined more rapidly. The similar but not identical cognitive trajectories (declining but at different rates) for ADAD and LOAD suggest common AD pathologies but with some differences.
Collapse
Affiliation(s)
- Virginia D. Buckles
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Randall J. Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ricardo Allegri
- Institute for Neurological Research (FLENI), Buenos Aires, Argentina
| | - Sarah B. Berman
- Department of Neurology and Clinical and Translational Science, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jasmeer P. Chhatwal
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Klinikum der Universität München, Munich Germany
| | - Anne M Fagan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Alison Goate
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Mathias Jucker
- DZNE Tuebingen & Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Johannes Levin
- DZNE Munich, Munich Cluster of systems neurology (SyNergy) & Ludwig-Maximilians-Universität, Munich, Germany
| | - Daniel S Marcus
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | - Lena McCue
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Eric McDade
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hiroshi Mori
- Department of Neuroscience, Osaka City University Medical School, Osaka City, Japan
| | - Krista L. Moulder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - James M Noble
- Department of Neurology, Taub Institute for Research on Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Katrina Paumier
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Oliver Preische
- DZNE Tuebingen & University of Tuebingen, Tuebingen, Germany
| | - John M. Ringman
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Nick C Fox
- Department of Neurodegenerative Disease & UK Dementia Research Institute, Institute of Neurology, London, UK
| | - Stephen Salloway
- Department of Neurology, Butler Hospital & Alpert Medical School of Brown University, Providence, RI, 02906, USA
| | - Peter R. Schofield
- Neuroscience Research Australia & School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Ralph Martins
- Sir James McCusker Alzheimer’s Disease Research Unit, Edith Cowan University, Nedlands, Australia
| | - Jonathan Vöglein
- German Center for Neurodegenerative Diseases (DZNE) and Department of Neurology, Ludwig-Maximilians Universität München; Munich, Germany
| | - John C. Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | |
Collapse
|
4
|
Orozco-Barajas M, Oropeza-Ruvalcaba Y, Canales-Aguirre AA, Sánchez-González VJ. PSEN1 c.1292C<A Variant and Early-Onset Alzheimer’s Disease: A Scoping Review. Front Aging Neurosci 2022; 14:860529. [PMID: 35959289 PMCID: PMC9361039 DOI: 10.3389/fnagi.2022.860529] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia, characterized by progressive loss of cognitive function, with β-amyloid plaques and neurofibrillary tangles being its major pathological findings. Although the disease mainly affects the elderly, c. 5–10% of the cases are due to PSEN1, PSEN2, and APP mutations, principally associated with an early onset of the disease. The A413E (rs63750083) PSEN1 variant, identified in 2001, is associated with early-onset Alzheimer’s disease (EOAD). Although there is scant knowledge about the disease’s clinical manifestations and particular features, significant clinical heterogeneity was reported, with a high incidence of spastic paraparesis (SP), language impairments, and psychiatric and motor manifestations. This scoping review aims to synthesize findings related to the A431E variant of PSEN1. In the search, we followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and the guidelines proposed by Arksey and O’Malley. We searched and identified 247 studies including the A431E variant of PSEN1 from 2001 to 2021 in five databases and one search engine. After the removal of duplicates, and apply inclusion criteria, 42 studies were finally included. We considered a narrative synthesis with a qualitative approach for the analysis of the data. Given the study sample conformation, we divided the results into those carried out only with participants carrying A431E (seven studies), subjects with PSEN variants (11 studies), and variants associated with EOAD in PSEN1, PSEN2, and APP (24 studies). The resulting synthesis indicates most studies involve Mexican and Mexican-American participants in preclinical stages. The articles analyzed included carrier characteristics in categories such as genetics, clinical, imaging techniques, neuropsychology, neuropathology, and biomarkers. Some studies also considered family members’ beliefs and caregivers’ experiences. Heterogeneity in both the studies found and carrier samples of EOAD-related gene variants does not allow for the generalization of the findings. Future research should focus on reporting data on the progression of carrier characteristics through time and reporting results independently or comparing them across variants.
Collapse
Affiliation(s)
- Maribel Orozco-Barajas
- Doctorado en Biociencias, Centro Universitario de los Altos, Universidad de Guadalajara, Guadalajara, Mexico
- Centro de Atención Psicológica, Tepatitlán de Morelos, Mexico
| | | | - Alejandro A. Canales-Aguirre
- Departamento de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C. (CIATEJ), Guadalajara, Mexico
| | - Victor J. Sánchez-González
- Doctorado en Biociencias, Centro Universitario de los Altos, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Clínicas, Centro Universitario de los Altos, Universidad de Guadalajara, Guadalajara, Mexico
- *Correspondence: Victor J. Sánchez-González,
| |
Collapse
|
5
|
Pseudobulbar affect in neurodegenerative diseases: A systematic review and meta-analysis. J Clin Neurosci 2022; 100:100-107. [DOI: 10.1016/j.jocn.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 11/21/2022]
|
6
|
Pursuit of precision medicine: Systems biology approaches in Alzheimer's disease mouse models. Neurobiol Dis 2021; 161:105558. [PMID: 34767943 PMCID: PMC10112395 DOI: 10.1016/j.nbd.2021.105558] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a complex disease that is mediated by numerous factors and manifests in various forms. A systems biology approach to studying AD involves analyses of various body systems, biological scales, environmental elements, and clinical outcomes to understand the genotype to phenotype relationship that potentially drives AD development. Currently, there are many research investigations probing how modifiable and nonmodifiable factors impact AD symptom presentation. This review specifically focuses on how imaging modalities can be integrated into systems biology approaches using model mouse populations to link brain level functional and structural changes to disease onset and progression. Combining imaging and omics data promotes the classification of AD into subtypes and paves the way for precision medicine solutions to prevent and treat AD.
Collapse
|
7
|
Is there a link between headache and cognitive disorders? A systematic review. Rev Neurol (Paris) 2021; 178:285-290. [PMID: 34689981 DOI: 10.1016/j.neurol.2021.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND The overall prevalence of headaches decreases with age; however headaches remain frequent in aged individuals who are also affected by other disorders such as cognitive decline. Despite the high frequency of both conditions in these persons, the association between headaches and cognitive decline is underexplored, underdiagnosed and poorly understood. OBJECTIVE In the present article, we aim to provide a comprehensive review of existing data concerning the link between headache and cognitive decline. METHODS We undertook a systematic literature review to report articles that focus on headaches (including all types of headaches) and neurocognitive disorders of degenerative causes. RESULTS Only 9 studies have explored the association between headaches and neurocognitive decline. Methods were highly variable from population-based study to short series of patients using either database or questionnaire during consultation. Studies focusing on Familial Alzheimer's Disease revealed a very high prevalence of headaches in mutation carrier patients compared to non-carrier patients. CONCLUSION The association between headaches and cognitive decline is underexplored. Future studies are needed to address the pathophysiological mechanisms to improve the treatment of these underestimated headaches.
Collapse
|
8
|
Willumsen N, Poole T, Nicholas JM, Fox NC, Ryan NS, Lashley T. Variability in the type and layer distribution of cortical Aβ pathology in familial Alzheimer's disease. Brain Pathol 2021; 32:e13009. [PMID: 34319632 PMCID: PMC9048809 DOI: 10.1111/bpa.13009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022] Open
Abstract
Familial Alzheimer's disease (FAD) is caused by autosomal dominant mutations in the PSEN1, PSEN2 or APP genes, giving rise to considerable clinical and pathological heterogeneity in FAD. Here we investigate variability in clinical data and the type and distribution of Aβ pathologies throughout the cortical layers of different FAD mutation cases. Brain tissue from 20 FAD cases [PSEN1 pre-codon 200 (n = 10), PSEN1 post-codon 200 (n = 6), APP (n = 4)] were investigated. Frontal cortex sections were stained immunohistochemically for Aβ, and Nissl to define the cortical layers. The frequency of different amyloid-beta plaque types was graded for each cortical layer and the severity of cerebral amyloid angiopathy (CAA) was determined in cortical and leptomeningeal blood vessels. Comparisons were made between FAD mutations and APOE4 status, with associations between pathology, clinical and genetic data investigated. In this cohort, possession of an APOE4 allele was associated with increased disease duration but not with age at onset, after adjusting for mutation sub-group and sex. We found Aβ pathology to be heterogeneous between cases although Aβ load was highest in cortical layer 3 for all mutation groups and a higher Aβ load was associated with APOE4. The PSEN1 post-codon 200 group had a higher Aβ load in lower cortical layers, with a small number of this group having increased cotton wool plaque pathology in lower layers. Cotton wool plaque frequency was positively associated with the severity of CAA in the whole cohort and in the PSEN1 post-codon 200 group. Carriers of the same PSEN1 mutation can have differing patterns of Aβ deposition, potentially because of differences in risk factors. Our results highlight possible influences of APOE4 genotype, and PSEN1 mutation type on Aβ deposition, which may have effects on the clinical heterogeneity of FAD.
Collapse
Affiliation(s)
- Nanet Willumsen
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Teresa Poole
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK.,Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Jennifer M Nicholas
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK.,Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at University College London, London, UK
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at University College London, London, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
9
|
Prendecki M, Kowalska M, Toton E, Kozubski W. Genetic Editing and Pharmacogenetics in Current And Future Therapy Of Neurocognitive Disorders. Curr Alzheimer Res 2021; 17:238-258. [PMID: 32321403 DOI: 10.2174/1567205017666200422152440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 02/05/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022]
Abstract
Dementia is an important issue in western societies, and in the following years, this problem will also rise in the developing regions, such as Africa and Asia. The most common types of dementia in adults are Alzheimer's Disease (AD), Dementia with Lewy Bodies (DLB), Frontotemporal Dementia (FTD) and Vascular Dementia (VaD), of which, AD accounts for more than half of the cases. The most prominent symptom of AD is cognitive impairment, currently treated with four drugs: Donepezil, rivastigmine, and galantamine, enhancing cholinergic transmission; as well as memantine, protecting neurons against glutamate excitotoxicity. Despite ongoing efforts, no new drugs in the treatment of AD have been registered for the last ten years, thus multiple studies have been conducted on genetic factors affecting the efficacy of antidementia pharmacotherapy. The researchers investigate the effects of variants in multiple genes, such as ABCB1, ACE, CHAT, CHRNA7, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, CYP3A7, NR1I2, NR1I3, POR, PPAR, RXR, SLC22A1/2/5, SLC47A1, UGT1A6, UGT1A9 and UGT2B7, associated with numerous pathways: the development of pathological proteins, formation and metabolism of acetylcholine, transport, metabolism and excretion of antidementia drugs and transcription factors regulating the expression of genes responsible for metabolism and transport of drugs. The most promising results have been demonstrated for APOE E4, dementia risk variant, BCHE-K, reduced butyrylcholinesterase activity variant, and CYP2D6 UM, ultrarapid hepatic metabolism. Further studies investigate the possibilities of the development of emerging drugs or genetic editing by CRISPR/Cas9 for causative treatment. In conclusion, the pharmacogenetic studies on dementia diseases may improve the efficacy of pharmacotherapy in some patients with beneficial genetic variants, at the same time, identifying the carriers of unfavorable alleles, the potential group of novel approaches to the treatment and prevention of dementia.
Collapse
Affiliation(s)
- Michal Prendecki
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marta Kowalska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Ewa Toton
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
10
|
Smirnov DS, Galasko D, Hiniker A, Edland SD, Salmon DP. Age-at-Onset and APOE-Related Heterogeneity in Pathologically Confirmed Sporadic Alzheimer Disease. Neurology 2021; 96:e2272-e2283. [PMID: 33722993 PMCID: PMC8166435 DOI: 10.1212/wnl.0000000000011772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/28/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To characterize age-related clinical heterogeneity in Alzheimer disease (AD) and determine whether it is modified by APOE genotype or concomitant non-AD pathology, we analyzed data from 1,750 patients with sporadic, pathologically confirmed severe AD. METHODS In this retrospective cohort study, regression and mixed effects models assessed effects of estimated age at onset, APOE genotype, and their interaction on standardized clinical, cognitive, and pathologic outcome measures from the National Alzheimer's Coordinating Center database. RESULTS A bimodal distribution of age at onset frequency in APOE ε4- cases showed best separation at age 63. Using this age cutoff, cases were grouped as ε4- early-onset AD (EOAD) (n = 169), ε4+ EOAD (n = 273), ε4- late-onset AD (LOAD) (n = 511), and ε4+ LOAD (n = 797). Patients with EOAD were more likely than patients with LOAD to present with noncognitive behavioral or motor symptoms or nonmemory cognitive complaints, and had more executive dysfunction, but less language impairment on objective cognitive testing. Age at onset and ε4- genotype were independently associated with lower baseline Mini-Mental State Examination scores and greater functional impairment and patients with EOAD had faster cognitive and functional decline than patients with LOAD regardless of APOE genotype. Patients with EOAD were more likely than patients with LOAD to receive a non-AD clinical diagnosis even though they were more likely to have pure AD without concomitant vascular or other non-AD neurodegenerative pathology. CONCLUSIONS Early-onset sporadic AD is associated with a greater likelihood of an atypical, non-memory-dominant clinical presentation, especially in the absence of the APOE ε4 allele, which may lead to misattribution to non-AD underlying pathology.
Collapse
Affiliation(s)
- Denis S Smirnov
- From the Departments of Neurosciences (D. Smirnov, D.G., A.H., D. Salmon), Pathology (A.H.), and Family Medicine and Public Health (S. Edland), University of California San Diego
| | - Douglas Galasko
- From the Departments of Neurosciences (D. Smirnov, D.G., A.H., D. Salmon), Pathology (A.H.), and Family Medicine and Public Health (S. Edland), University of California San Diego
| | - Annie Hiniker
- From the Departments of Neurosciences (D. Smirnov, D.G., A.H., D. Salmon), Pathology (A.H.), and Family Medicine and Public Health (S. Edland), University of California San Diego
| | - Steven D Edland
- From the Departments of Neurosciences (D. Smirnov, D.G., A.H., D. Salmon), Pathology (A.H.), and Family Medicine and Public Health (S. Edland), University of California San Diego
| | - David P Salmon
- From the Departments of Neurosciences (D. Smirnov, D.G., A.H., D. Salmon), Pathology (A.H.), and Family Medicine and Public Health (S. Edland), University of California San Diego.
| |
Collapse
|
11
|
Lu K, Nicholas JM, Weston PSJ, Stout JC, O’Regan AM, James SN, Buchanan SM, Lane CA, Parker TD, Keuss SE, Keshavan A, Murray-Smith H, Cash DM, Sudre CH, Malone IB, Coath W, Wong A, Richards M, Henley SMD, Fox NC, Schott JM, Crutch SJ. Visuomotor integration deficits are common to familial and sporadic preclinical Alzheimer's disease. Brain Commun 2021; 3:fcab003. [PMID: 33615219 PMCID: PMC7882207 DOI: 10.1093/braincomms/fcab003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 11/26/2022] Open
Abstract
We investigated whether subtle visuomotor deficits were detectable in familial and sporadic preclinical Alzheimer's disease. A circle-tracing task-with direct and indirect visual feedback, and dual-task subtraction-was completed by 31 individuals at 50% risk of familial Alzheimer's disease (19 presymptomatic mutation carriers; 12 non-carriers) and 390 cognitively normal older adults (members of the British 1946 Birth Cohort, all born during the same week; age range at assessment = 69-71 years), who also underwent β-amyloid-PET/MRI to derive amyloid status (positive/negative), whole-brain volume and white matter hyperintensity volume. We compared preclinical Alzheimer's groups against controls cross-sectionally (mutation carriers versus non-carriers; amyloid-positive versus amyloid-negative) on speed and accuracy of circle-tracing and subtraction. Mutation carriers (mean 7 years before expected onset) and amyloid-positive older adults traced disproportionately less accurately than controls when visual feedback was indirect, and were slower at dual-task subtraction. In the older adults, the same pattern of associations was found when considering amyloid burden as a continuous variable (Standardized Uptake Value Ratio). The effect of amyloid was independent of white matter hyperintensity and brain volumes, which themselves were associated with different aspects of performance: greater white matter hyperintensity volume was also associated with disproportionately poorer tracing accuracy when visual feedback was indirect, whereas larger brain volume was associated with faster tracing and faster subtraction. Mutation carriers also showed evidence of poorer tracing accuracy when visual feedback was direct. This study provides the first evidence of visuomotor integration deficits common to familial and sporadic preclinical Alzheimer's disease, which may precede the onset of clinical symptoms by several years.
Collapse
Affiliation(s)
- Kirsty Lu
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Jennifer M Nicholas
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Philip S J Weston
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Julie C Stout
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Alison M O’Regan
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Sarah-Naomi James
- MRC Unit for Lifelong Health and Ageing at UCL, London, WC1E 7HB, UK
| | - Sarah M Buchanan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Christopher A Lane
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Thomas D Parker
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Sarah E Keuss
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Ashvini Keshavan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Heidi Murray-Smith
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - David M Cash
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London, UK
| | - Carole H Sudre
- MRC Unit for Lifelong Health and Ageing at UCL, London, WC1E 7HB, UK
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EU, UK
- Department of Medical Physics, University College London, London, WC1E 7JE, UK
| | - Ian B Malone
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - William Coath
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCL, London, WC1E 7HB, UK
| | - Marcus Richards
- MRC Unit for Lifelong Health and Ageing at UCL, London, WC1E 7HB, UK
| | - Susie M D Henley
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Nick C Fox
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London, UK
| | - Jonathan M Schott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Sebastian J Crutch
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| |
Collapse
|
12
|
Franzmeier N, Ren J, Damm A, Monté-Rubio G, Boada M, Ruiz A, Ramirez A, Jessen F, Düzel E, Rodríguez Gómez O, Benzinger T, Goate A, Karch CM, Fagan AM, McDade E, Buerger K, Levin J, Duering M, Dichgans M, Suárez-Calvet M, Haass C, Gordon BA, Lim YY, Masters CL, Janowitz D, Catak C, Wolfsgruber S, Wagner M, Milz E, Moreno-Grau S, Teipel S, Grothe MJ, Kilimann I, Rossor M, Fox N, Laske C, Chhatwal J, Falkai P, Perneczky R, Lee JH, Spottke A, Boecker H, Brosseron F, Fliessbach K, Heneka MT, Nestor P, Peters O, Fuentes M, Menne F, Priller J, Spruth EJ, Franke C, Schneider A, Westerteicher C, Speck O, Wiltfang J, Bartels C, Araque Caballero MÁ, Metzger C, Bittner D, Salloway S, Danek A, Hassenstab J, Yakushev I, Schofield PR, Morris JC, Bateman RJ, Ewers M. The BDNF Val66Met SNP modulates the association between beta-amyloid and hippocampal disconnection in Alzheimer's disease. Mol Psychiatry 2021; 26:614-628. [PMID: 30899092 PMCID: PMC6754794 DOI: 10.1038/s41380-019-0404-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/19/2019] [Accepted: 02/14/2019] [Indexed: 01/29/2023]
Abstract
In Alzheimer's disease (AD), a single-nucleotide polymorphism in the gene encoding brain-derived neurotrophic factor (BDNFVal66Met) is associated with worse impact of primary AD pathology (beta-amyloid, Aβ) on neurodegeneration and cognitive decline, rendering BDNFVal66Met an important modulating factor of cognitive impairment in AD. However, the effect of BDNFVal66Met on functional networks that may underlie cognitive impairment in AD is poorly understood. Using a cross-validation approach, we first explored in subjects with autosomal dominant AD (ADAD) from the Dominantly Inherited Alzheimer Network (DIAN) the effect of BDNFVal66Met on resting-state fMRI assessed functional networks. In seed-based connectivity analysis of six major large-scale networks, we found a stronger decrease of hippocampus (seed) to medial-frontal connectivity in the BDNFVal66Met carriers compared to BDNFVal homozogytes. BDNFVal66Met was not associated with connectivity in any other networks. Next, we tested whether the finding of more pronounced decrease in hippocampal-medial-frontal connectivity in BDNFVal66Met could be also found in elderly subjects with sporadically occurring Aβ, including a group with subjective cognitive decline (N = 149, FACEHBI study) and a group ranging from preclinical to AD dementia (N = 114, DELCODE study). In both of these independently recruited groups, BDNFVal66Met was associated with a stronger effect of more abnormal Aβ-levels (assessed by biofluid-assay or amyloid-PET) on hippocampal-medial-frontal connectivity decreases, controlled for hippocampus volume and other confounds. Lower hippocampal-medial-frontal connectivity was associated with lower global cognitive performance in the DIAN and DELCODE studies. Together these results suggest that BDNFVal66Met is selectively associated with a higher vulnerability of hippocampus-frontal connectivity to primary AD pathology, resulting in greater AD-related cognitive impairment.
Collapse
Affiliation(s)
- Nicolai Franzmeier
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Jinyi Ren
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Alexander Damm
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Gemma Monté-Rubio
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain
| | - Mercè Boada
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain ,grid.451322.30000 0004 1770 9462CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Agustín Ruiz
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain ,grid.451322.30000 0004 1770 9462CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Alfredo Ramirez
- grid.6190.e0000 0000 8580 3777Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany ,grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Frank Jessen
- grid.6190.e0000 0000 8580 3777Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Emrah Düzel
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Octavio Rodríguez Gómez
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain ,grid.451322.30000 0004 1770 9462CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Tammie Benzinger
- grid.4367.60000 0001 2355 7002Department of Radiology, Washington University in St Louis, St Louis, MO USA ,grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA
| | - Alison Goate
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Ronald M. Loeb Center for Alzheimer’s Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Celeste M. Karch
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Psychiatry, Washington University in St Louis, St Louis, MO USA
| | - Anne M. Fagan
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Eric McDade
- grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Katharina Buerger
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Johannes Levin
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XDepartment of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Duering
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Martin Dichgans
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Marc Suárez-Calvet
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.430077.7Barcelonabeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Catalonia Spain ,grid.5252.00000 0004 1936 973XFaculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Haass
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XFaculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Brian A. Gordon
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Psychological and Brain Sciences, Washington University, St. Louis, MO USA
| | - Yen Ying Lim
- grid.1008.90000 0001 2179 088XThe Florey Institute, The University of Melbourne, Parkville, VIC Australia
| | - Colin L. Masters
- grid.1008.90000 0001 2179 088XThe Florey Institute, The University of Melbourne, Parkville, VIC Australia
| | - Daniel Janowitz
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Cihan Catak
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Steffen Wolfsgruber
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael Wagner
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Esther Milz
- grid.6190.e0000 0000 8580 3777Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Sonia Moreno-Grau
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain ,grid.451322.30000 0004 1770 9462CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Stefan Teipel
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany ,grid.413108.f0000 0000 9737 0454Department of Psychosomatic Medicine, University Hospital Rostock, Rostock, Germany
| | - Michel J Grothe
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Ingo Kilimann
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Martin Rossor
- grid.83440.3b0000000121901201Dementia Research Centre, University College London, Queen Square, London, UK
| | - Nick Fox
- grid.83440.3b0000000121901201Dementia Research Centre, University College London, Queen Square, London, UK
| | - Christoph Laske
- grid.428620.aHertie Institute for Clinical Brain Research, Tübingen, Germany ,grid.424247.30000 0004 0438 0426Germany and German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Jasmeer Chhatwal
- grid.38142.3c000000041936754XMassachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston, MA USA
| | - Peter Falkai
- grid.5252.00000 0004 1936 973XDepartment of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Robert Perneczky
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany ,grid.5252.00000 0004 1936 973XDepartment of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany ,grid.7445.20000 0001 2113 8111Neuroepidemiology and Ageing Research Unit, School of Public Health, The Imperial College of Science, Technology and Medicine, London, UK
| | - Jae-Hong Lee
- grid.413967.e0000 0001 0842 2126Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Annika Spottke
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ,grid.10388.320000 0001 2240 3300Department of Neurology, University of Bonn, Bonn, Germany
| | - Henning Boecker
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ,grid.10388.320000 0001 2240 3300Department of Radiology, University of Bonn, Bonn, Germany
| | - Frederic Brosseron
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Klaus Fliessbach
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T. Heneka
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Peter Nestor
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany ,grid.1003.20000 0000 9320 7537Queensland Brain Institute, University of Queensland, Brisbane, QLD Australia
| | - Oliver Peters
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Manuel Fuentes
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Felix Menne
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Josef Priller
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Neuropsychiatry, Charité, Berlin, Germany
| | - Eike J. Spruth
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Neuropsychiatry, Charité, Berlin, Germany
| | - Christiana Franke
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Neuropsychiatry, Charité, Berlin, Germany
| | - Anja Schneider
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Christine Westerteicher
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Oliver Speck
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265Leibniz Institute for Neurobiology, Magdeburg, Germany ,grid.452320.20000 0004 0404 7236Center for Behavioral Brain Sciences, Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Department for Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke University, Magdeburg, Germany
| | - Jens Wiltfang
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany ,grid.7450.60000 0001 2364 4210Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany ,grid.7311.40000000123236065iBiMED, Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| | - Claudia Bartels
- grid.7450.60000 0001 2364 4210Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
| | - Miguel Ángel Araque Caballero
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Coraline Metzger
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Daniel Bittner
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Stephen Salloway
- grid.40263.330000 0004 1936 9094Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI USA
| | - Adrian Danek
- grid.5252.00000 0004 1936 973XDepartment of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jason Hassenstab
- grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Igor Yakushev
- grid.6936.a0000000123222966Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| | - Peter R. Schofield
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Barker Street Randwick, Sydney, NSW 2031 Australia ,grid.1005.40000 0004 4902 0432School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - John C. Morris
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Psychiatry, Washington University in St Louis, St Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Randall J. Bateman
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.
| |
Collapse
|
13
|
Abbatemarco JR, Jones SE, Larvie M, Bekris LM, Khrestian ME, Krishnan K, Leverenz JB. Amyloid Precursor Protein Variant, E665D, Associated With Unique Clinical and Biomarker Phenotype. Am J Alzheimers Dis Other Demen 2021; 36:1533317520981225. [PMID: 33445953 PMCID: PMC10580711 DOI: 10.1177/1533317520981225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We describe a clinical, imaging and biomarker phenotype associated with an amyloid precursor gene (APP) E665D variant in a 45-year-old man with progressive cognitive and behavioral dysfunction. Brain MRI showed bilateral, confluent T2 hyperintensities predominantly in the anterior white matter. Amyloid imaging and CSF testing were consistent with amyloid deposition. 7 Tesla MRI revealed cerebral microhemorrhages suggestive of cerebral amyloid angiopathy (CAA). Contrary to previous reports, this case raises the possibility that the APP E665D genetic change may be pathogenic, particularly given the abnormal Alzheimer's disease biomarkers observed in the cerebrospinal fluid, positive amyloid imaging and imaging evidence for CAA in a relatively young patient with progressive cognitive decline.
Collapse
Affiliation(s)
- Justin R. Abbatemarco
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Stephen E. Jones
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Imaging Sciences, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mykol Larvie
- Imaging Sciences, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lynn M. Bekris
- Lerner Research Institute, Genomics Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Maria E. Khrestian
- Lerner Research Institute, Genomics Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kamini Krishnan
- Department of Neurology, Cleveland Clinic, Cleveland, OH, USA
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - James B. Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
14
|
Lee C, Willerth SM, Nygaard HB. The Use of Patient-Derived Induced Pluripotent Stem Cells for Alzheimer’s Disease Modeling. Prog Neurobiol 2020; 192:101804. [DOI: 10.1016/j.pneurobio.2020.101804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 01/10/2023]
|
15
|
Franzmeier N, Koutsouleris N, Benzinger T, Goate A, Karch CM, Fagan AM, McDade E, Duering M, Dichgans M, Levin J, Gordon BA, Lim YY, Masters CL, Rossor M, Fox NC, O'Connor A, Chhatwal J, Salloway S, Danek A, Hassenstab J, Schofield PR, Morris JC, Bateman RJ, Ewers M. Predicting sporadic Alzheimer's disease progression via inherited Alzheimer's disease-informed machine-learning. Alzheimers Dement 2020; 16:501-511. [PMID: 32043733 PMCID: PMC7222030 DOI: 10.1002/alz.12032] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/21/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022]
Abstract
Introduction: Developing cross-validated multi-biomarker models for the prediction of the rate of cognitive decline in Alzheimer’s disease (AD) is a critical yet unmet clinical challenge. Methods: We applied support vector regression to AD biomarkers derived from cerebrospinal fluid, structural magnetic resonance imaging (MRI), amyloid-PET and fluorodeoxyglucose positron-emission tomography (FDG-PET) to predict rates of cognitive decline. Prediction models were trained in autosomal-dominant Alzheimer’s disease (ADAD, n = 121) and subsequently cross-validated in sporadic prodromal AD (n = 216). The sample size needed to detect treatment effects when using model-based risk enrichment was estimated. Results: A model combining all biomarker modalities and established in ADAD predicted the 4-year rate of decline in global cognition (R2 = 24%) and memory (R2 =25%) in sporadic AD. Model-based risk-enrichment reduced the sample size required for detecting simulated intervention effects by 50%–75%. Discussion: Our independently validated machine-learning model predicted cognitive decline in sporadic prodromal AD and may substantially reduce sample size needed in clinical trials in AD.
Collapse
Affiliation(s)
- Nicolai Franzmeier
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Tammie Benzinger
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.,Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Alison Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Ronald M. Loeb Center for Alzheimer's Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Celeste M Karch
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, Missouri, USA.,Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Anne M Fagan
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, Missouri, USA.,Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Eric McDade
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Marco Duering
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Johannes Levin
- Munich Cluster for Systems Neurology, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Brian A Gordon
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, Missouri, USA.,Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA.,Department of Psychological and Brain Sciences, Washington University, St. Louis, Missouri, USA
| | - Yen Ying Lim
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Martin Rossor
- Dementia Research Centre, University College London, Queen Square, London, UK
| | - Nick C Fox
- Dementia Research Centre, University College London, Queen Square, London, UK
| | - Antoinette O'Connor
- Dementia Research Centre, University College London, Queen Square, London, UK
| | - Jasmeer Chhatwal
- Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen Salloway
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jason Hassenstab
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Psychological and Brain Sciences, Washington University, St. Louis, Missouri, USA
| | - Peter R Schofield
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - John C Morris
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Randall J Bateman
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | -
- ADNI Consortium members are listed in the appendix
| | -
- DIAN Consortium members are listed in the appendix
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Early-onset Alzheimer disease (AD) is defined as having an age of onset younger than 65 years. While early-onset AD is often overshadowed by the more common late-onset AD, recognition of the differences between early- and late-onset AD is important for clinicians. RECENT FINDINGS Early-onset AD comprises about 5% to 6% of cases of AD and includes a substantial percentage of phenotypic variants that differ from the usual amnestic presentation of typical AD. Characteristics of early-onset AD in comparison to late-onset AD include a larger genetic predisposition (familial mutations and summed polygenic risk), more aggressive course, more frequent delay in diagnosis, higher prevalence of traumatic brain injury, less memory impairment and greater involvement of other cognitive domains on presentation, and greater psychosocial difficulties. Neuroimaging features of early-onset AD in comparison to late-onset AD include greater frequency of hippocampal sparing and posterior neocortical atrophy, increased tau burden, and greater connectomic changes affecting frontoparietal networks rather than the default mode network. SUMMARY Early-onset AD differs substantially from late-onset AD, with different phenotypic presentations, greater genetic predisposition, and differences in neuropathologic burden and topography. Early-onset AD more often presents with nonamnestic phenotypic variants that spare the hippocampi and with greater tau burden in posterior neocortices. The early-onset AD phenotypic variants involve different neural networks than typical AD. The management of early-onset AD is similar to that of late-onset AD but with special emphasis on targeting specific cognitive areas and more age-appropriate psychosocial support and education.
Collapse
|
17
|
Mendez MF, Moheb N, Desarzant RE, Teng EH. The Progressive Acalculia Presentation of Parietal Variant Alzheimer's Disease. J Alzheimers Dis 2019; 63:941-948. [PMID: 29710718 DOI: 10.3233/jad-180024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Many patients with early-onset Alzheimer's disease (EOAD; age of onset <65 years) have non-amnestic presentations involving language (logopenic primary progressive aphasia, lvPPA), visuospatial abilities (posterior cortical atrophy, PCA), and even asymmetric symptoms consistent with corticobasal syndrome (CBS). An inferior parietal lobule variant of EOAD commonly presents with progressive difficulty with calculations. METHODS We reviewed 276 EOAD patients for presentations with predominant acalculia. These patients were diagnosed with clinically probable Alzheimer's disease (AD) verified by positron emission tomography (PET) or cerebrospinal fluid amyloid-β or tau biomarkers. RESULTS We identified 18 (9M/9F) (6.5%) EOAD patients with progressive acalculia that did not meet most criteria for lvPPA, visual PCA, or CBS. Their ages of onset and presentation were 56.6 (5.0) and 59.4 (6.5), respectively. Their acalculia was consistent with a primary acalculia ("anarithmetia") not explained by language or visuospatial impairments. Many also had anomia (14/18), ideomotor apraxia (13/18), and the complete Gerstmann's syndrome (7/18). Visual analysis of their diverse magnetic resonance imaging disclosed biparietal atrophy, disproportionately worse on the left. CONCLUSIONS Primary acalculia may be the most common manifestation of an inferior parietal presentation of EOAD affecting the left intraparietal sulcus. This parietal variant also commonly involves progressive anomia, ideomotor apraxia, and other elements of Gerstmann's syndrome. The early recognition of patients with this variant, which is distinguishable from lvPPA, visual PCA, or CBS, would be facilitated by its recognition as a unique subtype of EOAD.
Collapse
Affiliation(s)
- Mario F Mendez
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.,Neurobehavior Unit, V.A. Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Negar Moheb
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Randy E Desarzant
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.,Neurobehavior Unit, V.A. Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Edmond H Teng
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.,Neurobehavior Unit, V.A. Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
18
|
O'Malley M, Parkes J, Stamou V, LaFontaine J, Oyebode J, Carter J. Young-onset dementia: scoping review of key pointers to diagnostic accuracy. BJPsych Open 2019; 5:e48. [PMID: 31530311 PMCID: PMC6582217 DOI: 10.1192/bjo.2019.36] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Routine psychiatric assessments tailored to older patients are often insufficient to identify the complexity of presentation in younger patients with dementia. Significant overlap between psychiatric disorders and neurodegenerative disease means that high rates of prior incorrect psychiatric diagnosis are common. Long delays to diagnosis, misdiagnosis and lack of knowledge from professionals are key concerns. No specific practice guidelines exist for diagnosis of young-onset dementia (YOD). AIMS The review evaluates the current evidence about best practice in diagnosis to guide thorough assessment of the complex presentations of YOD with a view to upskilling professionals in the field. METHOD A comprehensive search of the literature adopting a scoping review methodology was conducted regarding essential elements of diagnosis in YOD, over and above those in current diagnostic criteria for disease subtypes. This methodology was chosen because research in this area is sparse and not amenable to a traditional systematic review. RESULTS The quality of evidence identified is variable with the majority provided from expert opinion and evidence is lacking on some topics. Evidence appears weighted towards diagnosis in frontotemporal dementia and its subtypes and young-onset Alzheimer's disease. CONCLUSIONS The literature demonstrates that a clinically rigorous and systematic approach is necessary in order to avoid mis- or underdiagnosis for younger people. The advent of new disease-modifying treatments necessitates clinicians in the field to improve knowledge of new imaging techniques and genetics, with the goal of improving training and practice, and highlights the need for quality indicators and alignment of diagnostic procedures across clinical settings. DECLARATION OF INTEREST None.
Collapse
Affiliation(s)
- Mary O'Malley
- Research Assistant, Faculty of Health and Society, University of Northampton, UK
| | - Jacqueline Parkes
- Professor, Faculty of Health and Society, University of Northampton, UK
| | - Vasileios Stamou
- Research Assistant, Centre for Applied Dementia Studies, University of Bradford, UK
| | - Jenny LaFontaine
- Research Fellow, Centre for Applied Dementia Studies, University of Bradford, UK
| | - Jan Oyebode
- Centre for Applied Dementia Studies, University of Bradford, UK
| | - Janet Carter
- Assistant Professor, Division of Psychiatry, University College London, UK
| |
Collapse
|
19
|
Homozygosity for the A431E mutation in PSEN1 presenting with a relatively aggressive phenotype. Neurosci Lett 2019; 699:195-198. [PMID: 30716424 DOI: 10.1016/j.neulet.2019.01.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/20/2019] [Accepted: 01/28/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE We report a 35 year-old male with childhood learning disability and early onset dementia who is homozygous for the A431E variant in the PSEN1 gene. Presenilin1 mutations are associated with autosomal dominant Alzheimer's dementia with young and somewhat stereotyped onset. Such variants may cause Alzheimer's dementia through aberrant processing of amyloid precursor protein through effects on γ-secretase activity. γ-secretase is involved in the cleavage of many proteins critical to normal function, including brain development. Therefore, manifestations in persons without normal Presenilin1 function is of interest. METHODS Clinical evaluation including family history, examination, brain MRI, and genetic analysis. RESULTS Our patient had mild developmental delay, chronic nighttime behavioral disturbance, and onset of progressive cognitive deficits at age 33. Clinical evaluation demonstrated spastic paraparesis and pseudobulbar affect. Brain MRI revealed cerebral atrophy disproportionate to age. Chronic microhemorrhages within bilateral occipital, temporal, and right frontal lobes were seen. Sanger sequencing confirmed homozygosity for the A431E variant in PSEN1, which is a known pathogenic variant causing autosomal dominant Alzheimer's dementia. CONCLUSIONS Our report demonstrates that homozygosity for pathogenic Presenilin1 variants is compatible with life, though may cause a more aggressive phenotype with younger age of onset and possibly REM behavior disorder.
Collapse
|
20
|
Chen Y, Sillaire AR, Dallongeville J, Skrobala E, Wallon D, Dubois B, Hannequin D, Pasquier F. Low Prevalence and Clinical Effect of Vascular Risk Factors in Early-Onset Alzheimer's Disease. J Alzheimers Dis 2018; 60:1045-1054. [PMID: 28984595 PMCID: PMC5676853 DOI: 10.3233/jad-170367] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background: Determinants of early-onset Alzheimer’s disease (EOAD) are not well known. In late-onset AD, vascular risk factors (VRFs) are associated with earlier clinical manifestation. Objective: The objective of this study was to assess the putative association between VRFs and EOAD. Methods: We studied participants with dementia meeting criteria for EOAD (recruited into the French CoMAJ prospective cohort study from 1 June 2009 to 28 February 2014) and age-, gender-matched controls (ratio 1:3, drawn randomly from the French MONA-LISA population-based survey between 2005 and 2007). Demographic data, VRFs, comorbidities, treatments, and APOE genotypes were compared in multivariable logistic regression analyses. Results: We studied 102 participants with dementia (mean±standard deviation age: 59.5±3.8; women: 59.8%) and 306 controls. Compared with controls, EOAD participants had spent less time in formal education (9.9±2.9 versus 11.7±3.8 y; p < 0.0001), were less likely to be regular alcohol consumers (p < 0.0001), had a lower body mass index (–2 kg/m2; p < 0.0004), and a lower mean systolic blood pressure (–6.2 mmHg; p = 0.0036). The prevalence of APOE ɛ4 allele was higher in participants with dementia than in controls (50% versus 29.4%; p = 0.0002), as was the prevalence of depression (48% versus 32%; p < 0.001). Similar results were observed in multivariable analysis. Compared with EOAD participants lacking VRFs, EOAD participants with at least one VRF had a higher prevalence of depression (29.6% versus 53.3%, respectively; p = 0.03). Conclusion: The prevalence of VRFs is not elevated in EOAD patients (in contrast to older AD patients). Extensive genetic testing should be considered more frequently in the context of EOAD.
Collapse
Affiliation(s)
- Yaohua Chen
- University Lille, INSERM U1171 (Degenerative and Vascular Cognitive Disorders), Lille, France.,CHU Lille, Memory Clinic, Lille University Medical Center, Lille, France.,CNR-MAJ (Reference Center for Early-Onset Alzheimer's Disease and Related Disorders), Lille, France
| | - Adeline Rollin Sillaire
- University Lille, INSERM U1171 (Degenerative and Vascular Cognitive Disorders), Lille, France.,CHU Lille, Memory Clinic, Lille University Medical Center, Lille, France.,CNR-MAJ (Reference Center for Early-Onset Alzheimer's Disease and Related Disorders), Lille, France
| | | | - Emilie Skrobala
- University Lille, INSERM U1171 (Degenerative and Vascular Cognitive Disorders), Lille, France.,CHU Lille, Memory Clinic, Lille University Medical Center, Lille, France
| | - David Wallon
- CNR-MAJ (Reference Center for Early-Onset Alzheimer's Disease and Related Disorders), Lille, France.,University Rouen, INSERM U1079 (IRIB), Rouen, France
| | - Bruno Dubois
- CNR-MAJ (Reference Center for Early-Onset Alzheimer's Disease and Related Disorders), Lille, France.,Institute of Memory and Alzheimer's Disease (IM2A), UMR S1127, AP-HP, Pitié-Salpêtrière University Hospital, Pierre et Marie Curie University, Paris, France
| | - Didier Hannequin
- CNR-MAJ (Reference Center for Early-Onset Alzheimer's Disease and Related Disorders), Lille, France.,University Rouen, INSERM U1079 (IRIB), Rouen, France
| | - Florence Pasquier
- University Lille, INSERM U1171 (Degenerative and Vascular Cognitive Disorders), Lille, France.,CHU Lille, Memory Clinic, Lille University Medical Center, Lille, France.,CNR-MAJ (Reference Center for Early-Onset Alzheimer's Disease and Related Disorders), Lille, France
| | | |
Collapse
|
21
|
Tiedt HO, Benjamin B, Niedeggen M, Lueschow A. Phenotypic Variability in Autosomal Dominant Familial Alzheimer Disease due to the S170F Mutation of Presenilin-1. NEURODEGENER DIS 2018; 18:57-68. [PMID: 29466804 DOI: 10.1159/000485899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/29/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND In rare cases, patients with Alzheimer disease (AD) present at an early age and with a family history suggestive of an autosomal dominant mode of inheritance. Mutations of the presenilin-1 (PSEN1) gene are the most common causes of dementia in these patients. Early-onset and particularly familial AD patients frequently present with variable non-amnestic cognitive symptoms such as visual, language or behavioural changes as well as non-cognitive, e.g. motor, symptoms. OBJECTIVE To investigate the phenotypic variability in carriers of the PSEN1 S170F mutation. METHODS We report a family with 4 patients carrying the S170F mutation of whom 2 underwent detailed clinical examinations. We discuss our current findings in the context of previously reported S170F cases. RESULTS The clinical phenotype was consistent regarding initial memory impairment and early onset in the late twenties found in all S170F patients. There were frequent non-amnestic cognitive changes and, at early stages of the disease, indications of a more pronounced disturbance of visuospatial abilities as compared to face and object recognition. Non-cognitive symptoms most often included myoclonus and cerebellar ataxia. A review of the available case reports indicates some phenotypic variability associated with the S170F mutation including different constellations of symptoms such as parkinsonism and delusions. CONCLUSION The variable clinical findings associated with the S170F mutation highlight the relevance of atypical phenotypes in the context of research and under a clinical perspective. CSF sampling and detection of Aβ species may be essential to indicate AD pathology in unclear cases presenting with cognitive and motor symptoms at a younger age.
Collapse
Affiliation(s)
- Hannes O Tiedt
- Department of Neurology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Berlin, Germany
| | | | | | | |
Collapse
|
22
|
Abstract
The most definitive classification systems for dementia are based on the underlying pathology which, in turn, is categorized largely according to the observed accumulation of abnormal protein aggregates in neurons and glia. These aggregates perturb molecular processes, cellular functions and, ultimately, cell survival, with ensuing disruption of large-scale neural networks subserving cognitive, behavioural and sensorimotor functions. The functional domains affected and the evolution of deficits in these domains over time serve as footprints that the clinician can trace back with various levels of certainty to the underlying neuropathology. The process of phenotyping and syndromic classification has substantially improved over decades of careful clinicopathological correlation, and through the discovery of in vivo biomarkers of disease. Here, we present an overview of the salient features of the most common dementia subtypes - Alzheimer disease, vascular dementia, frontotemporal dementia and related syndromes, Lewy body dementias, and prion diseases - with an emphasis on neuropathology, relevant epidemiology, risk factors, and signature signs and symptoms.
Collapse
|
23
|
Liu CY, Ohki Y, Tomita T, Osawa S, Reed BR, Jagust W, Van Berlo V, Jin LW, Chui HC, Coppola G, Ringman JM. Two Novel Mutations in the First Transmembrane Domain of Presenilin1 Cause Young-Onset Alzheimer’s Disease. J Alzheimers Dis 2017; 58:1035-1041. [DOI: 10.3233/jad-161203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Collin Y. Liu
- Alzheimer’s Disease Research Center, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Yu Ohki
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoko Osawa
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Bruce R. Reed
- Alzheimer’s Disease Research Center, UC Davis, Davis, CA, USA
- Center for Scientific Review, National Institutes of Health, Bethesda, MD, USA
| | - William Jagust
- Alzheimer’s Disease Research Center, UC Davis, Davis, CA, USA
| | | | - Lee-Way Jin
- Alzheimer’s Disease Research Center, UC Davis, Davis, CA, USA
| | - Helena C. Chui
- Alzheimer’s Disease Research Center, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Giovanni Coppola
- Semel Institute at UCLA, Los Angeles, CA, USA
- Easton Center for Alzheimer’s Disease Research, UCLA, Los Angeles, CA, USA
| | - John M. Ringman
- Alzheimer’s Disease Research Center, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
- Easton Center for Alzheimer’s Disease Research, UCLA, Los Angeles, CA, USA
| |
Collapse
|
24
|
Abstract
Early-onset Alzheimer disease (EOAD), with onset in individuals younger than 65 years, although overshadowed by the more common late-onset AD (LOAD), differs significantly from LOAD. EOAD comprises approximately 5% of AD and is associated with delays in diagnosis, aggressive course, and age-related psychosocial needs. One source of confusion is that a substantial percentage of EOAD are phenotypic variants that differ from the usual memory-disordered presentation of typical AD. The management of EOAD is similar to that for LOAD, but special emphasis should be placed on targeting the specific cognitive areas involved and more age-appropriate psychosocial support and education.
Collapse
Affiliation(s)
- Mario F Mendez
- Behavioral Neurology Program, David Geffen School of Medicine at UCLA, 300 Westwood Plaza, Suite B-200, Box 956975, Los Angeles, CA 90095, USA; Neurobehavior Unit, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Building 206, Los Angeles, CA 90073, USA.
| |
Collapse
|
25
|
Paholpak P, Carr AR, Barsuglia JP, Barrows RJ, Jimenez E, Lee GJ, Mendez MF. Person-Based Versus Generalized Impulsivity Disinhibition in Frontotemporal Dementia and Alzheimer Disease. J Geriatr Psychiatry Neurol 2016; 29:344-351. [PMID: 27647788 DOI: 10.1177/0891988716666377] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND While much disinhibition in dementia results from generalized impulsivity, in behavioral variant frontotemporal dementia (bvFTD) disinhibition may also result from impaired social cognition. OBJECTIVE To deconstruct disinhibition and its neural correlates in bvFTD vs. early-onset Alzheimer's disease (eAD). METHODS Caregivers of 16 bvFTD and 21 matched-eAD patients completed the Frontal Systems Behavior Scale disinhibition items. The disinhibition items were further categorized into (1) "person-based" subscale which predominantly associated with violating social propriety and personal boundary and (2) "generalized-impulsivity" subscale which included nonspecific impulsive acts. Subscale scores were correlated with grey matter volumes from tensor-based morphometry on magnetic resonance images. RESULTS In comparison to the eAD patients, the bvFTD patients developed greater person-based disinhibition ( P < 0.001) but comparable generalized impulsivity. Severity of person-based disinhibition significantly correlated with the left anterior superior temporal sulcus (STS), and generalized-impulsivity correlated with the right orbitofrontal cortex (OFC) and the left anterior temporal lobe (aTL). CONCLUSIONS Person-based disinhibition was predominant in bvFTD and correlated with the left STS. In both dementia, violations of social propriety and personal boundaries involved fronto-parieto-temporal network of Theory of Mind, whereas nonspecific disinhibition involved the OFC and aTL.
Collapse
Affiliation(s)
- Pongsatorn Paholpak
- 1 Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, CA, USA.,2 Department of Psychiatry, Khon Kaen University, Khon Kaen, Thailand
| | - Andrew R Carr
- 1 Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, CA, USA.,3 Greater Los Angeles VA Healthcare System, West Los Angeles, CA, USA
| | | | - Robin J Barrows
- 1 Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, CA, USA.,3 Greater Los Angeles VA Healthcare System, West Los Angeles, CA, USA
| | - Elvira Jimenez
- 1 Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, CA, USA.,3 Greater Los Angeles VA Healthcare System, West Los Angeles, CA, USA.,4 Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California at Los Angeles, CA, USA
| | - Grace J Lee
- 5 Department of Psychology, School of Behavioral Health, Loma Linda University, Loma Linda, CA, USA
| | - Mario F Mendez
- 1 Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, CA, USA.,3 Greater Los Angeles VA Healthcare System, West Los Angeles, CA, USA.,4 Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California at Los Angeles, CA, USA
| |
Collapse
|
26
|
Day GS, Musiek ES, Roe CM, Norton J, Goate AM, Cruchaga C, Cairns NJ, Morris JC. Phenotypic Similarities Between Late-Onset Autosomal Dominant and Sporadic Alzheimer Disease: A Single-Family Case-Control Study. JAMA Neurol 2016; 73:1125-32. [PMID: 27454811 PMCID: PMC5025942 DOI: 10.1001/jamaneurol.2016.1236] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
IMPORTANCE The amyloid hypothesis posits that disrupted β-amyloid homeostasis initiates the pathological process resulting in Alzheimer disease (AD). Autosomal dominant AD (ADAD) has an early symptomatic onset and is caused by single-gene mutations that result in overproduction of β-amyloid 42. To the extent that sporadic late-onset AD (LOAD) also results from dysregulated β-amyloid 42, the clinical phenotypes of ADAD and LOAD should be similar when controlling for the effects of age. OBJECTIVE To use a family with late-onset ADAD caused by a presenilin 1 (PSEN1) gene mutation to mitigate the potential confound of age when comparing ADAD and LOAD. DESIGN, SETTING, AND PARTICIPANTS This case-control study was conducted at the Knight Alzheimer Disease Research Center at Washington University, St Louis, Missouri, and other National Institutes of Aging-funded AD centers in the United States. Ten PSEN1 A79V mutation carriers from multiple generations of a family with late-onset ADAD and 12 noncarrier family members were followed up at the Knight Alzheimer Disease Research Center (1985-2015) and 1115 individuals with neuropathologically confirmed LOAD were included from the National Alzheimer Coordinating Center database (September 2005-December 2014). Data analysis was completed in January 2016, including Knight Alzheimer Disease Research Center patient data collected up until the end of 2015. MAIN OUTCOMES AND MEASURES Planned comparison of clinical characteristics between cohorts, including age at symptom onset, associated symptoms and signs, rates of progression, and disease duration. RESULTS Of the PSEN1 A79V carriers in the family with late-onset ADAD, 4 were female (57%); among those with LOAD, 529 were female (47%). Seven mutation carriers (70%) developed AD dementia, while 3 were yet asymptomatic in their seventh and eighth decades of life. No differences were observed between mutation carriers and individuals with LOAD concerning age at symptom onset (mutation carriers: mean, 75 years [range, 63-77 years] vs those with LOAD: mean, 74 years [range, 60-101 years]; P = .29), presenting symptoms (memory loss in 7 of 7 mutation carriers [100%] vs 958 of 1063 individuals with LOAD [90.1%]; P ≥ .99) and duration (mutation carriers: mean, 9.9 years [range, 2.3-12.8 years] vs those with LOAD: 9 years [range, 1-27 years]; P = .73), and rate of progression of dementia (median annualized change in Clinical Dementia Rating-Sum of Boxes score, mutation carriers: 1.2 [range, 0.1-3.3] vs those with LOAD: 1.9 [range, -3.5 to 11.9]; P = .73). Early emergence of comorbid hallucinations and delusions were observed in 57% of individuals with ADAD (4 of 7) vs 19% of individuals with LOAD (137 of 706) (P = .03). Three of 12 noncarriers (25%) from the PSEN1 A79V family are potential phenocopies as they also developed AD dementia (median age at onset, 76.0 years). CONCLUSIONS AND RELEVANCE In this family, the amyloidogenic PSEN1 A79V mutation recapitulates the clinical attributes of LOAD. Previously reported clinical phenotypic differences between individuals with ADAD and LOAD may reflect age- or mutation-dependent effects.
Collapse
Affiliation(s)
- Gregory S Day
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, St Louis, Missouri2Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Erik S Musiek
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, St Louis, Missouri2Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Catherine M Roe
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, St Louis, Missouri2Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Joanne Norton
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, St Louis, Missouri3Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| | - Alison M Goate
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, St Louis, Missouri2Department of Neurology, Washington University School of Medicine, St Louis, Missouri3Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| | - Carlos Cruchaga
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, St Louis, Missouri3Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| | - Nigel J Cairns
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, St Louis, Missouri2Department of Neurology, Washington University School of Medicine, St Louis, Missouri4Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - John C Morris
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, St Louis, Missouri2Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
27
|
Widespread white matter and conduction defects in PSEN1-related spastic paraparesis. Neurobiol Aging 2016; 47:201-209. [PMID: 27614114 DOI: 10.1016/j.neurobiolaging.2016.07.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/07/2016] [Accepted: 07/29/2016] [Indexed: 02/08/2023]
Abstract
The mechanisms underlying presenilin 1 (PSEN1) mutation-associated spastic paraparesis (SP) are not clear. We compared diffusion and volumetric magnetic resonance measures between 3 persons with SP associated with the A431E mutation and 7 symptomatic persons with PSEN1 mutations without SP matched for symptom duration. We performed amyloid imaging and central motor and somatosensory conduction studies in 1 subject with SP. We found decreases in fractional anisotropy and increases in mean diffusivity in widespread white-matter areas including the corpus callosum, occipital, parietal, and frontal lobes in PSEN1 mutation carriers with SP. Volumetric measures were not different, and amyloid imaging showed low signal in sensorimotor cortex and other areas in a single subject with SP. Electrophysiological studies demonstrated both slowed motor and sensory conduction in the lower extremities in this same subject. Our results suggest that SP in carriers of the A431E PSEN1 mutation is a manifestation of widespread white-matter abnormalities not confined to the corticospinal tract that is at most indirectly related to the mutation's effect on amyloid precursor protein processing and amyloid deposition.
Collapse
|
28
|
Winblad B, Amouyel P, Andrieu S, Ballard C, Brayne C, Brodaty H, Cedazo-Minguez A, Dubois B, Edvardsson D, Feldman H, Fratiglioni L, Frisoni GB, Gauthier S, Georges J, Graff C, Iqbal K, Jessen F, Johansson G, Jönsson L, Kivipelto M, Knapp M, Mangialasche F, Melis R, Nordberg A, Rikkert MO, Qiu C, Sakmar TP, Scheltens P, Schneider LS, Sperling R, Tjernberg LO, Waldemar G, Wimo A, Zetterberg H. Defeating Alzheimer's disease and other dementias: a priority for European science and society. Lancet Neurol 2016; 15:455-532. [DOI: 10.1016/s1474-4422(16)00062-4] [Citation(s) in RCA: 1001] [Impact Index Per Article: 125.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/06/2015] [Accepted: 02/09/2016] [Indexed: 12/15/2022]
|
29
|
Iverson GL, Gardner AJ, McCrory P, Zafonte R, Castellani RJ. A critical review of chronic traumatic encephalopathy. Neurosci Biobehav Rev 2015; 56:276-93. [PMID: 26183075 DOI: 10.1016/j.neubiorev.2015.05.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/14/2015] [Accepted: 05/08/2015] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) has been described in the literature as a neurodegenerative disease with: (i) localized neuronal and glial accumulations of phosphorylated tau (p-tau) involving perivascular areas of the cerebral cortex, sulcal depths, and with a preference for neurons within superficial cortical laminae; (ii) multifocal axonal varicosities and axonal loss involving deep cortex and subcortical white matter; (iii) relative absence of beta-amyloid deposits; (iv) TDP-43 immunoreactive inclusions and neurites; and (v) broad and diverse clinical features. Some of the pathological findings reported in the literature may be encountered with age and other neurodegenerative diseases. However, the focality of the p-tau cortical findings in particular, and the regional distribution, are believed to be unique to CTE. The described clinical features in recent cases are very similar to how depression manifests in middle-aged men and with frontotemporal dementia as the disease progresses. It has not been established that the described tau pathology, especially in small amounts, can cause complex changes in behavior such as depression, substance abuse, suicidality, personality changes, or cognitive impairment. Future studies will help determine the extent to which the neuropathology is causally related to the diverse clinical features.
Collapse
Affiliation(s)
- Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, MassGeneral Hospital for Children Sports Concussion Program, & Red Sox Foundation and Massachusetts General Hospital Home Base Program, Boston, MA, USA.
| | - Andrew J Gardner
- Hunter New England Local Health District Sports Concussion Program; & Centre for Translational Neuroscience and Mental Health, School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Paul McCrory
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre - Austin Campus, Heidelberg, Victoria, Australia
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Harvard Medical School; Spaulding Rehabilitation Hospital; Brigham and Women's Hospital; & Red Sox Foundation and Massachusetts General Hospital Home Base Program, Boston, MA, USA
| | - Rudy J Castellani
- Division of Neuropathology, University of Maryland School of Medicine, USA
| |
Collapse
|
30
|
Schindler SE, Fagan AM. Autosomal Dominant Alzheimer Disease: A Unique Resource to Study CSF Biomarker Changes in Preclinical AD. Front Neurol 2015; 6:142. [PMID: 26175713 PMCID: PMC4483518 DOI: 10.3389/fneur.2015.00142] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/12/2015] [Indexed: 12/27/2022] Open
Abstract
Our understanding of the pathogenesis of Alzheimer disease (AD) has been greatly influenced by investigation of rare families with autosomal dominant mutations that cause early onset AD. Mutations in the genes coding for amyloid precursor protein (APP), presenilin 1 (PSEN-1), and presenilin 2 (PSEN-2) cause over-production of the amyloid-β peptide (Aβ) leading to early deposition of Aβ in the brain, which in turn is hypothesized to initiate a cascade of processes, resulting in neuronal death, cognitive decline, and eventual dementia. Studies of cerebrospinal fluid (CSF) from individuals with the common form of AD, late-onset AD (LOAD), have revealed that low CSF Aβ42 and high CSF tau are associated with AD brain pathology. Herein, we review the literature on CSF biomarkers in autosomal dominant AD (ADAD), which has contributed to a detailed road map of AD pathogenesis, especially during the preclinical period, prior to the appearance of any cognitive symptoms. Current drug trials are also taking advantage of the unique characteristics of ADAD and utilizing CSF biomarkers to accelerate development of effective therapies for AD.
Collapse
Affiliation(s)
- Suzanne Elizabeth Schindler
- Department of Neurology, Knight Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine , St. Louis, MO , USA
| | - Anne M Fagan
- Department of Neurology, Knight Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine , St. Louis, MO , USA
| |
Collapse
|
31
|
Keeley R, Hong N, Fisher A, McDonald R. Co-morbid beta-amyloid toxicity and stroke produce impairments in an ambiguous context task in rats without any impairment in spatial working memory. Neurobiol Learn Mem 2015; 119:42-51. [DOI: 10.1016/j.nlm.2015.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 01/02/2015] [Accepted: 01/05/2015] [Indexed: 01/28/2023]
|
32
|
Ringman JM, Goate A, Masters CL, Cairns NJ, Danek A, Graff-Radford N, Ghetti B, Morris JC. Genetic heterogeneity in Alzheimer disease and implications for treatment strategies. Curr Neurol Neurosci Rep 2014; 14:499. [PMID: 25217249 PMCID: PMC4162987 DOI: 10.1007/s11910-014-0499-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Since the original publication describing the illness in 1907, the genetic understanding of Alzheimer's disease (AD) has advanced such that it is now clear that it is a genetically heterogeneous condition, the subtypes of which may not uniformly respond to a given intervention. It is therefore critical to characterize the clinical and preclinical stages of AD subtypes, including the rare autosomal dominant forms caused by known mutations in the PSEN1, APP, and PSEN2 genes that are being studied in the Dominantly Inherited Alzheimer Network study and its associated secondary prevention trial. Similar efforts are occurring in an extended Colombian family with a PSEN1 mutation, in APOE ε4 homozygotes, and in Down syndrome. Despite commonalities in the mechanisms producing the AD phenotype, there are also differences that reflect specific genetic origins. Treatment modalities should be chosen and trials designed with these differences in mind. Ideally, the varying pathological cascades involved in the different subtypes of AD should be defined so that both areas of overlap and of distinct differences can be taken into account. At the very least, clinical trials should determine the influence of known genetic factors in post hoc analyses.
Collapse
Affiliation(s)
- John M Ringman
- Mary S. Easton Center for Alzheimer's Disease Research, David Geffen School of Medicine at University of California, Los Angeles, 10911 Weyburn Ave., #200, Los Angeles, 90095-7226, CA, USA,
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abdulrahman GO. Alzheimer's disease: Current Trends in Wales. Oman Med J 2014; 29:280-4. [PMID: 25170410 DOI: 10.5001/omj.2014.73] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 07/10/2014] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES To determine the prevalence and incidence rates of Alzheimer's disease (AD) between 1999 and 2010 in Wales and the relationship between AD with age. METHODS The Patient Episode Database for Wales was used to identify patients who were diagnosed with AD between 1999 and 2010. RESULTS During the 12-year study period, 14,534 people were diagnosed with AD in Wales. The overall prevalence of AD in individuals 60 years or older was 2% and the overall incidence was estimated as 1.5 per 1000 person-years. The prevalence of AD in individuals between 60 and 74 years was 1%, rising up to 5% in those aged 75 years and older. The incidence of AD increased during the study period from 1.4 per 1000 person-years in 1999 to 1.9 per 1000 person-years in 2010. More than half of the diagnosed AD during the study period was unspecified. CONCLUSION The incidence of Alzheimer's disease is progressively increasing in Wales. Prevalence and incidence rates rise with age. It is important that the public is educated on the symptoms of AD and doctors pay particular attention to these symptoms so as to ensure that diagnosis is made as early as possible. This will enable adequate support to be provided as soon as possible in order to prolong patients' independence and slow the progression of symptoms.
Collapse
Affiliation(s)
- Ganiy Opeyemi Abdulrahman
- Foundation Year 2 Trainee, Royal Gwent Hospital, The Friars Education Centre, Friars Road, Newport NP20 4EZ, United Kingdom
| | | |
Collapse
|
34
|
Progress in Alzheimer’s disease research in the last year. J Neurol 2013; 260:1936-41. [DOI: 10.1007/s00415-013-6921-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/06/2013] [Accepted: 04/06/2013] [Indexed: 10/27/2022]
|
35
|
Abstract
PURPOSE OF REVIEW This article discusses the current status of knowledge regarding the genetic basis of Alzheimer disease (AD) with a focus on clinically relevant aspects. RECENT FINDINGS The genetic architecture of AD is complex, as it includes multiple susceptibility genes and likely nongenetic factors. Rare but highly penetrant autosomal dominant mutations explain a small minority of the cases but have allowed tremendous advances in understanding disease pathogenesis. The identification of a strong genetic risk factor, APOE, reshaped the field and introduced the notion of genetic risk for AD. More recently, large-scale genome-wide association studies are adding to the picture a number of common variants with very small effect sizes. Large-scale resequencing studies are expected to identify additional risk factors, including rare susceptibility variants and structural variation. SUMMARY Genetic assessment is currently of limited utility in clinical practice because of the low frequency (Mendelian mutations) or small effect size (common risk factors) of the currently known susceptibility genes. However, genetic studies are identifying with confidence a number of novel risk genes, and this will further our understanding of disease biology and possibly the identification of therapeutic targets.
Collapse
Affiliation(s)
- John M Ringman
- Easton Center for Alzheimer’s Disease Research at UCLA, 10911 Weyburn Ave, #200, Los Angeles, CA 90095-7226, USA.
| | | |
Collapse
|
36
|
Sutherland GT, Chami B, Youssef P, Witting PK. Oxidative stress in Alzheimer's disease: Primary villain or physiological by-product? Redox Rep 2013; 18:134-41. [PMID: 23849337 PMCID: PMC6837641 DOI: 10.1179/1351000213y.0000000052] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The prevalence of Alzheimer's disease (AD) is increasing rapidly worldwide due to an ageing population and largely ineffective treatments. In AD cognitive decline is due to progressive neuron loss that begins in the medial temporal lobe and spreads through many brain regions. Despite intense research the pathogenesis of the common sporadic form of AD remains largely unknown. The popular amyloid cascade hypothesis suggests that the accumulation of soluble oligomers of beta amyloid peptides (Aβ) initiates a series of events that cause neuronal loss. Among their putative toxic effects, Aβ oligomers are thought to act as pro-oxidants combining with redox-active metals to produce excessive reactive oxygen and nitrogen species. However, to date the experimental therapies that reduce Aβ load in AD have failed to halt cognitive decline. Another hypothesis proposed by the late Mark Smith and colleagues is that oxidative stress, rather than Aβ, precipitates the pathogenesis of AD. That is, Aβ and microtubule-associated protein tau are upregulated to address the redox imbalance in the AD brain. As the disease progresses, excess Aβ and tau oligomerise to further accelerate the disease process. Here, we discuss redox balance in the human brain and how this balance is affected by ageing. We then discuss where oxidative stress is most likely to act in the disease process and the potential for intervention to reduce its effects.
Collapse
|
37
|
Abstract
Patients with Alzheimer's disease (AD), the most prevalent neurodegenerative dementia, are usually elderly; however, ∼4-5% develop early-onset AD (EOAD) with onset before age 65. Most EOAD is sporadic, but about 5% of patients with EOAD have an autosomal dominant mutation such as Presenilin 1, Presenilin 2, or alterations in the Amyloid Precursor Protein gene. Although most Alzheimer's research has concentrated on older, late-onset AD (LOAD), there is much recent interest and research in EOAD. These recent studies indicate that EOAD is a heterogeneous disorder with significant differences from LOAD. From 22-64% of EOAD patients have a predominant nonamnestic syndrome presenting with deficits in language, visuospatial abilities, praxis, or other non-memory cognition. These nonamnestic patients may differ in several ways from the usual memory or amnestic patients. Patients with nonamnestic EOAD compared to typical amnestic AD have a more aggressive course, lack the apolipoprotein Eɛ4 (APOE ɛ4) susceptibility gene for AD, and have a focus and early involvement of non-hippocampal areas of brain, particularly parietal neocortex. These differences in the EOAD subtypes indicate differences in the underlying amyloid cascade, the prevailing pathophysiological theory for the development of AD. Together the results of recent studies suggest that nonamnestic subtypes of EOAD constitute a Type 2 AD distinct from the usual, typical disorder. In sum, the study of EOAD can reveal much about the clinical heterogeneity, predisposing factors, and neurobiology of this disease.
Collapse
Affiliation(s)
- Mario F Mendez
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| |
Collapse
|