1
|
Dong H, Qin B, Zhang H, Lei L, Wu S. Current Treatment Methods for Charcot-Marie-Tooth Diseases. Biomolecules 2024; 14:1138. [PMID: 39334903 PMCID: PMC11430469 DOI: 10.3390/biom14091138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Charcot-Marie-Tooth (CMT) disease, the most common inherited neuromuscular disorder, exhibits a wide phenotypic range, genetic heterogeneity, and a variable disease course. The diverse molecular genetic mechanisms of CMT were discovered over the past three decades with the development of molecular biology and gene sequencing technologies. These methods have brought new options for CMT reclassification and led to an exciting era of treatment target discovery for this incurable disease. Currently, there are no approved disease management methods that can fully cure patients with CMT, and rehabilitation, orthotics, and surgery are the only available treatments to ameliorate symptoms. Considerable research attention has been given to disease-modifying therapies, including gene silencing, gene addition, and gene editing, but most treatments that reach clinical trials are drug treatments, while currently, only gene therapies for CMT2S have reached the clinical trial stage. In this review, we highlight the pathogenic mechanisms and therapeutic investigations of different subtypes of CMT, and promising therapeutic approaches are also discussed.
Collapse
Affiliation(s)
- Hongxian Dong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (H.D.); (B.Q.); (H.Z.)
| | - Boquan Qin
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (H.D.); (B.Q.); (H.Z.)
| | - Hui Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (H.D.); (B.Q.); (H.Z.)
| | - Lei Lei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shizhou Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (H.D.); (B.Q.); (H.Z.)
| |
Collapse
|
2
|
Abi Chahine NH, Mansour VJ, Nemer LI, Najjoum CF, El Asmar EA, Boulos RT. The Regentime stem cell procedure, successful treatment for a Charcot-Marie-Tooth disease case. Clin Case Rep 2024; 12:e8358. [PMID: 38161636 PMCID: PMC10753632 DOI: 10.1002/ccr3.8358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
This report highlights the successful treatment of a Charcot-Marie-Tooth disease case using the Regentime stem cell procedure, suggesting its potential as a promising therapeutic approach for patients suffering from this challenging condition.
Collapse
|
3
|
Machado RIL, Souza PVSD, Farias IB, Badia BDML, Filho JMVDA, Lima RJV, Pinto WBVDR, Oliveira ASB. Clinical and Genetic Aspects of Childhood-Onset Demyelinating Charcot-Marie-Tooth's Disease in Brazil. J Pediatr Genet 2023; 12:301-307. [PMID: 38162165 PMCID: PMC10756728 DOI: 10.1055/s-0042-1747934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
Charcot-Marie-Tooth's disease (CMT) represents the most common inherited neuropathy. Most patients are diagnosed during late stages of disease course during adulthood. We performed a review of clinical, neurophysiological, and genetic diagnoses of 32 patients with genetically defined childhood-onset demyelinating CMT under clinical follow-up in a Brazilian Center for Neuromuscular Diseases from January 2015 to December 2019. The current mean age was 33.1 ± 18.3 years (ranging from 7 to 71 years) and mean age at defined genetic diagnosis was 36.1 ± 18.3 years. The mean age at onset was 6.1 ± 4.4 years. The most common initial complaint was bilateral pes cavus. The genetic basis included PMP22 duplication (CMT1A) ( n = 18), GJB1 (CMTX1) ( n = 5), MPZ (CMT1B) ( n = 3), FIG4 (CMT4J) ( n = 3), SH3TC2 (CMT4C) ( n = 1), PLEKHG5 (CMTRIC) ( n = 1), and PRX (CMT4F) ( n = 1). Almost all patients ( n = 31) presented with moderate or severe compromise in the CMT neuropathy score 2 with the highest values observed in CMT1B. Medical history disclosed obstructive sleep apnea ( n = 5), aseptic meningitis ( n = 1/ MPZ ), akinetic-rigid parkinsonism ( n = 1/ FIG4 ), and overlapping chronic inflammatory demyelinating polyneuropathy ( n = 1/ MPZ ). Motor conduction block was detected in three individuals ( PMP22 , FIG4 , MPZ ). Acute denervation occurred in seven patients. Nonuniform demyelinating patterns were seen in four individuals (two CMT1A, one CMT1B, and one CMTX1). Abnormal cerebral white matter findings were detected in CMT1A and CMTX1, while hypertrophic roots were seen in CMT1A, CMT1B, and CMTX1. Our study emphasizes a relative oligogenic basis in childhood-onset demyelinating CMT and atypical findings may be observed especially in MPZ , PMP22 , and GJB1 gene variants.
Collapse
Affiliation(s)
| | - Paulo Victor Sgobbi de Souza
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Igor Braga Farias
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | | | | | - Ricello José Vieira Lima
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | | | - Acary Souza Bulle Oliveira
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Camargo CHF, Coutinho L, Neto YC, Engelhardt E, Filho PM, Walusinski O, Teive HAG. Jean-Martin Charcot: the polymath. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:1098-1111. [PMID: 37899048 PMCID: PMC10756797 DOI: 10.1055/s-0043-1775984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/29/2023] [Indexed: 10/31/2023]
Abstract
Jean-Martin Charcot, widely regarded as a leading founder of modern neurology, made substantial contributions to the understanding and characterization of numerous medical conditions. His initial focus was on internal medicine, later expanding to include neuropathology, general neurology, and eventually emerging fields such as neuropsychology and neuropsychiatry. Furthermore, Charcot's intellectual pursuits extended beyond medicine, encompassing research in art history, medical iconography, sociology, religious studies, and the arts, solidifying his status as a polymath.
Collapse
Affiliation(s)
- Carlos Henrique Ferreira Camargo
- Universidade Federal do Paraná, Programa de Pós-Graduação em Medicina Interna, Disciplina de Doenças Neurodegenerativas, Curitiba PR, Brazil.
| | - Léo Coutinho
- Universidade Federal do Paraná, Programa de Pós-Graduação em Medicina Interna, Disciplina de Doenças Neurodegenerativas, Curitiba PR, Brazil.
| | - Ylmar Correa Neto
- Universidade Federal de Santa Catarina, Departamento de Medicina Interna, Serviço de Neurologia, Florianópolis SC, Brazil.
| | - Eliasz Engelhardt
- Universidade Federal do Rio de Janeiro, Instituto de Neurologia Deolindo Couto e Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil.
| | - Pericles Maranhão Filho
- Universidade Federal do Rio de Janeiro, Departamento de Clínica Médica, Serviço de Neurologia, Rio de Janeiro RJ, Brazil.
| | | | - Hélio Afonso Ghizoni Teive
- Universidade Federal do Paraná, Programa de Pós-Graduação em Medicina Interna, Disciplina de Doenças Neurodegenerativas, Curitiba PR, Brazil.
- Universidade Federal do Paraná, Departamento de Clínica Médica, Serviço de Neurologia, Curitiba PR, Brazil.
| |
Collapse
|
5
|
Bunik V. The Therapeutic Potential of Vitamins B1, B3 and B6 in Charcot-Marie-Tooth Disease with the Compromised Status of Vitamin-Dependent Processes. BIOLOGY 2023; 12:897. [PMID: 37508330 PMCID: PMC10376249 DOI: 10.3390/biology12070897] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023]
Abstract
Understanding the molecular mechanisms of neurological disorders is necessary for the development of personalized medicine. When the diagnosis considers not only the disease symptoms, but also their molecular basis, treatments tailored to individual patients may be suggested. Vitamin-responsive neurological disorders are induced by deficiencies in vitamin-dependent processes. These deficiencies may occur due to genetic impairments of proteins whose functions are involved with the vitamins. This review considers the enzymes encoded by the DHTKD1, PDK3 and PDXK genes, whose mutations are observed in patients with Charcot-Marie-Tooth (CMT) disease. The enzymes bind or produce the coenzyme forms of vitamins B1 (thiamine diphosphate, ThDP) and B6 (pyridoxal-5'-phosphate, PLP). Alleviation of such disorders through administration of the lacking vitamin or its derivative calls for a better introduction of mechanistic knowledge to medical diagnostics and therapies. Recent data on lower levels of the vitamin B3 derivative, NAD+, in the blood of patients with CMT disease vs. control subjects are also considered in view of the NAD-dependent mechanisms of pathological axonal degeneration, suggesting the therapeutic potential of vitamin B3 in these patients. Thus, improved diagnostics of the underlying causes of CMT disease may allow patients with vitamin-responsive disease forms to benefit from the administration of the vitamins B1, B3, B6, their natural derivatives, or their pharmacological forms.
Collapse
Affiliation(s)
- Victoria Bunik
- Belozersky Institute of Physicochemical Biology, Department of Biokinetics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Biochemistry, Sechenov University, 119048 Moscow, Russia
| |
Collapse
|
6
|
Silva TYT, Pedroso JL, França Junior MC, Barsottini OGP. A journey through the history of Neurogenetics. ARQUIVOS DE NEURO-PSIQUIATRIA 2021; 79:929-932. [PMID: 34550174 DOI: 10.1590/0004-282x-anp-2020-0574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/28/2021] [Indexed: 11/22/2022]
Abstract
Since the late 19th century, when several inherited neurological disorders were described, the close relationship between Neurology and heredity were well documented by several authors in a pre-genetic era. The term Neurogenetics came to integrate two large sciences and clinical practices: Neurology and Genetics. Neurogenetics is the emerging field that studies the correlation between genetic code and the development and function of the nervous system, including behavioral traits, personality and neurological diseases. In this historical note, a timeline shows the main events and contributors since the first reports of neurogenetic diseases until the current days. In the recent years, neurologists are experiencing much broader use of new genetic diagnosis techniques in clinical practice. Thus, new challenges are arising in diagnostic approach, ethical considerations, and therapeutic options. This article aims to summarize the main historical hallmarks of Neurogenetics, from the pre-DNA era to the present, and the future directions of the field.
Collapse
Affiliation(s)
| | - José Luiz Pedroso
- Universidade Federal de São Paulo, Departamento de Neurologia, São Paulo SP, Brazil
| | | | | |
Collapse
|
7
|
Volodarsky M, Kerkhof J, Stuart A, Levy M, Brady LI, Tarnopolsky M, Lin H, Ainsworth P, Sadikovic B. Comprehensive genetic sequence and copy number analysis for Charcot-Marie-Tooth disease in a Canadian cohort of 2517 patients. J Med Genet 2020; 58:284-288. [PMID: 32376792 DOI: 10.1136/jmedgenet-2019-106641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 11/09/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) is one of the most common Mendelian disorders characterised by genetic heterogeneity, progressive distal muscle weakness and atrophy, foot deformities and distal sensory loss. In this report, we describe genetic testing data including comprehensive sequencing and copy number analysis of 34 CMT-related genes in a Canadian cohort of patients with suspected CMT. We have demonstrated a notable gender testing bias, with an overall diagnostic yield of 15% in males and 21% in females. We have identified a large number of novel pathogenic variants as well as variants of unknown clinical significance in CMT-related genes. In this largest to date analysis of gene CNVs in CMT, in addition to the common PMP22 deletion/duplication, we have described a significant contribution of pathogenic CNVs in several CMT-related genes. This study significantly expand the mutational spectrum of CMT genes, while demonstrating the clinical utility of a comprehensive sequence and copy number next-generation sequencing-based clinical genetic testing in patients with suspected diagnosis of CMT.
Collapse
Affiliation(s)
- Michael Volodarsky
- Molecular Genetics Laboratory, Division of Molecular Diagnostics, London Health Sciences Centre, London, Ontario, Canada
| | - Jennifer Kerkhof
- Molecular Genetics Laboratory, Division of Molecular Diagnostics, London Health Sciences Centre, London, Ontario, Canada
| | - Alan Stuart
- Molecular Genetics Laboratory, Division of Molecular Diagnostics, London Health Sciences Centre, London, Ontario, Canada
| | - Michael Levy
- Molecular Genetics Laboratory, Division of Molecular Diagnostics, London Health Sciences Centre, London, Ontario, Canada
| | - Lauren I Brady
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Mark Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Hanxin Lin
- Molecular Genetics Laboratory, Division of Molecular Diagnostics, London Health Sciences Centre, London, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Peter Ainsworth
- Molecular Genetics Laboratory, Division of Molecular Diagnostics, London Health Sciences Centre, London, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Bekim Sadikovic
- Molecular Genetics Laboratory, Division of Molecular Diagnostics, London Health Sciences Centre, London, Ontario, Canada .,Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
8
|
Googins MR, Woghiren-Afegbua AO, Calderon M, St. Croix CM, Kiselyov KI, VanDemark AP. Structural and functional divergence of GDAP1 from the glutathione S-transferase superfamily. FASEB J 2020; 34:7192-7207. [PMID: 32274853 PMCID: PMC9394736 DOI: 10.1096/fj.202000110r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 11/11/2022]
Abstract
Mutations in ganglioside-induced differentiation-associated protein 1 (GDAP1) alter mitochondrial morphology and result in several subtypes of the inherited peripheral neuropathy Charcot-Marie-Tooth disease; however, the mechanism by which GDAP1 functions has remained elusive. GDAP1 contains primary sequence homology to the GST superfamily; however, the question of whether GDAP1 is an active GST has not been clearly resolved. Here, we present biochemical evidence, suggesting that GDAP1 has lost the ability to bind glutathione without a loss of substrate binding activity. We have revealed that the α-loop, located within the H-site motif is the primary determinant for substrate binding. Using structural data of GDAP1, we have found that critical residues and configurations in the G-site which canonically interact with glutathione are altered in GDAP1, rendering it incapable of binding glutathione. Last, we have found that the overexpression of GDAP1 in HeLa cells results in a mitochondrial phenotype which is distinct from oxidative stress-induced mitochondrial fragmentation. This phenotype is dependent on the presence of the transmembrane domain, as well as a unique hydrophobic domain that is not found in canonical GSTs. Together, we data point toward a non-enzymatic role for GDAP1, such as a sensor or receptor.
Collapse
Affiliation(s)
- Matthew R. Googins
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Michael Calderon
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Kirill I. Kiselyov
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew P. VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Zhao ZH, Chen ZT, Zhou RL, Wang YZ. A Chinese pedigree with a novel mutation in GJB1 gene and a rare variation in DHTKD1 gene for diverse Charcot‑Marie‑Tooth diseases. Mol Med Rep 2019; 19:4484-4490. [PMID: 30896807 DOI: 10.3892/mmr.2019.10058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/07/2019] [Indexed: 11/05/2022] Open
Abstract
Charcot‑Marie‑Tooth (CMT) disease is a group of motor and sensory neuropathies with a high degree of pathological and genetic heterogenicity. The present study described 2 patients with CMT in a Chinese Han pedigree. The proband exhibited the classic manifestation of CMT with slowly progressing muscular atrophy and weakness. Electrophysiological examination highlighted axonal and demyelinating features. His mother did not have any symptoms, but did exhibit abnormal electrophysiological results. Next‑generation sequencing technology was employed to screen mutations in the genes associated with inherited motor never diseases. A novel mutation, c.528_530delAGT, in the gap junction protein beta 1 (GJB1) gene for CMTX, and a rare variation, c.2369C>T, in the dehydrogenase E1 and transketolase domain containing 1 (DHTKD1) gene for CMT disease type 2Q (CMT2Q), were identified in the proband and his mother. The results were verified by Sanger sequencing. Although the in silico analysis predicted no change in the 3‑dimensional structure, the clinical and electrophysiological presentation in the pedigree and the high evolutionary conservation of the affected amino acid supported the hypothesis that the c.528_530delAGT mutation in the GJB1 gene may be pathogenic in this pedigree. In silico analysis and high evolutionary conservation suggested the pathogenicity of the c.2369C>T mutation in the DHTKD1 gene; however, the clinical and electrophysiological performances of the proband and his mother did not conform to those of CMT2Q caused by the DHTKD1 gene. The present study provided additional information concerning the range of mutations of the GJB1 gene, which facilitated the understanding of the genotype‑phenotype association of CMT.
Collapse
Affiliation(s)
- Zhen-Hua Zhao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Zhi-Ting Chen
- Department of Neurology, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Rui-Ling Zhou
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yin-Zhou Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
10
|
Cipriani S, Phan V, Médard JJ, Horvath R, Lochmüller H, Chrast R, Roos A, Spendiff S. Neuromuscular Junction Changes in a Mouse Model of Charcot-Marie-Tooth Disease Type 4C. Int J Mol Sci 2018; 19:ijms19124072. [PMID: 30562927 PMCID: PMC6320960 DOI: 10.3390/ijms19124072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/06/2018] [Accepted: 12/14/2018] [Indexed: 01/08/2023] Open
Abstract
The neuromuscular junction (NMJ) appears to be a site of pathology in a number of peripheral nerve diseases. Charcot-Marie-Tooth (CMT) 4C is an autosomal recessive, early onset, demyelinating neuropathy. Numerous mutations in the SH3TC2 gene have been shown to underlie the condition often associated with scoliosis, foot deformities, and reduced nerve conduction velocities. Mice with exon 1 of the Sh3tc2 gene knocked out demonstrate many of the features seen in patients. To determine if NMJ pathology is contributory to the pathomechanisms of CMT4C we examined NMJs in the gastrocnemius muscle of SH3TC2-deficient mice. In addition, we performed proteomic assessment of the sciatic nerve to identify protein factors contributing to the NMJ alterations and the survival of demyelinated axons. Morphological and gene expression analysis of NMJs revealed a lack of continuity between the pre- and post-synaptic apparatus, increases in post-synaptic fragmentation and dispersal, and an increase in expression of the gamma subunit of the acetylcholine receptor. There were no changes in axonal width or the number of axonal inputs to the NMJ. Proteome investigations of the sciatic nerve revealed altered expression of extracellular matrix proteins important for NMJ integrity. Together these observations suggest that CMT4C pathology includes a compromised NMJ even in the absence of changes to the innervating axon.
Collapse
Affiliation(s)
- Silvia Cipriani
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK.
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy.
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Vietxuan Phan
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V.; Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany.
| | - Jean-Jacques Médard
- Department of Neuroscience, Karolinska Institutet, 171 65 Stockholm, Sweden.
- Department of Clinical Neuroscience, Karolinska Institutet, 171 65 Stockholm, Sweden.
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, John Van Geest Cambridge Centre for Brain Repair, Forvie, Robinson way, Cambridge Biomedical Campus, Cambridge CB2 0PY, UK.
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Medical Center-University of Freiburg, Mathildenstrasse 1, 79106 Freiburg, Germany.
- Centro Nacional de Análisis Genómico, Center for Genomic Regulation, Barcelona Institute of Science and Technology, Baldri I reixac 4, 08028 Barcelona, Spain.
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada.
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Riverside Drive, Ottawa, ON K1H 7X5, Canada.
| | - Roman Chrast
- Department of Neuroscience, Karolinska Institutet, 171 65 Stockholm, Sweden.
- Department of Clinical Neuroscience, Karolinska Institutet, 171 65 Stockholm, Sweden.
| | - Andreas Roos
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V.; Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany.
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, Centre for Neuromuscular Disorders in Children, University Children's Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany.
| | - Sally Spendiff
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK.
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada.
| |
Collapse
|
11
|
Quadros Santos Monteiro Fonseca AT, Zanoteli E. Charcot-Marie-Tooth disease. REVISTA MÉDICA CLÍNICA LAS CONDES 2018. [DOI: 10.1016/j.rmclc.2018.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
12
|
You Y, Wang X, Li S, Zhao X, Zhang X. Exome sequencing reveals a novel MFN2 missense mutation in a Chinese family with Charcot-Marie-Tooth type 2A. Exp Ther Med 2018; 16:2281-2286. [PMID: 30210586 PMCID: PMC6122517 DOI: 10.3892/etm.2018.6513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) is a group of inherited peripheral neuropathies. To date, mutations in >80 genes are reportedly associated with CMT. Protein mitofusin 2 encoded by MFN2 serves an essential role in mitochondrial fusion and regulation of apoptosis, which has previously been reported to be highly associated with an axonal form of neuropathy (CMT2A). In the present study, a large Chinese family with severe CMT was reported and a genetic analysis of the disease was performed. A detailed physical examination for CMT was performed in 13 family members and electrophysiological examinations were performed in 3 affected family members. Whole-exome sequencing was performed on the proband, and the suspected variants were identified by Sanger sequencing. The pathogenicity of mutation was verified by restriction fragment length polymorphism analysis in the family followed by a bioinformatics analysis. A novel c.1190G>C; p.(R397P) mutation in the MFN2 gene was identified in the proband, and co-segregated between genotype and phenotype in the family. The substituted amino acid changed the hydrophobicity and charge characteristics of the mitofusin 2 coiled-coiled domain; thus it may affect its biological function. In summary, a novel pathogenic mutation was identified in a Chinese family with CMT, which expands the phenotypic and mutational spectrum of CMT2A, and provides evidence for prenatal interventions and more precise pharmacological treatments to this family.
Collapse
Affiliation(s)
- Yi You
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China
| | - Xiaodong Wang
- Department of Paediatric Orthopaedics, The Children's Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Shan Li
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China
| | - Xiuli Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China
| | - Xue Zhang
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China
| |
Collapse
|
13
|
|
14
|
Chen S, Huang P, Qiu Y, Zhou Q, Li X, Zhu M, Hong D. Phenotype variability and histopathological findings in patients with a novel DNM2
mutation. Neuropathology 2017; 38:34-40. [PMID: 28971531 DOI: 10.1111/neup.12432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/03/2017] [Accepted: 09/03/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Shuyun Chen
- Department of Neurology; The First Affiliated Hospital of Nanchang University; Nanchang China
| | - Ping Huang
- Department of Nutrition; The First Affiliated Hospital of Nanchang University; Nanchang China
| | - Yusen Qiu
- Department of Neurology; The First Affiliated Hospital of Nanchang University; Nanchang China
| | - Qian Zhou
- Department of Neurology; The First Affiliated Hospital of Nanchang University; Nanchang China
| | - Xiaobing Li
- Department of Neurology; The First Affiliated Hospital of Nanchang University; Nanchang China
| | - Min Zhu
- Department of Neurology; The First Affiliated Hospital of Nanchang University; Nanchang China
| | - Daojun Hong
- Department of Neurology; The First Affiliated Hospital of Nanchang University; Nanchang China
| |
Collapse
|
15
|
Patterson MC, Cole TB, Siegel E, Mackowiak PA. A Patient as Art: Andrew Wyeth's Portrayal of Christina Olson's Neurologic Disorder in Christina's World. J Child Neurol 2017; 32:647-649. [PMID: 28349775 DOI: 10.1177/0883073817700603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In Christina's World, one of the most beloved works of American art, Andrew Wyeth painted Christina Olson crawling crablike across the field below her house, raised on emaciated arms, with a swollen knob for an elbow, and hands clenched and gnarled. The significance of these physical abnormalities, and the message Wyeth endeavored to convey via the portrait, are considered here in light of Christina's medical history and the disorder it most likely signifies.
Collapse
Affiliation(s)
- Marc C Patterson
- 1 Departments of Neurology, Pediatrics and Medical Genetics, Mayo Clinic, Rochester, MN, USA
| | - Thomas B Cole
- 2 Department of Social Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Eliot Siegel
- 3 Medical Service, VA Maryland Healthcare System, MD, USA
| | - Philip A Mackowiak
- 3 Medical Service, VA Maryland Healthcare System, MD, USA.,4 Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Mathis S, Goizet C, Tazir M, Magdelaine C, Lia AS, Magy L, Vallat JM. Charcot-Marie-Tooth diseases: an update and some new proposals for the classification. J Med Genet 2015; 52:681-90. [PMID: 26246519 DOI: 10.1136/jmedgenet-2015-103272] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/13/2015] [Indexed: 11/03/2022]
Abstract
BACKGROUND Charcot-Marie-Tooth (CMT) disease, the most frequent form of inherited neuropathy, is a genetically heterogeneous group of disorders of the peripheral nervous system, but with a quite homogeneous clinical phenotype (progressive distal muscle weakness and atrophy, foot deformities, distal sensory loss and usually decreased tendon reflexes). Our aim was to review the various CMT subtypes identified at the present time. METHODS We have analysed the medical literature and performed a historical retrospective of the main steps from the individualisation of the disease (at the end of the nineteenth century) to the recent knowledge about CMT. RESULTS To date, >60 genes (expressed in Schwann cells and neurons) have been implicated in CMT and related syndromes. The recent advances in molecular genetic techniques (such as next-generation sequencing) are promising in CMT, but it is still useful to recognise some specific clinical or pathological signs that enable us to validate genetic results. In this review, we discuss the diagnostic approaches and the underlying molecular pathogenesis. CONCLUSIONS We suggest a modification of the current classification and explain why such a change is needed.
Collapse
Affiliation(s)
- Stéphane Mathis
- Department of Neurology, University Hospital, Poitiers, France Department of Neurology (National Reference Center "Neuropathies Périphériques Rares"), University Hospital Dupuytren, Limoges, France
| | - Cyril Goizet
- Department of Medical Genetics, University Hospital (CHU Pellegrin), Bordeaux, France
| | - Meriem Tazir
- Department of Neurology, University Hospital Mustapha Bacha, Algiers, Algeria
| | | | - Anne-Sophie Lia
- Department of Genetics, University Hospital, Limoges, France
| | - Laurent Magy
- Department of Neurology (National Reference Center "Neuropathies Périphériques Rares"), University Hospital Dupuytren, Limoges, France
| | - Jean-Michel Vallat
- Department of Neurology (National Reference Center "Neuropathies Périphériques Rares"), University Hospital Dupuytren, Limoges, France
| |
Collapse
|