1
|
Salari M, Etemadifar M, Rashedi R, Mardani S. A Review of Ocular Movement Abnormalities in Hereditary Cerebellar Ataxias. CEREBELLUM (LONDON, ENGLAND) 2024; 23:702-721. [PMID: 37000369 DOI: 10.1007/s12311-023-01554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
Cerebellar ataxias are a wide heterogeneous group of disorders that may present with fine motor deficits as well as gait and balance disturbances that have a significant influence on everyday activities. To review the ocular movements in cerebellar ataxias in order to improve the clinical knowledge of cerebellar ataxias and related subtypes. English papers published from January 1990 to May 2022 were selected by searching PubMed services. The main search keywords were ocular motor, oculomotor, eye movement, eye motility, and ocular motility, along with each ataxia subtype. The eligible papers were analyzed for clinical presentation, involved mutations, the underlying pathology, and ocular movement alterations. Forty-three subtypes of spinocerebellar ataxias and a number of autosomal dominant and autosomal recessive ataxias were discussed in terms of pathology, clinical manifestations, involved mutations, and with a focus on the ocular abnormalities. A flowchart has been made using ocular movement manifestations to differentiate different ataxia subtypes. And underlying pathology of each subtype is reviewed in form of illustrated models to reach a better understanding of each disorder.
Collapse
Affiliation(s)
- Mehri Salari
- Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Etemadifar
- Department of Functional Neurosurgery, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ronak Rashedi
- Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sayna Mardani
- Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Corral-Juan M, Casquero P, Giraldo-Restrepo N, Laurie S, Martinez-Piñeiro A, Mateo-Montero RC, Ispierto L, Vilas D, Tolosa E, Volpini V, Alvarez-Ramo R, Sánchez I, Matilla-Dueñas A. OUP accepted manuscript. Brain Commun 2022; 4:fcac030. [PMID: 35310830 PMCID: PMC8928420 DOI: 10.1093/braincomms/fcac030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Spinocerebellar ataxias consist of a highly heterogeneous group of inherited movement disorders clinically characterized by progressive cerebellar ataxia variably associated with additional distinctive clinical signs. The genetic heterogeneity is evidenced by the myriad of associated genes and underlying genetic defects identified. In this study, we describe a new spinocerebellar ataxia subtype in nine members of a Spanish five-generation family from Menorca with affected individuals variably presenting with ataxia, nystagmus, dysarthria, polyneuropathy, pyramidal signs, cerebellar atrophy and distinctive cerebral demyelination. Affected individuals presented with horizontal and vertical gaze-evoked nystagmus and hyperreflexia as initial clinical signs, and a variable age of onset ranging from 12 to 60 years. Neurophysiological studies showed moderate axonal sensory polyneuropathy with altered sympathetic skin response predominantly in the lower limbs. We identified the c.1877C > T (p.Ser626Leu) pathogenic variant within the SAMD9L gene as the disease causative genetic defect with a significant log-odds score (Zmax = 3.43; θ = 0.00; P < 3.53 × 10−5). We demonstrate the mitochondrial location of human SAMD9L protein, and its decreased levels in patients’ fibroblasts in addition to mitochondrial perturbations. Furthermore, mutant SAMD9L in zebrafish impaired mobility and vestibular/sensory functions. This study describes a novel spinocerebellar ataxia subtype caused by SAMD9L mutation, SCA49, which triggers mitochondrial alterations pointing to a role of SAMD9L in neurological motor and sensory functions.
Collapse
Affiliation(s)
- Marc Corral-Juan
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | - Pilar Casquero
- Neurology and Neurophysiology Section, Hospital Mateu Orfila, Mahón, Menorca, Spain
| | | | - Steve Laurie
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Alicia Martinez-Piñeiro
- Neuromuscular and Functional Studies Unit, Neurology Service, University Hospital Germans Trias i Pujol (HUGTiP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | | | - Lourdes Ispierto
- Neurodegenerative Diseases Unit, Neurology Service, Department of Neuroscience, University Hospital Germans Trias i Pujol (HUGTiP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | - Dolores Vilas
- Neurodegenerative Diseases Unit, Neurology Service, Department of Neuroscience, University Hospital Germans Trias i Pujol (HUGTiP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Spain
| | - Eduardo Tolosa
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Spain
| | | | - Ramiro Alvarez-Ramo
- Neurodegenerative Diseases Unit, Neurology Service, Department of Neuroscience, University Hospital Germans Trias i Pujol (HUGTiP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | - Ivelisse Sánchez
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | - Antoni Matilla-Dueñas
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
- Correspondence to: Dr Antoni Matilla-Dueñas Head of the Neurogenetics Unit Health Sciences Research Institute Germans Trias i Pujol (IGTP) Ctra. de Can Ruti, Camí de les Escoles s/n 08916 Badalona, Barcelona, Spain E-mail:
| |
Collapse
|
3
|
Functional Characterization of Spinocerebellar Ataxia Associated Dynorphin A Mutant Peptides. Biomedicines 2021; 9:biomedicines9121882. [PMID: 34944698 PMCID: PMC8698333 DOI: 10.3390/biomedicines9121882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 02/05/2023] Open
Abstract
Mutations in the prodynorphin gene (PDYN) are associated with the development of spinocerebellar ataxia type 23 (SCA23). Pathogenic missense mutations are localized predominantly in the PDYN region coding for the dynorphin A (DynA) neuropeptide and lead to persistently elevated mutant peptide levels with neurotoxic properties. The main DynA target in the central nervous system is the kappa opioid receptor (KOR), a member of the G-protein coupled receptor family, which can elicit signaling cascades mediated by G-protein dissociation as well as β-arrestin recruitment. To date, a thorough analysis of the functional profile for the pathogenic SCA23 DynA mutants at KOR is still missing. To elucidate the role of DynA mutants, we used a combination of assays to investigate the differential activation of G-protein subunits and β-arrestin. In addition, we applied molecular modelling techniques to provide a rationale for the underlying mechanism. Our results demonstrate that DynA mutations, associated with a severe ataxic phenotype, decrease potency of KOR activation, both for G-protein dissociation as well as β-arrestin recruitment. Molecular modelling suggests that this loss of function is due to disruption of critical interactions between DynA and the receptor. In conclusion, this study advances our understanding of KOR signal transduction upon DynA wild type or mutant peptide binding.
Collapse
|
4
|
Spinocerebellar ataxia type 23 (SCA23): a review. J Neurol 2020; 268:4630-4645. [PMID: 33175256 DOI: 10.1007/s00415-020-10297-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023]
Abstract
Spinocerebellar ataxias (SCAs), formerly known as autosomal dominant cerebellar ataxias (ADCAs), are a group of hereditary heterogeneous neurodegenerative diseases. Gait, progressive ataxia, dysarthria, and eye movement disorder are common symptoms of spinocerebellar ataxias. Other symptoms include peripheral neuropathy, cognitive impairment, psychosis, and seizures. Patients may lose their lives due to out of coordinated respiration and/or swallowing. Neurological signs cover pyramidal or extrapyramidal signs, spasm, ophthalmoplegia, hyperactive deep tendon reflexes, and so on. Different subtypes of SCAs present various clinical features. Spinocerebellar ataxia type 23 (SCA23), one subtype of the SCA family, is characterized by mutant prodynorphin (PDYN) gene. Based on literatures, this review details a series of SCA23, to improve a whole understanding of clinicians and point out the potential research direction of this dysfunction, including a history, pathophysiological mechanism, diagnosis and differential diagnosis, epigenetics, penetrance and prevalence, genetic counseling, treatment and prognosis.
Collapse
|
5
|
Satoh S, Kondo Y, Ohara S, Yamaguchi T, Nakamura K, Yoshida K. Intrafamilial phenotypic variation in spinocerebellar ataxia type 23. CEREBELLUM & ATAXIAS 2020; 7:7. [PMID: 32587707 PMCID: PMC7310450 DOI: 10.1186/s40673-020-00117-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/09/2020] [Indexed: 11/10/2022]
Abstract
Background Spinocerebellar ataxia type 23 (SCA23) is an autosomal dominant cerebellar ataxia caused by pathogenic variants in the prodynorphin gene (PDYN). The frequency of PDYN variants is reportedly very low (~ 0.1%) in several ataxia cohorts screened to date. Case presentations We found five cases of SCA23 in two families (mean age at onset: 37.8 ± 5.5 years; mean age at examination: 64.2 ± 12.3 years) with a novel PDYN variant (c.644G > A:p.R215H). We identified marked heterogeneity in the clinical features in Family 1: the proband showed clinical and neuroimaging features suggestive of multiple system atrophy with predominant parkinsonism (MSA-P). Conversely, the proband's mother with the PDYN p.R215H variant had no subjective symptoms; she had not come to medical attention before our survey, although she showed apparent cerebellar atrophy on brain magnetic resonance imaging (MRI). The other two patients in Family 1 and a patient in Family 2 showed slowly progressive cerebellar ataxia. Conclusions We here report two Japanese families with SCA23, one of which showed considerable phenotypic variation in affected members. Our findings support that SCA23 can phenotypically overlap with MSA.
Collapse
Affiliation(s)
- Shunichi Satoh
- Department of Neurology, Nagano Red Cross Hospital, 5-22-1 Wakasato, Nagano, 380-8582 Japan
| | - Yasufumi Kondo
- Department of Medicine (Neurology & Rheumatology), Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621 Japan
| | - Shinji Ohara
- Department of Neurology, National Hospital Organization, Matsumoto Medical Center, 2-20-30 Muraicho Minami, Matsumoto, 399-8701 Japan.,Department of Neurology, Iida Hospital, 1-15 Odori, Iida, 395-8505 Japan
| | - Tomomi Yamaguchi
- Department of Molecular Genetics, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621 Japan
| | - Katsuya Nakamura
- Center for Medical Genetics, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, 390-8621 Japan
| | - Kunihiro Yoshida
- Department of Brain Disease Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621 Japan
| |
Collapse
|
6
|
Rosini F, Pretegiani E, Battisti C, Dotti MT, Federico A, Rufa A. Eye movement changes in autosomal dominant spinocerebellar ataxias. Neurol Sci 2020; 41:1719-1734. [PMID: 32130555 DOI: 10.1007/s10072-020-04318-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
Oculomotor abnormalities are common findings in spinocerebellar ataxias (SCAs), a clinically heterogeneous group of neurodegenerative disorders with an autosomal dominant pattern of inheritance. Usually, cerebellar impairment accounts for most of the eye movement changes encountered; as the disease progresses, the involvement of extracerebellar structures typically seen in later stages may modify the oculomotor progression. However, ocular movement changes are rarely specific. In this regard, some important exceptions include the prominent slowing of horizontal eye movements in SCA2 and, to a lesser extent, in SCA3, SCA4, and SCA28, or the executive deficit in SCA2 and SCA17. Here, we report the eye movement abnormalities and neurological pictures of SCAs through a review of the literature. Genetic and neuropathological/neuroimaging aspects are also briefly discussed. Overall, the findings reported indicate that oculomotor analysis could be of help in differential diagnosis among SCAs and contribute to clarify the role of brain structures, particularly the cerebellum, in oculomotor control.
Collapse
Affiliation(s)
- Francesca Rosini
- Department of Medicine Surgery and Neuroscience, Eye Tracking& Visual Application Lab EVALAB, Neurology and Neurometabolic Unit, University of Siena, Viale Bracci 2, 53100, Siena, Italy
| | - Elena Pretegiani
- Department of Medicine Surgery and Neuroscience, Eye Tracking& Visual Application Lab EVALAB, Neurology and Neurometabolic Unit, University of Siena, Viale Bracci 2, 53100, Siena, Italy
| | - Carla Battisti
- Department of Medicine, Surgery and Neuroscience, Neurology and Neurometabolic Unit, University of Siena, Siena, Italy
| | - Maria Teresa Dotti
- Department of Medicine, Surgery and Neuroscience, Neurology and Neurometabolic Unit, University of Siena, Siena, Italy
| | - Antonio Federico
- Department of Medicine, Surgery and Neuroscience, Neurology and Neurometabolic Unit, University of Siena, Siena, Italy
| | - Alessandra Rufa
- Department of Medicine Surgery and Neuroscience, Eye Tracking& Visual Application Lab EVALAB, Neurology and Neurometabolic Unit, University of Siena, Viale Bracci 2, 53100, Siena, Italy.
- Department of Medicine, Surgery and Neuroscience, Neurology and Neurometabolic Unit, University of Siena, Siena, Italy.
| |
Collapse
|
7
|
Coutelier M, Hammer MB, Stevanin G, Monin ML, Davoine CS, Mochel F, Labauge P, Ewenczyk C, Ding J, Gibbs JR, Hannequin D, Melki J, Toutain A, Laugel V, Forlani S, Charles P, Broussolle E, Thobois S, Afenjar A, Anheim M, Calvas P, Castelnovo G, de Broucker T, Vidailhet M, Moulignier A, Ghnassia RT, Tallaksen C, Mignot C, Goizet C, Le Ber I, Ollagnon-Roman E, Pouget J, Brice A, Singleton A, Durr A. Efficacy of Exome-Targeted Capture Sequencing to Detect Mutations in Known Cerebellar Ataxia Genes. JAMA Neurol 2019; 75:591-599. [PMID: 29482223 DOI: 10.1001/jamaneurol.2017.5121] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Importance Molecular diagnosis is difficult to achieve in disease groups with a highly heterogeneous genetic background, such as cerebellar ataxia (CA). In many patients, candidate gene sequencing or focused resequencing arrays do not allow investigators to reach a genetic conclusion. Objectives To assess the efficacy of exome-targeted capture sequencing to detect mutations in genes broadly linked to CA in a large cohort of undiagnosed patients and to investigate their prevalence. Design, Setting, and Participants Three hundred nineteen index patients with CA and without a history of dominant transmission were included in the this cohort study by the Spastic Paraplegia and Ataxia Network. Centralized storage was in the DNA and cell bank of the Brain and Spine Institute, Salpetriere Hospital, Paris, France. Patients were classified into 6 clinical groups, with the largest being those with spastic ataxia (ie, CA with pyramidal signs [n = 100]). Sequencing was performed from January 1, 2014, through December 31, 2016. Detected variants were classified as very probably or definitely causative, possibly causative, or of unknown significance based on genetic evidence and genotype-phenotype considerations. Main Outcomes and Measures Identification of variants in genes broadly linked to CA, classified in pathogenicity groups. Results The 319 included patients had equal sex distribution (160 female [50.2%] and 159 male patients [49.8%]; mean [SD] age at onset, 27.9 [18.6] years). The age at onset was younger than 25 years for 131 of 298 patients (44.0%) with complete clinical information. Consanguinity was present in 101 of 298 (33.9%). Very probable or definite diagnoses were achieved for 72 patients (22.6%), with an additional 19 (6.0%) harboring possibly pathogenic variants. The most frequently mutated genes were SPG7 (n = 14), SACS (n = 8), SETX (n = 7), SYNE1 (n = 6), and CACNA1A (n = 6). The highest diagnostic rate was obtained for patients with an autosomal recessive CA with oculomotor apraxia-like phenotype (6 of 17 [35.3%]) or spastic ataxia (35 of 100 [35.0%]) and patients with onset before 25 years of age (41 of 131 [31.3%]). Peculiar phenotypes were reported for patients carrying KCND3 or ERCC5 variants. Conclusions and Relevance Exome capture followed by targeted analysis allows the molecular diagnosis in patients with highly heterogeneous mendelian disorders, such as CA, without prior assumption of the inheritance mode or causative gene. Being commonly available without specific design need, this procedure allows testing of a broader range of genes, consequently describing less classic phenotype-genotype correlations, and post hoc reanalysis of data as new genes are implicated in the disease.
Collapse
Affiliation(s)
- Marie Coutelier
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1127, Paris, France.,Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 7225, Paris, France.,Unité Mixte de Recherche en Santé 1127, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France.,Laboratory of Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium.,Ecole Pratique des Hautes Etudes, Paris Sciences et Lettres Research University, Paris, France
| | - Monia B Hammer
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - Giovanni Stevanin
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1127, Paris, France.,Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 7225, Paris, France.,Unité Mixte de Recherche en Santé 1127, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France.,Ecole Pratique des Hautes Etudes, Paris Sciences et Lettres Research University, Paris, France.,Centre de Référence de Neurogénétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Marie-Lorraine Monin
- Centre de Référence de Neurogénétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Claire-Sophie Davoine
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1127, Paris, France.,Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 7225, Paris, France.,Unité Mixte de Recherche en Santé 1127, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France.,Ecole Pratique des Hautes Etudes, Paris Sciences et Lettres Research University, Paris, France
| | - Fanny Mochel
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1127, Paris, France.,Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 7225, Paris, France.,Unité Mixte de Recherche en Santé 1127, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France.,Centre de Référence de Neurogénétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Pierre Labauge
- Service de Neurologie, Hopital Gui de Chauliac, Centre Hospitalier Universitaire (CHU) de Montpellier, Montpellier, France
| | - Claire Ewenczyk
- Centre de Référence de Neurogénétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jinhui Ding
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - J Raphael Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - Didier Hannequin
- Service de Génétique, Service de Neurologie, INSERM U1079, Rouen University Hospital, Rouen, France
| | - Judith Melki
- UMR 1169, INSERM and University Paris Saclay, Le Kremlin Bicêtre, France.,Medical Genetics Unit, Centre Hospitalier Sud-Francilien, Corbeil Essonnes, France
| | - Annick Toutain
- Service de Génétique, Centre Hospitalier Universitaire de Tours, INSERM U930, Faculté de Médecine, Université François Rabelais, Tours, France
| | - Vincent Laugel
- Service de Pédiatrie 1, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Sylvie Forlani
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1127, Paris, France.,Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 7225, Paris, France.,Unité Mixte de Recherche en Santé 1127, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Perrine Charles
- Centre de Référence de Neurogénétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Emmanuel Broussolle
- Service de Neurologie C, Hôpital Neurologique Pierre-Wertheimer, Hospices Civils de Lyon, Bron, France.,Centre de Neurosciences Cognitives, Centre National de la Recherche Scientifique (CNRS)-UMR 5229, Bron, France.,Université de Lyon, Université Claude-Bernard-Lyon I, Villeurbanne, France
| | - Stéphane Thobois
- Service de Neurologie C, Hôpital Neurologique Pierre-Wertheimer, Hospices Civils de Lyon, Bron, France.,Centre de Neurosciences Cognitives, Centre National de la Recherche Scientifique (CNRS)-UMR 5229, Bron, France.,Université de Lyon, Université Claude-Bernard-Lyon I, Villeurbanne, France
| | - Alexandra Afenjar
- Service de Génétique et Centre de Référence Pour les Malformations et les Maladies Congénitales du Cervelet, AP-HP, Paris, France
| | - Mathieu Anheim
- Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France.,Département de Neurologie, Hôpital de Hautepierre, CHU de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U964, CNRS-UMR 7104, Université de Strasbourg, Illkirch, France
| | - Patrick Calvas
- Service de Génétique Médicale, CHU de Toulouse, Hôpital Purpan, Toulouse, France
| | | | - Thomas de Broucker
- Service de Neurologie, Centre Hospitalier de Saint-Denis, Saint-Denis, France
| | - Marie Vidailhet
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1127, Paris, France.,Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 7225, Paris, France.,Unité Mixte de Recherche en Santé 1127, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France.,Département des Maladies du Système Nerveux, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France
| | - Antoine Moulignier
- Service de Neurologie, Fondation Ophtalmologique A. de Rothschild, Paris, France
| | | | - Chantal Tallaksen
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1127, Paris, France.,Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 7225, Paris, France.,Unité Mixte de Recherche en Santé 1127, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France.,currently affiliated with Department of Neurology, Oslo University Hospital; and Faculty of Medicine, Oslo University, Oslo, Norway
| | - Cyril Mignot
- Département de Génétique and Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié Salpêtrière, AP-HP, Paris, France
| | - Cyril Goizet
- Laboratoire Maladies Rares, Génétique et Métabolisme, Université de Bordeaux, Bordeaux, France.,Service de Génétique Médicale, CHU Pellegrin, Bordeaux, France
| | - Isabelle Le Ber
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1127, Paris, France.,Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 7225, Paris, France.,Unité Mixte de Recherche en Santé 1127, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France
| | | | - Jean Pouget
- Centre de Référence des Maladies Neuromusculaires et de la Sclérose Latérale Amyotrophique, Assistance Publique-Hôpitaux de Marseille, Aix Marseille Université, Hôpital de La Timone, Marseille, France
| | - Alexis Brice
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1127, Paris, France.,Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 7225, Paris, France.,Unité Mixte de Recherche en Santé 1127, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France.,Centre de Référence de Neurogénétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - Alexandra Durr
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1127, Paris, France.,Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 7225, Paris, France.,Unité Mixte de Recherche en Santé 1127, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France.,Centre de Référence de Neurogénétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | | |
Collapse
|
8
|
Szpisjak L, Zadori D, Klivenyi P, Vecsei L. Clinical Characteristics and Possible Drug Targets in Autosomal Dominant Spinocerebellar Ataxias. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:279-293. [DOI: 10.2174/1871527318666190311155846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/10/2018] [Accepted: 01/31/2019] [Indexed: 12/28/2022]
Abstract
Background & Objective:
The autosomal dominant spinocerebellar ataxias (SCAs) belong
to a large and expanding group of neurodegenerative disorders. SCAs comprise more than 40 subtypes
characterized by progressive ataxia as a common feature. The most prevalent diseases among SCAs
are caused by CAG repeat expansions in the coding-region of the causative gene resulting in polyglutamine
(polyQ) tract formation in the encoded protein. Unfortunately, there is no approved therapy to
treat cerebellar motor dysfunction in SCA patients. In recent years, several studies have been conducted
to recognize the clinical and pathophysiological aspects of the polyQ SCAs more accurately.
This scientific progress has provided new opportunities to develop promising gene therapies, including
RNA interference and antisense oligonucleotides.
Conclusion:
The aim of the current work is to give a brief summary of the clinical features of SCAs
and to review the cardinal points of pathomechanisms of the most common polyQ SCAs. In addition,
we review the last few year’s promising gene suppression therapies of the most frequent polyQ SCAs
in animal models, on the basis of which human trials may be initiated in the near future.
Collapse
Affiliation(s)
- Laszlo Szpisjak
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Denes Zadori
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Peter Klivenyi
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Laszlo Vecsei
- Department of Neurology, University of Szeged, Szeged, Hungary
| |
Collapse
|
9
|
Kononenko O, Bazov I, Watanabe H, Gerashchenko G, Dyachok O, Verbeek DS, Alkass K, Druid H, Andersson M, Mulder J, Svenningsen ÅF, Rajkowska G, Stockmeier CA, Krishtal O, Yakovleva T, Bakalkin G. Opioid precursor protein isoform is targeted to the cell nuclei in the human brain. Biochim Biophys Acta Gen Subj 2016; 1861:246-255. [PMID: 27838394 DOI: 10.1016/j.bbagen.2016.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Neuropeptide precursors are traditionally viewed as proteins giving rise to small neuropeptide molecules. Prodynorphin (PDYN) is the precursor protein to dynorphins, endogenous ligands for the κ-opioid receptor. Alternative mRNA splicing of neuropeptide genes may regulate cell- and tissue-specific neuropeptide expression and produce novel protein isoforms. We here searched for novel PDYN mRNA and their protein product in the human brain. METHODS Novel PDYN transcripts were identified using nested PCR amplification of oligo(dT) selected full-length capped mRNA. Gene expression was analyzed by qRT-PCR, PDYN protein by western blotting and confocal imaging, dynorphin peptides by radioimmunoassay. Neuronal nuclei were isolated using fluorescence-activated nuclei sorting (FANS) from postmortem human striatal tissue. Immunofluorescence staining and confocal microscopy was performed for human caudate nucleus. RESULTS Two novel human PDYN mRNA splicing variants were identified. Expression of one of them was confined to the striatum where its levels constituted up to 30% of total PDYN mRNA. This transcript may be translated into ∆SP-PDYN protein lacking 13 N-terminal amino acids, a fragment of signal peptide (SP). ∆SP-PDYN was not processed to mature dynorphins and surprisingly, was targeted to the cell nuclei in a model cellular system. The endogenous PDYN protein was identified in the cell nuclei in human striatum by western blotting of isolated neuronal nuclei, and by confocal imaging. CONCLUSIONS AND GENERAL SIGNIFICANCE High levels of alternatively spliced ∆SP-PDYN mRNA and nuclear localization of PDYN protein suggests a nuclear function for this isoform of the opioid peptide precursor in human striatum.
Collapse
Affiliation(s)
- Olga Kononenko
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden; State Key Lab for Molecular Biology, Bogomoletz Institute of Physiology, Kiev 01024, Ukraine
| | - Igor Bazov
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden.
| | - Hiroyuki Watanabe
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden
| | - Ganna Gerashchenko
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden; Department of Functional Genomics, Institute Molecular Biology, Kiev 03680, Ukraine
| | - Oleg Dyachok
- Department of Medical Cell Biology, Uppsala University, 751 23, Sweden
| | - Dineke S Verbeek
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen 30001, Netherlands
| | - Kanar Alkass
- Department of Forensic Medicine, Karolinska Institute, Stockholm 171 77, Sweden
| | - Henrik Druid
- Department of Forensic Medicine, Karolinska Institute, Stockholm 171 77, Sweden
| | - Malin Andersson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden
| | - Jan Mulder
- Department of Neuroscience, Science for Life Laboratory, Karolinska Institute, Stockholm 171 77, Sweden
| | - Åsa Fex Svenningsen
- Institute of Molecular Medicine-Neurobiology Research, University of Southern Denmark, Odense 5000, Denmark
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson 2500, USA
| | - Craig A Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson 2500, USA
| | - Oleg Krishtal
- State Key Lab for Molecular Biology, Bogomoletz Institute of Physiology, Kiev 01024, Ukraine
| | - Tatiana Yakovleva
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden
| |
Collapse
|
10
|
Marelli C, Guissart C, Hubsch C, Renaud M, Villemin JP, Larrieu L, Charles P, Ayrignac X, Sacconi S, Collignon P, Cuntz-Shadfar D, Perrin L, Benarrosh A, Degardin A, Lagha-Boukbiza O, Mutez E, Carlander B, Morales RJ, Gonzalez V, Carra-Dalliere C, Azakri S, Mignard C, Ollagnon E, Pageot N, Chretien D, Geny C, Azulay JP, Tranchant C, Claustres M, Labauge P, Anheim M, Goizet C, Calvas P, Koenig M. Mini-Exome Coupled to Read-Depth Based Copy Number Variation Analysis in Patients with Inherited Ataxias. Hum Mutat 2016; 37:1340-1353. [DOI: 10.1002/humu.23063] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/22/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Cecilia Marelli
- Department of Neurology; University Hospital Gui de Chauliac; Montpellier France
| | - Claire Guissart
- EA7402 Institut Universitaire de Recherche Clinique, and Laboratoire de Génétique Moléculaire, University Hospital; Montpellier France
| | - Cecile Hubsch
- Department of Neurology; Pitié-Salpêtrière University Hospital; Paris France
| | - Mathilde Renaud
- Department of Neurology; Strasbourg University Hospital; Strasbourg France
| | - Jean-Philippe Villemin
- EA7402 Institut Universitaire de Recherche Clinique, and Laboratoire de Génétique Moléculaire, University Hospital; Montpellier France
| | - Lise Larrieu
- EA7402 Institut Universitaire de Recherche Clinique, and Laboratoire de Génétique Moléculaire, University Hospital; Montpellier France
| | - Perrine Charles
- Department of Genetics; Pitié-Salpêtrière University Hospital; Paris France
| | - Xavier Ayrignac
- Department of Neurology; University Hospital Gui de Chauliac; Montpellier France
| | - Sabrina Sacconi
- Peripheral Nervous System, Muscle and ALS, Neuromuscular & ALS Specialized Center; Nice University Hospital, Pasteur 2; Nice France
| | - Patrick Collignon
- Department of Medical Genetics; Sainte Musse Hospital; Toulon France
| | - Danielle Cuntz-Shadfar
- Department of Neurology; University Hospital Gui de Chauliac; Montpellier France
- Department of Paediatrics; University Hospital Gui de Chauliac; Montpellier France
| | - Laurine Perrin
- Department of Physical Medicine and Rehabilitation and Department of Paediatric Neurology; CHU de Saint Etienne France
| | | | - Adrian Degardin
- Department of Neurology; University Hospital Roger Salengro; Lille France
| | | | - Eugenie Mutez
- CHU Lille, UMR-S 1172 - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer; University of Lille, Inserm; Lille France
| | - Bertrand Carlander
- Department of Neurology; University Hospital Gui de Chauliac; Montpellier France
| | - Raul Juntas Morales
- Department of Neurology; University Hospital Gui de Chauliac; Montpellier France
| | - Victoria Gonzalez
- Department of Neurology; University Hospital Gui de Chauliac; Montpellier France
| | | | - Souhayla Azakri
- Department of Neurology; University Hospital Gui de Chauliac; Montpellier France
| | - Claude Mignard
- Centre de Référence des Maladies Neuro-musculaires et Neurologiques Rares du CHU de la Réunion; France
| | - Elisabeth Ollagnon
- Department of Medical Genetics and Reference Centre for Neurological and Neuromuscular Diseases; Croix-Rousse Hospital; Lyon France
| | - Nicolas Pageot
- Department of Neurology; University Hospital Gui de Chauliac; Montpellier France
| | - Dominique Chretien
- INSERM UMR 1141 Robert Debré Hospital and Denis Diderot University Paris 7; Paris France
| | - Christian Geny
- Department of Neurology; University Hospital Gui de Chauliac; Montpellier France
| | | | | | - Mireille Claustres
- EA7402 Institut Universitaire de Recherche Clinique, and Laboratoire de Génétique Moléculaire, University Hospital; Montpellier France
| | - Pierre Labauge
- Department of Neurology; University Hospital Gui de Chauliac; Montpellier France
| | - Mathieu Anheim
- Department of Neurology; Strasbourg University Hospital; Strasbourg France
| | - Cyril Goizet
- Department of Medical Genetics, Pellegrin University Hospital, and laboratoire Maladies Rares Génétique et Métabolisme (MRGM), INSERM U1211; Université Bordeaux; Bordeaux France
| | - Patrick Calvas
- Department of Clinical Genetics; Purpan University Hospital; Toulouse France
| | - Michel Koenig
- EA7402 Institut Universitaire de Recherche Clinique, and Laboratoire de Génétique Moléculaire, University Hospital; Montpellier France
| |
Collapse
|
11
|
Pedroso JL, Vale TC, Freua F, Barsottini OGP, Kok F. SCA23 and prodynorphin: is it time for gene retraction? Brain 2016; 139:e42. [PMID: 27190015 DOI: 10.1093/brain/aww093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- José Luiz Pedroso
- 1 Ataxia Unit, Department of Neurology and Neurosurgery, Federal University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Thiago Cardoso Vale
- 2 Movement Disorders Unit, Neurology Service, Department of Internal Medicine, Federal University of Juiz de Fora School of Medicine, Juiz de Fora, MG, Brazil
| | - Fernando Freua
- 3 Neurogenetics Unit, Department of Neurology, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Orlando G P Barsottini
- 1 Ataxia Unit, Department of Neurology and Neurosurgery, Federal University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Fernando Kok
- 3 Neurogenetics Unit, Department of Neurology, University of São Paulo School of Medicine, São Paulo, SP, Brazil 4 Mendelics Genomic Analysis, São Paulo, SP, Brazil
| |
Collapse
|
12
|
Smeets CJLM, Verbeek DS. Reply: SCA23 and prodynorphin: is it time for gene retraction? Brain 2016; 139:e43. [PMID: 27190014 DOI: 10.1093/brain/aww094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Cleo J L M Smeets
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Dineke S Verbeek
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
Perkins E, Suminaite D, Jackson M. Cerebellar ataxias: β-III spectrin's interactions suggest common pathogenic pathways. J Physiol 2016; 594:4661-76. [PMID: 26821241 PMCID: PMC4983618 DOI: 10.1113/jp271195] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/14/2015] [Indexed: 12/12/2022] Open
Abstract
Spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of disorders all characterised by postural abnormalities, motor deficits and cerebellar degeneration. Animal and in vitro models have revealed β‐III spectrin, a cytoskeletal protein present throughout the soma and dendritic tree of cerebellar Purkinje cells, to be required for the maintenance of dendritic architecture and for the trafficking and/or stabilisation of several membrane proteins: ankyrin‐R, cell adhesion molecules, metabotropic glutamate receptor‐1 (mGluR1), voltage‐gated sodium channels (Nav) and glutamate transporters. This scaffold of interactions connects β‐III spectrin to a wide variety of proteins implicated in the pathology of many SCAs. Heterozygous mutations in the gene encoding β‐III spectrin (SPTBN2) underlie SCA type‐5 whereas homozygous mutations cause spectrin associated autosomal recessive ataxia type‐1 (SPARCA1), an infantile form of ataxia with cognitive impairment. Loss‐of β‐III spectrin function appears to underpin cerebellar dysfunction and degeneration in both diseases resulting in thinner dendrites, excessive dendritic protrusion with loss of planarity, reduced resurgent sodium currents and abnormal glutamatergic neurotransmission. The initial physiological consequences are a decrease in spontaneous activity and excessive excitation, likely to be offsetting each other, but eventually hyperexcitability gives rise to dark cell degeneration and reduced cerebellar output. Similar molecular mechanisms have been implicated for SCA1, 2, 3, 7, 13, 14, 19, 22, 27 and 28, highlighting alterations to intrinsic Purkinje cell activity, dendritic architecture and glutamatergic transmission as possible common mechanisms downstream of various loss‐of‐function primary genetic defects. A key question for future research is whether similar mechanisms underlie progressive cerebellar decline in normal ageing.
![]()
Collapse
Affiliation(s)
- Emma Perkins
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Daumante Suminaite
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Mandy Jackson
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| |
Collapse
|
14
|
Plasma membrane poration by opioid neuropeptides: a possible mechanism of pathological signal transduction. Cell Death Dis 2015; 6:e1683. [PMID: 25766322 PMCID: PMC4385918 DOI: 10.1038/cddis.2015.39] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 12/18/2022]
Abstract
Neuropeptides induce signal transduction across the plasma membrane by acting through cell-surface receptors. The dynorphins, endogenous ligands for opioid receptors, are an exception; they also produce non-receptor-mediated effects causing pain and neurodegeneration. To understand non-receptor mechanism(s), we examined interactions of dynorphins with plasma membrane. Using fluorescence correlation spectroscopy and patch-clamp electrophysiology, we demonstrate that dynorphins accumulate in the membrane and induce a continuum of transient increases in ionic conductance. This phenomenon is consistent with stochastic formation of giant (~2.7 nm estimated diameter) unstructured non-ion-selective membrane pores. The potency of dynorphins to porate the plasma membrane correlates with their pathogenic effects in cellular and animal models. Membrane poration by dynorphins may represent a mechanism of pathological signal transduction. Persistent neuronal excitation by this mechanism may lead to profound neuropathological alterations, including neurodegeneration and cell death.
Collapse
|
15
|
Duarri A, Nibbeling EAR, Fokkens MR, Meijer M, Boerrigter M, Verschuuren-Bemelmans CC, Kremer BPH, van de Warrenburg BP, Dooijes D, Boddeke E, Sinke RJ, Verbeek DS. Functional analysis helps to define KCNC3 mutational spectrum in Dutch ataxia cases. PLoS One 2015; 10:e0116599. [PMID: 25756792 PMCID: PMC4355074 DOI: 10.1371/journal.pone.0116599] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/12/2014] [Indexed: 12/03/2022] Open
Abstract
Spinocerebellar ataxia type 13 (SCA13) is an autosomal dominantly inherited neurodegenerative disorder of the cerebellum caused by mutations in the voltage gated potassium channel KCNC3. To identify novel pathogenic SCA13 mutations in KCNC3 and to gain insights into the disease prevalence in the Netherlands, we sequenced the entire coding region of KCNC3 in 848 Dutch cerebellar ataxia patients with familial or sporadic origin. We evaluated the pathogenicity of the identified variants by co-segregation analysis and in silico prediction followed by biochemical and electrophysiological studies. We identified 19 variants in KCNC3 including 2 non-coding, 11 missense and 6 synonymous variants. Two missense variants did not co-segregate with the disease and were excluded as potentially disease-causing mutations. We also identified the previously reported p.R420H and p.R423H mutations in our cohort. Of the remaining 7 missense variants, functional analysis revealed that 2 missense variants shifted Kv3.3 channel activation to more negative voltages. These variations were associated with early disease onset and mild intellectual disability. Additionally, one other missense variant shifted channel activation to more positive voltages and was associated with spastic ataxic gait. Whereas, the remaining missense variants did not change any of the channel characteristics. Of these three functional variants, only one variant was in silico predicted to be damaging and segregated with disease. The other two variants were in silico predicted to be benign and co-segregation analysis was not optimal or could only be partially confirmed. Therefore, we conclude that we have identified at least one novel pathogenic mutation in KCNC3 that cause SCA13 and two additionally potential SCA13 mutations. This leads to an estimate of SCA13 prevalence in the Netherlands to be between 0.6% and 1.3%.
Collapse
Affiliation(s)
- Anna Duarri
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Esther A. R. Nibbeling
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Michiel R. Fokkens
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Michel Meijer
- Department of Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Melissa Boerrigter
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Berry P. H. Kremer
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Dennis Dooijes
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Erik Boddeke
- Department of Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Richard J. Sinke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dineke S. Verbeek
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
16
|
Saigoh K, Mitsui J, Hirano M, Shioyama M, Samukawa M, Ichikawa Y, Goto J, Tsuji S, Kusunoki S. The first Japanese familial case of spinocerebellar ataxia 23 with a novel mutation in the PDYN gene. Parkinsonism Relat Disord 2015; 21:332-4. [PMID: 25595316 DOI: 10.1016/j.parkreldis.2014.12.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/18/2014] [Accepted: 12/28/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Kazumasa Saigoh
- Department of Neurology, Kinki University Faculty of Medicine, Japan.
| | - Jun Mitsui
- Department of Neurology, University of Tokyo, Graduate School of Medicine, Japan
| | - Makito Hirano
- Department of Neurology, Kinki University Faculty of Medicines, Japan
| | - Mitsuaki Shioyama
- Department of Neurology, Kinki University Faculty of Medicines, Japan
| | - Makoto Samukawa
- Department of Neurology, Kinki University Faculty of Medicines, Japan
| | - Yaeko Ichikawa
- Department of Neurology, University of Tokyo, Graduate School of Medicine, Japan
| | - Jun Goto
- Department of Neurology, University of Tokyo, Graduate School of Medicine, Japan
| | - Shoji Tsuji
- Department of Neurology, University of Tokyo, Graduate School of Medicine, Japan
| | - Susumu Kusunoki
- Department of Neurology, Kinki University Faculty of Medicine, Japan.
| |
Collapse
|
17
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|