1
|
Justiz-Vaillant A, Roopnarine K, Solomon S, Phillips A, Sandy S, Subero A, Seepersad S, Span N, Ramnath P, Ramnarine A, Ramdath B, Rampaul C, Ramdial R, Phagoo D, Ramdhanie T, Moonilal V, Poliah EM, Poonwassie S, Punilal K, Panchoo S, Parris J, Oudit S, Muir T, Nicholas-Joseph J, Pandit BR, Pakeerah S, Sookoo V, Richards P, John T, Gopaul D, Soodeen S, Arozarena-Barbosa O, Williams A, Unakal C, Fundora RA, Thompson R, Akpaka PE. COVID-19 Vaccines Effectiveness and Safety in Trinidad and Tobago: A Systematic Review and Meta-Analysis. Microorganisms 2025; 13:135. [PMID: 39858903 PMCID: PMC11767614 DOI: 10.3390/microorganisms13010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/03/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
This systematic review evaluated the effectiveness and side effects of various COVID-19 vaccines, with a focus on Trinidad and Tobago. The Pfizer-BioNTech and Moderna vaccines demonstrated the highest efficacy, particularly against COVID-19 variants, while Janssen and Sinopharm were comparatively less effective. mRNA vaccines, such as Pfizer-BioNTech and Oxford-AstraZeneca, were associated with more frequent and severe side effects, including soreness, fever, and cardiovascular issues. The review also identified significant gaps in the current scientific literature regarding COVID-19 vaccination issues in Trinidad and Tobago. These gaps highlight the need for comprehensive research to address vaccination challenges, including public health communication, equitable access, and local perceptions of vaccine safety. This analysis provides a foundation for developing targeted strategies to improve vaccine effectiveness in the region.
Collapse
Affiliation(s)
- Angel Justiz-Vaillant
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Kimberly Roopnarine
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Shaundell Solomon
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Alyssa Phillips
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Solange Sandy
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Alyssa Subero
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Sarah Seepersad
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Nicholas Span
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Phalmanie Ramnath
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Akaasha Ramnarine
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Bimala Ramdath
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Chelsea Rampaul
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Renissa Ramdial
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Dana Phagoo
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Thalia Ramdhanie
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Vinaya Moonilal
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Emily-Marie Poliah
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Steffan Poonwassie
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Karishta Punilal
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Sarah Panchoo
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Justice Parris
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Steven Oudit
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Trudy Muir
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Johnson Nicholas-Joseph
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Bijey Raj Pandit
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Sanjeev Pakeerah
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Vesham Sookoo
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Patrice Richards
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Tishia John
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Darren Gopaul
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Sachin Soodeen
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Odette Arozarena-Barbosa
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs 330912, Trinidad and Tobago (R.A.F.)
| | - Arlene Williams
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Chandrashehkar Unakal
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Rodolfo Arozarena Fundora
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs 330912, Trinidad and Tobago (R.A.F.)
- Department of Clinical and Surgical Sciences, Faculty of Medical Sciences, University of the West Indies, St. Augustine 330912, Trinidad and Tobago
| | - Reinand Thompson
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| | - Patrick Eberechi Akpaka
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (K.R.); (S.S.); (A.P.); (A.S.); (S.S.); (N.S.); (P.R.); (A.R.); (B.R.); (C.R.); (R.R.); (D.P.); (T.R.); (V.M.); (E.-M.P.); (S.P.); (K.P.); (S.P.); (J.P.); (S.O.); (T.M.); (J.N.-J.); (B.R.P.); (S.P.); (V.S.); (P.R.); (T.J.); (S.S.); (A.W.); (C.U.); (R.T.); (P.E.A.)
| |
Collapse
|
2
|
Alonso Castillo R, Martínez Castrillo JC. Neurological manifestations associated with COVID-19 vaccine. Neurologia 2025; 40:66-76. [PMID: 36288776 PMCID: PMC9595420 DOI: 10.1016/j.nrleng.2022.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19) has spread rapidly, giving rise to a pandemic, causing significant morbidity and mortality. In this context, many vaccines have emerged to try to deal with this disease. OBJECTIVE To review the reported cases of neurological manifestations after the application of COVID-19 vaccines, describing clinical, analytical and neuroimaging findings and health outcomes. METHODS We carried out a review through bibliographic searches in PubMed. RESULTS We found 86 articles, including 13 809 patients with a wide spectrum of neurological manifestations temporally associated with COVID-19 vaccination. Most occurred in women (63.89%), with a median age of 50 years. The most frequently reported adverse events were Bell's palsy 4936/13 809 (35.7%), headache (4067/13 809), cerebrovascular events 2412/13 809 (17.47%), Guillain-Barré syndrome 868/13 809 (6.28%), central nervous system demyelination 258/13 809 (1.86%) and functional neurological disorder 398/13 809 (2.88%). Most of the published cases occurred in temporal association with the Pfizer vaccine (BNT162b2), followed by the AstraZeneca vaccine (ChAdOX1-S). CONCLUSIONS It is not possible to establish a causal relationship between these adverse events and COVID-19 vaccines with the currently existing data, nor to calculate the frequency of appearance of these disorders. However, it is necessary for health professionals to be familiar with these events, facilitating their early diagnosis and treatment. Large controlled epidemiological studies are necessary to establish a possible causal relationship between vaccination against COVID-19 and neurological adverse events.
Collapse
Affiliation(s)
- R Alonso Castillo
- Servicio de Neurología, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Madrid, Spain
| | - J C Martínez Castrillo
- Servicio de Neurología, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Madrid, Spain.
| |
Collapse
|
3
|
Kim HJ, Kim MH, Choi MG, Chun EM. Psychiatric adverse events following COVID-19 vaccination: a population-based cohort study in Seoul, South Korea. Mol Psychiatry 2024; 29:3635-3643. [PMID: 38834668 PMCID: PMC11541197 DOI: 10.1038/s41380-024-02627-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
Evidence has suggested an increased risk of psychiatric manifestations following viral infections including coronavirus disease-2019 (COVID-19). However, psychiatric adverse events (AEs) after COVID-19 vaccination, which were documented in case reports and case series, remain unclear. This study is aimed to investigate the psychiatric AEs after COVID-19 vaccination from a large population-based cohort in Seoul, South Korea. We recruited 50% of the Seoul-resident population randomly selected from the Korean National Health Insurance Service (KNHIS) claims database on 1, January, 2021. The included participants (n = 2,027,353) from the Korean National Health Insurance Service claims database were divided into two groups according to COVID-19 vaccination. The cumulative incidences per 10,000 of psychiatric AEs were assessed on one week, two weeks, one month, and three months after COVID-19 vaccination. Hazard ratios (HRs) and 95% Confidence interval (CIs) of psychiatric AEs were measured for the vaccinated population. The cumulative incidence of depression, anxiety, dissociative, stress-related, and somatoform disorders, sleep disorders, and sexual disorders at three months following COVID-19 vaccination were higher in the vaccination group than no vaccination group. However, schizophrenia and bipolar disorders showed lower cumulative incidence in the vaccination group than in the non-vaccinated group. Depression (HR [95% CI] = 1.683 [1.520-1.863]), anxiety, dissociative, stress-related, and somatoform disorders (HR [95% CI] = 1.439 [1.322-1.568]), and sleep disorders (HR [95% CI] = 1.934 [1.738-2.152]) showed increased risks after COVID-19 vaccination, whereas the risks of schizophrenia (HR [95% CI] = 0.231 [0.164-0.326]) and bipolar disorder (HR [95% CI] = 0.672 [0.470-0.962]). COVID-19 vaccination increased the risks of depression, anxiety, dissociative, stress-related, and somatoform disorders, and sleep disorders while reducing the risk of schizophrenia and bipolar disorder. Therefore, special cautions are necessary for administering additional COVID-19 vaccinations to populations vulnerable to psychiatric AEs.
Collapse
Affiliation(s)
- Hong Jin Kim
- Department of Orthopedic Surgery, Inje University Sanggye Paik Hospital, College of Medicine, Inje University, Seoul, Republic of Korea
| | - Min-Ho Kim
- Informatization Department, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
| | - Myeong Geun Choi
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Eun Mi Chun
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Su MAO, Doquenia MLM, Tanglao MJ, Rosales R. Peripheral Immune-Mediated Neuropathy Before and During the COVID-19 Pandemic: A Retrospective Cross-Sectional Study in a Referral Center. Cureus 2024; 16:e74131. [PMID: 39712713 PMCID: PMC11662227 DOI: 10.7759/cureus.74131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND There are currently seven coronaviruses that can infect humans and the latest addition to these viruses is the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Infection by SARS-CoV-2 is known commonly as coronavirus disease 2019 (COVID-19). Aside from common manifestations of cough and fever, neurologic symptoms such as headache, disturbed consciousness, paresthesia, and seizures have also been seen. By identifying the incidence of peripheral immune-mediated neuropathies (PIMN), early prevention can be made. METHODS This cross-sectional retrospective analytic study reviewed the case records of patients examined at the Center for Neurodiagnostic and Therapeutic Services (CNS) of Metropolitan Medical Center from January 2018 to December 2021. RESULTS The period incidence of Guillain-Barré Syndrome (GBS) for the years 2018-2019 and 2020-2021 were 9.21% and 24.44%, respectively. The obtained p-value was 0.0226, which was lower than the set p-value of 0.05. Therefore, the period incidence of GBS for 2020-2021 was significantly higher when compared to that of 2018-2019. CONCLUSION There has been an increase in cases of GBS during the COVID-19 pandemic.
Collapse
Affiliation(s)
| | - Maria Leila M Doquenia
- Center for Neurodiagnostic and Therapeutic Services, Metropolitan Medical Center, Manila, PHL
| | - Michelle J Tanglao
- Center for Neurodiagnostic and Therapeutic Services, Metropolitan Medical Center, Manila, PHL
| | - Raymond Rosales
- Center for Neurodiagnostic and Therapeutic Services, Metropolitan Medical Center, Manila, PHL
- Research Center for the Health Sciences, University of Santo Tomas, Manila, PHL
- Institute for Neurosciences, Saint Luke's Medical Center, Quezon City, PHL
| |
Collapse
|
5
|
Karam R, Iskandar K, Watfa M, Zeitoun A. Serious adverse events following immunization with COVID-19 vaccines in Lebanon: a retrospective analysis of the National Pharmacovigilance Database. BMC Public Health 2024; 24:2905. [PMID: 39434043 PMCID: PMC11495130 DOI: 10.1186/s12889-024-20297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Continuous surveillance and risk assessment of inactivated Coronavirus Disease 2019 (COVID-19)) vaccines provide an understanding of their safety profiles, guide vaccination strategy and public health policy. This study aims to analyze the characteristics and prevalence of officially reported serious adverse events following immunization (AEFIs) with inactivated COVID-19 vaccines by System Organ Class (SOC), age, and sex.To achieve this aim, a retrospective observational study was conducted between February 14th, 2021, and June 30th, 2022. Reported AEFIs were evaluated for data completeness. Causality assessment adhered to the World Health Organization guidelines.Findings revealed that the AEFIs occurrence did not significantly differ between vaccines used (ChAdOx1 vs. BNT162b2), sex, or SOC. The most prevalent AEFIs were vascular disorders (37%), followed by cardiac (25%) and nervous system disorders (14%). The adverse events were predominantly reported post-vaccination with the BNT162b2 vaccine, mainly after the first dose. The mean age was highest for miscellaneous disorders (70 ± 21.7 years) and the lowest for nervous system (46 ± 22 years) and immune system disorders (45 ± 19 years). Age differences were statistically different for vascular disorders (p = 0.003) and immune system disorders (p = 0.012).In conclusion, ongoing surveillance and risk assessment of the vaccine's safety profile is crucial for detecting potential safety signals. Active surveillance of the reported serious AEFIs is highly needed to support evidence-based vaccination strategies and maintain public confidence in immunization programs.
Collapse
Affiliation(s)
- Rita Karam
- Department of Chemistry and Biochemistry, Faculty of Science, Section 1, Lebanese University, Beirut, Lebanon
- Quality Assurance of Pharmaceutical Products Department, Lebanese Ministry of Public Health, Beirut, Lebanon
| | - Katia Iskandar
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Lebanese University, P.O. Box 6573/14, Beirut, Lebanon
| | - Myriam Watfa
- Quality Assurance of Pharmaceutical Products Department, Lebanese Ministry of Public Health, Beirut, Lebanon
| | - Abeer Zeitoun
- Quality Assurance of Pharmaceutical Products Department, Lebanese Ministry of Public Health, Beirut, Lebanon.
| |
Collapse
|
6
|
Hollist M, Hollist A, Au K, Betts C, Kirmani M, Kirmani M, Armour B, Udeh MC, Kirmani BF. Multiple Sclerosis and COVID-19: An Overview on Risk, Severity, and Association With Disease Modifying Therapies. Neurosci Insights 2024; 19:26331055241265668. [PMID: 39347459 PMCID: PMC11437550 DOI: 10.1177/26331055241265668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/04/2024] [Indexed: 10/01/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus, emerged in December 2019, sparking a global health crisis. While initially recognized as a respiratory illness, it has become evident that Coronavirus disease 2019 (COVID-19) also affects the central nervous system. This comprehensive review focuses on the neurological manifestations of COVID-19 and its impact on patients with preexisting neurological disorders, particularly those with multiple sclerosis (MS) receiving disease-modifying therapies. Advancements in management, including vaccinations, antiviral therapy, and targeted prophylaxis, have led to a decline in the incidence and severity of COVID-19. Nevertheless, significant complications persist, particularly in patients with advanced MS, who are highly vulnerable to infectious agents like SARS-CoV-2. This review explores the evolving understanding of MS and its association with SARS-CoV-2, encompassing neuroinvasiveness, pathogenesis, disease severity, and outcomes. Research findings reveal substantial neurological implications for some MS patients with COVID-19, with a potential risk of disease relapse and severity. A notable proportion of MS patients experiencing COVID-19 may manifest new symptoms, experience exacerbation of existing symptoms, or encounter both simultaneously, underscoring the diverse neurological effects of the virus. While vaccination and therapeutics have mitigated the overall impact, specific subgroups, especially those on anti-CD20 therapy and with existing disability, remain at higher risk, necessitating ongoing vigilance and tailored care.
Collapse
Affiliation(s)
| | | | | | - Colton Betts
- Texas A&M University College of Medicine, College Station, TX, USA
| | - Maha Kirmani
- Texas A&M University College of Medicine, College Station, TX, USA
| | - Maaida Kirmani
- Neuroscience and Experimental Therapeutics, Texas A&M University, College Station, TX, USA
| | - Benjamin Armour
- Michigan State University, College of Human Medicine, Grand Rapids, MI, USA
| | - Mercy C Udeh
- University of Tennessee Health Science Center College of Medicine—Chattanooga, Chattanooga, TN, USA
| | - Batool F Kirmani
- Texas A&M University College of Medicine, College Station, TX, USA
- Department of Neurology, CHI St. Joseph Health, Bryan, TX, USA
| |
Collapse
|
7
|
Khatami SS, Revheim ME, Høilund-Carlsen PF, Alavi A, Ghorbani Shirkouhi S, Andalib S. Central nervous system manifestations following vaccination against COVID-19. Brain Behav Immun Health 2024; 38:100788. [PMID: 38818372 PMCID: PMC11137405 DOI: 10.1016/j.bbih.2024.100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/03/2024] [Accepted: 05/02/2024] [Indexed: 06/01/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) vaccination has become the most effective countermeasure in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. However, vaccination is associated with side effects. This narrative review focuses on central nervous system (CNS) manifestations following COVID-19 vaccination and provides a summary of the potential underlying mechanisms and methods of diagnosis and management of the vaccination-related CNS manifestations. Headache, myalgia, optic neuritis, seizure, multiple sclerosis, acute disseminated encephalomyelitis and encephalitis, delirium, acute transverse myelitis, and stroke have been reported after COVID-19 vaccination. Constant headache and myalgia are common manifestations that may necessitate further clinical investigation for stroke. To limit consequences, it is imperative to follow standard treatment protocols for each neurological disorder following COVID-19 vaccination. Immunosuppressive medication can be helpful in the treatment of seizures following vaccination since the immune response is involved in their etiology. Clinicians should be aware of the manifestations after COVID-19 vaccination to respond promptly and effectively. Clinical guidelines for the management of CNS manifestations following COVID-19 vaccination are in high demand and would be useful in each new SARS-CoV-2 variant pandemic.
Collapse
Affiliation(s)
| | - Mona-Elisabeth Revheim
- The Intervention Center, Division of Technology and Innovation, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, University of Southern Denmark, Odense, Denmark
- Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Abass Alavi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, USA
| | | | - Sasan Andalib
- Research Unit of Neurology, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
8
|
Hamzavi SS, Bahrololoom R, Saeb S, Marandi NH, Hosseini M, Hesam Abadi AK, Jamalidoust M. Humoral immune response and safety of Sars-Cov-2 vaccine in people with multiple sclerosis. BMC Immunol 2024; 25:35. [PMID: 38898409 PMCID: PMC11186195 DOI: 10.1186/s12865-024-00628-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND For the past three years, the pandemic has had a major effect on global public health, mainly on those with underlying medical conditions, such as people living with Multiple Sclerosis. Vaccination among this group is of great importance, and the long-term impacts of vaccination and its safety on the health of these patients will continue to be revealed. Therefore, risks related to vaccination and immune response need to be assessed. The objective here was to characterize the immune response, short-term safety, and the effects of multiple variables on these factors after COVID-19 vaccination (mainly Sinopharm) among people with Multiple Sclerosis. We assessed the short-term safety and humoral SARS-COV-2 anti-RBD IgG response using a data collection form and Immunoassay, respectively. RESULTS No severe adverse events or MS relapse was observed. Myalgia/body pain (26.7%), low-grade fever (22.2%), and mild headache (15.6%) were the most common adverse events. The use and type of vaccine influenced the frequency of side effects with a p-value < 0.0001. Regarding immune response, patients on rituximab and fingolimod had a lower antibody titer compared to other medications. With a significant difference, hybrid immunity (p-value: 0.047) and type of DMTs (p-value: 0.017) affected the humoral response. CONCLUSION There is a low incidence of serious adverse effects, MS worsening or relapse after COVID-19 vaccination, and mainly, side effects are similar to that of the general population. It appears that treatment with various disease-modifying therapies does not induce or worsen the post-vaccination side effects, although some, including Rituximab and fingolimod, may affect the immunity induced after vaccination.
Collapse
Affiliation(s)
- Seyedeh Sadigheh Hamzavi
- Department of Pediatrics, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
- Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, 71936-13311, Iran
| | - Rosemina Bahrololoom
- Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, 71936-13311, Iran.
| | - Sepideh Saeb
- Department of Virology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Nahid Heydari Marandi
- Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, 71936-13311, Iran
| | - Marzieh Hosseini
- Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, 71936-13311, Iran
| | | | - Marzieh Jamalidoust
- Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, 71936-13311, Iran.
| |
Collapse
|
9
|
Lee KW, Yap SF, Amin-Nordin S, Ngeow YF. Cardiac and Neurological Complications Post COVID-19 Vaccination: A Systematic Review of Case Reports and Case Series. Vaccines (Basel) 2024; 12:575. [PMID: 38932303 PMCID: PMC11209191 DOI: 10.3390/vaccines12060575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
Following mass vaccinations for the control of the COVID-19 epidemic, a spectrum of cardiac and neurological disorders was reported among vaccinated individuals. This study examined the range of complications documented and factors related to their occurrence. Three electronic databases were searched for case reports and case series with descriptions of cardiac and/or neurological complications in COVID-19 vaccine recipients. A total of 698 vaccinees were included in this review, of which 259 (37.1%) had cardiac and 439 (62.9%) had neurological complications. Inflammatory conditions were the commonest among the cardiac complications; while polyneuropathy, demyelinating diseases and cerebrovascular disorders were the more common neurological complications. The mean age of those with cardiac complications (33.8 years) was much younger than those with neurological complications (49.7 years). There was no notable difference in the gender distribution between these two groups of vaccine recipients. mRNA vaccines (all brands) were associated with almost 90.0% of the cardiac complications, whereas viral vector vaccines were associated with slightly over half (52.6%) of the neurological complications. With regard to the dose, cardiac complications were more common after the second (69.1%), whereas neurological complications were more common after the first dose (63.6%). The majority of the cases had an uncomplicated clinical course. Nevertheless, 5.9% of cases with neurological complications and 2.5% of those with cardiac complications were fatal, underscoring the significance of the consistent surveillance and vigilant monitoring of vaccinated individuals to mitigate these occurrences.
Collapse
Affiliation(s)
- Kai Wei Lee
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (K.W.L.); (S.A.-N.)
| | - Sook Fan Yap
- Department of Pre-Clinical Sciences, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43200, Selangor, Malaysia;
- Dr. Wu Lien-Teh Centre of Research in Communicable Diseases, Universiti Tunku Abdul Rahman, Kajang 43200, Selangor, Malaysia
| | - Syafinaz Amin-Nordin
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (K.W.L.); (S.A.-N.)
| | - Yun Fong Ngeow
- Department of Pre-Clinical Sciences, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43200, Selangor, Malaysia;
- Dr. Wu Lien-Teh Centre of Research in Communicable Diseases, Universiti Tunku Abdul Rahman, Kajang 43200, Selangor, Malaysia
| |
Collapse
|
10
|
Bianco A, Di Sante G, Colò F, De Arcangelis V, Cicia A, Del Giacomo P, De Bonis M, Morganti TG, Carlomagno V, Lucchini M, Minucci A, Calabresi P, Mirabella M. Multiple Sclerosis Onset before and after COVID-19 Vaccination: Can HLA Haplotype Be Determinant? Int J Mol Sci 2024; 25:4556. [PMID: 38674141 PMCID: PMC11050425 DOI: 10.3390/ijms25084556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
A few cases of multiple sclerosis (MS) onset after COVID-19 vaccination have been reported, although the evidence is insufficient to establish causality. The aim of this study is to compare cases of newly diagnosed relapsing-remitting MS before and after the outbreak of the COVID-19 pandemic and the impact of COVID-19 vaccination. Potential environmental and genetic predisposing factors were also investigated, as well as clinical patterns. This is a single-centre retrospective cohort study including all patients who presented with relapsing-remitting MS onset between January 2018 and July 2022. Data on COVID-19 vaccination administration, dose, and type were collected. HLA-DRB1 genotyping was performed in three subgroups. A total of 266 patients received a new diagnosis of relapsing-remitting MS in our centre, 143 before the COVID-19 pandemic (until and including March 2020), and 123 during the COVID-19 era (from April 2020). The mean number of new MS onset cases per year was not different before and during the COVID-19 era and neither were baseline patients' characteristics, type of onset, clinical recovery, or radiological patterns. Fourteen (11.4%) patients who subsequently received a new diagnosis of MS had a history of COVID-19 vaccination within one month before symptoms onset. Patients' characteristics, type of onset, clinical recovery, and radiological patterns did not differ from those of patients with non-vaccine-related new diagnoses of MS. The allele frequencies of HLA-DRB1*15 were 17.6% and 22.2% in patients with non-vaccine-related disease onset before and during the COVID-19 era, respectively, while no case of HLA-DRB1*15 was identified among patients with a new diagnosis of MS post-COVID-19 vaccine. In contrast, HLA-DRB1*08+ or HLA-DRB1*10+ MS patients were present only in this subgroup. Although a causal link between COVID-19 vaccination and relapsing-remitting MS cannot be detected, it is interesting to note and speculate about the peculiarities and heterogeneities underlying disease mechanisms of MS, where the interactions of genetics and the environment could be crucial also for the follow-up and the evaluation of therapeutic options.
Collapse
Affiliation(s)
- Assunta Bianco
- Division of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Neurosciences, Centro di Ricerca per la Sclerosi Multipla “Anna Paola Batocchi”, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Gabriele Di Sante
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 06123 Perugia, Italy
| | - Francesca Colò
- Department of Neurosciences, Centro di Ricerca per la Sclerosi Multipla “Anna Paola Batocchi”, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Valeria De Arcangelis
- Division of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Alessandra Cicia
- Department of Neurosciences, Centro di Ricerca per la Sclerosi Multipla “Anna Paola Batocchi”, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Paola Del Giacomo
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maria De Bonis
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Genomics Core Facility, Gemelli Science and Technology Park (G-STeP), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Tommaso Giuseppe Morganti
- Department of Neurosciences, Centro di Ricerca per la Sclerosi Multipla “Anna Paola Batocchi”, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Vincenzo Carlomagno
- Department of Neurosciences, Centro di Ricerca per la Sclerosi Multipla “Anna Paola Batocchi”, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Matteo Lucchini
- Division of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Neurosciences, Centro di Ricerca per la Sclerosi Multipla “Anna Paola Batocchi”, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Angelo Minucci
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Genomics Core Facility, Gemelli Science and Technology Park (G-STeP), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Paolo Calabresi
- Division of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Neurosciences, Centro di Ricerca per la Sclerosi Multipla “Anna Paola Batocchi”, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Massimiliano Mirabella
- Division of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Neurosciences, Centro di Ricerca per la Sclerosi Multipla “Anna Paola Batocchi”, Catholic University of Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
11
|
Woo HG, Kim HJ, Park J, Lee J, Lee H, Kim MS, Koyanagi A, Smith L, Rahmati M, Yeo SG, Yon DK. Global burden of vaccine-associated multiple sclerosis, 1967-2022: A comprehensive analysis of the international pharmacovigilance database. J Med Virol 2024; 96:e29591. [PMID: 38572940 DOI: 10.1002/jmv.29591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Vaccine-associated multiple sclerosis (MS) is rare, with insufficient evidence from case reports. Given the scarcity of large-scale data investigating the association between vaccine administration and adverse events, we investigated the global burden of vaccine-associated MS and potential related vaccines from 1967 to 2022. Reports on vaccine-associated MS between 1967 and 2022 were obtained from the World Health Organization International Pharmacovigilance Database (total number of reports = 120 715 116). We evaluated global reports, reporting odds ratio (ROR), and information components (IC) to investigate associations between 19 vaccines and vaccine-associated MS across 156 countries and territories. We identified 8288 reports of vaccine-associated MS among 132 980 cases of all-cause MS. The cumulative number of reports on vaccine-associated MS gradually increased over time, with a substantial increase after 2020, owing to COVID-19 mRNA vaccine-associated MS. Vaccine-associated MS develops more frequently in males and adolescents. Nine vaccines were significantly associated with higher MS reporting, and the highest disproportional associations were observed for hepatitis B vaccines (ROR 19.82; IC025 4.18), followed by encephalitis (ROR 7.42; IC025 2.59), hepatitis A (ROR 4.46; IC025 1.95), and papillomavirus vaccines (ROR 4.45; IC025 2.01). Additionally, MS showed a significantly disproportionate signal for COVID-19 mRNA vaccines (ROR 1.55; IC025 0.52). Fatal clinical outcomes were reported in only 0.3% (21/8288) of all cases of vaccine-associated MS. Although various vaccines are potentially associated with increased risk of MS, we should be cautious about the increased risk of MS following vaccination, particularly hepatitis B and COVID-19 mRNA vaccines, and should consider the risk factors associated with vaccine-associated MS.
Collapse
Affiliation(s)
- Ho Geol Woo
- Department of Neurology, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Hyeon Jin Kim
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Jaeyu Park
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Jinseok Lee
- Department of Biomedical Engineering, Kyung Hee University, Yongin, South Korea
| | - Hayeon Lee
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Biomedical Engineering, Kyung Hee University, Yongin, South Korea
| | - Min Seo Kim
- Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Deu, Barcelona, Spain
| | - Lee Smith
- Centre for Health, Performance and Wellbeing, Anglia Ruskin University, Cambridge, UK
| | - Masoud Rahmati
- CEReSS-Health Service Research and Quality of Life Center, Assistance Publique-Hôpitaux de Marseille (APHM), Aix-Marseille University, Marseille, France
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
- Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Seung Geun Yeo
- Department of Otolaryngology-Head & Neck Surgery, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
- Department of Pediatrics, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
| |
Collapse
|
12
|
Clever S, Limpinsel L, Meyer zu Natrup C, Schünemann LM, Beythien G, Rosiak M, Hülskötter K, Gregor KM, Tuchel T, Kalodimou G, Freudenstein A, Kumar S, Baumgärtner W, Sutter G, Tscherne A, Volz A. Single MVA-SARS-2-ST/N Vaccination Rapidly Protects K18-hACE2 Mice against a Lethal SARS-CoV-2 Challenge Infection. Viruses 2024; 16:417. [PMID: 38543782 PMCID: PMC10974247 DOI: 10.3390/v16030417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024] Open
Abstract
The sudden emergence of SARS-CoV-2 demonstrates the need for new vaccines that rapidly protect in the case of an emergency. In this study, we developed a recombinant MVA vaccine co-expressing SARS-CoV-2 prefusion-stabilized spike protein (ST) and SARS-CoV-2 nucleoprotein (N, MVA-SARS-2-ST/N) as an approach to further improve vaccine-induced immunogenicity and efficacy. Single MVA-SARS-2-ST/N vaccination in K18-hACE2 mice induced robust protection against lethal respiratory SARS-CoV-2 challenge infection 28 days later. The protective outcome of MVA-SARS-2-ST/N vaccination correlated with the activation of SARS-CoV-2-neutralizing antibodies (nABs) and substantial amounts of SARS-CoV-2-specific T cells especially in the lung of MVA-SARS-2-ST/N-vaccinated mice. Emergency vaccination with MVA-SARS-2-ST/N just 2 days before lethal SARS-CoV-2 challenge infection resulted in a delayed onset of clinical disease outcome in these mice and increased titers of nAB or SARS-CoV-2-specific T cells in the spleen and lung. These data highlight the potential of a multivalent COVID-19 vaccine co-expressing S- and N-protein, which further contributes to the development of rapidly protective vaccination strategies against emerging pathogens.
Collapse
Affiliation(s)
- Sabrina Clever
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| | - Leonard Limpinsel
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Christian Meyer zu Natrup
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| | - Lisa-Marie Schünemann
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Malgorzata Rosiak
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Kirsten Hülskötter
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Katharina Manuela Gregor
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Tamara Tuchel
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| | - Georgia Kalodimou
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Astrid Freudenstein
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Satendra Kumar
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Alina Tscherne
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| |
Collapse
|
13
|
Salunkhe M, Tayade K, Priyadarshi M, Goel V, Gulati I, Garg A, Bhatia R, Srivastava MVP. Spectrum of various CNS inflammatory demyelination diseases following COVID-19 vaccinations. Acta Neurol Belg 2024; 124:193-203. [PMID: 37668946 DOI: 10.1007/s13760-023-02373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND AND PURPOSE Although rare, neurological adverse events have been reported post-COVID-19 vaccination. This study reports 16 patients diagnosed with CNS inflammatory demyelinating diseases (CNS-IDD) within 6 weeks of COVID-19 vaccine administration. METHODOLOGY A prospective observational study was conducted from June 2021 to May 2022. All patients were diagnosed according to the latest international guidelines with CNS-IDD within 6 weeks of COVID-19 vaccine exposure. Data regarding the demographic profile, clinical features, type of COVID-19 vaccination, radiological findings and occurrence of symptoms were noted and further analysed using descriptive statistics. RESULTS We reported 16 cases (median age 40 years) of CNS demyelination: fourteen occurred in temporal association with ChAdOx1-S vaccine and two in association with BBV152 vaccine. Median time duration of presenting symptoms after vaccination was 19 days (3-40 days). The most common presentation was myelitis (7/16 patients), followed by optic neuritis (6/16 patients). Demyelination events were reported after first and second dose in thirteen and five patients respectively, although two patients reported such events after both vaccine dosages. Myelin oligodendrocyte glycoprotein (MOG) IgG antibodies were positive in eight patients. Tumefactive demyelination was seen in four patients. Management included high-dose methylprednisolone, PLEX, IVIG or a combination of those, with a favourable outcome in the majority of cases. CONCLUSION Although a rare event, awareness regarding potential demyelinating episodes post-COVID-19 vaccination can help in early diagnosis. The presence of increased MOG-IgG antibodies with temporal association in post-COVID vaccine patients raises a possibility of an immunogenic phenomenon leading to demyelinating disorders.
Collapse
Affiliation(s)
- Manish Salunkhe
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Kamlesh Tayade
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Megha Priyadarshi
- Department of Infectious Diseases, All India Institute of Medical Sciences, New Delhi, India
| | - Vinay Goel
- Department of Neuroradiology, All India Institute of Medical Sciences, New Delhi, India
| | - Isha Gulati
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Ajay Garg
- Department of Neuroradiology, All India Institute of Medical Sciences, New Delhi, India
| | - Rohit Bhatia
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India.
| | - M V Padma Srivastava
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
14
|
Paybast S, Jameie M, Shahbazi M, Habibi MA, Mohammadianinejad SE, Harirchian MH. New diagnosis of multiple sclerosis in the setting of recent Sinopharm COVID-19 vaccine (BBIBP-CorV) exposure: A series of clinical cases and updated review of the literature. CURRENT JOURNAL OF NEUROLOGY 2024; 23:21-38. [PMID: 39431229 PMCID: PMC11489623 DOI: 10.18502/cjn.v23i1.16430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/06/2023] [Indexed: 10/22/2024]
Abstract
Background: Multiple sclerosis (MS) is the most common cause of non-traumatic disability in young individuals. There are limited reports of developing demyelinating events following the coronavirus disease 2019 (COVID-19) vaccination. Methods: We reported all individuals (n = 8) with new MS diagnoses with recent exposure (≤ 6 weeks) to the Sinopharm (BBIBP-CorV) vaccine between September 2021 and June 2022. We also reviewed the related literature published as of September 2023. Results: Of 338 newly diagnosed patients with MS who attended our tertiary referral MS center during the study period, 8 (2.36%) had their first demyelinating attack with a median interval of 2 [2.0, 4.0] weeks following the Sinopharm vaccine (sex ratio 1:1, median age: 20.5 [18.0, 27.0] years). No personal or family history of autoimmune/neurological disorders was documented, except for one patient's history of a previous potential demyelinating event and another's family history of immune thrombocytopenic purpura (ITP). All patients had demyelinating brain MRI lesions, and 4 had cervical spinal cord involvement. The brain areas most commonly affected were the periventricular and subcortical regions. Positive oligoclonal bands (OCBs) in all patients supported the MS diagnosis. All patients were diagnosed with relapsing-remitting MS and received intravenous methylprednisolone (IVMP) alone or in combination with plasma exchange (3/8). Rituximab was the most frequently used disease-modifying treatment (3/8). Conclusion: This study provides preliminary evidence of a potential association between the Sinopharm vaccine and the initial manifestations of MS. However, further larger-scale studies with control groups and long-term follow-ups are needed to confirm this association and determine the underlying mechanisms.
Collapse
Affiliation(s)
- Sepideh Paybast
- Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Melika Jameie
- Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Shahbazi
- Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Habibi
- Student Research Committee, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Seyed Ehsan Mohammadianinejad
- Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Harirchian
- Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Salai G, Ljubičić Đ, Novak R, Grgurević L. Benign fasciculation syndrome and migraine aura without headache as possible adverse events after BNT162b2 mRNA vaccination: a web-based survey. Croat Med J 2023; 64:430-435. [PMID: 38168524 PMCID: PMC10797237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
AIM To determine the characteristics of patients who experienced muscle fasciculations and migraine auras without headache after BNT162b2 immunization. METHODS In January 2022, we published a case report that described a 48-year-old female patient who experienced muscle twitching and migraine auras without headache following BNT162b2 immunization. A self-administered online survey was sent to people who had written to us and complained of similar symptoms described in the case report (N=20). RESULTS The survey was completed by 11 participants, of whom 10 reported muscle twitching following BNT162b2 immunization lasting a median of 14 (4-36.5) days. Five of these participants (50%) reported migraine auras without headache. Participants further reported on self-identified triggers that altered the intensity of their symptoms, such as anxiety or caffeine. Fifty percent of participants who got an acute SARS-CoV-2 infection (3/6) experienced increased muscle symptom intensity during the acute phase of the disease. CONCLUSION To the best of our knowledge, our survey is the first to summarize patients' experiences of these phenomena occurring after BNT162b2 immunization. It is important to note that no causal relationship between vaccination and these phenomena can be inferred.
Collapse
Affiliation(s)
| | | | | | - Lovorka Grgurević
- Grgurević, Department of Proteomics, University of Zagreb, School of Medicine, Šalata 2, 10000 Zagreb, Croatia,
| |
Collapse
|
16
|
Tsuzuki Wada T, Yokota K, Inayoshi F, Sakai S, Okumura N, Matsuda M, Osawa I, Araki Y, Funakubo Asanuma Y, Akiyama Y, Mimura T. New-onset Immune-mediated Necrotizing Myopathy and Trigeminal Neuropathy after SARS-CoV-2 mRNA Vaccination in a Patient with Rheumatoid Arthritis and Sjögren's Syndrome. Intern Med 2023; 62:3699-3706. [PMID: 37839879 PMCID: PMC10781545 DOI: 10.2169/internalmedicine.2551-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
We present the case of a 42-year-old woman with rheumatoid arthritis and Sjögren's syndrome treated with adalimumab who developed immune-mediated necrotizing myopathy (IMNM) and trigeminal neuropathy after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccination. Trigeminal neuralgia and elevated serum creatine kinase levels emerged 12 days post-vaccination, followed by myalgia in the femoral muscles. IMNM was histologically diagnosed. The pathogenesis may involve molecular mimicry between the SARS-CoV-2 spike glycoprotein and autologous tissues triggered by vaccination. This case emphasizes the association between SARS-CoV-2 vaccination, tumor necrosis factor inhibitor, IMNM, and trigeminal neuropathy, as well as the importance of monitoring immune-mediated adverse events following SARS-CoV-2 vaccination in patients with autoimmune disease.
Collapse
Affiliation(s)
- Takuma Tsuzuki Wada
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Japan
| | - Kazuhiro Yokota
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Japan
| | - Fumito Inayoshi
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Japan
| | - Sakon Sakai
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Japan
| | - Nobuhito Okumura
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Japan
| | - Mayumi Matsuda
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Japan
| | - Iichiro Osawa
- Department of Radiology, Saitama Medical University Hospital, Japan
| | - Yasuto Araki
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Japan
| | - Yu Funakubo Asanuma
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Japan
| | - Yuji Akiyama
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Japan
| | - Toshihide Mimura
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Japan
| |
Collapse
|
17
|
Georganta I, Chasapi D, Smith CJ, Kopsidas K, Tatham A. Systematic review exploring the clinical features of optic neuritis after SARS-CoV infection and vaccination. BMJ Open Ophthalmol 2023; 8:e001336. [PMID: 38057105 PMCID: PMC10711871 DOI: 10.1136/bmjophth-2023-001336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND This study aims to characterise the symptoms and clinical features of optic neuritis (ON) following SARS-CoV-2 infection and vaccination. METHOD A literature search was conducted in four databases (PubMed, Medline, Embase and Google Scholar) to identify relevant case reports and case series. The records were screened and articles adhering to the inclusion criteria were critically appraised. RESULTS Sixty-eight studies were found to be eligible for inclusion, including 34 reporting ON following SARS-CoV-2 infection and an equal number reporting cases postvaccination. In total 93 patients and 125 eyes were included. The infection cohort included 42 patients and 56 eyes, 51.2% were female and 33.3% experienced bilateral ON. The mean visual acuity was 1.64 log of minimum angle of resolution (LogMAR), while pain was present in 77.8%. Oligoclonal bands were present in 3 patients, myelin oligodendrocyte glycoprotein (MOG) antibodies in 18 patients and AQP-4 antibodies in 4 patients. The vaccination cohort included 51 patients and 69 eyes. 60.8% were female and 35.3% had a bilateral ON. The mean visual acuity was 0.93 LogMAR. Oligoclonal bands were present in 46.7%, MOG antibodies in nine patients and AQP-4 antibodies in three patients. CONCLUSION Patients with ON post-SARS-CoV infection were more likely to experience severe visual impairment than in cases following vaccination. Further research is required to outline the clinical features of ON after COVID-19 infection and vaccination, and establish causality.
Collapse
Affiliation(s)
| | | | | | | | - Andrew Tatham
- Department of Ophthalmology, Princess Alexandra Eye Pavilion, Edinburgh, UK
- Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
18
|
Najafi P, Hadizadeh M, Cheong JPG, Motl RW, Abdullah S, Mohafez H, Poursadeghfard M. Effects of tele-exercise training on physical and mental health and quality of life in multiple sclerosis: Do the effects differ by modality and clinical disease course? Mult Scler Relat Disord 2023; 80:105129. [PMID: 37977056 DOI: 10.1016/j.msard.2023.105129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/01/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Tele-exercise training has improved mental and physical health and quality of life (QOL) in people with multiple sclerosis (PwMS), but there is little known about the comparability of effects across modalities and clinical disease courses. OBJECTIVE To evaluate the effect of tele-Pilates and tele-yoga training on physical and mental factors and QOL in PwMS, with a focus on two phenotype classifications - relapsing-remitting MS (RRMS) and secondary progressive MS (SPMS). METHODS Eighty-two persons with RRMS (n = 48) and SPMS (n = 34) were randomly assigned into tele-Pilates (n = 29), tele-yoga (n = 26), or control (n = 27). The tele-exercis training was conducted three times per week for eight weeks. RESULTS Significant time × group interactions were observed for QoL (p = 0.01), physical activity levels (p < 0.001), mental health (p = 0.05), and a decline in depression (p = 0.002) following tele-Pilates and tele-yoga. The corresponding subfactors, including pain, energy, emotional well-being, and role limitation due to emotional and physical problems, have shown significant improvements after interventions compared with control (all p < 0.05). The effects of exercise over control did not depend on MS phenotype (all p > 0.05). DISCUSSION Tele-yoga and tele-Pilates exercises improved QoL and mental and physical health in PwMS, and the benefits were similar across both MS phenotypes. These findings highlight the potential of implementing tele-yoga and tele-Pilates as non-pharmacological mind-body symptomatic treatments for individuals with both RRMS and SPMS.
Collapse
Affiliation(s)
- Parisa Najafi
- Faculty of Sports and Exercise Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Maryam Hadizadeh
- Faculty of Sports and Exercise Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia.
| | | | - Robert W Motl
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, United States.
| | - Suhailah Abdullah
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Hamidreza Mohafez
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia.
| | - Maryam Poursadeghfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Esechie A, Fang X, Banerjee P, Rai P, Thottempudi N. A case report of longitudinal extensive transverse myelitis: immunotherapy related adverse effect vs. COVID-19 related immunization complications. Int J Neurosci 2023; 133:1120-1123. [PMID: 35369847 DOI: 10.1080/00207454.2022.2050907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/01/2022] [Indexed: 01/03/2023]
Abstract
Background: Transverse myelitis (TM) is a rare, acquired neuro-immunological spinal cord disorder that occurs with rapid onset of motor weakness, sensory deficits with bowel and bladder dysfunction. Patients being treated with immune checkpoint inhibitors (ICIs) for advanced malignancy have a known higher propensity of developing neuro immune complications. With the advent of COVID-19 pandemic there have been reported cases of TM with COVID-19 immunization. The reported infrequency of TM with both of the aforementioned causes makes delineation of the etiology challenging.Methods: We present a patient with metastatic small cell lung cancer (SCLC) on maintenance Atezolizumab immunotherapy who developed longitudinal extensive transverse myelitis (LETM) after administration of second dose of COVID-19 mRNA vaccine one day prior to presenting symptoms of acute paralysis of the lower extremity, sensory loss from chest down with overflow incontinence. A clinical diagnosis of myelopathy was supported by MRI of the spine illustrating enhancing lesions from C7-T7 concerning for LETM.Results: A 5-day course of pulsed methylprednisolone followed by therapeutic plasma exchange for 3 days resulted in only minimal improvement in the neurologic exam with increased strength in his lower extremities while the sensory level remained unchanged.Conclusions: This case demonstrates the complication and symptomatology of TM in the setting of anti-PD-L1 monoclonal antibody with coincidental COVID-19 mRNA vaccine administration. The causal relationship between the vaccine and LETM is difficult to establish. However, the presence of a known inciting factor hints at a possible exaggeration of the existing neuro-inflammatory process.
Collapse
Affiliation(s)
- Aimalohi Esechie
- Department of Neurology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Xiang Fang
- Department of Neurology, The University of Texas Medical Branch, Galveston, TX, USA
- The Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA
| | - Pankhuri Banerjee
- Department of Neurology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Prashant Rai
- Department of Neurology, The University of Texas Medical Branch, Galveston, TX, USA
| | | |
Collapse
|
20
|
Labani A, Chou S, Kaviani K, Ropero B, Russman K, Becker D. Incidence of multiple sclerosis relapses and pseudo-relapses following COVID-19 vaccination. Mult Scler Relat Disord 2023; 77:104865. [PMID: 37418929 DOI: 10.1016/j.msard.2023.104865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic created an urgency for an effective vaccine. The FDA approved vaccines offered by Pfizer-BioNTech (BNT162b2), ModernaTX (mRNA-1273) and Janssen/Johnson & Johnson (Ad26.COV2.S) have shown minimal side effects (SE) in general population studies. Multiple sclerosis (MS) patients were not specifically represented in the above studies. The MS community is interested in how these vaccines behave in people with MS. In this study, we compare the SE experienced by MS to that of the general population after SARS-CoV-2 vaccination and evaluate their risk of relapses or pseudo-relapses. METHODS A retrospective, single-site, cohort study of 250 MS patients who received the initial cycle of FDA approved SARS-CoV-2 vaccines with 151 of whom also received an additional booster dose. SE resulting immediately after COVID-19 vaccination were collected as part of the standard clinical care during patient visits. RESULTS Out of the studied 250 MS patients, 135 received the first and second doses of BNT162b2 with less than 1% and 4% pseudo-relapses respectively and 79 received the third BNT162b2 dose with a pseudo-relapse rate of 3%. 88 received the mRNA-1273 vaccine with a pseudo-relapse frequency of 2% and 5% after the first and second doses respectively. 70 patients had the mRNA-1273 vaccine booster with a 3% pseudo-relapse rate. 27 received the Ad26.COV2.S first dose, 2 of whom received a second Ad26.COV2.S booster dose, with no reports of MS worsening. No acute relapses were reported in our patient population. All patients experiencing pseudo-relapse symptoms returned to baseline within 96 h. CONCLUSION COVID-19 vaccine is safe in patients with MS. Cases of temporary worsening of MS symptoms following SARS-CoV-2 are rare. Our findings support those reported by other recent studies and the CDC recommendation for MS patients to receive the FDA-approved COVID-19 vaccines, including the boosters.
Collapse
Affiliation(s)
- Amir Labani
- International Neurorehabilitation Institute, Lutherville, MD, United States
| | - Scott Chou
- International Neurorehabilitation Institute, Lutherville, MD, United States
| | - Kasra Kaviani
- International Neurorehabilitation Institute, Lutherville, MD, United States
| | - Brenda Ropero
- International Neurorehabilitation Institute, Lutherville, MD, United States
| | - Katharine Russman
- International Neurorehabilitation Institute, Lutherville, MD, United States
| | - Daniel Becker
- International Neurorehabilitation Institute, Lutherville, MD, United States; John Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, United States.
| |
Collapse
|
21
|
Bakirtzis C, Konstantinidou N, Stavropoulou De Lorenzo S, Moysiadis T, Boziki MK, Grigoriadou E, Kesidou E, Theotokis P, Thireos E, Mitrou P, Grigoriadis N. COVID-19 Vaccination and Disease Course in People with Multiple Sclerosis in Greece. J Clin Med 2023; 12:5460. [PMID: 37685528 PMCID: PMC10488265 DOI: 10.3390/jcm12175460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Over the past three years, humanity faced the abrupt spread of COVID-19, responsible for a worldwide health crisis. Initially, it was believed that individuals with chronic disorders, including multiple sclerosis, were more likely to be infected and suffer a worse degree of COVID-19 disease. Therefore, data with regard to COVID-19 disease outcomes in these populations may provide additional insight with regard to the management of chronic diseases during viral pandemics. The objective of this study is to evaluate COVID-19 disease course in people with multiple sclerosis (PwMS) during the COVID-19 pandemic in Greece and explore the impact of vaccination in the outcome of SARS-CoV-2 infection in this population. Anonymized data, extracted from nationwide administrative records between February 2020 and December 2021, were retrospectively analyzed in order to identify PwMS with SARS-CoV-2 infection. Demographic data, as well as data regarding COVID-19 infection and vaccination, were additionally collected. The study sample included 2351 PwMS (65.1% females, 51.2% unvaccinated at the time of infection). A total of 260 PwMS were hospitalized, while 25 PwMS died from COVID-19 disease and its complications. Older age, male sex and the presence of comorbidities were independently associated with a higher probability of hospitalization. The risk of hospitalization was decreased in PwMS receiving some disease-modifying treatments. Anti-CD20s demonstrated high odds ratios without reaching statistical significance. Regarding fatal outcome, only age reached statistical significance. Vaccination provided a significant protective effect against hospitalization but did not exhibit a statistically significant effect on mortality.
Collapse
Affiliation(s)
- Christos Bakirtzis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (N.K.); (S.S.D.L.); (M.-K.B.); (E.G.); (E.K.); (P.T.); (N.G.)
| | - Natalia Konstantinidou
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (N.K.); (S.S.D.L.); (M.-K.B.); (E.G.); (E.K.); (P.T.); (N.G.)
| | - Sotiria Stavropoulou De Lorenzo
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (N.K.); (S.S.D.L.); (M.-K.B.); (E.G.); (E.K.); (P.T.); (N.G.)
| | - Theodoros Moysiadis
- Department of Computer Science, School of Sciences and Engineering, University of Nicosia, 2417 Nicosia, Cyprus;
| | - Marina-Kleopatra Boziki
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (N.K.); (S.S.D.L.); (M.-K.B.); (E.G.); (E.K.); (P.T.); (N.G.)
| | - Eleni Grigoriadou
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (N.K.); (S.S.D.L.); (M.-K.B.); (E.G.); (E.K.); (P.T.); (N.G.)
| | - Evangelia Kesidou
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (N.K.); (S.S.D.L.); (M.-K.B.); (E.G.); (E.K.); (P.T.); (N.G.)
| | - Paschalis Theotokis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (N.K.); (S.S.D.L.); (M.-K.B.); (E.G.); (E.K.); (P.T.); (N.G.)
| | - Eleftherios Thireos
- Primary Health Center of Vari, National Health System of Greece, 16672 Athens, Greece;
| | - Panagiota Mitrou
- Independent Department of Therapeutic Protocols and Patient Registers, Hellenic Ministry of Health, 10433 Athens, Greece;
| | - Nikolaos Grigoriadis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (N.K.); (S.S.D.L.); (M.-K.B.); (E.G.); (E.K.); (P.T.); (N.G.)
| |
Collapse
|
22
|
Tavazzi E, Pichiecchio A, Colombo E, Rigoni E, Asteggiano C, Vegezzi E, Masi F, Greco G, Bastianello S, Bergamaschi R. The Potential Role of SARS-CoV-2 Infection and Vaccines in Multiple Sclerosis Onset and Reactivation: A Case Series and Literature Review. Viruses 2023; 15:1569. [PMID: 37515255 PMCID: PMC10385211 DOI: 10.3390/v15071569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The recent SARS-CoV-2 pandemic and related vaccines have raised several issues. Among them, the potential role of the viral infection (COVID-19) or anti-SARS-CoV-2 vaccines as causal factors of dysimmune CNS disorders, as well as the safety and efficacy of vaccines in patients affected by such diseases and on immune-active treatments have been analyzed. The aim is to better understand the relationship between SARS-CoV-2 infection/vaccines with dysimmune CNS diseases by describing 12 cases of multiple sclerosis/myelitis onset or reactivation after exposure to SARS-CoV-2 infection/vaccines and reviewing all published case reports or case series in which MS onset or reactivation was temporally associated with either COVID-19 (8 case reports, 3 case series) or anti-SARS-CoV-2 vaccines (13 case reports, 6 case series). All the cases share a temporal association between viral/vaccine exposure and symptoms onset. This finding, together with direct or immune-based mechanisms described both during COVID-19 and MS, claims in favor of a role for SARS-CoV-2 infection/vaccines in unmasking dysimmune CNS disorders. The most common clinical presentations involve the optic nerve, brainstem and spinal cord. The preferential tropism of the virus together with the presence of some host-related genetic/immune factors might predispose to the involvement of specific CNS districts.
Collapse
Affiliation(s)
| | - Anna Pichiecchio
- IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
| | | | | | - Carlo Asteggiano
- IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
| | | | - Francesco Masi
- IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
| | - Giacomo Greco
- IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
| | - Stefano Bastianello
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
| | | |
Collapse
|
23
|
Ghaderi S, Mohammadi S, Heidari M, Sharif Jalali SS, Mohammadi M. Post-COVID-19 Vaccination CNS Magnetic Resonance Imaging Findings: A Systematic Review. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:1570830. [PMID: 37427078 PMCID: PMC10325882 DOI: 10.1155/2023/1570830] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/18/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Objective This systematic review aims to synthesize and analyze the available literature on central nervous system (CNS) magnetic resonance imaging (MRI) findings in individuals who have received COVID-19 vaccinations. Our objective is to enhance understanding of potential neurological side effects, inform clinical practice, and guide future research on the neurological implications of COVID-19 vaccination. Methods In this systematic review, we conducted a comprehensive search in PubMed, Scopus, and Web of Science from January 2020 to April 2023, using terms related to COVID-19 vaccination and CNS MRI findings. We evaluated the quality of the study, extracted relevant data, and included 89 eligible studies that covered various vaccines, demographics of patients, symptoms, and MRI findings to provide a thorough understanding of SARS-CoV-2 vaccination-related CNS problems. Results We investigated CNS MRI findings following COVID-19 vaccination across various vaccine types. Common diseases associated with post-vaccination CNS MRI findings included cerebral venous sinus thrombosis (CVST), vaccine-induced immune thrombotic thrombocytopenia (VITT), acute disseminated encephalomyelitis (ADEM), acute myelitis, autoimmune encephalitis (AE), and others. Patients presented with diverse onset symptoms and neurological manifestations. Abnormalities identified in CNS MRI findings included white matter (WM) hyperintensity. Our analysis offers a comprehensive overview of the current literature on post-vaccination CNS MRI findings. Discussion. We highlight a range of post-COVID-19 vaccination CNS MRI findings, including CVST, with a higher incidence in individuals receiving the ChAdOx1 (AstraZeneca) vaccine. Other notable observations include cases of ADEM, myelitis or transverse myelitis (TM), Guillain-Barré syndrome (GBS), and acute encephalopathy following COVID-19 vaccination. The incidence of these neurological complications is extremely rare, and the benefits of vaccination outweigh the risks. The reviewed studies were primarily case reports or case series, and thus large-scale epidemiological studies and controlled clinical trials are needed to better understand the underlying mechanisms and risk factors associated with these neurological complications following COVID-19 vaccination.
Collapse
Affiliation(s)
- Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrsa Heidari
- Department of Medical Science, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyedeh Shadi Sharif Jalali
- Department of Medical Physics, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahdi Mohammadi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Harel T, Gorman EF, Wallin MT. New onset or relapsing neuromyelitis optica temporally associated with SARS-CoV-2 infection and COVID-19 vaccination: a systematic review. Front Neurol 2023; 14:1099758. [PMID: 37426444 PMCID: PMC10323143 DOI: 10.3389/fneur.2023.1099758] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/26/2023] [Indexed: 07/11/2023] Open
Abstract
Background Neuromyelitis optica spectrum disorder (NMOSD) is a rare chronic neuroinflammatory autoimmune condition. Since the onset of the COVID-19 pandemic, there have been reports of NMOSD clinical manifestations following both SARS-CoV-2 infections and COVID-19 vaccinations. Objective This study aims to systematically review the published literature of NMOSD clinical manifestations associated with SARS-CoV-2 infections and COVID-19 vaccinations. Methods A Boolean search of the medical literature was conducted between December 1, 2019 to September 1, 2022, utilizing Medline, Cochrane Library, Embase, Trip Database, Clinicaltrials.gov, Scopus, and Web of Science databases. Articles were collated and managed on Covidence® software. The authors independently appraised the articles for meeting study criteria and followed PRISMA guidelines. The literature search included all case reports and case series that met study criteria and involved NMOSD following either the SARS-CoV-2 infection or the COVID-19 vaccination. Results A total of 702 articles were imported for screening. After removing 352 duplicates and 313 articles based on exclusion criteria, 34 articles were analyzed. A total of 41 cases were selected, including 15 patients that developed new onset NMOSD following a SARS-CoV-2 infection, 21 patients that developed de novo NMOSD following COVID-19 vaccination, 3 patients with known NMOSD that experienced a relapse following vaccination, and 2 patients with presumed Multiple Sclerosis (MS) that was unmasked as NMOSD post-vaccination. There was a female preponderance of 76% among all NMOSD cases. The median time interval between the initial SARS-CoV-2 infection symptoms and NMOSD symptom onset was 14 days (range 3-120 days) and the median interval between COVID-19 vaccination and onset of NMO symptoms was 10 days (range 1 to 97 days). Transverse myelitis was the most common neurological manifestation in all patient groups (27/41). Management encompassed acute treatments such as high dose intravenous methylprednisolone, plasmapheresis, and intravenous immunoglobulin (IVIG) and maintenance immunotherapies. The majority of patients experienced a favorable outcome with complete or partial recovery, but 3 patients died. Conclusion This systematic review suggests that there is an association between NMOSD and SARS-CoV-2 infections and COVID-19 vaccinations. This association requires further study using quantitative epidemiological assessments in a large population to better quantify the risk.
Collapse
Affiliation(s)
- Tamar Harel
- Department of Veterans Affairs Multiple Sclerosis Center of Excellence (VA MSCoE), Baltimore VA Medical Center, Baltimore, MD, United States
- Department of Neurology, University of Maryland Medical Center, Baltimore, MD, United States
| | - Emily F. Gorman
- Health Sciences and Human Services Library, University of Maryland, Baltimore, MD, United States
| | - Mitchell T. Wallin
- Department of Veterans Affairs Multiple Sclerosis Center of Excellence (VA MSCoE), Baltimore VA Medical Center, Baltimore, MD, United States
- Department of Neurology, University of Maryland Medical Center, Baltimore, MD, United States
| |
Collapse
|
25
|
Banoun H. mRNA: Vaccine or Gene Therapy? The Safety Regulatory Issues. Int J Mol Sci 2023; 24:10514. [PMID: 37445690 DOI: 10.3390/ijms241310514] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
COVID-19 vaccines were developed and approved rapidly in response to the urgency created by the pandemic. No specific regulations existed at the time they were marketed. The regulatory agencies therefore adapted them as a matter of urgency. Now that the pandemic emergency has passed, it is time to consider the safety issues associated with this rapid approval. The mode of action of COVID-19 mRNA vaccines should classify them as gene therapy products (GTPs), but they have been excluded by regulatory agencies. Some of the tests they have undergone as vaccines have produced non-compliant results in terms of purity, quality and batch homogeneity. The wide and persistent biodistribution of mRNAs and their protein products, incompletely studied due to their classification as vaccines, raises safety issues. Post-marketing studies have shown that mRNA passes into breast milk and could have adverse effects on breast-fed babies. Long-term expression, integration into the genome, transmission to the germline, passage into sperm, embryo/fetal and perinatal toxicity, genotoxicity and tumorigenicity should be studied in light of the adverse events reported in pharmacovigilance databases. The potential horizontal transmission (i.e., shedding) should also have been assessed. In-depth vaccinovigilance should be carried out. We would expect these controls to be required for future mRNA vaccines developed outside the context of a pandemic.
Collapse
|
26
|
Yang Y, Huang L. Neurological Disorders following COVID-19 Vaccination. Vaccines (Basel) 2023; 11:1114. [PMID: 37376503 PMCID: PMC10302665 DOI: 10.3390/vaccines11061114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Nowadays, people all over the world have been receiving different types of coronavirus disease 2019 (COVID-19) vaccines. While their effectiveness has been well recognized, various post-vaccination disorders are not fully understood. In this review, we discuss neurological disorders related to vascular, immune, infectious, and functional factors following COVID-19 vaccination, and attempt to provide neuroscientists, psychiatrists, and vaccination staff with a reference for the diagnosis and treatment of these diseases. These disorders may present as a recurrence of previous neurological disorders or new-onset diseases. Their incidence rate, host and vaccine characteristics, clinical manifestations, treatment, and prognosis differ significantly. The pathogenesis of many of them remains unclear, and further studies are needed to provide more evidence. The incidence rate of severe neurological disorders is relatively low, most of which are reversible or treatable. Therefore, the benefits of vaccination outweigh the risk of COVID-19 infection, especially among fragile populations.
Collapse
Affiliation(s)
| | - Lisu Huang
- Department of Infectious Diseases, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China;
| |
Collapse
|
27
|
Dinkin M, Sathi S. Neuro-Ophthalmic Visual Impairment in the Setting of COVID-19. Semin Neurol 2023. [PMID: 37311536 DOI: 10.1055/s-0043-1767715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We set out to describe in detail the afferent neuro-ophthalmological complications that have been reported in association with coronavirus disease 2019 (COVID-19) infection. We describe and elaborate on mechanisms of disease, including para-infectious inflammation, hypercoagulability, endothelial damage, and direct neurotropic viral invasion. Despite global vaccination programs, new variants of COVID-19 continue to pose an international threat, and patients with rare neuro-ophthalmic complications are likely to continue to present for care.Afferent complications from COVID-19 include homonymous visual field loss, with or without higher cortical visual syndromes, resulting from stroke, intracerebral hemorrhage, or posterior reversible leukoencephalopathy. Optic neuritis has frequently been reported, sometimes along with acute disseminated encephalomyelopathy, often in association with either myelin oligodendrocyte glycoprotein antibodies (MOG-IgG) or less commonly aquaporin-4 seropositivity or in newly diagnosed multiple sclerosis. Ischemic optic neuropathy has rarely been reported. Papilledema, resulting either from venous sinus thrombosis or idiopathic intracranial hypertension in the setting of COVID-19, has also been described.Observed afferent neuro-ophthalmic associations need to be confirmed though larger comparative studies. Meanwhile, the range of possible complications should be recognized by neurologists and ophthalmologists alike, to facilitate faster diagnosis and treatment of both COVID-19 and its neuro-ophthalmic manifestations.
Collapse
Affiliation(s)
- Marc Dinkin
- Department of Ophthalmology, Weill Cornell Medical College, NY Presbyterian Hospital, New York, New York
- Department of Neurology, Weill Cornell Medical College, NY Presbyterian Hospital, New York, New York
| | | |
Collapse
|
28
|
Tolmacheva AS, Onvumere MK, Sedykh SE, Timofeeva AM, Nevinsky GA. Catalase Activity of IgGs of Patients Infected with SARS-CoV-2. Int J Mol Sci 2023; 24:10081. [PMID: 37373231 DOI: 10.3390/ijms241210081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Coronavirus disease (COVID-19), caused by the SARS-CoV-2 coronavirus, leads to various manifestations of the post-COVID syndrome, including diabetes, heart and kidney disease, thrombosis, neurological and autoimmune diseases and, therefore, remains, so far, a significant public health problem. In addition, SARS-CoV-2 infection can lead to the hyperproduction of reactive oxygen species (ROS), causing adverse effects on oxygen transfer efficiency, iron homeostasis, and erythrocytes deformation, contributing to thrombus formation. In this work, the relative catalase activity of the serum IgGs of patients recovered from COVID-19, healthy volunteers vaccinated with Sputnik V, vaccinated with Sputnik V after recovering from COVID-19, and conditionally healthy donors were analyzed for the first time. Previous reports show that along with canonical antioxidant enzymes, the antibodies of mammals with superoxide dismutase, peroxidase, and catalase activities are involved in controlling reactive oxygen species levels. We here show that the IgGs from patients who recovered from COVID-19 had the highest catalase activity, and this was statistically significantly higher each compared to the healthy donors (1.9-fold), healthy volunteers vaccinated with Sputnik V (1.4-fold), and patients vaccinated after recovering from COVID-19 (2.1-fold). These data indicate that COVID-19 infection may stimulate the production of antibodies that degrade hydrogen peroxide, which is harmful at elevated concentrations.
Collapse
Affiliation(s)
- Anna S Tolmacheva
- Institute of Chemical Biology and Fundamental Medicine, SB of the RAS, 630090 Novosibirsk, Russia
| | - Margarita K Onvumere
- Institute of Chemical Biology and Fundamental Medicine, SB of the RAS, 630090 Novosibirsk, Russia
| | - Sergey E Sedykh
- Institute of Chemical Biology and Fundamental Medicine, SB of the RAS, 630090 Novosibirsk, Russia
| | - Anna M Timofeeva
- Institute of Chemical Biology and Fundamental Medicine, SB of the RAS, 630090 Novosibirsk, Russia
| | - Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, SB of the RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
29
|
Ruan Z, Huan X, Su Y, Tang YL, Meng DD, Ren DL, Li CH, Hao SJ, Zhao CB, Luo SS, Li ZY, Chang T. Safety of COVID-19 vaccine in patients with myasthenia gravis: a self-controlled case series study. Front Immunol 2023; 14:1141983. [PMID: 37223097 PMCID: PMC10200982 DOI: 10.3389/fimmu.2023.1141983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/18/2023] [Indexed: 05/25/2023] Open
Abstract
Background The safety of COVID-19 vaccines has been clarified in clinical trials; however, some immunocompromised patients, such as myasthenia gravis (MG) patients, are still hesitant to receive vaccines. Whether COVID-19 vaccination increases the risk of disease worsening in these patients remains unknown. This study aims to evaluate the risk of disease exacerbation in COVID-19-vaccinated MG patients. Methods The data in this study were collected from the MG database at Tangdu Hospital, the Fourth Military Medical University, and the Tertiary Referral Diagnostic Center at Huashan Hospital, Fudan University, from 1 April 2022 to 31 October 2022. A self-controlled case series method was applied, and the incidence rate ratios were calculated in the prespecified risk period using conditional Poisson regression. Results Inactivated COVID-19 vaccines did not increase the risk of disease exacerbation in MG patients with stable disease status. A few patients experienced transient disease worsening, but the symptoms were mild. It is noted that more attention should be paid to thymoma-related MG, especially within 1 week after COVID-19 vaccination. Conclusion COVID-19 vaccination has no long-term impact on MG relapse.
Collapse
Affiliation(s)
- Zhe Ruan
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xiao Huan
- Huashan Rare Disease Center, Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Yue Su
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yong-Lan Tang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Dong-Dong Meng
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Da-Lin Ren
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Chun-Hong Li
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Si-Jia Hao
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Chong-Bo Zhao
- Huashan Rare Disease Center, Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Su-Shan Luo
- Huashan Rare Disease Center, Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Zhu-Yi Li
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
30
|
Pratap Shankar KM, Pratibha PN, Saritha V. Ayurvedic management of neurological deficits post COVID-19 vaccination - A report of two cases. J Ayurveda Integr Med 2023; 14:100737. [PMID: 37343418 PMCID: PMC10247886 DOI: 10.1016/j.jaim.2023.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
The world witnessed much research fund allocation on the COVID-19 outbreak's epidemiology, pathology, impact on lifestyles, social behaviours and treatment possibilities. The highly contagious nature of the disease compelled scientific communities and related organisations to hasten vaccine development and supplies. Well-timed international collaborations resulted in quicker development of varied forms of vaccines against COVID-19. Prospective observational studies and systematic reviews on vaccine trials reported their safety and efficacies. Nevertheless, post-marketing surveillance is quintessential to ascertain such safety and efficacy claims. There have been scattered reports lately of several adverse temporal events, such as haematological, immunological and neurological untoward occurrences following COVID-19 inoculation. There is a growing piece of evidence of the impact of COVID vaccination on patients with neurological-neuroimmunological disorders. Here two unrelated cases of neurological deficits post-COVID vaccination are reported. One was an incidence of Acute Disseminated Encephalomyelitis, while the other was an acute exacerbation of Multiple Sclerosis following vaccination. Ayurvedic treatments were effective in either of these conditions. Case series and case reports shall judiciously add information to vaccine safety data and acknowledge the necessity of clinician approval, based on detailed individualised assessments before mass vaccination.
Collapse
Affiliation(s)
- K M Pratap Shankar
- National Ayurveda Research Institute for Panchakarma, Cheruthuruthy, Thrissur, Kerala, India.
| | - P Nair Pratibha
- Department Of Kayachikitsa, VPSV Ayurveda College, Kottakkal, Kerala, India
| | - V Saritha
- Department of Radiology, Government Medical College, Palakkad, Kerala, India
| |
Collapse
|
31
|
Silva PBR, Silva GD. Risk and characteristics of attacks occurring after vaccination in patients with neuromyelitis optica spectrum disorders: A systematic review and meta-analysis. Mult Scler Relat Disord 2023; 75:104741. [PMID: 37182477 DOI: 10.1016/j.msard.2023.104741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/25/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Vaccination in patients with neuromyelitis optica spectrum disorders (NMOSD) is challenging because there is a concern that vaccines can lead to clinical attacks. However, little is known about the risk and the characteristics of attacks occurring after vaccination. METHODS We performed a systematic review and meta-analysis using PubMed and Embase databases to estimate a summary frequency of attacks occurring after vaccination and describe the clinical features of theses attacks. We defined attacks occurring after vaccination as typical NMOSD attacks that occurred up to 30 days after vaccine administration. For the frequency of attacks occurring after vaccination, we selected observational studies that reported the number of attacks and total number of patients that received vaccines; for the clinical description of the attacks, case reports and case series were also included. RESULTS We included 377 participants from 5 studies to estimate the frequency of NMOSD attacks occurring after vaccination. We found a summary frequency of of 2% (95% CI 1-4%, I2 = 0%). We evaluated 17 studies to identify that 13 different vaccines were associated with NMOSD attacks. A higher-than-expected proportion of males, simultaneous optic neuritis and transverse myelitis attacks, and anti-aquaporin 4 antibody negative cases were identified in vaccine-associated attacks from 24 participants from 17 studies. Nearly two-thirds of attacks occurring after vaccination were an initial event of NMOSD. CONCLUSION The frequency of NMOSD attacks occurring after vaccination is low and non-specific to different vaccine technologies. Our work reinforces the safety of vaccine recommendations in patients with NMOSD.
Collapse
Affiliation(s)
| | - Guilherme Diogo Silva
- Neuroimmunology group, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
32
|
Boruah AP, Heydari K, Wapniarski AE, Caldwell M, Thakur KT. Neurological Considerations with COVID-19 Vaccinations. Semin Neurol 2023. [PMID: 37094803 DOI: 10.1055/s-0043-1767725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The benefits of coronavirus disease 2019 (COVID-19) vaccination significantly outweigh its risks on a public health scale, and vaccination has been crucial in controlling the spread of SARS-CoV-2. Nonetheless, several reports of adverse events following vaccination have been published.To summarize reports to date and assess the extent and quality of evidence regarding possible serious adverse neurological events following COVID-19 vaccination, focusing on Food and Drug Administration (FDA)-approved vaccines in the United States (BNT162b2, mRNA-1273, and Ad26.COV2.S).A review of literature from five major electronic databases (PubMed, Medline, Embase, Cochrane Library, and Google Scholar) was conducted between December 1, 2020 and June 5, 2022. Articles included in the review were systematic reviews and meta-analysis, cohort studies, retrospective studies, case-control studies, case series, and reports. Editorials, letters, and animal studies were excluded, since these studies did not include quantitative data regarding adverse side effects of vaccination in human subjects.Of 149 total articles and 97 (65%) were case reports or case series. Three phase 3 trials initially conducted for BNT162b2, MRNA-1273, and Ad26.COV2.S were included in the analysis.The amount and quality of evidence for possible neurological adverse events in the context of FDA-approved COVID-19 vaccinations is overall low tier. The current body of evidence continues to suggest that COVID-19 vaccinations have a high neurological safety profile; however, the risks and benefits of vaccination must continue to be closely monitored.
Collapse
Affiliation(s)
- Abhilasha P Boruah
- Department of Neurology, Columbia University Irving Medical Center/New York Presbyterian Hospital (CUIMC/NYP), New York, NY
- Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Kimia Heydari
- Department of Neurology, Columbia University Irving Medical Center/New York Presbyterian Hospital (CUIMC/NYP), New York, NY
| | - Anne E Wapniarski
- Department of Neurology, Columbia University Irving Medical Center/New York Presbyterian Hospital (CUIMC/NYP), New York, NY
| | - Marissa Caldwell
- Department of Neurology, Columbia University Irving Medical Center/New York Presbyterian Hospital (CUIMC/NYP), New York, NY
| | - Kiran T Thakur
- Department of Neurology, Columbia University Irving Medical Center/New York Presbyterian Hospital (CUIMC/NYP), New York, NY
| |
Collapse
|
33
|
Jeon YH, Choi S, Park JH, Lee JK, Yeo NS, Lee S, Suh YL. Sudden Death Associated With Possible Flare-Ups of Multiple Sclerosis After COVID-19 Vaccination and Infection: A Case Report and Literature Review. J Korean Med Sci 2023; 38:e78. [PMID: 36918031 PMCID: PMC10010908 DOI: 10.3346/jkms.2023.38.e78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/30/2022] [Indexed: 03/06/2023] Open
Abstract
We present an autopsy case of a 19-year-old man with a history of epilepsy whose unwitnessed sudden death occurred unexpectedly in the night. About 4 years before death, he was diagnosed with unilateral optic neuritis (ON). Demyelinating disease was suspected, but he was lost to follow up after the recovery. Six months before death, he received a second dose of mRNA coronavirus disease 2019 (COVID-19) vaccine. Three months before death, he experienced epileptic seizures for the first time. Seventeen days before death, he was infected with COVID-19, which showed self-limited course under home isolation. Several days before death, he complained of seizures again at night. Autopsy revealed multifocal gray-tan discoloration in the cerebrum. Histologically, the lesions consisted of active and inactive demyelinated plaques in the perivenous area of the white matter. Perivascular lymphocytic infiltration and microglial cell proliferation were observed in both white matter and cortex. The other major organs including heart and lung were unremarkable. Based on the antemortem history and postmortem findings, the cause of death was determined to be multiple sclerosis with suspected exacerbation. The direct or indirect involvement of cortex and deep gray matter by exacerbated multiple sclerosis may explain the occurrence of seizures. Considering the absence of other structural abnormalities except the inflammatory demyelination of the cerebrum, fatal arrhythmia or laryngospasm in the terminal epileptic seizure may explain his sudden unexpected death in the benign circumstances. In this case, the onset of seizure was preceded by COVID-19 vaccination, and the exacerbation of seizure was preceded by COVID-19 infection, respectively. Literature reporting first manifestation or relapse of multiple sclerosis temporally associated with COVID-19 vaccination or infection are reviewed.
Collapse
Affiliation(s)
- Yo Han Jeon
- Department of Forensic Medicine, Defense Institute of Forensic Science, Criminal Investigation Command, Ministry of National Defense, Seoul, Korea
| | - Sangjoon Choi
- Department of Forensic Medicine, Defense Institute of Forensic Science, Criminal Investigation Command, Ministry of National Defense, Seoul, Korea
| | - Ji Hyun Park
- Department of Forensic Medicine, Defense Institute of Forensic Science, Criminal Investigation Command, Ministry of National Defense, Seoul, Korea
| | - Jong Kyu Lee
- Department of Forensic Medicine, Defense Institute of Forensic Science, Criminal Investigation Command, Ministry of National Defense, Seoul, Korea
| | - Nam Seok Yeo
- Department of Forensic Medicine, Defense Institute of Forensic Science, Criminal Investigation Command, Ministry of National Defense, Seoul, Korea
| | - SangHan Lee
- Department of Forensic Medicine, Defense Institute of Forensic Science, Criminal Investigation Command, Ministry of National Defense, Seoul, Korea.
| | - Yeon-Lim Suh
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
34
|
Acute and Chronic Demyelinating Neuropathies After COVID-19 Vaccination: A Report of 4 Cases. J Clin Neuromuscul Dis 2023; 24:147-156. [PMID: 36809202 DOI: 10.1097/cnd.0000000000000418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
OBJECTIVES To report demyelinating neuropathies after COVID-19 vaccination. METHODS Case report. RESULTS Four cases of demyelinating neuropathies after COVID-19 vaccination were identified at the University of Nebraska Medical Center from May to September 2021. Three were male and 1 was a female, ages 26-64 years. Three cases received Pfizer-BioNTech vaccine and 1 Johnson & Johnson. Symptom onset ranged from 2 to 21 days after vaccination. Two cases had progressive limb weakness, 3 had facial diplegia, and all had sensory symptoms and areflexia. The diagnosis was acute inflammatory demyelinating polyneuropathy in 1 case and chronic inflammatory demyelinating polyradiculoneuropathy in 3. All cases received treatment with intravenous immunoglobulin, with significant improvement in 3 of 4 who had a long-term outpatient follow-up. CONCLUSIONS Continued identification and reporting of cases of demyelinating neuropathies after COVID-19 vaccination is essential to determine whether a causative association is present.
Collapse
|
35
|
Choi SY, Choi JH, Oh EH, Choi KD. Sequential orbital apex syndrome following the COVID-19 vaccination: A case report. eNeurologicalSci 2023; 30:100447. [PMID: 36743268 PMCID: PMC9883071 DOI: 10.1016/j.ensci.2023.100447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
Background Many kinds of vaccines have been developed worldwide to bring the coronavirus disease 2019 (COVID-19) to an end. We report a case of recurrent orbital apex syndrome following the first and third doses of SARS-CoV-2 vaccination. Case presentation A 71-year-old woman presented with acute painless diplopia and visual disturbance for two days. She had received the first dose of the COVID-19 vaccine two weeks before. She showed decreased visual acuity and ophthalmoplegia in the right eye. An orbital magnetic resonance image (MRI) revealed a hyperintense lesion with enhanced bulging in the right cavernous sinus. Following the steroid pulse therapy, she fully recovered. However, six months after the first attack, painful ophthalmoplegia with decreased visual acuity recurred in her left eye after the booster vaccination for COVID-19. MRI also showed a well-enhanced hyperintense lesion in the left orbital apex. Fortunately, her visual acuity and ocular motility returned to normal after the steroid therapy. Conclusions Immunologic reactions from COVID-19 vaccines may cause multiple cranial neuropathies. Diverse individual immunologic states should be considered before any kind of vaccine.
Collapse
Affiliation(s)
- Seo-Young Choi
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, Republic of Korea,Corresponding author at: Department of Neurology, Pusan National University Hospital, 179, Gudeok-ro, Seo-gu, Busan, 602-739, Republic of Korea
| | - Jae-Hwan Choi
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Republic of Korea
| | - Eun Hye Oh
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Republic of Korea
| | - Kwang-Dong Choi
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, Republic of Korea
| |
Collapse
|
36
|
Álvaro-Gracia JM, Sanchez-Piedra C, Culqui D, Rosello R, Garcia-Dorta A, Campos C, Manrique-Arija S, Ruiz-Montesinos D, Ros-Vilamajo I, Rodríguez-Lozano C, Freire-González M, Caliz R, Bohorquez C, Mateo Soria L, Busquets N, Castrejon I, Sánchez-Alonso F, González-Dávila E, Diaz-Gonzalez F. Effects of COVID-19 vaccination on disease activity in patients with rheumatoid arthritis and psoriatic arthritis on targeted therapy in the COVIDSER study. RMD Open 2023; 9:rmdopen-2022-002936. [PMID: 36927849 PMCID: PMC10030283 DOI: 10.1136/rmdopen-2022-002936] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/09/2023] [Indexed: 03/18/2023] Open
Abstract
OBJECTIVE To investigate the influence of COVID-19 vaccination on disease activity in rheumatoid arthritis (RA) and psoriatic arthritis (PsA) patients under targeted therapies. PATIENTS AND METHODS 1765 vaccinated patients COVID-19, 1178 (66.7%) with RA and 587 (33.3%) with PsA from the COVID-19 registry in patients with rheumatic diseases (COVIDSER) project, were included. Demographics, disease characteristics, Disease Activity Score in 28 joints (DAS28) and targeted treatments were collected. DAS28-based flare rates and categorised disease activity distribution prevaccination and post vaccination were analysed by log-linear regression and contingency analyses, respectively. The influence of vaccination on DAS28 variation as a continuous measure was evaluated using a random coefficient model. RESULTS The distribution of categorised disease activity and flare rates was not significantly modified by vaccination. Log-linear regression showed no significant changes in the rate of flares in the 6-month period after vaccination compared with the same period prior to vaccination in neither patients with RA nor patients with PsA. When DAS28 variations were analysed using random coefficient models, no significant variations in disease activity were detected after vaccination for both groups of patients. However, patients with RA treated with Janus kinase inhibitors (JAK-i) (1) and interleukin-6 inhibitor (IL-6-i) experienced a worsening of disease activity (1.436±0.531, p=0.007, and 1.201±0.550, p=0.029, respectively) in comparison with those treated with tumour necrosis factor inhibitor (TNF-i). Similarly, patients with PsA treated with interleukin-12/23 inhibitor (IL-12/23-i) showed a worsening of disease activity (4.476±1.906, p=0.019) compared with those treated with TNF-i. CONCLUSION COVID-19 vaccination was not associated with increased rate of flares in patients with RA and PsA. However, a potential increase in disease activity in patients with RA treated with JAK-i and IL-6-i and in patients with PsA treated with IL-12/23-i warrants further investigation.
Collapse
Affiliation(s)
- José M Álvaro-Gracia
- Rheumatology Department, Hospital General Universitario Gregorio Maranon, Madrid, Spain
| | - Carlos Sanchez-Piedra
- Spanish Agency of Health Technology Assessment, Instituto de Salud Carlos III, Madrid, Spain
| | - Dante Culqui
- Research Unit, Spanish Society of Rheumatology, Madrid, Spain
| | - Rosa Rosello
- Rheumatology Department, Hospital General San Jorge, Huesca, Spain
| | - Alicia Garcia-Dorta
- Rheumatology Department, Hospital Universitario de Canarias, La Laguna, Spain
| | - Cristina Campos
- Rheumatology Department, Consorci Hospital General Universitari de Valencia, Valencia, Spain
| | - Sara Manrique-Arija
- Rheumatology Department, Hospital Regional Universitario de Málaga, Malaga, Spain
| | | | | | - Carlos Rodríguez-Lozano
- Rheumatology Department, Hospital Universitario Insulsar Gran Canaria Doctor Negrin, Las Palmas de Gran Canaria, Spain
| | | | - Rafael Caliz
- Rheumatology Department, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Cristina Bohorquez
- Rheumatology, Hospital Universitario Príncipe de Asturias, Alcala de Henares, Spain
| | - Lourdes Mateo Soria
- Rheumatology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Noemí Busquets
- Rheumatology Department, Hospital General de Granollers, Granollers, Spain
| | - Isabel Castrejon
- Rheumatology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Research Unit, Instituto de Investigacion Sanitaria Gregorio Maranon, Madrid, Spain
| | | | - Enrique González-Dávila
- Departamento de Estadística e Investigación Operativa, Universidad de La Laguna, La Laguna, Spain
| | - Federico Diaz-Gonzalez
- Rheumatology Department, Hospital Universitario de Canarias, La Laguna, Spain
- Department of Internal Medicine, Dermatology and Psychiatry, Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
37
|
A rare case of a wall-eyed bilateral internuclear ophthalmoplegia (WEBINO) syndrome in a patient with cutaneous lupus erythematosus after COVID-19 infection. J Neurol 2023; 270:1224-1228. [PMID: 36576573 PMCID: PMC9795426 DOI: 10.1007/s00415-022-11548-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
|
38
|
Hosseini R, Askari N. A review of neurological side effects of COVID-19 vaccination. Eur J Med Res 2023; 28:102. [PMID: 36841774 PMCID: PMC9959958 DOI: 10.1186/s40001-023-00992-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 01/04/2023] [Indexed: 02/27/2023] Open
Abstract
Following the COVID-19 virus epidemic, extensive, coordinated international research has led to the rapid development of effective vaccines. Although vaccines are now considered the best way to achieve collective safety and control mortality, due to the critical situation, these vaccines have been issued the emergency use licenses and some of their potential subsequence side effects have been overlooked. At the same time, there are many reports of side effects after getting a COVID-19 vaccine. According to these reports, vaccination can have an adverse event, especially on nervous system. The most important and common complications are cerebrovascular disorders including cerebral venous sinus thrombosis, transient ischemic attack, intracerebral hemorrhage, ischemic stroke, and demyelinating disorders including transverse myelitis, first manifestation of MS, and neuromyelitis optica. These effects are often acute and transient, but they can be severe and even fatal in a few cases. Herein, we have provided a comprehensive review of documents reporting neurological side effects of COVID-19 vaccines in international databases from 2020 to 2022 and discussed neurological disorders possibly caused by vaccination.
Collapse
Affiliation(s)
- Roya Hosseini
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, P.O.Box 76135-133, Kerman, Islamic Republic of Iran
| | - Nayere Askari
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, P.O.Box 76135-133, Kerman, Islamic Republic of Iran.
- Immunoregulation Research Center, Shahed University, Tehran, Islamic Republic of Iran.
| |
Collapse
|
39
|
Lee S, Muccilli A, Schneider R, Selchen D, Krysko KM. Acute central nervous system inflammation following COVID-19 vaccination: An observational cohort study. Mult Scler 2023; 29:595-605. [PMID: 36840605 PMCID: PMC9969223 DOI: 10.1177/13524585231154780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
BACKGROUND Reports suggest a potential association between coronavirus disease 2019 (COVID-19) vaccines and acute central nervous system (CNS) inflammation. OBJECTIVE The main objective of this study is to describe features of acute CNS inflammation following COVID-19 vaccination. METHODS A retrospective observational cohort study was performed at the BARLO MS Centre in Toronto, Canada. Clinicians reported acute CNS inflammatory events within 60 days after a COVID-19 vaccine from March 2021 to August 2022. Clinical characteristics were evaluated. RESULTS Thirty-eight patients (median age 39 (range: 20-82) years; 60.5% female) presented within 0-55 (median 15) days of a receiving a COVID-19 vaccine and were diagnosed with relapsing remitting multiple sclerosis (MS) (n = 16), post-vaccine transverse myelitis (n = 7), clinically isolated syndrome (n = 5), MS relapse (n = 4), tumefactive demyelination (n = 2), myelin oligodendrocyte glycoprotein antibody disease (n = 1), neuromyelitis optica spectrum disorder (n = 1), chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (n = 1) and primary autoimmune cerebellar ataxia (n = 1). Twenty-two received acute treatment and 21 started disease-modifying therapy. Sixteen received subsequent COVID-19 vaccination, of which 87.5% had no new or worsening neurological symptoms. CONCLUSION To our knowledge, this is the largest study describing acute CNS inflammation after COVID-19 vaccination. We could not determine whether the number of inflammatory events was higher than expected.
Collapse
Affiliation(s)
- Sydney Lee
- S Lee Department of Medicine, University of
Toronto, St. Michael’s Hospital, 36 Queen St E, Toronto, ON M5B 1W8, Canada.
| | - Alexandra Muccilli
- Division of Neurology, Department of Medicine,
BARLO MS Centre, St. Michael’s Hospital, University of Toronto, Toronto, ON,
Canada
| | - Raphael Schneider
- Division of Neurology, Department of Medicine,
BARLO MS Centre, St. Michael’s Hospital, University of Toronto, Toronto, ON,
Canada Li Ka Shing Knowledge Institute, Toronto, ON, Canada
| | - Daniel Selchen
- Division of Neurology, Department of Medicine,
BARLO MS Centre, St. Michael’s Hospital, University of Toronto, Toronto, ON,
Canada
| | - Kristen M Krysko
- Division of Neurology, Department of Medicine,
BARLO MS Centre, St. Michael’s Hospital, University of Toronto, Toronto, ON,
Canada Li Ka Shing Knowledge Institute, Toronto, ON, Canada
| |
Collapse
|
40
|
Kim S, Seok HY. Evaluation of the safety profile of COVID-19 vaccines in patients with MS, NMOSD, and MOGAD. Neurol Sci 2023; 44:1841-1848. [PMID: 36781562 PMCID: PMC9924883 DOI: 10.1007/s10072-023-06676-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 02/08/2023] [Indexed: 02/15/2023]
Abstract
INTRODUCTION Vaccination against the coronavirus disease 2019 (COVID-19) is recommended for patients with multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). However, vaccine safety in these patients taking immunotherapeutic agents is unclear as they were not included in the vaccine trials. OBJECTIVES To evaluate the safety of COVID-19 vaccines in patients with MS, NMOSD, and MOGAD. METHODS We reviewed the medical records of MS, NMOSD, and MOGAD patients at the Keimyung University Dongsan Hospital. Information regarding vaccination schedules and adverse events was collected. RESULTS A total of 56 patients (19, 22, and 15 patients with MS, NMOSD, and MOGAD, respectively) with a median age of 48.18 ± 15.72 years (range, 16-81 years) were included. Of them, 42 (75.0%) were female. In total, 76.8% (43/56) of all patients were vaccinated, and the vaccination rate was the highest for NMOSD patients (81.8%) and the lowest for MS patients (68.4%). All vaccinated patients were administered mRNA vaccines at least once in single or multiple vaccination doses. Only 3 of 43 (7.0%) vaccinated patients experienced clinical relapse following vaccination. Facial sensory changes with a brainstem lesion developed in an MS patient taking dimethyl fumarate, while myelitis occurred in a MOGAD patient receiving azathioprine maintenance therapy. The first episode of optic neuritis occurred in a patient who was later diagnosed with MOGAD. CONCLUSIONS Our study demonstrated a favorable safety profile with no serious adverse events associated with COVID-19 vaccines in patients with MS, NMOSD, and MOGAD.
Collapse
Affiliation(s)
- Sohyeon Kim
- Department of Neurology, Dongsan Hospital, Keimyung University School of Medicine, 1035 Dalgubeol-daero, Dalseo-gu, Daegu, 42601 Republic of Korea
| | - Hung Youl Seok
- Department of Neurology, Dongsan Hospital, Keimyung University School of Medicine, 1035 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea. .,Department of Neurology, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
41
|
Samim M, Dhar D, Arshad F, Anudeep D, Patel VG, Neeharika SR, Dhamija K, Ravindranath CM, Yadav R, Raja P, Netravathi M, Menon D, Holla VV, Kamble NL, Pal PK, Nalini A, Vengalil S. Co-VAN study: COVID-19 vaccine associated neurological diseases- an experience from an apex neurosciences centre and review of the literature. J Clin Neurosci 2023; 108:37-75. [PMID: 36586226 PMCID: PMC9780646 DOI: 10.1016/j.jocn.2022.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/19/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Recent studies have shown various neurological adverse events associated with COVID-19 vaccine. OBJECTIVE We aimed to retrospectively review and report the neurological diseases temporally associated with COVID-19 vaccine. METHODS We performed a retrospective chart review of admitted patients from 1st February 2021 to 30th June 2022. A total of 4672 medical records were reviewed of which 51 cases were identified to have neurological illness temporally associated with COVID-19 vaccination. RESULTS Out of 51 cases, 48 had probable association with COVID-19 vaccination while three had possible association. Neurological spectrum included CNS demyelination (n = 39, 76.5 %), Guillain-Barré-syndrome (n = 3, 5.9 %), stroke (n = 6, 11.8 %), encephalitis (n = 2, 3.9 %) and myositis (n = 1, 2.0 %). Female gender had a greater predisposition (F:M, 1.13:1). Neurological events were more commonly encountered after the first-dose (n = 37, 72.5%). The mean latency to onset of symptoms was 13.2 ± 10.7 days after the last dose of vaccination. COVIShield (ChAdOx1) was the most commonly administered vaccine (n = 43, 84.3 %). Majority of the cases with demyelination were seronegative (n = 23, 59.0 %) which was followed by anti-Myelin oligodendrocyte-glycoprotein associated demyelination (MOGAD) (n = 11, 28.2 %) and Neuromyelitis optica (NMOSD) (n = 5, 12.8 %). Out of 6 Stroke cases, 2 cases (33.3 %) had thrombocytopenia and coagulopathy. At discharge, 25/51 (49.0 %) of the cases had favourable outcome (mRS 0 to 1). Among six patients of stroke, only one of them had favourable outcome. CONCLUSION In this series, we describe the wide variety of neurological syndromes temporally associated with COVID-19 vaccination. Further studies with larger sample size and longer duration of follow-up are needed to prove or disprove causality association of these syndromes with COVID-19 vaccination.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Seena Vengalil
- Corresponding author at: Associate Professor, Department of Neurology, Faculty Block First Floor, Behind Neurocenter, National Institute of Mental Health And Neurosciences, Bangalore 560029
| |
Collapse
|
42
|
Moezinia C, Harbinson EB, Maweni RM. Concurrent facial and trigeminal nerve palsies in a child following COVID-19 vaccination with the Pfizer vaccine. BMJ Case Rep 2023; 16:16/1/e253302. [PMID: 36717162 PMCID: PMC9887692 DOI: 10.1136/bcr-2022-253302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We present the case of a teenaged boy who attended our Ear, Nose and Throat Emergency clinic with a left-sided lower motor neuron (LMN) facial nerve paralysis associated with sensory loss in the distribution of the ophthalmic (V1) and maxillary (V2) divisions of the trigeminal nerve. This happened 3 days following a first dose of the Pfizer-BioNTech BNT162b2 vaccine. He had a House-Brackmann grade V facial palsy, with marked inability to close the left eye. He was treated with a 10-day course of oral steroids and referred to ophthalmology for eye care. He had an MRI scan of the head, which revealed no space occupying lesions or other abnormalities. Over the 6-week period of follow-up, the patient's V1 and V2 sensation gradually resolved, along with improvement of his LMN facial nerve palsy to House-Brackmann grade 3. Despite the potential temporal relationship, it is not possible to establish a causal relationship between the patient's symptoms and the Pfizer-BioNTech BNT162b2 vaccine, thus further research is required.
Collapse
Affiliation(s)
- Carine Moezinia
- Department of Medicine, Royal Free Hospital, London, UK,Department of Otorhinolaryngology, Wexham Park Hospital, Slough, UK
| | | | - Robert M Maweni
- Department of Otorhinolaryngology, Wexham Park Hospital, Slough, UK
| |
Collapse
|
43
|
Ebrahimi N, Mazdak M, Shaygannejad V, Mirmosayyeb O. CNS demyelinating disease following inactivated or viral vector SARS-CoV-2 vaccines: A case series. Vaccine 2023; 41:1003-1008. [PMID: 36635139 PMCID: PMC9816077 DOI: 10.1016/j.vaccine.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/28/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
BACKGROUND Several reports have been documented in possible association with the administration of different severe acute respiratory coronavirus 2 (SARS-CoV-2) vaccines and central nervous system (CNS)demyelinating disorders, specifically post mRNA vaccines. We report twelve cases of developing Multiple sclerosis (MS) or Neuromyelitis Optica spectrum disorders (NMOSD) following neither the first nor second dose of inactivated or viral vector COVID-19 vaccine. METHODS We retrospectively compiled twelve patients' medical information with a new onset of MS or NMOSD in their first six weeks following a COVID-19 vaccine. RESULTS We report twelve cases of MS (n = 9), clinically isolated syndrome (CIS)(n = 1), and NMOSD (n = 2) following COVID-19 inactivated vaccines (n = 11) or viral vector vaccines (n = 1), within some days following either the first (n = 3), second dose (n = 8), or third dose (n = 1). Their median age was 33.3 years, ranging from 19 to 53 years. Ten were women (83 %). All patients fully (n = 5) or partially (n = 2) recovered after receiving 3 doses of Corticosteroids. Common medications were Natalizumab, Teriflunomide, Dimethyl fumarate, and Rituximab. Also, Interferon beta 1-a was administered to one patient with severe symptoms of numbness. CONCLUSION Our case series identifies the Sinopharm BBIBP-CorV and the AstraZeneca AZD1222 vaccines as potential triggers for CNS demyelinating diseases. Vaccine administration routines are not affected by these rare and coincidental events. However, these manifestations are not deniable and require serious attention. Further investigations are needed to clarify the actual mechanisms and real associations.
Collapse
Affiliation(s)
- Narges Ebrahimi
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran,Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Mazdak
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vahid Shaygannejad
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran,Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,Corresponding author at: Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Mirmosayyeb
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran,Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
44
|
Mirmosayyeb O, Ghaffary E, Vaheb S, Pourkazemi R, Shaygannejad V. Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) following COVID-19 vaccines: A systematic review. Rev Neurol (Paris) 2023; 179:265-281. [PMID: 36658048 PMCID: PMC9844421 DOI: 10.1016/j.neurol.2022.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND The global COVID-19 pandemic began in March 2019, and given the number of casualties and adverse effects on the economy, society, and all aspects of the health system, efforts have been made to develop vaccines from the beginning of the pandemic. Numerous vaccines against COVID-19 infection have been developed in several technologies and have spread rapidly. There have been reported multiple complications of the COVID-19 vaccines as with other vaccines. A number of studies have reported multiple sclerosis (MS ) and neuromyelitis optica spectrum disorder (NMOSD) as complications of COVID-19 vaccines. METHODS First, we found 954 studies from 4 databases (PubMed, Embase, Scopus, and Web of Science) from inception to March 1st, 2022. Next, duplicate articles were eliminated, and 476 studies remained. Then 412 studies were removed according to inclusion and exclusion criteria. After obtaining the full text of 64 articles, 12 studies were selected finally. RESULTS The data were extracted from included studies in a table. Our data includes demographic data, comorbidities, vaccines information and side effects, NMOSD and MS symptoms, laboratory and cerebrospinal fluid (CSF) findings, magnetic resonance imaging (MRI) results, treatment, and outcome of all cases. CONCLUSION MS and NMOSD are two neuroinflammatory disorders that arise in the CNS. Cases of MS and NMOSD have been reported following COVID-19 vaccination. Nevertheless, more studies with more subjects are needed to assess any possible relationship between the COVID-19 vaccine and central nervous system demyelination.
Collapse
Affiliation(s)
- O. Mirmosayyeb
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - E.M. Ghaffary
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - S. Vaheb
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - R. Pourkazemi
- Nursing and Midwifery Department, Isfahan University of Medical Sciences, Isfahan, Iran
| | - V. Shaygannejad
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran,Corresponding author. Isfahan Neurosciences Research Center, Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
45
|
Hromić-Jahjefendić A, Barh D, Uversky V, Aljabali AA, Tambuwala MM, Alzahrani KJ, Alzahrani FM, Alshammeri S, Lundstrom K. Can COVID-19 Vaccines Induce Premature Non-Communicable Diseases: Where Are We Heading to? Vaccines (Basel) 2023; 11:vaccines11020208. [PMID: 36851087 PMCID: PMC9960675 DOI: 10.3390/vaccines11020208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
According to the WHO, as of January 2023, more than 850 million cases and over 6.6 million deaths from COVID-19 have been reported worldwide. Currently, the death rate has been reduced due to the decreased pathogenicity of new SARS-CoV-2 variants, but the major factor in the reduced death rates is the administration of more than 12.8 billion vaccine doses globally. While the COVID-19 vaccines are saving lives, serious side effects have been reported after vaccinations for several premature non-communicable diseases (NCDs). However, the reported adverse events are low in number. The scientific community must investigate the entire spectrum of COVID-19-vaccine-induced complications so that necessary safety measures can be taken, and current vaccines can be re-engineered to avoid or minimize their side effects. We describe in depth severe adverse events for premature metabolic, mental, and neurological disorders; cardiovascular, renal, and autoimmune diseases, and reproductive health issues detected after COVID-19 vaccinations and whether these are causal or incidental. In any case, it has become clear that the benefits of vaccinations outweigh the risks by a large margin. However, pre-existing conditions in vaccinated individuals need to be taken into account in the prevention and treatment of adverse events.
Collapse
Affiliation(s)
- Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Debmalya Barh
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, India
- Correspondence: (D.B.); (K.L.)
| | - Vladimir Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Alaa A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Murtaza M. Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln LN6 7TS, UK
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Fuad M. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Saleh Alshammeri
- Department of Optometry, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Kenneth Lundstrom
- PanTherapeutics, Route de Lavaux 49, CH1095 Lutry, Switzerland
- Correspondence: (D.B.); (K.L.)
| |
Collapse
|
46
|
Capone F, Rossi M, Cruciani A, Motolese F, Pilato F, Di Lazzaro V. Safety, immunogenicity, efficacy, and acceptability of COVID-19 vaccination in people with multiple sclerosis: a narrative review. Neural Regen Res 2023; 18:284-288. [PMID: 35900404 PMCID: PMC9396498 DOI: 10.4103/1673-5374.346539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In the last two years, a new severe acute respiratory syndrome coronavirus (SARS-CoV) infection has spread worldwide leading to the death of millions. Vaccination represents the key factor in the global strategy against this pandemic, but it also poses several problems, especially for vulnerable people such as patients with multiple sclerosis. In this review, we have briefly summarized the main findings of the safety, efficacy, and acceptability of Coronavirus Disease 2019 (COVID-19) vaccination for multiple sclerosis patients. Although the acceptability of COVID-19 vaccines has progressively increased in the last year, a small but significant part of patients with multiple sclerosis still has relevant concerns about vaccination that make them hesitant about receiving the COVID-19 vaccine. Overall, available data suggest that the COVID-19 vaccination is safe and effective in multiple sclerosis patients, even though some pharmacological treatments such as anti-CD20 therapies or sphingosine l-phosphate receptor modulators can reduce the immune response to vaccination. Accordingly, COVID-19 vaccination should be strongly recommended for people with multiple sclerosis and, in patients treated with anti-CD20 therapies and sphingosine l-phosphate receptor modulators, and clinicians should evaluate the appropriate timing for vaccine administration. Further studies are necessary to understand the role of cellular immunity in COVID-19 vaccination and the possible usefulness of booster jabs. On the other hand, it is mandatory to learn more about the reasons why people refuse vaccination. This would help to design a more effective communication campaign aimed at increasing vaccination coverage among vulnerable people.
Collapse
|
47
|
Natung T, Singh T, Devi O, Pandey I. A rare case of bilateral optic neuritis post-Covishield (ChAdOx1-S [recombinant]) vaccination. Oman J Ophthalmol 2023; 16:157-160. [PMID: 37007264 PMCID: PMC10062071 DOI: 10.4103/ojo.ojo_31_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/08/2022] [Accepted: 11/19/2022] [Indexed: 02/25/2023] Open
Abstract
Multiple adverse effects have been reported in people receiving the COVID-19 vaccinations including few reports of optic neuritis. However, there is no report till date, of bilateral optic neuritis post-ChAdOx1-S (recombinant) vaccination. We report here, for the first time, such a case in a previously healthy woman. Although a direct causal relationship cannot be proven, there was a temporal association between the vaccination and the onset of optic neuritis. Some vaccine adjuvants inciting disproportionate systemic inflammation, molecular mimicry, and the hypercoagulable state seen after COVID-19 vaccination could be the possible causes for the development of optic neuritis. Clinicians should be aware of this adverse effect apart from various other adverse effects of COVID-19 vaccination.
Collapse
|
48
|
Wang S, Lv J, He C, Yang Y, Zheng Y, Ye L, Chen C, Shen C, Xu S, Ding Y, Guo Y, Tang Y, Wang S, Ding M. COVID-19 vaccination hesitancy and safety among adult people with epilepsy in eastern China. Epilepsy Behav 2023; 138:108984. [PMID: 36423385 PMCID: PMC9637523 DOI: 10.1016/j.yebeh.2022.108984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE This study assesses the hesitancy and safety of vaccination administration for the novel 2019 Coronavirus Disease (COVID-19) among adult people with epilepsy (PWE). METHODS We recruited adult PWE who visited the outpatient epilepsy clinic from August 2021 to February 2022. We administered a structured questionnaire and a face-to-face interview regarding demographic factors, epilepsy characteristics, and relevant vaccine issues to all patients. Factors related to receiving a vaccine and epilepsy-related events after vaccination were then analyzed. RESULTS A total of 501 PWE were surveyed; 288 were unvaccinated and 213 were vaccinated. Patients without jobs (OR: 0.59; 95% CI: 0.37-0.95, p = 0.03) were less likely to receive the vaccine compared to students or those with jobs. Other factors associated with vaccination were a higher number of anti-seizure medications (OR: 0.72; 95% CI: 0.55-0.95, p = 0.02) and a lower pre-vaccine seizure frequency (OR: 2.21; 95% CI: 1.06-4.59, p = 0.03). Of the 213 vaccinated patients, 10 (4.70%) reported at least one local and/or systemic side effect. Most patients (92.50%) did not report worse seizures within one month of vaccination. Poor ASM adherence (OR: 15.06; 95% CI: 1.75-129.87, p = 0.01) and fatigue/stimulant drinks such as caffeine (OR: 50.59; 95% CI: 7.57-337.94, p < 0.01) were significantly associated with seizure worsening within one month of receiving the COVID-19 vaccination. CONCLUSION Almost two-fifths of patients with adult PWE have received a COVID-19 vaccine. Attention should be paid to educating epilepsy patients without jobs on the significance and safety of the vaccine. There was a low risk of seizure worsening in the short term after vaccination in PWE.
Collapse
Affiliation(s)
- Shan Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jin Lv
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chenmin He
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuyu Yang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanyuan Zheng
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lingqi Ye
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cong Chen
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chunhong Shen
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sha Xu
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yao Ding
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Guo
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yelei Tang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuang Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Meiping Ding
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
49
|
Harahsheh E, Callister M, Hasan S, Gritsch D, Valencia-Sanchez C. Aquaporin-4 IgG neuromyelitis optica spectrum disorder onset after Covid-19 vaccination: Systematic review. J Neuroimmunol 2022; 373:577994. [PMID: 36332464 DOI: 10.1016/j.jneuroim.2022.577994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is rarely reported following Coronavirus disease 2019 (COVID-19) vaccination. We identified 16 cases of new onset NMOSD with positive aquaporin-4 IgG (AQP4-IgG) following COVID-19 vaccination. Transverse myelitis was the most common clinical presentation (75%). Most patients received high dose steroids for acute treatment and maintenance therapy was started in 12 patients (75%). Twelve patients (75%) had improvement of their symptoms at the time of discharge or follow-up. The included cases share similar epidemiology and natural course to non-vaccine related cases. Clinicians should be aware of possible post-vaccination NMOSD to help with earlier diagnosis and treatment.
Collapse
Affiliation(s)
- Ehab Harahsheh
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, USA.
| | | | - Shemonti Hasan
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, USA
| | - David Gritsch
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
50
|
Rinaldi V, Bellucci G, Buscarinu MC, Reniè R, Marrone A, Nasello M, Zancan V, Nistri R, Palumbo R, Salerno A, Salvetti M, Ristori G. CNS inflammatory demyelinating events after COVID-19 vaccines: A case series and systematic review. Front Neurol 2022; 13:1018785. [PMID: 36530641 PMCID: PMC9752005 DOI: 10.3389/fneur.2022.1018785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/31/2022] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Vaccinations provided the most effective tool to fight the SARS-CoV-2 pandemic. It is now well established that COVID-19 vaccines are safe for the general population; however, some cases of rare adverse events following immunization have been described, including CNS Inflammatory Demyelinating Events (CIDEs). Although observational studies are showing that these events are rare and vaccines' benefits highly outweigh the risks, collecting and characterizing post-COVID-19 vaccine CIDEs might be relevant to single out potential risk factors and suggest possible underlying mechanisms. METHODS Here we describe six CIDEs, including two acute transverse myelitis (ATM), three multiple sclerosis (MS), and one neuromyelitis optica spectrum disorder (NMOSD), occurring between 8 and 35 days from a COVID-19 vaccine. Moreover, we performed a systematic literature search of post-COVID-19 vaccines CIDEs, including ATM, ADEM, MS, and NMOSD/MOGAD, published worldwide between December 2020 and December 2021, during 1 year of the vaccination campaign. Clinical/MRI and CSF/serum characteristics were extracted from reviewed studies and pooled-analyzed. RESULTS Forty-nine studies were included in the systematic review, reporting a total amount of 85 CIDEs. Considering our additional six cases, 91 CIDEs were summarized, including 24 ATM, 11 ADEM, 47 MS, and nine NMOSD/MOGAD. Overall, CIDEs occurred after both mRNA (n = 46), adenoviral-vectored (n = 37), and inactivated vaccines (n = 8). Adenoviral-vectored vaccines accounted for the majority of ADEM (55%) and NMOSD/MOGAD (56%), while mRNA vaccines were more frequent in MS new diagnoses (87%) and relapses (56%). Age was heterogeneous (19-88) and the female sex was prevalent. Time from vaccine to symptoms onset was notably variable: ADEM and NMOSD/MOGAD had a longer median time of onset (12.5 and 10 days) compared to ATM and MS (6 and 7 days) and further timing differences were observed between events following different vaccine types, with ATM and MS after mRNA-vaccines occurring earlier than those following adenoviral-vectored ones. CONCLUSION Both the prevalence of vaccine types for certain CIDEs and the heterogeneity in time of onset suggest that different mechanisms-with distinct dynamic/kinetic-might underly these events. While epidemiological studies have assessed the safety of COVID-19 vaccines, descriptions and pooled analyses of sporadic cases may still be valuable to gain insights into CIDE's pathophysiology.
Collapse
Affiliation(s)
- Virginia Rinaldi
- Neurology Unit, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Gianmarco Bellucci
- Neurology Unit, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Maria Chiara Buscarinu
- Neurology Unit, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Roberta Reniè
- Neurology Unit, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Antonio Marrone
- Neurology Unit, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Martina Nasello
- Neurology Unit, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Valeria Zancan
- Neurology Unit, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Riccardo Nistri
- Department of Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Roberto Palumbo
- Neurology Unit, San Giovanni Addolorata Hospital, Rome, Italy
| | - Antonio Salerno
- Neurology Unit, San Giovanni Addolorata Hospital, Rome, Italy
| | - Marco Salvetti
- Neurology Unit, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Rome, Italy
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Giovanni Ristori
- Neurology Unit, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Rome, Italy
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|