1
|
Liu X, Zhang Y, Weng Y, Zhong M, Wang L, Gao Z, Hu H, Zhang Y, Huang B, Huang R. Levodopa therapy affects brain functional network dynamics in Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111169. [PMID: 39401562 DOI: 10.1016/j.pnpbp.2024.111169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Levodopa (L-dopa) therapy is the most effective pharmacological treatment for motor symptoms of Parkinson's disease (PD). However, its effect on brain functional network dynamics is still unclear. Here, we recruited 26 PD patients and 24 healthy controls, and acquired their resting-state functional MRI data before (PD-OFF) and after (PD-ON) receiving 400 mg L-dopa. Using the independent component analysis and the sliding-window approach, we estimated the dynamic functional connectivity (dFC) and examined the effect of L-dopa on the temporal properties of dFC states, the variability of dFC and functional network topological organization. We found that PD-ON showed decreased mean dwell time in sparsely connected State 2 than PD-OFF, the transformation of the dFC state is more frequent and the variability of dFC was decreased within the auditory network and sensorimotor network in PD-ON. Our findings provide new insights to understand the dynamic neural activity induced by L-dopa therapy in PD patients.
Collapse
Affiliation(s)
- Xiaojin Liu
- Center for Educational Science and Technology, Beijing Normal University, Zhuhai 519087, China; School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou 510631, China
| | - Yuze Zhang
- Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Yihe Weng
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou 510631, China
| | - Miao Zhong
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou 510631, China
| | - Lijuan Wang
- Department of Neurology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Zhenni Gao
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Huiqing Hu
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan 430079, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan 430079, China; School of Psychology, Central China Normal University, Wuhan 430079, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Biao Huang
- Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou 510080, China.
| | - Ruiwang Huang
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou 510631, China.
| |
Collapse
|
2
|
Geng L, Cao W, Zuo J, Yan H, Wan J, Sun Y, Wang N. Functional activity, functional connectivity and complex network biomarkers of progressive hyposmia Parkinson's disease with no cognitive impairment: evidences from resting-state fMRI study. Front Aging Neurosci 2024; 16:1455020. [PMID: 39385833 PMCID: PMC11461260 DOI: 10.3389/fnagi.2024.1455020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
Background Olfactory dysfunction stands as one of the most prevalent non-motor symptoms in the initial stage of Parkinson's disease (PD). Nevertheless, the intricate mechanisms underlying olfactory deficits in Parkinson's disease still remain elusive. Methods This study collected rs-fMRI data from 30 PD patients [15 with severe hyposmia (PD-SH) and 15 with no/mild hyposmia (PD-N/MH)] and 15 healthy controls (HC). To investigate functional segregation, the amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) were utilized. Functional connectivity (FC) analysis was performed to explore the functional integration across diverse brain regions. Additionally, the graph theory-based network analysis was employed to assess functional networks in PD patients. Furthermore, Pearson correlation analysis was conducted to delve deeper into the relationship between the severity of olfactory dysfunction and various functional metrics. Results We discovered pronounced variations in ALFF, ReHo, FC, and topological brain network attributes across the three groups, with several of these disparities exhibiting a correlation with olfactory scores. Conclusion Using fMRI, our study analyzed brain function in PD-SH, PD-N/MH, and HC groups, revealing impaired segregation and integration in PD-SH and PD-N/MH. We hypothesize that changes in temporal, frontal, occipital, and cerebellar activities, along with aberrant cerebellum-insula connectivity and node degree and betweenness disparities, may be linked to olfactory dysfunction in PD patients.
Collapse
Affiliation(s)
- Lei Geng
- Department of Medical Imaging, The Second People’s Hospital of Lianyungang, Lianyungang, China
- The Oncology Hospital of Lianyungang, Lianyungang, China
- Lianyungang Clinical College of Jiangsu University, Lianyungang, China
| | - Wenfei Cao
- Department of Neurology, Heze Municipal Hospital, Heze, China
| | - Juan Zuo
- Department of Ultrasound, The Fourth People’s Hospital of Lianyungang, Lianyungang, China
| | - Hongjie Yan
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Jinxin Wan
- Department of Medical Imaging, The Second People’s Hospital of Lianyungang, Lianyungang, China
- The Oncology Hospital of Lianyungang, Lianyungang, China
- Lianyungang Clinical College of Jiangsu University, Lianyungang, China
| | - Yi Sun
- Department of Medical Imaging, The Second People’s Hospital of Lianyungang, Lianyungang, China
- The Oncology Hospital of Lianyungang, Lianyungang, China
| | - Nizhuan Wang
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
3
|
Siva K, Ponnusamy P, Ramanathan M. Disrupted Brain Network Measures in Parkinson's Disease Patients with Severe Hyposmia and Cognitively Normal Ability. Brain Sci 2024; 14:685. [PMID: 39061425 PMCID: PMC11274763 DOI: 10.3390/brainsci14070685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Neuroscience has revolved around brain structural changes, functional activity, and connectivity alteration in Parkinson's Disease (PD); however, how the network topology organization becomes altered is still unclear, specifically in Parkinson's patients with severe hyposmia. In this study, we have examined the functional network topological alteration in patients affected by Parkinson's Disease with normal cognitive ability (ODN), Parkinson's Disease with severe hyposmia (ODP), and healthy controls (HCs) using resting-state functional magnetic resonance imaging (rsfMRI) data. We have analyzed brain topological organization using popular graph measures such as network segregation (clustering coefficient, modularity), network integration (participation coefficient, path length), small-worldness, efficiency, centrality, and assortativity. Then, we used a feature ranking approach based on the diagonal adaptation of neighborhood component analysis, aiming to determine a graph measure that is sensitive enough to distinguish between these three different groups. We noted significantly lower segregation and local efficiency and small-worldness in ODP compared to ODN and HCs. On the contrary, we did not find differences in network integration in ODP compared to ODN and HCs, which indicates that the brain network becomes fragmented in ODP. At the brain network level, a progressive increase in the DMN (Default Mode Network) was observed from healthy controls to ODN to ODP, and a continuous decrease in the cingulo-opercular network was observed from healthy controls to ODN to ODP. Further, the feature ranking approach has shown that the whole-brain clustering coefficient and small-worldness are sensitive measures to classify ODP vs. ODN, as well as HCs. Looking at the brain regional network segregation, we have found that the cerebellum and limbic, fronto-parietal, and occipital lobes have higher ODP reductions than ODN and HCs. Our results suggest network topological measures, specifically whole-brain segregation and small-worldness decreases. At the network level, an increase in DMN and a decrease in the cingulo-opercular network could be used as biomarkers to characterize ODN and ODP.
Collapse
Affiliation(s)
| | | | - Malmathanraj Ramanathan
- Department of Electronics and Communication Engineering, National Institute of Technology, Tiruchirappalli 620015, India; (K.S.); (P.P.)
| |
Collapse
|
4
|
Dan XJ, Wang YW, Sun JY, Gao LL, Chen X, Yang XY, Xu EH, Ma JH, Yan CG, Wu T, Chan P. Reorganization of intrinsic functional connectivity in early-stage Parkinson's disease patients with probable REM sleep behavior disorder. NPJ Parkinsons Dis 2024; 10:5. [PMID: 38172178 PMCID: PMC10764752 DOI: 10.1038/s41531-023-00617-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
REM sleep behavior disorder (RBD) symptoms in Parkinson's disease (PD) suggest both a clinically and pathologically malignant subtype. However, whether RBD symptoms are associated with alterations in the organization of whole-brain intrinsic functional networks in PD, especially at early disease stages, remains unclear. Here we use resting-state functional MRI, coupled with graph-theoretical approaches and network-based statistics analyses, and validated with large-scale network analyses, to characterize functional brain networks and their relationship with clinical measures in early PD patients with probable RBD (PD+pRBD), early PD patients without probable RBD (PD-pRBD) and healthy controls. Thirty-six PD+pRBD, 57 PD-pRBD and 71 healthy controls were included in the final analyses. The PD+pRBD group demonstrated decreased global efficiency (t = -2.036, P = 0.0432) compared to PD-pRBD, and decreased network efficiency, as well as comprehensively disrupted nodal efficiency and whole-brain networks (all eight networks, but especially in the sensorimotor, default mode and visual networks) compared to healthy controls. The PD-pRBD group showed decreased nodal degree in right ventral frontal cortex and more affected edges in the frontoparietal and ventral attention networks compared to healthy controls. Furthermore, the assortativity coefficient was negatively correlated with Montreal cognitive assessment scores in the PD+pRBD group (r = -0.365, P = 0.026, d = 0.154). The observation of altered whole-brain functional networks and its correlation with cognitive function in PD+pRBD suggest reorganization of the intrinsic functional connectivity to maintain the brain function in the early stage of the disease. Future longitudinal studies following these alterations along disease progression are warranted.
Collapse
Affiliation(s)
- Xiao-Juan Dan
- Department of Neurology, Xuanwu Hospital of Capital Medical University, 100053, Beijing, China
- Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Key Laboratory on Parkinson's Disease of Beijing, 100053, Beijing, China
| | - Yu-Wei Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, 100101, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Jun-Yan Sun
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
| | - Lin-Lin Gao
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, 100053, Beijing, China
| | - Xiao Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, 100101, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Xue-Ying Yang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, 100101, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Er-He Xu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, 100053, Beijing, China
| | - Jing-Hong Ma
- Department of Neurology, Xuanwu Hospital of Capital Medical University, 100053, Beijing, China
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, 100101, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Tao Wu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China.
| | - Piu Chan
- Department of Neurology, Xuanwu Hospital of Capital Medical University, 100053, Beijing, China.
- Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Key Laboratory on Parkinson's Disease of Beijing, 100053, Beijing, China.
- National Clinical Research Center for Geriatric Disorders, 100053, Beijing, China.
- Beijing Institute for Brain Disorders Parkinson's Disease Center, Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100069, Beijing, China.
| |
Collapse
|
5
|
Wang H, Zhan X, Xu J, Yu M, Guo Z, Zhou G, Ren J, Zhang R, Liu W. Disrupted topologic efficiency of brain functional connectome in de novo Parkinson's disease with depression. Eur J Neurosci 2023; 58:4371-4383. [PMID: 37857484 DOI: 10.1111/ejn.16176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/23/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Growing evidence supports that depression in Parkinson's disease (PD) depends on disruptions in specific neural networks rather than regional dysfunction. According to the resting-state functional magnetic resonance imaging data, the study attempted to decipher the alterations in the topological properties of brain networks in de novo depression in PD (DPD). The study also explored the neural network basis for depressive symptoms in PD. We recruited 20 DPD, 37 non-depressed PD and 41 healthy controls (HC). The Graph theory and network-based statistical methods helped analyse the topological properties of brain functional networks and anomalous subnetworks across these groups. The relationship between altered properties and depression severity was also investigated. DPD revealed significantly reduced nodal efficiency in the left superior temporal gyrus. Additionally, DPD decreased five hubs, primarily located in the temporal-occipital cortex, and increased seven hubs, mainly distributed in the limbic cortico-basal ganglia circuit. The betweenness centrality of the left Medio Ventral Occipital Cortex was positively associated with depressive scores in DPD. In contrast to HC, DPD had a multi-connected subnetwork with significantly lower connectivity, primarily distributed in the visual, somatomotor, dorsal attention and default networks. Regional topological disruptions in the temporal-occipital region are critical in the DPD neurological mechanism. It might suggest a potential network biomarker among newly diagnosed DPD patients.
Collapse
Affiliation(s)
- Hui Wang
- Department of Neurology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China
| | - Xiaoyan Zhan
- Department of Clinical Laboratory, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Jianxia Xu
- Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Miao Yu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiying Guo
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Gaiyan Zhou
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jingru Ren
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ronggui Zhang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Weiguo Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Shen Q, Liao H, Cai S, Liu Q, Wang M, Song C, Zhou F, Liu Y, Yuan J, Tang Y, Li X, Liu J, Tan C. Cortical gyrification pattern of depression in Parkinson's disease: a neuroimaging marker for disease severity? Front Aging Neurosci 2023; 15:1241516. [PMID: 38035271 PMCID: PMC10682087 DOI: 10.3389/fnagi.2023.1241516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Background Although the study of the neuroanatomical correlates of depression in Parkinson's Disease (PD) is gaining increasing interest, up to now the cortical gyrification pattern of PD-related depression has not been reported. This study was conducted to investigate the local gyrification index (LGI) in PD patients with depression, and its associations with the severity of depression. Methods LGI values, as measured using FreeSurfer software, were compared between 59 depressed PD (dPD), 27 non-depressed PD (ndPD) patients and 43 healthy controls. The values were also compared between ndPD and mild-depressed PD (mi-dPD), moderate-depressed PD (mo-dPD) and severe-depressed PD (se-dPD) patients as sub-group analyses. Furthermore, we evaluated the correlation between LGI values and depressive symptom scores within dPD group. Results Compared to ndPD, the dPD patients exhibited decreased LGI in the left parietal, the right superior-frontal, posterior cingulate and paracentral regions, and the LGI values within these areas negatively correlated with the severity of depression. Specially, reduced gyrification was observed in mo-dPD and involving a larger region in se-dPD, but not in mi-dPD group. Conclusion The present study demonstrated that cortical gyrification is decreased within specific brain regions among PD patients with versus without depression, and those changes were associated with the severity of depression. Our findings suggested that cortical gyrification might be a potential neuroimaging marker for the severity of depression in patients with PD.
Collapse
|
7
|
Zarghami TS. A new causal centrality measure reveals the prominent role of subcortical structures in the causal architecture of the extended default mode network. Brain Struct Funct 2023; 228:1917-1941. [PMID: 37658184 DOI: 10.1007/s00429-023-02697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/09/2023] [Indexed: 09/03/2023]
Abstract
Network representation has been an incredibly useful concept for understanding the behavior of complex systems in social sciences, biology, neuroscience, and beyond. Network science is mathematically founded on graph theory, where nodal importance is gauged using measures of centrality. Notably, recent work suggests that the topological centrality of a node should not be over-interpreted as its dynamical or causal importance in the network. Hence, identifying the influential nodes in dynamic causal models (DCM) remains an open question. This paper introduces causal centrality for DCM, a dynamics-sensitive and causally-founded centrality measure based on the notion of intervention in graphical models. Operationally, this measure simplifies to an identifiable expression using Bayesian model reduction. As a proof of concept, the average DCM of the extended default mode network (eDMN) was computed in 74 healthy subjects. Next, causal centralities of different regions were computed for this causal graph, and compared against several graph-theoretical centralities. The results showed that the subcortical structures of the eDMN were more causally central than the cortical regions, even though the graph-theoretical centralities unanimously favored the latter. Importantly, model comparison revealed that only the pattern of causal centrality was causally relevant. These results are consistent with the crucial role of the subcortical structures in the neuromodulatory systems of the brain, and highlight their contribution to the organization of large-scale networks. Potential applications of causal centrality-to study causal models of other neurotypical and pathological functional networks-are discussed, and some future lines of research are outlined.
Collapse
Affiliation(s)
- Tahereh S Zarghami
- Bio-Electric Department, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| |
Collapse
|
8
|
Zhang W, Xia S, Tang X, Zhang X, Liang D, Wang Y. Topological analysis of functional connectivity in Parkinson's disease. Front Neurosci 2023; 17:1236128. [PMID: 37680970 PMCID: PMC10481708 DOI: 10.3389/fnins.2023.1236128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/02/2023] [Indexed: 09/09/2023] Open
Abstract
Parkinson's disease (PD) is a clinically heterogeneous disorder, which mainly affects patients' motor and non-motor function. Functional connectivity was preliminary explored and studied through resting state functional magnetic resonance imaging (rsfMRI). Through the topological analysis of 54 PD scans and 31 age-matched normal controls (NC) in the Neurocon dataset, leveraging on rsfMRI data, the brain functional connection and the Vietoris-Rips (VR) complex were constructed. The barcodes of the complex were calculated to reflect the changes of functional connectivity neural circuits (FCNC) in brain network. The 0-dimensional Betti number β0 means the number of connected branches in VR complex. The average number of connected branches in PD group was greater than that in NC group when the threshold δ ≤ 0.7. Two-sample Mann-Whitney U test and false discovery rate (FDR) correction were used for statistical analysis to investigate the FCNC changes between PD and NC groups. In PD group, under threshold of 0.7, the number of FCNC involved was significantly differences and these brain regions include the Cuneus_R, Lingual_R, Fusiform_R and Heschl_R. There are also significant differences in brain regions in the Frontal_Inf_Orb_R and Pallidum_R, when the threshold increased to 0.8 and 0.9 (p < 0.05). In addition, when the length of FCNC was medium, there was a significant statistical difference between the PD group and the NC group in the Neurocon dataset and the Parkinson's Progression Markers Initiative (PPMI) dataset. Topological analysis based on rsfMRI data may provide comprehensive information about the changes of FCNC and may provide an alternative for clinical differential diagnosis.
Collapse
Affiliation(s)
- Weiwei Zhang
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Shengxiang Xia
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Xinhua Tang
- School of Cyberspace Security, Shandong University of Political Science and Law, Jinan, China
| | - Xianfu Zhang
- School of Control Science and Engineering, Shandong University, Jinan, China
| | - Di Liang
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Yinuo Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
9
|
Schill J, Simonyan K, Lang S, Mathys C, Thiel C, Witt K. Parkinson's disease speech production network as determined by graph-theoretical network analysis. Netw Neurosci 2023; 7:712-730. [PMID: 37397896 PMCID: PMC10312286 DOI: 10.1162/netn_a_00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/13/2023] [Indexed: 08/04/2023] Open
Abstract
Parkinson's disease (PD) can affect speech as well as emotion processing. We employ whole-brain graph-theoretical network analysis to determine how the speech-processing network (SPN) changes in PD, and assess its susceptibility to emotional distraction. Functional magnetic resonance images of 14 patients (aged 59.6 ± 10.1 years, 5 female) and 23 healthy controls (aged 64.1 ± 6.5 years, 12 female) were obtained during a picture-naming task. Pictures were supraliminally primed by face pictures showing either a neutral or an emotional expression. PD network metrics were significantly decreased (mean nodal degree, p < 0.0001; mean nodal strength, p < 0.0001; global network efficiency, p < 0.002; mean clustering coefficient, p < 0.0001), indicating an impairment of network integration and segregation. There was an absence of connector hubs in PD. Controls exhibited key network hubs located in the associative cortices, of which most were insusceptible to emotional distraction. The PD SPN had more key network hubs, which were more disorganized and shifted into auditory, sensory, and motor cortices after emotional distraction. The whole-brain SPN in PD undergoes changes that result in (a) decreased network integration and segregation, (b) a modularization of information flow within the network, and (c) the inclusion of primary and secondary cortical areas after emotional distraction.
Collapse
Affiliation(s)
- Jana Schill
- Department of Neurology, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Kristina Simonyan
- Department of Otolaryngology, Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA
| | - Simon Lang
- Department of Neurology, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Christian Mathys
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
- Department of Diagnostic and Interventional Radiology, University of Düsseldorf, Düsseldorf, Germany
| | - Christiane Thiel
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
- Department of Psychology, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Karsten Witt
- Department of Neurology, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
10
|
Wu Q, Lei H, Mao T, Deng Y, Zhang X, Jiang Y, Zhong X, Detre JA, Liu J, Rao H. Test-Retest Reliability of Resting Brain Small-World Network Properties across Different Data Processing and Modeling Strategies. Brain Sci 2023; 13:brainsci13050825. [PMID: 37239297 DOI: 10.3390/brainsci13050825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Resting-state functional magnetic resonance imaging (fMRI) with graph theoretical modeling has been increasingly applied for assessing whole brain network topological organization, yet its reproducibility remains controversial. In this study, we acquired three repeated resting-state fMRI scans from 16 healthy controls during a strictly controlled in-laboratory study and examined the test-retest reliability of seven global and three nodal brain network metrics using different data processing and modeling strategies. Among the global network metrics, the characteristic path length exhibited the highest reliability, whereas the network small-worldness performed the poorest. Nodal efficiency was the most reliable nodal metric, whereas betweenness centrality showed the lowest reliability. Weighted global network metrics provided better reliability than binary metrics, and reliability from the AAL90 atlas outweighed those from the Power264 parcellation. Although global signal regression had no consistent effects on the reliability of global network metrics, it slightly impaired the reliability of nodal metrics. These findings provide important implications for the future utility of graph theoretical modeling in brain network analyses.
Collapse
Affiliation(s)
- Qianying Wu
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201613, China
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hui Lei
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- College of Education, Hunan Agricultural University, Changsha 410127, China
| | - Tianxin Mao
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201613, China
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yao Deng
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201613, China
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaocui Zhang
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha 410017, China
- Medical Psychological Institute, Central South University, Changsha 410017, China
- National Clinical Research Center for Mental Disorders, Changsha 410011, China
| | - Yali Jiang
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha 410017, China
| | - Xue Zhong
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha 410017, China
| | - John A Detre
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianghong Liu
- Department of Family and Community Health, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hengyi Rao
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201613, China
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Chen B, Cui W, Wang S, Sun A, Yu H, Liu Y, He J, Fan G. Functional connectome automatically differentiates multiple system atrophy (parkinsonian type) from idiopathic Parkinson's disease at early stages. Hum Brain Mapp 2023; 44:2176-2190. [PMID: 36661217 PMCID: PMC10028675 DOI: 10.1002/hbm.26201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/08/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
Abstract
Differentiating the parkinsonian variant of multiple system atrophy (MSA-P) from idiopathic Parkinson's disease (IPD) is challenging, especially in the early stages. This study aimed to investigate differences and similarities in the brain functional connectomes of IPD and MSA-P patients and use machine learning methods to explore the diagnostic utility of these features. Resting-state fMRI data were acquired from 88 healthy controls, 76 MSA-P patients, and 53 IPD patients using a 3.0 T scanner. The whole-brain functional connectome was constructed by thresholding the Pearson correlation matrices of 116 regions, and topological properties were evaluated through graph theory approaches. Connectome measurements were used as features in machine learning models (random forest [RF]/logistic regression [LR]/support vector machine) to distinguish IPD and MSA-P patients. Regarding graph metrics, early IPD and MSA-P patients shared network topological properties. Both patient groups showed functional connectivity disruptions within the cerebellum-basal ganglia-cortical network, but these disconnections were mainly in the cortico-thalamo-cerebellar circuits in MSA-P patients and the basal ganglia-thalamo-cortical circuits in IPD patients. Among the connectome parameters, t tests combined with the RF method identified 15 features, from which the LR classifier achieved the best diagnostic performance on the validation set (accuracy = 92.31%, sensitivity = 90.91%, specificity = 93.33%, area under the receiver operating characteristic curve = 0.89). MSA-P and IPD patients show similar whole-brain network topological alterations. MSA-P primarily affects cerebellar nodes, and IPD primarily affects basal ganglia nodes; both conditions disrupt the cerebellum-basal ganglia-cortical network. Moreover, functional connectome parameters showed outstanding value in the differential diagnosis of early MSA-P and IPD.
Collapse
Affiliation(s)
- Boyu Chen
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Wenzhuo Cui
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Shanshan Wang
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Anlan Sun
- Yizhun Medical AI Co. Ltd, Beijing, People's Republic of China
| | - Hongmei Yu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yu Liu
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Jiachuan He
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Guoguang Fan
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
12
|
Chen Z, Wu B, Li G, Zhou L, Zhang L, Liu J. Age and sex differentially shape brain networks in Parkinson's disease. CNS Neurosci Ther 2023. [PMID: 36890620 DOI: 10.1111/cns.14149] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
AIMS Age and sex are important individual factors modifying the clinical symptoms of patients with Parkinson's disease (PD). Our goal is to evaluate the effects of age and sex on brain networks and clinical manifestations of PD patients. METHODS Parkinson's disease participants (n = 198) receiving functional magnetic resonance imaging from Parkinson's Progression Markers Initiative database were investigated. Participants were classified into lower quartile group (age rank: 0%~25%), interquartile group (age rank: 26%~75%), and upper quartile group (age rank: 76%~100%) according to their age quartiles to examine how age shapes brain network topology. The differences of brain network topological properties between male and female participants were also investigated. RESULTS Parkinson's disease patients in the upper quartile age group exhibited disrupted network topology of white matter networks and impaired integrity of white matter fibers compared to lower quartile age group. In contrast, sex preferentially shaped the small-world topology of gray matter covariance network. Differential network metrics mediated the effects of age and sex on cognitive function of PD patients. CONCLUSION Age and sex have diverse effects on brain structural networks and cognitive function of PD patients, highlighting their roles in the clinical management of PD.
Collapse
Affiliation(s)
- Zhichun Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bin Wu
- Department of Neurology, Xuchang Central Hospital affiliated with Henan University of Science and Technology, Henan, China
| | - Guanglu Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liche Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lina Zhang
- Department of Biostatistics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Sasikumar S, Strafella AP. Structural and Molecular Imaging for Clinically Uncertain Parkinsonism. Semin Neurol 2023; 43:95-105. [PMID: 36878467 DOI: 10.1055/s-0043-1764228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Neuroimaging is an important adjunct to the clinical assessment of Parkinson disease (PD). Parkinsonism can be challenging to differentiate, especially in early disease stages, when it mimics other movement disorders or when there is a poor response to dopaminergic therapies. There is also a discrepancy between the phenotypic presentation of degenerative parkinsonism and the pathological outcome. The emergence of more sophisticated and accessible neuroimaging can identify molecular mechanisms of PD, the variation between clinical phenotypes, and the compensatory mechanisms that occur with disease progression. Ultra-high-field imaging techniques have improved spatial resolution and contrast that can detect microstructural changes, disruptions in neural pathways, and metabolic and blood flow alterations. We highlight the imaging modalities that can be accessed in clinical practice and recommend an approach to the diagnosis of clinically uncertain parkinsonism.
Collapse
Affiliation(s)
- Sanskriti Sasikumar
- Morton and Gloria Shulman Movement Disorder Unit and Edmond J. Safra Parkinson Disease Program, Neurology Division, Department of Medicine, University of Toronto, Toronto Western Hospital, UHN, Ontario, Canada
| | - Antonio P Strafella
- Morton and Gloria Shulman Movement Disorder Unit and Edmond J. Safra Parkinson Disease Program, Neurology Division, Department of Medicine, University of Toronto, Toronto Western Hospital, UHN, Ontario, Canada.,Krembil Brain Institute, University Health Network and Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Shu Z, Wu J, Li H, Liu J, Lu J, Lin J, Liang S, Wu J, Han J, Yu N. fNIRS-based functional connectivity signifies recovery in patients with disorders of consciousness after DBS treatment. Clin Neurophysiol 2023; 147:60-68. [PMID: 36702043 DOI: 10.1016/j.clinph.2022.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/20/2022] [Accepted: 12/12/2022] [Indexed: 01/17/2023]
Abstract
OBJECTIVE While deep brain stimulation (DBS) has proved effective for certain patients with disorders of consciousness (DOC), the working neural mechanism is not clear, the response varies for patients, and the assessment is inadequate. This paper aims to quantify the DBS-induced changes of consciousness in DOC patients at the neural functional level. METHODS Ten DOC patients were included for DBS surgery. The DBS target was the right centromedian-parafascicular (CM-pf) nuclei for four patients and the bilateral CM-pf nuclei for six patients. Functional near-infrared spectroscopy (fNIRS) was taken to measure the neural activation of patients, in parallel with Coma Recovery Scale-Revised (CRS-R), before the DBS surgery and one month after. The fNIRS signals were recorded from the frontal, parietal, and occipital lobes. Functional connectivity analysis quantified the communication between brain regions, area communication strength, and global communication efficiency. Linear regression analysis was conducted between the changes of indices based on functional connectivity analysis and the changes of the CRS-R index. RESULTS Patients with trauma (n = 4) exhibited a greater increase of CRS-R scores after DBS treatment compared with patients with hemorrhage (n = 4) and brainstem infarction (n = 2). Global communication efficiency changed consistently with the CRS-R index (slope = 57.384, p < 0.05, R2=0.483). No significant relationship was found between the changes of area communication strength of six brain lobes and the changes of the CRS-R index. CONCLUSIONS The cause of DOC is essential for the outcome of DBS treatment, and brain communication efficiency is a promising functional marker for DOC recovery. SIGNIFICANCE fNIRS-based functional connectivity analysis on brain network signifies changes of consciousness in DOC patients after DBS treatment.
Collapse
Affiliation(s)
- Zhilin Shu
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China
| | - Jingchao Wu
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Haitao Li
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Jinrui Liu
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China
| | - Jiewei Lu
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China
| | - Jianeng Lin
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China
| | - Siquan Liang
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China.
| | - Jialing Wu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, China; Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China.
| | - Jianda Han
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China.
| | - Ningbo Yu
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China.
| |
Collapse
|
15
|
The challenging quest of neuroimaging: From clinical to molecular-based subtyping of Parkinson disease and atypical parkinsonisms. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:231-258. [PMID: 36796945 DOI: 10.1016/b978-0-323-85538-9.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The current framework of Parkinson disease (PD) focuses on phenotypic classification despite its considerable heterogeneity. We argue that this method of classification has restricted therapeutic advances and therefore limited our ability to develop disease-modifying interventions in PD. Advances in neuroimaging have identified several molecular mechanisms relevant to PD, variation within and between clinical phenotypes, and potential compensatory mechanisms with disease progression. Magnetic resonance imaging (MRI) techniques can detect microstructural changes, disruptions in neural pathways, and metabolic and blood flow alterations. Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging have informed the neurotransmitter, metabolic, and inflammatory dysfunctions that could potentially distinguish disease phenotypes and predict response to therapy and clinical outcomes. However, rapid advancements in imaging techniques make it challenging to assess the significance of newer studies in the context of new theoretical frameworks. As such, there needs to not only be a standardization of practice criteria in molecular imaging but also a rethinking of target approaches. In order to harness precision medicine, a coordinated shift is needed toward divergent rather than convergent diagnostic approaches that account for interindividual differences rather than similarities within an affected population, and focus on predictive patterns rather than already lost neural activity.
Collapse
|
16
|
Disrupted topological organization of resting-state functional brain networks in Parkinson's disease patients with glucocerebrosidase gene mutations. Neuroradiology 2023; 65:361-370. [PMID: 36269334 DOI: 10.1007/s00234-022-03067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/11/2022] [Indexed: 01/25/2023]
Abstract
PURPOSE The mutations of the glucocerebrosidase (GBA) gene are the greatest genetic risk factor for Parkinson's disease (PD). The mechanism underlying the association between GBA mutations and PD has not been fully elucidated. METHODS Using resting-state functional magnetic resonance imaging and graph theory analysis to investigate the disrupted topological organization in PD patients with GBA mutation (GBA-PD). Eleven GBA-PD patients, 11 noncarriers with PD, and 18 healthy controls (HCs) with a similar age and sex distribution were recruited. Individual whole-brain functional connectome was constructed, and the global and nodal topological disruptions were calculated among groups. Partial correlation analyses between the clinical features of patients with PD and topological alterations were performed. RESULTS The GBA-PD group showed prominently decreased characteristic path length (Lp) and increased global efficiency (Eg) compared to HCs at the global level; a significantly increased nodal betweenness centrality in the medial prefrontal cortex (mPFC) and precuneus within the default mode network, and precentral gyrus within the sensorimotor network, while a significantly decreased betweenness centrality in nodes within the cingulo-opercular network compared to the noncarrier group at the regional level. The altered nodal betweenness centrality of mPFC was positively correlated with fatigue severity scale scores in all patients with PD. CONCLUSION The preliminary pilot study found that GBA-PD patients had a higher functional integration at the global level. The nodal result of the mPFC is congruent with the potential fatigue pathology in PD and is suggestive of a profound effect of GBA mutations on the clinical fatigue in patients with PD.
Collapse
|
17
|
Shi Z, Jiang B, Liu T, Wang L, Pei G, Suo D, Zhang J, Funahashi S, Wu J, Yan T. Individual-level functional connectomes predict the motor symptoms of Parkinson's disease. Cereb Cortex 2023; 33:6282-6290. [PMID: 36627247 DOI: 10.1093/cercor/bhac503] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 01/12/2023] Open
Abstract
Abnormalities in functional connectivity networks are associated with sensorimotor networks in Parkinson's disease (PD) based on group-level mapping studies, but these results are controversial. Using individual-level cortical segmentation to construct individual brain atlases can supplement the individual information covered by group-level cortical segmentation. Functional connectivity analyses at the individual level are helpful for obtaining clinically useful markers and predicting treatment response. Based on the functional connectivity of individualized regions of interest, a support vector regression model was trained to estimate the severity of motor symptoms for each subject, and a correlation analysis between the estimated scores and clinical symptom scores was performed. Forty-six PD patients aged 50-75 years were included from the Parkinson's Progression Markers Initiative database, and 63 PD patients were included from the Beijing Rehabilitation Hospital database. Only patients below Hoehn and Yahr stage III were included. The analysis showed that the severity of motor symptoms could be estimated by the individualized functional connectivity between the visual network and sensorimotor network in early-stage disease. The results reveal individual-level connectivity biomarkers related to motor symptoms and emphasize the importance of individual differences in the prediction of the treatment response of PD.
Collapse
Affiliation(s)
- Zhongyan Shi
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Bo Jiang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Tiantian Liu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Li Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Guangying Pei
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Dingjie Suo
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jian Zhang
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shintaro Funahashi
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China
| | - Jinglong Wu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Tianyi Yan
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
18
|
Filippi M, Spinelli EG, Cividini C, Ghirelli A, Basaia S, Agosta F. The human functional connectome in neurodegenerative diseases: relationship to pathology and clinical progression. Expert Rev Neurother 2023; 23:59-73. [PMID: 36710600 DOI: 10.1080/14737175.2023.2174016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Neurodegenerative diseases can be considered as 'disconnection syndromes,' in which a communication breakdown prompts cognitive or motor dysfunction. Mathematical models applied to functional resting-state MRI allow for the organization of the brain into nodes and edges, which interact to form the functional brain connectome. AREAS COVERED The authors discuss the recent applications of functional connectomics to neurodegenerative diseases, from preclinical diagnosis, to follow up along with the progressive changes in network organization, to the prediction of the progressive spread of neurodegeneration, to stratification of patients into prognostic groups, and to record responses to treatment. The authors searched PubMed using the terms 'neurodegenerative diseases' AND 'fMRI' AND 'functional connectome' OR 'functional connectivity' AND 'connectomics' OR 'graph metrics' OR 'graph analysis.' The time range covered the past 20 years. EXPERT OPINION Considering the great pathological and phenotypical heterogeneity of neurodegenerative diseases, identifying a common framework to diagnose, monitor and elaborate prognostic models is challenging. Graph analysis can describe the complexity of brain architectural rearrangements supporting the network-based hypothesis as unifying pathogenetic mechanism. Although a multidisciplinary team is needed to overcome the limit of methodologic complexity in clinical application, advanced methodologies are valuable tools to better characterize functional disconnection in neurodegeneration.
Collapse
Affiliation(s)
- Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Gioele Spinelli
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camilla Cividini
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alma Ghirelli
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
19
|
Wen J, Guo T, Wu J, Bai X, Zhou C, Wu H, Liu X, Chen J, Cao Z, Gu L, Pu J, Zhang B, Zhang M, Guan X, Xu X. Nigral Iron Deposition Influences Disease Severity by Modulating the Effect of Parkinson's Disease on Brain Networks. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2479-2492. [PMID: 36336939 PMCID: PMC9837680 DOI: 10.3233/jpd-223372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND In Parkinson's disease (PD), excessive iron deposition in the substantia nigra may exacerbate α-synuclein aggregation, facilitating the degeneration of dopaminergic neurons and their neural projection. OBJECTIVE To investigate the interaction effect between nigral iron deposition and PD status on brain networks. METHODS Eighty-five PD patients and 140 normal controls (NC) were included. Network function and nigral iron were measured using multi-modality magnetic resonance imaging. According to the median of nigral magnetic susceptibility of NC (0.095 ppm), PD and NC were respectively divided into high and low nigral iron group. The main and interaction effects were investigated by mixed effect analysis. RESULTS The main effect of disease was observed in basal ganglia network (BGN) and visual network (VN). The interaction effect between nigral iron and PD status was observed in left inferior frontal gyrus and left insular lobe in BGN, as well as right middle occipital gyrus, right superior temporal gyrus, and bilateral cuneus in VN. Furthermore, multiple mediation analysis revealed that the functional connectivity of interaction effect clusters in BGN and medial VN partially mediated the relationship between nigral iron and Unified Parkinson's Disease Rating Scale II score. CONCLUSION Our study demonstrates an interaction of nigral iron deposition and PD status on brain networks, that is, nigral iron deposition is associated with the change of brain network configuration exclusively when in PD. We identified a potential causal mediation pathway for iron to affect disease severity that was mediated by both BGN dysfunction and VN hyperfunction in PD.
Collapse
Affiliation(s)
- Jiaqi Wen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueqin Bai
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haoting Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingwen Chen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengye Cao
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Luyan Gu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Pu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Correspondence to: Xiaojun Xu, MD, Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China. Tel.: +86 0571 87315255; Fax: +86 0571 87315255; E-mail: and Xiaojun Guan, PhD, Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China. Tel.: +86 0571 87315255; Fax: +86 0571 87315255;
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Correspondence to: Xiaojun Xu, MD, Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China. Tel.: +86 0571 87315255; Fax: +86 0571 87315255; E-mail: and Xiaojun Guan, PhD, Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China. Tel.: +86 0571 87315255; Fax: +86 0571 87315255;
| |
Collapse
|
20
|
Bagarinao E, Kawabata K, Watanabe H, Hara K, Ohdake R, Ogura A, Masuda M, Kato T, Maesawa S, Katsuno M, Sobue G. Connectivity impairment of cerebellar and sensorimotor connector hubs in Parkinson’s disease. Brain Commun 2022; 4:fcac214. [PMID: 36072644 PMCID: PMC9438962 DOI: 10.1093/braincomms/fcac214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/25/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Cognitive and movement processes involved integration of several large-scale brain networks. Central to these integrative processes are connector hubs, brain regions characterized by strong connections with multiple networks. Growing evidence suggests that many neurodegenerative and psychiatric disorders are associated with connector hub dysfunctions. Using a network metric called functional connectivity overlap ratio, we investigated connector hub alterations in Parkinson’s disease. Resting-state functional MRI data from 99 patients (male/female = 44/55) and 99 age- and sex-matched healthy controls (male/female = 39/60) participating in our cross-sectional study were used in the analysis. We have identified two sets of connector hubs, mainly located in the sensorimotor cortex and cerebellum, with significant connectivity alterations with multiple resting-state networks. Sensorimotor connector hubs have impaired connections primarily with primary processing (sensorimotor, visual), visuospatial, and basal ganglia networks, whereas cerebellar connector hubs have impaired connections with basal ganglia and executive control networks. These connectivity alterations correlated with patients’ motor symptoms. Specifically, values of the functional connectivity overlap ratio of the cerebellar connector hubs were associated with tremor score, whereas that of the sensorimotor connector hubs with postural instability and gait disturbance score, suggesting potential association of each set of connector hubs with the disorder’s two predominant forms, the akinesia/rigidity and resting tremor subtypes. In addition, values of the functional connectivity overlap ratio of the sensorimotor connector hubs were highly predictive in classifying patients from controls with an accuracy of 75.76%. These findings suggest that, together with the basal ganglia, cerebellar and sensorimotor connector hubs are significantly involved in Parkinson’s disease with their connectivity dysfunction potentially driving the clinical manifestations typically observed in this disorder.
Collapse
Affiliation(s)
- Epifanio Bagarinao
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 461–8673 Japan
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
| | - Kazuya Kawabata
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Hirohisa Watanabe
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
- Department of Neurology, Fujita Health University School of Medicine , Toyoake, Aichi, 470-1192 Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Reiko Ohdake
- Department of Neurology, Fujita Health University School of Medicine , Toyoake, Aichi, 470-1192 Japan
| | - Aya Ogura
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Michihito Masuda
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Toshiyasu Kato
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Satoshi Maesawa
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
- Department of Neurosurgery, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Gen Sobue
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
- Aichi Medical University , Nagakute, Aichi, 480-1195 Japan
| |
Collapse
|
21
|
Chu C, He N, Zeljic K, Zhang Z, Wang J, Li J, Liu Y, Zhang Y, Sun B, Li D, Yan F, Zhang C, Liu C. Subthalamic and pallidal stimulation in Parkinson's disease induce distinct brain topological reconstruction. Neuroimage 2022; 255:119196. [PMID: 35413446 DOI: 10.1016/j.neuroimage.2022.119196] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022] Open
Abstract
The subthalamic nucleus (STN) and globus pallidus internus (GPi) are the two most common and effective target brain areas for deep brain stimulation (DBS) treatment of advanced Parkinson's disease. Although DBS has been shown to restore functional neural circuits of this disorder, the changes in topological organization associated with active DBS of each target remain unknown. To investigate this, we acquired resting-state functional magnetic resonance imaging (fMRI) data from 34 medication-free patients with Parkinson's disease that had DBS electrodes implanted in either the subthalamic nucleus or internal globus pallidus (n = 17 each), in both ON and OFF DBS states. Sixteen age-matched healthy individuals were used as a control group. We evaluated the regional information processing capacity and transmission efficiency of brain networks with and without stimulation, and recorded how stimulation restructured the brain network topology of patients with Parkinson's disease. For both targets, the variation of local efficiency in motor brain regions was significantly correlated (p < 0.05) with improvement rate of the Uniform Parkinson's Disease Rating Scale-III scores, with comparable improvements in motor function for the two targets. However, non-motor brain regions showed changes in topological organization during active stimulation that were target-specific. Namely, targeting the STN decreased the information transmission of association, limbic and paralimbic regions, including the inferior frontal gyrus angle, insula, temporal pole, superior occipital gyri, and posterior cingulate, as evidenced by the simultaneous decrease of clustering coefficient and local efficiency. GPi-DBS had a similar effect on the caudate and lenticular nuclei, but enhanced information transmission in the cingulate gyrus. These effects were not present in the DBS-OFF state for GPi-DBS, but persisted for STN-DBS. Our results demonstrate that DBS to the STN and GPi induce distinct brain network topology reconstruction patterns, providing innovative theoretical evidence for deciphering the mechanism through which DBS affects disparate targets in the human brain.
Collapse
Affiliation(s)
- Chunguang Chu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kristina Zeljic
- School of Health Sciences, City, University of London, London, EC1V 0HB, UK
| | - Zhen Zhang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Jun Li
- School of Information Science and Technology, Shanghai Tech University, Shanghai, China
| | - Yu Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youmin Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Clinical Neuroscience Center, Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Clinical Neuroscience Center, Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Clinical Neuroscience Center, Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Research Center for Brain Science and Brain-Inspired Technology, Shanghai, China.
| | - Chen Liu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China.
| |
Collapse
|
22
|
Hall SA, Bell RP, Gadde S, Towe SL, Nadeem MT, McCann PS, Song AW, Meade CS. Strengthened and posterior-shifted structural rich-club organization in people who use cocaine. Drug Alcohol Depend 2022; 235:109436. [PMID: 35413558 PMCID: PMC9948276 DOI: 10.1016/j.drugalcdep.2022.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND People with cocaine use disorder (CUD) often have abnormal cognitive function and brain structure. Cognition is supported by brain networks that typically have characteristics like rich-club organization, which is a group of regions that are highly connected across the brain and to each other, and small worldness, which is a balance between local and long-distance connections. However, it is unknown whether there are abnormalities in structural brain network connectivity of CUD. METHODS Using diffusion-weighted imaging, we measured structural connectivity in 37 people with CUD and 38 age-matched controls. We identified differences in rich-club organization and whether such differences related to small worldness and behavior. We also tested whether rich-club reorganization was associated with caudate and putamen structural connectivity due to the relevance of the dopamine system to cocaine use. RESULTS People with CUD had a higher normalized rich-club coefficient than controls, more edges connecting rich-club nodes to each other and to non-rich-club nodes, and fewer edges connecting non-rich-club nodes. Rich-club nodes were shifted posterior and lateral. Rich-club reorganization was related to lower clustered connectivity around individual nodes found in CUD, to increased impulsivity, and to a decrease in caudate connectivity. CONCLUSIONS These findings are consistent with previous work showing increased rich-club connectivity in conditions associated with a hypofunctional dopamine system. The posterior shift in rich-club nodes in CUD suggests that the structural connectivity of posterior regions may be more impacted than previously recognized in models based on brain function and morphology.
Collapse
Affiliation(s)
- Shana A Hall
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Campus Box 102848, Durham, NC 27710, USA
| | - Ryan P Bell
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Campus Box 102848, Durham, NC 27710, USA
| | - Syam Gadde
- Brain Imaging and Analysis Center, Duke University Medical Center, Campus Box 3918, Durham, NC 27710, USA
| | - Sheri L Towe
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Campus Box 102848, Durham, NC 27710, USA
| | - Muhammad Tauseef Nadeem
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Campus Box 102848, Durham, NC 27710, USA
| | - Peter S McCann
- Duke University Hospital, 2301 Erwin Rd, Durham, NC 27710, USA
| | - Allen W Song
- Brain Imaging and Analysis Center, Duke University Medical Center, Campus Box 3918, Durham, NC 27710, USA
| | - Christina S Meade
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Campus Box 102848, Durham, NC 27710, USA; Brain Imaging and Analysis Center, Duke University Medical Center, Campus Box 3918, Durham, NC 27710, USA.
| |
Collapse
|
23
|
Guan B, Xu Y, Chen YC, Xing C, Xu L, Shang S, Xu JJ, Wu Y, Yan Q. Reorganized Brain Functional Network Topology in Presbycusis. Front Aging Neurosci 2022; 14:905487. [PMID: 35693344 PMCID: PMC9177949 DOI: 10.3389/fnagi.2022.905487] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Presbycusis is characterized by bilateral sensorineural hearing loss at high frequencies and is often accompanied by cognitive decline. This study aimed to identify the topological reorganization of brain functional network in presbycusis with/without cognitive decline by using graph theory analysis approaches based on resting-state functional magnetic resonance imaging (rs-fMRI). Methods Resting-state fMRI scans were obtained from 30 presbycusis patients with cognitive decline, 30 presbycusis patients without cognitive decline, and 50 age-, sex-, and education-matched healthy controls. Graph theory was applied to analyze the topological properties of brain functional networks including global and nodal metrics, modularity, and rich-club organization. Results At the global level, the brain functional networks of all participants were found to possess small-world properties. Also, significant group differences in global network metrics were observed among the three groups such as clustering coefficient, characteristic path length, normalized characteristic path length, and small-worldness. At the nodal level, several nodes with abnormal betweenness centrality, degree centrality, nodal efficiency, and nodal local efficiency were detected in presbycusis patients with/without cognitive decline. Changes in intra-modular connections in frontal lobe module and inter-modular connections in prefrontal subcortical lobe module were found in presbycusis patients exposed to modularity analysis. Rich-club nodes were reorganized in presbycusis patients, while the connections among them had no significant group differences. Conclusion Presbycusis patients exhibited topological reorganization of the whole-brain functional network, and presbycusis patients with cognitive decline showed more obvious changes in these topological properties than those without cognitive decline. Abnormal changes of these properties in presbycusis patients may compensate for cognitive impairment by mobilizing additional neural resources.
Collapse
Affiliation(s)
- Bing Guan
- Department of Otolaryngology, Head and Neck Surgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yixi Xu
- Department of Otolaryngology, Head and Neck Surgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chunhua Xing
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Li Xu
- Department of Otolaryngology, Head and Neck Surgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Song'an Shang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jin-Jing Xu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuanqing Wu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Yuanqing Wu
| | - Qi Yan
- Department of Otolaryngology, Head and Neck Surgery, Clinical Medical College, Yangzhou University, Yangzhou, China
- Qi Yan
| |
Collapse
|
24
|
Hua JC, Xu XM, Xu ZG, Xu JJ, Hu JH, Xue Y, Wu Y. Aberrant Functional Network of Small-World in Sudden Sensorineural Hearing Loss With Tinnitus. Front Neurosci 2022; 16:898902. [PMID: 35663555 PMCID: PMC9160300 DOI: 10.3389/fnins.2022.898902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
Few researchers investigated the topological properties and relationships with cognitive deficits in sudden sensorineural hearing loss (SNHL) with tinnitus. To explore the topological characteristics of the brain connectome following SNHL from the global level and nodal level, we recruited 36 bilateral SNHL patients with tinnitus and 37 well-matched healthy controls. Every subject underwent pure tone audiometry tests, neuropsychological assessments, and MRI scanning. AAL atlas was employed to divide a brain into 90 cortical and subcortical regions of interest, then investigated the global and nodal properties of “small world” network in SNHL and control groups using a graph-theory analysis. The global characteristics include small worldness, cluster coefficient, characteristic path length, local efficiency, and global efficiency. Node properties include degree centrality, betweenness centrality, nodal efficiency, and nodal clustering coefficient. Interregional connectivity analysis was also computed among 90 nodes. We found that the SNHL group had significantly higher hearing thresholds and cognitive impairments, as well as disrupted internal connections among 90 nodes. SNHL group displayed lower AUC of cluster coefficient and path length lambda, but increased global efficiency. The opercular and triangular parts of the inferior frontal gyrus, rectus gyrus, parahippocampal gyrus, precuneus, and amygdala showed abnormal local features. Some of these connectome alterations were correlated with cognitive ability and the duration of SNHL. This study may prove potential imaging biomarkers and treatment targets for future studies.
Collapse
Affiliation(s)
- Jin-Chao Hua
- Department of Otolaryngology, Nanjing Pukou Central Hospital, Pukou Branch Hospital of Jiangsu Province Hospital, Nanjing, China
| | - Xiao-Min Xu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhen-Gui Xu
- Department of Otolaryngology, Nanjing Pukou Central Hospital, Pukou Branch Hospital of Jiangsu Province Hospital, Nanjing, China
| | - Jin-Jing Xu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jing-Hua Hu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuan Xue
- Department of Otolaryngology, Nanjing Pukou Central Hospital, Pukou Branch Hospital of Jiangsu Province Hospital, Nanjing, China
- *Correspondence: Yuan Xue,
| | - Yuanqing Wu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Yuanqing Wu,
| |
Collapse
|
25
|
Chen S, Wang SH, Bai YY, Zhang JW, Zhang HJ. Comparative Study on Topological Properties of the Whole-Brain Functional Connectome in Idiopathic Rapid Eye Movement Sleep Behavior Disorder and Parkinson’s Disease Without RBD. Front Aging Neurosci 2022; 14:820479. [PMID: 35478699 PMCID: PMC9036484 DOI: 10.3389/fnagi.2022.820479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/07/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose Idiopathic rapid eye movement Sleep Behavior Disorder (iRBD) is considered as a prodromal and most valuable warning symptom for Parkinson’s disease (PD). Although iRBD and PD without RBD (nRBD-PD) are both α-synucleinopathies, whether they share the same neurodegeneration process is not clear enough. In this study, the pattern and extent of neurodegeneration were investigated and compared between early-stage nRBD-PD and iRBD from the perspective of whole-brain functional network changes. Methods Twenty-one patients with iRBD, 23 patients with early-stage nRBD-PD, and 22 matched healthy controls (HCs) were enrolled. Functional networks were constructed using resting-state functional MRI (fMRI) data. Network topological properties were analyzed and compared among groups by graph theory approaches. Correlation analyses were performed between network topological properties and cognition in the iRBD and nRBD-PD groups. Results Both patients with iRBD and patients with early-stage nRBD-PD had attention, executive function, and some memory deficits. On global topological organization, iRBD and nRBD-PD groups still presented small-worldness, but both groups exhibited decreased global/local efficiency and increased characteristic path length. On regional topological organization, compared with HC, nRBD-PD presented decreased nodal efficiency, decreased degree centrality, and increased nodal shortest path length, while iRBD presented decreased nodal efficiency and nodal shortest path. For iRBD, brain regions with decreased nodal efficiency were included in the corresponding regions of nRBD-PD. Nodal shortest path changes were significantly different in terms of brain regions and directions between nRBD-PD and iRBD. Attention deficits were correlated with local topological properties of the occipital lobe in both iRBD and nRBD-PD groups. Conclusion Both global and local efficiency of functional networks declined in nRBD-PD and iRBD groups. The overlaps and differences in local topological properties between nRBD-PD and iRBD indicate that iRBD not only shares functional changes of PD but also presents distinct features.
Collapse
|
26
|
Hou Y, Zhang L, Wei Q, Ou R, Yang J, Gong Q, Shang H. Impaired Topographic Organization in Patients With Idiopathic Blepharospasm. Front Neurol 2022; 12:708634. [PMID: 35095707 PMCID: PMC8791229 DOI: 10.3389/fneur.2021.708634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/13/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Idiopathic blepharospasm (BSP) is a common adult-onset focal dystonia. Neuroimaging technology can be used to visualize functional and microstructural changes of the whole brain. Method: We used resting-state functional MRI (rs-fMRI) and graph theoretical analysis to explore the functional connectome in patients with BSP. Altogether 20 patients with BSP and 20 age- and gender-matched healthy controls (HCs) were included in the study. Measures of network topology were calculated, such as small-world parameters (clustering coefficient [C p], the shortest path length [L p]), network efficiency parameters (global efficiency [E glob], local efficiency [E loc]), and the nodal parameter (nodal efficiency [E nod]). In addition, the least absolute shrinkage and selection operator (LASSO) regression was adopted to determine the most critical imaging features, and the classification model using critical imaging features was constructed. Results: Compared with HCs, the BSP group showed significantly decreased E loc. Imaging features of nodal centrality (E nod) were entered into the LASSO method, and the classification model was constructed with nine imaging nodes. The area under the curve (AUC) was 0.995 (95% CI: 0.973-1.000), and the sensitivity and specificity were 95% and 100%, respectively. Specifically, four imaging nodes within the sensorimotor network (SMN), cerebellum, and default mode network (DMN) held the prominent information. Compared with HCs, the BSP group showed significantly increased E nod in the postcentral region within the SMN, decreased E nod in the precentral region within the SMN, increased E nod in the medial cerebellum, and increased E nod in the precuneus within the DMN. Conclusion: The network model in BSP showed reduced local connectivity. Baseline connectomic measures derived from rs-fMRI data may be capable of identifying patients with BSP, and regions from the SMN, cerebellum, and DMN may provide key insights into the underlying pathophysiology of BSP.
Collapse
Affiliation(s)
- Yanbing Hou
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyu Zhang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wei
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ruwei Ou
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Yang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
van Balkom TD, van den Heuvel OA, Berendse HW, van der Werf YD, Vriend C. Eight-week multi-domain cognitive training does not impact large-scale resting-state brain networks in Parkinson's disease. Neuroimage Clin 2022; 33:102952. [PMID: 35123203 PMCID: PMC8819471 DOI: 10.1016/j.nicl.2022.102952] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/23/2021] [Accepted: 01/26/2022] [Indexed: 11/25/2022]
Abstract
There is meta-analytic evidence for the efficacy of cognitive training (CT) in Parkinson's disease (PD). We performed a randomized controlled trial where we found small positive effects of CT on executive function and processing speed in individuals with PD (ntotal = 140). In this study, we assessed the effects of CT on brain network connectivity and topology in a subsample of the full study population (nmri = 86). Participants were randomized into an online multi-domain CT and an active control condition and performed 24 sessions of either intervention in eight weeks. Resting-state functional MRI scans were acquired in addition to extensive clinical and neuropsychological assessments pre- and post-intervention. In line with our preregistered analysis plan (osf.io/3st82), we computed connectivity between 'cognitive' resting-state networks and computed topological outcomes at the whole-brain and sub-network level. We assessed group differences after the intervention with mixed-model analyses adjusting for baseline performance and analyzed the association between network and cognitive performance changes with repeated measures correlation analyses. The final analysis sample consisted of 71 participants (n CT = 37). After intervention there were no group differences on between-network connectivity and network topological outcomes. No associations between neural network and neuropsychological performance change were found. CT increased segregated network topology in a small sub-sample of cognitively intact participants. Post-hoc nodal analyses showed post-intervention enhanced connectivity of both the dorsal anterior cingulate cortex and dorsolateral prefrontal cortex in the CT group. The results suggest no large-scale brain network effects of eight-week computerized CT, but rather localized connectivity changes of key regions in cognitive function, that potentially reflect the specific effects of the intervention.
Collapse
Affiliation(s)
- Tim D van Balkom
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands.
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands.
| | - Henk W Berendse
- Amsterdam UMC, Vrije Universiteit Amsterdam, Neurology, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands.
| | - Ysbrand D van der Werf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands.
| | - Chris Vriend
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands.
| |
Collapse
|
28
|
Guo T, Xuan M, Zhou C, Wu J, Gao T, Bai X, Liu X, Gu L, Liu R, Song Z, Gu Q, Huang P, Pu J, Zhang B, Xu X, Guan X, Zhang M. Normalization effect of levodopa on hierarchical brain function in Parkinson’s disease. Netw Neurosci 2022; 6:552-569. [PMID: 35733432 PMCID: PMC9208001 DOI: 10.1162/netn_a_00232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 01/10/2022] [Indexed: 11/08/2022] Open
Abstract
Hierarchical brain organization, in which the rich club and diverse club situate in core position, is critical for global information integration in the human brain network. Parkinson’s disease (PD), a common movement disorder, has been conceptualized as a network disorder. Levodopa is an effective treatment for PD. Whether there is a functional divergence in the hierarchical brain system under PD pathology, and how this divergence is regulated by immediate levodopa therapy, remains unknown. We constructed a functional network in 61 PD patients and 89 normal controls and applied graph theoretical analyses to examine the neural mechanism of levodopa short response from the perspective of brain hierarchical configuration. The results revealed the following: (a) PD patients exhibited disrupted function within rich-club organization, while the diverse club preserved function, indicating a differentiated brain topological organization in PD. (b) Along the rich-club derivate hierarchical system, PD patients showed impaired network properties within rich-club and feeder subnetworks, and decreased nodal degree centrality in rich-club and feeder nodes, along with increased nodal degree in peripheral nodes, suggesting distinct functional patterns in different types of nodes. And (c) levodopa could normalize the abnormal network architecture of the rich-club system. This study provides evidence for levodopa effects on the hierarchical brain system with divergent functions. Many studies of brain networks have revealed densely connected regions forming the rich club and diverse club, which occupy the central position of the hierarchical brain system. Here, we explore the hierarchical topology in Parkinson’s disease (PD) and investigate the neural effect of levodopa on it. We show that within the core position of the hierarchical system, the function of the diverse club is preserved while the function of the rich club is impaired. Along the rich-club hierarchical system, the function of biologically costly rich-club and feeder subnetworks is disrupted, together with an increased function of peripheral nodes, which could be normalized by levodopa. Our study provides evidence of a disparity pattern between different levels of brain hierarchical systems under PD pathology.
Collapse
Affiliation(s)
- Tao Guo
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Xuan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Gao
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueqin Bai
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaocao Liu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Luyan Gu
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiqi Liu
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhe Song
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quanquan Gu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Pu
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
29
|
Disrupted functional connectivity in PD with probable RBD and its cognitive correlates. Sci Rep 2021; 11:24351. [PMID: 34934134 PMCID: PMC8692356 DOI: 10.1038/s41598-021-03751-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022] Open
Abstract
Recent studies associated rapid eye movement sleep behavior disorder (RBD) in Parkinson’s disease (PD) with severe cognitive impairment and brain atrophy. However, whole-brain functional connectivity has never been explored in this group of PD patients. In this study, whole-brain network-based statistics and graph-theoretical approaches were used to characterize resting-state interregional functional connectivity in PD with probable RBD (PD-pRBD) and its relationship with cognition. Our sample consisted of 30 healthy controls, 32 PD without probable RBD (PD-non pRBD), and 27 PD-pRBD. The PD-pRBD group showed reduced functional connectivity compared with controls mainly involving cingulate areas with temporal, frontal, insular, and thalamic regions (p < 0.001). Also, the PD-pRBD group showed reduced functional connectivity between right ventral posterior cingulate and left medial precuneus compared with PD-non pRBD (p < 0.05). We found increased normalized characteristic path length in PD-pRBD compared with PD-non pRBD. In the PD-pRBD group, mean connectivity strength from reduced connections correlated with visuoperceptual task and normalized characteristic path length correlated with processing speed and verbal memory tasks. This work demonstrates the existence of disrupted functional connectivity in PD-pRBD, together with abnormal network integrity, that supports its consideration as a severe PD subtype.
Collapse
|
30
|
Wang J, Shang R, He L, Zhou R, Chen Z, Ma Y, Li X. Prediction of Deep Brain Stimulation Outcome in Parkinson's Disease With Connectome Based on Hemispheric Asymmetry. Front Neurosci 2021; 15:620750. [PMID: 34764846 PMCID: PMC8576048 DOI: 10.3389/fnins.2021.620750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 09/28/2021] [Indexed: 11/25/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease that is associated with motor and non-motor symptoms and caused by lack of dopamine in the substantia nigra of the brain. Subthalamic nucleus deep brain stimulation (STN-DBS) is a widely accepted therapy of PD that mainly inserts electrodes into both sides of the brain. The effect of STN-DBS was mainly for motor function, so this study focused on the recovery of motor function for PD after DBS. Hemispherical asymmetry in the brain network is considered to be a potential indicator for diagnosing PD patients. This study investigated the value of hemispheric brain connection asymmetry in predicting the DBS surgery outcome in PD patients. Four types of brain connections, including left intra-hemispheric (LH) connection, right intra-hemispheric (RH) connection, inter-hemispheric homotopic (Ho) connection, and inter-hemispheric heterotopic (He) connection, were constructed based on the resting state functional magnetic resonance imaging (rs-fMRI) performed before the DBS surgery. We used random forest for selecting features and the Ridge model for predicting surgical outcome (i.e., improvement rate of motor function). The functional connectivity analysis showed that the brain has a right laterality: the RH networks has the best correlation (r = 0.37, p = 5.68E-03) between the predicted value and the true value among the above four connections. Moreover, the region-of-interest (ROI) analysis indicated that the medioventral occipital cortex (MVOcC)–superior temporal gyrus (STG) and thalamus (Tha)–precentral gyrus (PrG) contributed most to the outcome prediction model for DBS without medication. This result provides more support for PD patients to evaluate DBS before surgery.
Collapse
Affiliation(s)
- Jingqi Wang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Ruihong Shang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Le He
- Department of Biomedical Engineering, Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing, China
| | - Rongsong Zhou
- Department of Neurosurgery, Tsinghua University Yuquan Hospital, Beijing, China
| | - Zhensen Chen
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Yu Ma
- Department of Neurosurgery, Tsinghua University Yuquan Hospital, Beijing, China
| | - Xuesong Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
31
|
Huang LC, Chen LG, Wu PA, Pang CY, Lin SZ, Tsai ST, Chen SY. Effect of deep brain stimulation on brain network and white matter integrity in Parkinson's disease. CNS Neurosci Ther 2021; 28:92-104. [PMID: 34643338 PMCID: PMC8673709 DOI: 10.1111/cns.13741] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/27/2022] Open
Abstract
Aims The effects of subthalamic nucleus (STN)‐deep brain stimulation (DBS) on brain topological metrics, functional connectivity (FC), and white matter integrity were studied in levodopa‐treated Parkinson’s disease (PD) patients before and after DBS. Methods Clinical assessment, resting‐state functional MRI (rs‐fMRI), and diffusion tensor imaging (DTI) were performed pre‐ and post‐DBS in 15 PD patients, using a within‐subject design. The rs‐fMRI identified brain network topological metric and FC changes using graph‐theory‐ and seed‐based methods. White matter integrity was determined by DTI and tract‐based spatial statistics. Results Unified Parkinson's Disease Rating Scale III (UPDRS‐ III) scores were significantly improved by 35.3% (p < 0.01) after DBS in PD patients, compared with pre‐DBS patients without medication. Post‐DBS PD patients showed a significant decrease in the graph‐theory‐based degree and cost in the middle temporal gyrus and temporo‐occipital part‐Right. Changes in FC were seen in four brain regions, and a decrease in white matter integrity was seen in the left anterior corona radiata. The topological metrics changes were correlated with Beck Depression Inventory II (BDI‐II) and the FC changes with UPDRS‐III scores. Conclusion STN‐DBS modulated graph‐theoretical metrics, FC, and white matter integrity. Brain connectivity changes observed with multi‐modal imaging were also associated with postoperative clinical improvement. These findings suggest that the effects of STN‐DBS are caused by brain network alterations.
Collapse
Affiliation(s)
- Li-Chuan Huang
- Department of Medical Imaging, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Medical Imaging and Radiological Sciences, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Li-Guo Chen
- Department of Medical Imaging, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ping-An Wu
- Department of Medical Imaging, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Cheng-Yoong Pang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Cardiovascular and Metabolomics Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Sheng-Tzung Tsai
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Shin-Yuan Chen
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
32
|
Wu C, Matias C, Foltynie T, Limousin P, Zrinzo L, Akram H. Dynamic Network Connectivity Reveals Markers of Response to Deep Brain Stimulation in Parkinson's Disease. Front Hum Neurosci 2021; 15:729677. [PMID: 34690721 PMCID: PMC8526554 DOI: 10.3389/fnhum.2021.729677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Neuronal loss in Parkinson's Disease (PD) leads to widespread neural network dysfunction. While graph theory allows for analysis of whole brain networks, patterns of functional connectivity (FC) associated with motor response to deep brain stimulation of the subthalamic nucleus (STN-DBS) have yet to be explored. Objective/Hypothesis: To investigate the distributed network properties associated with STN-DBS in patients with advanced PD. Methods: Eighteen patients underwent 3-Tesla resting state functional MRI (rs-fMRI) prior to STN-DBS. Improvement in UPDRS-III scores following STN-DBS were assessed 1 year after implantation. Independent component analysis (ICA) was applied to extract spatially independent components (ICs) from the rs-fMRI. FC between ICs was calculated across the entire time series and for dynamic brain states. Graph theory analysis was performed to investigate whole brain network topography in static and dynamic states. Results: Dynamic analysis identified two unique brain states: a relative hypoconnected state and a relative hyperconnected state. Time spent in a state, dwell time, and number of transitions were not correlated with DBS response. There were no significant FC findings, but graph theory analysis demonstrated significant relationships with STN-DBS response only during the hypoconnected state - STN-DBS was negatively correlated with network assortativity. Conclusion: Given the widespread effects of dopamine depletion in PD, analysis of whole brain networks is critical to our understanding of the pathophysiology of this disease. Only by leveraging graph theoretical analysis of dynamic FC were we able to isolate a hypoconnected brain state that contained distinct network properties associated with the clinical effects of STN-DBS.
Collapse
Affiliation(s)
- Chengyuan Wu
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Caio Matias
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| | - Thomas Foltynie
- Unit of Functional Neurosurgery, UCL Institute of Neurology, London, United Kingdom
| | - Patricia Limousin
- Unit of Functional Neurosurgery, UCL Institute of Neurology, London, United Kingdom
| | - Ludvic Zrinzo
- Unit of Functional Neurosurgery, UCL Institute of Neurology, London, United Kingdom
- Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Harith Akram
- Unit of Functional Neurosurgery, UCL Institute of Neurology, London, United Kingdom
- Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|
33
|
Filippi M, Basaia S, Sarasso E, Stojkovic T, Stankovic I, Fontana A, Tomic A, Piramide N, Stefanova E, Markovic V, Kostic VS, Agosta F. Longitudinal brain connectivity changes and clinical evolution in Parkinson's disease. Mol Psychiatry 2021; 26:5429-5440. [PMID: 32409731 DOI: 10.1038/s41380-020-0770-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 11/09/2022]
Abstract
Longitudinal connectivity studies might guide our understanding of the underlying neurodegenerative processes. We report the results of a longitudinal study in patients at different stages of Parkinson's disease (PD), who performed motor and non-motor evaluations and serial resting state (RS) functional MRI (fMRI). Cluster analysis was applied to demographic and clinical data of 146 PD patients to define disease subtypes. Brain network functional alterations were assessed at baseline in PD relative to 60 healthy controls and every year for a maximum of 4 years in PD groups. Progression of brain network changes were compared between patient clusters using RS fMRI. The contribution of network changes in predicting clinical deterioration was explored. Two main PD clusters were identified: mild PD (86 patients) and moderate-to-severe PD (60 patients), with the latter group being older and having earlier onset, longer PD duration, more severe motor, non-motor and cognitive deficits. Within the mild patient cluster, two clinical subtypes were further identified: mild motor-predominant (43) and mild-diffuse (43), with the latter being older and having more frequent non-motor symptoms. Longitudinal functional connectivity changes vary across patients in different disease stages with the coexistence of hypo- and hyper-connectivity in all subtypes. RS fMRI changes were associated with motor, cognitive and non-motor evolution in PD patients. Baseline RS fMRI presaged clinical and cognitive evolution. Our network perspective was able to define trajectories of functional architecture changes according to PD stages and prognosis. RS fMRI may be an early biomarker of PD motor and non-motor progression.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Neurology Unit and Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy.
| | - Silvia Basaia
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Sarasso
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Tanja Stojkovic
- Clinic of Neurology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Iva Stankovic
- Clinic of Neurology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Andrea Fontana
- Unit of Biostatistics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Aleksandra Tomic
- Clinic of Neurology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Noemi Piramide
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Elka Stefanova
- Clinic of Neurology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladana Markovic
- Clinic of Neurology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir S Kostic
- Clinic of Neurology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
34
|
Li Z, Ren G, Liu C, Wang Q, Liang K, Han C, Qiao H, Zhang J, Wang Q, Meng F. Dysfunctional Brain Dynamics of Parkinson's Disease and the Effect of Acute Deep Brain Stimulation. Front Neurosci 2021; 15:697909. [PMID: 34354564 PMCID: PMC8331088 DOI: 10.3389/fnins.2021.697909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/09/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, and deep brain stimulation (DBS) can effectively alleviate PD symptoms. Although previous studies have detected network features of PD and DBS, few studies have considered their dynamic characteristics. Objective: We tested two hypotheses. (1) Reduced brain dynamics, as evidenced by slowed microstate dynamic change, is a characteristic of PD and is related to the movement disorders of patients with PD. (2) Therapeutic acute DBS can partially reverse slow brain dynamics in PD to healthy levels. Methods: We used electroencephalography (EEG) microstate analysis based on high density (256-channel) EEG to detect the effects of PD and DBS on brain dynamic changes on a sub-second timescale. We compared 21 healthy controls (HCs) with 20 patients with PD who were in either DBS-OFF or DBS-ON states. Assessment of movement disorder using the Unified Parkinson's Disease Rating Scale III was correlated with microstate parameters. Results: Compared with HCs, patients with PD displayed a longer mean microstate duration with reduced occurrence per second, which were significantly associated with movement disorders. In patients with PD, some parameters of microstate analysis were restored toward healthy levels after DBS. Conclusions: Resting-state EEG microstate analysis is an important tool for investigating brain dynamic changes in PD and DBS. PD can slow down brain dynamic change, and therapeutic acute DBS can partially reverse this change toward a healthy level.
Collapse
Affiliation(s)
- Zhibao Li
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Guoping Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chong Liu
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Qiao Wang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Kun Liang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chunlei Han
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing Neurosurgical Institute, Beijing, China
| | - Hui Qiao
- Neuroelectrophysiology Room, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing Neurosurgical Institute, Beijing, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Fangang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing Neurosurgical Institute, Beijing, China.,Chinese Institute for Brain Research Beijing (CIBR), Beijing, China
| |
Collapse
|
35
|
Luo W, Greene AS, Constable RT. Within node connectivity changes, not simply edge changes, influence graph theory measures in functional connectivity studies of the brain. Neuroimage 2021; 240:118332. [PMID: 34224851 PMCID: PMC8493952 DOI: 10.1016/j.neuroimage.2021.118332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/31/2021] [Accepted: 07/01/2021] [Indexed: 01/24/2023] Open
Abstract
Interest in understanding the organization of the brain has led to the application of graph theory methods across a wide array of functional connectivity studies. The fundamental basis of a graph is the node. Recent work has shown that functional nodes reconfigure with brain state. To date, all graph theory studies of functional connectivity in the brain have used fixed nodes. Here, using fixed-, group-, state-specific, and individualized- parcellations for defining nodes, we demonstrate that functional connectivity changes within the nodes significantly influence the findings at the network level. In some cases, state- or group-dependent changes of the sort typically reported do not persist, while in others, changes are only observed when node reconfigurations are considered. The findings suggest that graph theory investigations into connectivity contrasts between brain states and/or groups should consider the influence of voxel-level changes that lead to node reconfigurations; the fundamental building block of a graph.
Collapse
Affiliation(s)
- Wenjing Luo
- Biomedical Engineering, Yale University School of Medicine, United States
| | - Abigail S Greene
- Interdepartmental Neuroscience Program, Yale University School of Medicine, United States; MD/PhD program, Yale University School of Medicine, United States
| | - R Todd Constable
- Biomedical Engineering, Yale University School of Medicine, United States; Radiology and Biomedical Imaging, Yale University School of Medicine, United States; Interdepartmental Neuroscience Program, Yale University School of Medicine, United States.
| |
Collapse
|
36
|
Suo X, Lei D, Li N, Li W, Kemp GJ, Sweeney JA, Peng R, Gong Q. Disrupted morphological grey matter networks in early-stage Parkinson's disease. Brain Struct Funct 2021; 226:1389-1403. [PMID: 33825053 PMCID: PMC8096749 DOI: 10.1007/s00429-020-02200-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/16/2020] [Indexed: 02/05/2023]
Abstract
While previous structural-covariance studies have an advanced understanding of brain alterations in Parkinson's disease (PD), brain–behavior relationships have not been examined at the individual level. This study investigated the topological organization of grey matter (GM) networks, their relation to disease severity, and their potential imaging diagnostic value in PD. Fifty-four early-stage PD patients and 54 healthy controls (HC) underwent structural T1-weighted magnetic resonance imaging. GM networks were constructed by estimating interregional similarity in the distributions of regional GM volume using the Kullback–Leibler divergence measure. Results were analyzed using graph theory and network-based statistics (NBS), and the relationship to disease severity was assessed. Exploratory support vector machine analyses were conducted to discriminate PD patients from HC and different motor subtypes. Compared with HC, GM networks in PD showed a higher clustering coefficient (P = 0.014) and local efficiency (P = 0.014). Locally, nodal centralities in PD were lower in postcentral gyrus and temporal-occipital regions, and higher in right superior frontal gyrus and left putamen. NBS analysis revealed decreased morphological connections in the sensorimotor and default mode networks and increased connections in the salience and frontoparietal networks in PD. Connection matrices and graph-based metrics allowed single-subject classification of PD and HC with significant accuracy of 73.1 and 72.7%, respectively, while graph-based metrics allowed single-subject classification of tremor-dominant and akinetic–rigid motor subtypes with significant accuracy of 67.0%. The topological organization of GM networks was disrupted in early-stage PD in a way that suggests greater segregation of information processing. There is potential for application to early imaging diagnosis.
Collapse
Affiliation(s)
- Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, PR China
| | - Du Lei
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, PR China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Nannan Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wenbin Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, PR China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, PR China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Rong Peng
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, PR China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
37
|
Disrupted Brain Network Topology in Drug-naïve Essential Tremor Patients with and Without Depression : A Resting State Functional Magnetic Resonance Imaging Study. Clin Neuroradiol 2021; 31:981-992. [PMID: 33687483 DOI: 10.1007/s00062-021-01002-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 02/08/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE This study was carried out to investigate brain functional connectome and its potential relationships with the disease severity and emotion function in patients with essential tremor with and without depressive symptoms by using resting-state functional magnetic resonance imaging and graph theory approaches. METHODS In this study 33 essential tremor patients with depression, 45 essential tremor patients without depression and 79 age and gender-matched healthy controls were recruited to undergo a 3.0‑T imaging scan. The whole brain functional connectome was constructed by thresholding the partial correlation matrices of 116 brain regions, and the topologic properties were analyzed by using graph theory approaches and network-based statistic approaches. Nonparametric permutation test was also used for group comparisons of topological metrics. Correlation analyses between topographic features and the clinical characteristics were performed. RESULTS The functional connectome in both essential tremor patients with and without depression showed abnormalities at the global level (decrease in clustering coefficient, global efficiency, and local efficiency but increase in characteristic path length) and at the nodal level (decrease nodal centralities in the cerebellum, motor cortex, prefrontal-limbic regions, default mode network) (p < 0.05, false discovery rate corrected). Moreover, essential tremor patients with depression showed higher node efficiency in superior frontal gyrus and posterior cingulate gyrus compared to essential tremor without depression. CONCLUSION Our results may provide insights into the underlying pathophysiology of essential tremor patients with and without depression and aid the development of some potential biomarkers of the depressive symptoms in patients with essential tremor.
Collapse
|
38
|
Chen X, Liu M, Wu Z, Cheng H. Topological Abnormalities of Functional Brain Network in Early-Stage Parkinson's Disease Patients With Mild Cognitive Impairment. Front Neurosci 2020; 14:616872. [PMID: 33424546 PMCID: PMC7793724 DOI: 10.3389/fnins.2020.616872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022] Open
Abstract
Recent studies have demonstrated structural and functional alterations in Parkinson's disease (PD) with mild cognitive impairment (MCI). However, the topological patterns of functional brain networks in newly diagnosed PD patients with MCI are unclear so far. In this study, we used functional magnetic resonance imaging (fMRI) and graph theory approaches to explore the functional brain network in 45 PD patients with MCI (PD-MCI), 22 PD patients without MCI (PD-nMCI), and 18 healthy controls (HC). We found that the PD-MCI, PD-nMCI, and HC groups exhibited a small-world architecture in the functional brain network. However, early-stage PD-MCI patients had decreased clustering coefficient, increased characteristic path length, and changed nodal centrality in the default mode network (DMN), control network (CN), somatomotor network (SMN), and visual network (VN), which might contribute to factors for MCI symptoms in PD patients. Our results demonstrated that PD-MCI patients were associated with disrupted topological organization in the functional network, thus providing a topological network insight into the role of information exchange in the underlying development of MCI symptoms in PD patients.
Collapse
Affiliation(s)
- Xiangbin Chen
- Department of TCM Internal Medicine, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Mengting Liu
- School of Music, Jimei University, Xiamen, China
| | - Zhibing Wu
- Department of TCM Internal Medicine, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Hao Cheng
- Department of Ultrasonography, Shaanxi Cancer Hospital Affiliated to Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
39
|
Mihaescu AS, Kim J, Masellis M, Graff-Guerrero A, Cho SS, Christopher L, Valli M, Díez-Cirarda M, Koshimori Y, Strafella AP. Graph theory analysis of the dopamine D2 receptor network in Parkinson's disease patients with cognitive decline. J Neurosci Res 2020; 99:947-965. [PMID: 33271630 DOI: 10.1002/jnr.24760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 12/30/2022]
Abstract
Cognitive decline in Parkinson's disease (PD) is a common sequela of the disorder that has a large impact on patient well-being. Its physiological etiology, however, remains elusive. Our study used graph theory analysis to investigate the large-scale topological patterns of the extrastriatal dopamine D2 receptor network. We used positron emission tomography with [11 C]FLB-457 to measure the binding potential of cortical dopamine D2 receptors in two networks: the meso-cortical dopamine network and the meso-limbic dopamine network. We also investigated the application of partial volume effect correction (PVEC) in conjunction with graph theory analysis. Three groups were investigated in this study divided according to their cognitive status as measured by the Montreal Cognitive Assessment score, with a score ≤25 considered cognitively impaired: (a) healthy controls (n = 13, 11 female), (b) cognitively unimpaired PD patients (PD-CU, n = 13, 5 female), and (c) PD patients with mild cognitive impairment (PD-MCI, n = 17, 4 female). In the meso-cortical network, we observed increased small-worldness, normalized clustering, and local efficiency in the PD-CU group compared to the PD-MCI group, as well as a hub shift in the PD-MCI group. Compensatory reorganization of the meso-cortical dopamine D2 receptor network may be responsible for some of the cognitive preservation observed in PD-CU. These results were found without PVEC applied and PVEC proved detrimental to the graph theory analysis. Overall, our findings demonstrate how graph theory analysis can be used to detect subtle changes in the brain that would otherwise be missed by regional comparisons of receptor density.
Collapse
Affiliation(s)
- Alexander S Mihaescu
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada.,Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, ON, Canada
| | - Jinhee Kim
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Mario Masellis
- Institute of Medical Science, University of Toronto, ON, Canada.,LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, ON, Canada
| | - Sang Soo Cho
- Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Leigh Christopher
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Mikaeel Valli
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada.,Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, ON, Canada
| | - María Díez-Cirarda
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada.,Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada.,Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Yuko Koshimori
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Antonio P Strafella
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada.,Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, ON, Canada.,Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Program in Parkinson Disease, Neurology Division, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
40
|
Li J, Zeng Q, Zhou W, Zhai X, Lai C, Zhu J, Dong S, Lin Z, Cheng G. Altered Brain Functional Network in Parkinson Disease With Rapid Eye Movement Sleep Behavior Disorder. Front Neurol 2020; 11:563624. [PMID: 33193000 PMCID: PMC7652930 DOI: 10.3389/fneur.2020.563624] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
Background and Objective: Parkinson disease (PD) with rapid eye movement (REM) sleep behavior disorder (PD-RBD) tend to be a distinct phenotype with more severe clinical characteristics and pathological lesion when compared with PD without RBD (PD-nRBD). However, the pathological mechanism underlying PD-RBD remains unclear. We aim to use the resting-state functional magnetic resonance imaging (rs-fMRI) to explore the mechanism of PD-RBD from the perspective of internal connectivity networks. Materials and Methods: A total of 92 PD patients and 20 age and sex matched normal controls (NC) were included. All participants underwent rs-fMRI scan and clinical assessment. According to the RBD screening questionnaire (RBDSQ), PD patients were divided into two groups: PD with probable RBD (PD-pRBD) and PD without probable RBD (PD-npRBD). The whole brain was divided into 90 regions using automated anatomic labeling atlas. Functional network of each subject was constructed according to the correlation of rs-fMRI blood oxygenation level dependent signals in any two brain regions and network metrics were analyzed using graph theory approaches. Network properties among three groups were compared and correlation analysis was made using distinguishing network metrics and RBDSQ scores. Results: We found both PD-pRBD and PD-npRBD patients existed small-world characteristics. PD-pRBD showed a wider range of nodal property changes in neocortex and limbic system than PD-npRBD patients when compared with NC. Besides, PD-pRBD showed significant enhanced nodal efficiency in the bilateral thalamus and betweenness centrality in the left insula, but, reduced betweenness centrality in the right dorsolateral superior frontal gyrus when compared with PD-npRBD. Moreover, nodal efficiency in the bilateral thalamus were positively correlated with RBDSQ scores. Conclusions: Both NC and PD patients displayed small-world properties and indiscriminate global measure but PD-pRBD showed more extensive changes of nodal properties than PD-npRBD. The increased centrality role in the bilateral thalamus and the left insula, and disruption in the right dorsolateral superior frontal gyrus may play as a key role in underlying pathogenesis of PD-RBD.
Collapse
Affiliation(s)
- Jiao Li
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qiaoling Zeng
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wen Zhou
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiangwei Zhai
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chao Lai
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, China
| | - Junlan Zhu
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shuwen Dong
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhijian Lin
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Guanxun Cheng
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
41
|
Shang R, He L, Ma X, Ma Y, Li X. Connectome-Based Model Predicts Deep Brain Stimulation Outcome in Parkinson's Disease. Front Comput Neurosci 2020; 14:571527. [PMID: 33192428 PMCID: PMC7656054 DOI: 10.3389/fncom.2020.571527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
Subthalamic nucleus deep brain stimulation (STN-DBS) is an effective invasive treatment for advanced Parkinson's disease (PD) at present. Due to the invasiveness and cost of operations, a reliable tool is required to predict the outcome of therapy in the clinical decision-making process. This work aims to investigate whether the topological network of functional connectivity states can predict the outcome of DBS without medication. Fifty patients were recruited to extract the features of the brain related to the improvement rate of PD after STN-DBS and to train the machine learning model that can predict the therapy's effect. The functional connectivity analyses suggested that the GBRT model performed best with Pearson's correlations of r = 0.65, p = 2.58E-07 in medication-off condition. The connections between middle frontal gyrus (MFG) and inferior temporal gyrus (ITG) contribute most in the GBRT model.
Collapse
Affiliation(s)
- Ruihong Shang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Le He
- Department of Biomedical Engineering, Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaodong Ma
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Yu Ma
- Department of Neurosurgery, Tsinghua University Yuquan Hospital, Beijing, China
| | - Xuesong Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
42
|
Ruan X, Li Y, Li E, Xie F, Zhang G, Luo Z, Du Y, Jiang X, Li M, Wei X. Impaired Topographical Organization of Functional Brain Networks in Parkinson's Disease Patients With Freezing of Gait. Front Aging Neurosci 2020; 12:580564. [PMID: 33192473 PMCID: PMC7609969 DOI: 10.3389/fnagi.2020.580564] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/18/2020] [Indexed: 12/04/2022] Open
Abstract
Objective: This study aimed to explore alterations in the topological properties of the functional brain network in primary Parkinson’s disease (PD) patients with freezing of gait (PD-FOG). Methods: Resting-state functional magnetic resonance imaging (Rs-fMRI) data were obtained in 23 PD-FOG patients, 33 PD patients without FOG (PD-nFOG), and 24 healthy control (HC) participants. The whole-brain functional connectome was constructed by thresholding the Pearson correlation matrices of 90 brain regions, and topological properties were analyzed by using graph theory approaches. The network-based statistics (NBS) method was used to determine the suprathreshold connected edges (P < 0.05; threshold T = 2.725), and statistical significance was estimated by using the non-parametric permutation method (5,000 permutations). Statistically significant topological properties were further evaluated for their relationship with clinical neurological scales. Results: The topological properties of the functional brain network in PD-FOG and PD-nFOG showed no abnormalities at the global level. However, compared with HCs, PD-FOG patients showed decreased nodal local efficiency in several brain regions, including the bilateral striatum, frontoparietal areas, visual cortex, and bilateral superior temporal gyrus, increased nodal local efficiency in the left gyrus rectus. When compared with PD-nFOG patients and HCs, PD-FOG showed increased betweenness centrality in the left hippocampus. Moreover, compared to HCs, both PD-FOG and PD-nFOG patients displayed reduced network connections by using the NBS method, mainly involving the sensorimotor cortex (SM), visual network (VN), default mode network (DMN), auditory network (AN), dorsal attention network (DAN), subcortical regions, and limbic network (LIM). The local node efficiency of the right temporal pole: superior temporal gyrus in PD-FOG patients was positively correlated with the Freezing of Gait Questionnaire (FOGQ) scores. Conclusions: This study demonstrates the disrupted regional topological organization in PD-FOG patients, especially associated with damage to the subcortical regions and multiple cortical regions. Our results provide insights into the dysfunctional mechanisms of the relevant networks and indicate potential neuroimaging biomarkers of PD-FOG.
Collapse
Affiliation(s)
- Xiuhang Ruan
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuting Li
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - E Li
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fang Xie
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guoqin Zhang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | | | - Yuchen Du
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xinqing Jiang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Mengyan Li
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
43
|
Elevated caudate connectivity in cognitively normal Parkinson's disease patients. Sci Rep 2020; 10:17978. [PMID: 33087833 PMCID: PMC7578639 DOI: 10.1038/s41598-020-75008-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/29/2020] [Indexed: 01/29/2023] Open
Abstract
Mild cognitive impairment (MCI) is common in Parkinson’s disease patients. However, its underlying mechanism is not well understood, which has hindered new treatment discoveries specific to MCI. The aim of this study was to investigate functional connectivity changes of the caudate nucleus in cognitively impaired Parkinson’s patients. We recruited 18 Parkinson’s disease patients—10 PDNC [normal cognition Parkinson’s disease; Montreal Cognitive Assessment (MoCA) ≥ 26], 8 PDLC (low cognition Parkinson’s disease; MoCA < 26) —and 10 age-matched healthy controls. All subjects were scanned with resting-state functional magnetic resonance imaging (MRI) and perfusion MRI. We analyzed these data for graph theory metrics and Alzheimer’s disease-like pattern score, respectively. A strong positive correlation was found between the functional connectivity of the right caudate nucleus and MoCA scores in Parkinson’s patient groups, but not in healthy control subjects. Interestingly, PDNC’s functional connectivity of the right caudate was significantly higher than both PDLC and healthy controls, while PDLC and healthy controls were not significantly different from each other. We found that Alzheimer’s disease-like metabolic/perfusion pattern score correlated with MoCA scores in healthy controls, but not in Parkinson’s disease. Increased caudate connectivity may be related to a compensatory mechanism found in cognitively normal patients with Parkinson’s disease. Our findings support and complement the dual syndrome hypothesis.
Collapse
|
44
|
Li W, Wen W, Chen X, Ni B, Lin X, Fan W, The Alzheimer's Disease Neuroimaging Initiative. Functional Evolving Patterns of Cortical Networks in Progression of Alzheimer's Disease: A Graph-Based Resting-State fMRI Study. Neural Plast 2020; 2020:7839536. [PMID: 32684923 PMCID: PMC7341396 DOI: 10.1155/2020/7839536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/22/2020] [Indexed: 11/18/2022] Open
Abstract
AD is a common chronic progressive neurodegenerative disorder. However, the understanding of the dynamic longitudinal change of the brain in the progression of AD is still rough and sometimes conflicting. This paper analyzed the brain networks of healthy people and patients at different stages (EMCI, LMCI, and AD). The results showed that in global network properties, most differences only existed between healthy people and patients, and few were discovered between patients at different stages. However, nearly all subnetwork properties showed significant differences between patients at different stages. Moreover, the most interesting result was that we found two different functional evolving patterns of cortical networks in progression of AD, named 'temperature inversion' and "monotonous decline," but not the same monotonous decline trend as the external functional assessment observed in the course of disease progression. We suppose that those subnetworks, showing the same functional evolving pattern in AD progression, may have something the same in work mechanism in nature. And the subnetworks with 'temperature inversion' evolving pattern may play a special role in the development of AD.
Collapse
Affiliation(s)
- Wei Li
- The School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
- Image Processing and Intelligent Control Key Laboratory of Education Ministry of China, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wen Wen
- The School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
- Image Processing and Intelligent Control Key Laboratory of Education Ministry of China, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xi Chen
- The School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
- Image Processing and Intelligent Control Key Laboratory of Education Ministry of China, Huazhong University of Science and Technology, Wuhan 430074, China
| | - BingJie Ni
- The School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
- Image Processing and Intelligent Control Key Laboratory of Education Ministry of China, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuefeng Lin
- The School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
- Image Processing and Intelligent Control Key Laboratory of Education Ministry of China, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenliang Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | | |
Collapse
|
45
|
Hou Y, Wei Q, Ou R, Yang J, Gong Q, Shang H. Impaired topographic organization in Parkinson's disease with mild cognitive impairment. J Neurol Sci 2020; 414:116861. [PMID: 32387848 DOI: 10.1016/j.jns.2020.116861] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 02/13/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mild cognitive impairment (MCI) is common in Parkinson's disease (PD), and graph theory approaches can be performed to investigate the topographic organization in newly diagnosed drug-naïve PD patients with MCI. METHOD We recruited PD patients with MCI (PD-MCI), PD patients with cognitive unimpaired (PD-CU), and age- and sex-matched healthy controls (HCs). Resting-state functional MRI (fMRI) whole-brain connectivity was examined, and topographic properties were measured with age, sex and education as covariates. Correlation analyses were performed between topographic features and cognitive scores. RESULTS Newly diagnosed drug-naïve PD patients and HCs presented small-world properties, and PD patients had increasing random organizations of brain networks, especially in PD patients with MCI. We also found a descending trend (HC > PD-CU > PD-MCI) in the clustering coefficient (Cp), characteristic path length (Lp) and local efficiency (Eloc), and a rising trend (HC < PD-CU < PD-MCI) in the global efficiency (Eglob). Only PD patients with MCI showed decreased nodal centralities in nodes of the sensorimotor network (SMN), default mode network (DMN), and the ventral anterior prefrontal cortex (vent aPFC), and increased nodal centralities in nodes of the cingulo-opercular network (CON), occipital network, and the ventral lateral prefrontal cortex (vlPFC). The increased nodal centralities in the parietal node of CON negatively correlated with cognitive scores in all PD patients. CONCLUSION Our results suggested that newly diagnosed drug-naïve PD patients had increasing random organizations of brain networks, especially in PD-MCI patients. Nodal changes were mainly observed in PD-MCI patients.
Collapse
Affiliation(s)
- Yanbing Hou
- Department of neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianqian Wei
- Department of neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruwei Ou
- Department of neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Huifang Shang
- Department of neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
46
|
Jones RG, Briggs RG, Conner AK, Bonney PA, Fletcher LR, Ahsan SA, Chakraborty AR, Nix CE, Jacobs CC, Lack AM, Griffin DT, Teo C, Sughrue ME. Measuring graphical strength within the connectome: A neuroanatomic, parcellation-based study. J Neurol Sci 2020; 408:116529. [DOI: 10.1016/j.jns.2019.116529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 01/15/2023]
|
47
|
Guan X, Guo T, Zeng Q, Wang J, Zhou C, Liu C, Wei H, Zhang Y, Xuan M, Gu Q, Xu X, Huang P, Pu J, Zhang B, Zhang MM. Oscillation-specific nodal alterations in early to middle stages Parkinson's disease. Transl Neurodegener 2019; 8:36. [PMID: 31807287 PMCID: PMC6857322 DOI: 10.1186/s40035-019-0177-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/07/2019] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Different oscillations of brain networks could carry different dimensions of brain integration. We aimed to investigate oscillation-specific nodal alterations in patients with Parkinson's disease (PD) across early stage to middle stage by using graph theory-based analysis. METHODS Eighty-eight PD patients including 39 PD patients in the early stage (EPD) and 49 patients in the middle stage (MPD) and 36 controls were recruited in the present study. Graph theory-based network analyses from three oscillation frequencies (slow-5: 0.01-0.027 Hz; slow-4: 0.027-0.073 Hz; slow-3: 0.073-0.198 Hz) were analyzed. Nodal metrics (e.g. nodal degree centrality, betweenness centrality and nodal efficiency) were calculated. RESULTS Our results showed that (1) a divergent effect of oscillation frequencies on nodal metrics, especially on nodal degree centrality and nodal efficiency, that the anteroventral neocortex and subcortex had high nodal metrics within low oscillation frequencies while the posterolateral neocortex had high values within the relative high oscillation frequency was observed, which visually showed that network was perturbed in PD; (2) PD patients in early stage relatively preserved nodal properties while MPD patients showed widespread abnormalities, which was consistently detected within all three oscillation frequencies; (3) the involvement of basal ganglia could be specifically observed within slow-5 oscillation frequency in MPD patients; (4) logistic regression and receiver operating characteristic curve analyses demonstrated that some of those oscillation-specific nodal alterations had the ability to well discriminate PD patients from controls or MPD from EPD patients at the individual level; (5) occipital disruption within high frequency (slow-3) made a significant influence on motor impairment which was dominated by akinesia and rigidity. CONCLUSIONS Coupling various oscillations could provide potentially useful information for large-scale network and progressive oscillation-specific nodal alterations were observed in PD patients across early to middle stages.
Collapse
Affiliation(s)
- Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
| | - Qiaoling Zeng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
| | - Jiaqiu Wang
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
| | - Chunlei Liu
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA USA
| | - Hongjiang Wei
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA USA
| | - Yuyao Zhang
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA USA
| | - Min Xuan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
| | - Quanquan Gu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
| | - Jiali Pu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Min-Ming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
| |
Collapse
|
48
|
Prange S, Metereau E, Thobois S. Structural Imaging in Parkinson’s Disease: New Developments. Curr Neurol Neurosci Rep 2019; 19:50. [DOI: 10.1007/s11910-019-0964-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Cognitive performance in mid-stage Parkinson's disease: functional connectivity under chronic antiparkinson treatment. Brain Imaging Behav 2019; 13:200-209. [PMID: 28942477 DOI: 10.1007/s11682-017-9765-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cognitive impairment in Parkinson's disease (PD) is related to the reorganization of brain topology. Although drug challenge studies have proven how levodopa treatment can modulate functional connectivity in brain circuits, the role of chronic dopaminergic therapy on cognitive status and functional connectivity has never been investigated. We sought to characterize brain functional topology in mid-stage PD patients under chronic antiparkinson treatment and explore the presence of correlation between reorganization of brain architecture and specific cognitive deficits. We explored networks topology and functional connectivity in 16 patients with PD and 16 matched controls through a graph theoretical analysis of resting state-functional MRI data, and evaluated the relationships between network metrics and cognitive performance. PD patients showed a preserved small-world network topology but a lower clustering coefficient in comparison with healthy controls. Locally, PD patients showed lower degree of connectivity and local efficiency in many hubs corresponding to functionally relevant areas. Four disconnected subnetworks were also identified in regions responsible for executive control, sensory-motor control and planning, motor coordination and visual elaboration. Executive functions and information processing speed were directly correlated with degree of connectivity and local efficiency in frontal, parietal and occipital areas. While functional reorganization appears in both motor and cognitive areas, the clinical expression of network imbalance seems to be partially compensated by the chronic levodopa treatment with regards to the motor but not to the cognitive performance. In a context of reduced network segregation, the presence of higher local efficiency in hubs regions correlates with a better cognitive performance.
Collapse
|
50
|
Sako W, Abe T, Furukawa T, Oki R, Haji S, Murakami N, Izumi Y, Harada M, Kaji R. Differences in the intra-cerebellar connections and graph theoretical measures between Parkinson's disease and multiple system atrophy. J Neurol Sci 2019; 400:129-134. [DOI: 10.1016/j.jns.2019.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/13/2019] [Accepted: 03/24/2019] [Indexed: 12/14/2022]
|