1
|
Irkec M, Konstas AG, Holló G, Dikmetaş Ö, Algedik Tokyürek MÖ, Bozkurt B. Investigational drugs for glaucoma: novel mechanistic approaches of preclinical agents. Expert Opin Investig Drugs 2025; 34:231-243. [PMID: 40000961 DOI: 10.1080/13543784.2025.2472409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/01/2025] [Accepted: 02/23/2025] [Indexed: 02/27/2025]
Abstract
INTRODUCTION Glaucoma is a neurodegenerative disease that causes irreversible blindness worldwide. It results from retinal ganglion cell (RGC) loss and progressive optic nerve damage, mainly associated with elevated intraocular pressure (IOP). Current treatments focus on reducing IOP but do not directly delve into the underlying pathophysiological mechanisms of neurodegeneration. A mechanistic approach enables researchers to identify drugs that target these fundamental mechanisms rather than solely addressing symptoms such as elevated IOP. AREAS COVERED This review explores mechanistic approaches to emerging preclinical agents, including those targeting trabecular meshwork function, neuroprotection, RGC survival, and ocular blood flow. We also review promising nutrients, gene therapies, and biologics currently under investigation, particularly agents that modulate oxidative stress and neuroinflammatory pathways. EXPERT OPINION Recently, investigational drugs that protect the RGC and the optic nerve from further damage have become critical in treating glaucoma. For example, CNTF was shown to promote the survival and growth of photoreceptors and RGC in cell culture and animal models. Moreover, optimizing drug delivery is paramount to achieving tailored management and patient adherence. Meticulous clinical trials will pave the way for the potential reevaluation of glaucoma management, offering new hope for patients with this complex disease.
Collapse
Affiliation(s)
- Murat Irkec
- Department of Ophthalmology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Anastasios G Konstas
- 1st University Department of Ophthalmology, AHEPA University Hospital, Thessaloniki, Greece
| | - Gábor Holló
- Eye Center, Prima Medica Health Centers, Budapest, Hungary
- Tutkimusz Ltd, Solymar, Hungary
| | - Özlem Dikmetaş
- Department of Ophthalmology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | - Banu Bozkurt
- Department of Ophthalmology, Selçuk University Faculty of Medicine, Konya, Turkey
| |
Collapse
|
2
|
Wang D, Wang J, Yan D, Wang M, Yang L, Demin KA, de Abreu MS, Kalueff AV. Minocycline reduces neurobehavioral deficits evoked by chronic unpredictable stress in adult zebrafish. Brain Res 2024; 1845:149209. [PMID: 39233136 DOI: 10.1016/j.brainres.2024.149209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Chronic stress-related brain disorders are widespread and debilitating, and often cause lasting neurobehavioral deficits. Minocycline, a common antibiotic and an established inhibitor of microglia, emerges as potential treatment of these disorders. The zebrafish (Danio rerio) is an important emerging model organism in translational neuroscience and stress research. Here, we evaluated the potential of minocycline to correct microglia-mediated behavioral, genomic and neuroimmune responses induced by chronic unpredictable stress (CUS) in adult zebrafish. We demonstrated that CUS evoked overt behavioral deficits in the novel tank, light-dark box and shoaling tests, paralleled by elevated stress hormones (CRH, ACTH and cortisol), and upregulated brain expression of the 'neurotoxic M1' microglia-specific biomarker gene (MHC-2) and pro-inflammatory cytokine genes (IL-1β, IL-6 and IFN-γ). CUS also elevated peripheral (whole-body) pro-inflammatory (IL-1β, IFN-γ) and lowered anti-inflammatory cytokines (IL-4 and IL-10), as well as reduced whole-brain serotonin, dopamine and norepinephrine levels, and increased brain dopamine and serotonin turnover. In contrast, minocycline attenuated most of these effects, also reducing CUS-elevated peripheral levels of IL-6 and IFN-γ. Collectively, this implicates microglia in zebrafish responses to chronic stress, and suggests glial pathways as potential evolutionarily conserved drug targets for treating stress-evoked neuropathogenesis. Our findings also support the growing translational value of zebrafish models for understanding complex molecular mechanisms of brain pathogenesis and its therapy.
Collapse
Affiliation(s)
- Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongni Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Mengyao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Longen Yang
- School of Pharmacy, Southwest University, Chongqing, China; Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China; Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil; Western Caspian University, Baku, Azerbaijan; Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia; Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China; Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China; Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| |
Collapse
|
3
|
Basavarajappa D, Galindo-Romero C, Gupta V, Agudo-Barriuso M, Gupta VB, Graham SL, Chitranshi N. Signalling pathways and cell death mechanisms in glaucoma: Insights into the molecular pathophysiology. Mol Aspects Med 2023; 94:101216. [PMID: 37856930 DOI: 10.1016/j.mam.2023.101216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Glaucoma is a complex multifactorial eye disease manifesting in retinal ganglion cell (RGC) death and optic nerve degeneration, ultimately causing irreversible vision loss. Research in recent years has significantly enhanced our understanding of RGC degenerative mechanisms in glaucoma. It is evident that high intraocular pressure (IOP) is not the only contributing factor to glaucoma pathogenesis. The equilibrium of pro-survival and pro-death signalling pathways in the retina strongly influences the function and survival of RGCs and optic nerve axons in glaucoma. Molecular evidence from human retinal tissue analysis and a range of experimental models of glaucoma have significantly contributed to unravelling these mechanisms. Accumulating evidence reveals a wide range of molecular signalling pathways that can operate -either alone or via intricate networks - to induce neurodegeneration. The roles of several molecules, including neurotrophins, interplay of intracellular kinases and phosphates, caveolae and adapter proteins, serine proteases and their inhibitors, nuclear receptors, amyloid beta and tau, and how their dysfunction affects retinal neurons are discussed in this review. We further underscore how anatomical alterations in various animal models exhibiting RGC degeneration and susceptibility to glaucoma-related neuronal damage have helped to characterise molecular mechanisms in glaucoma. In addition, we also present different regulated cell death pathways that play a critical role in RGC degeneration in glaucoma.
Collapse
Affiliation(s)
- Devaraj Basavarajappa
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| | - Caridad Galindo-Romero
- Experimental Ophthalmology Group, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) & Ophthalmology Department, Universidad de Murcia, Murcia, Spain
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Marta Agudo-Barriuso
- Experimental Ophthalmology Group, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) & Ophthalmology Department, Universidad de Murcia, Murcia, Spain
| | - Veer B Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Stuart L Graham
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
4
|
Cheng Y, Lin D, Wu S, Liu Q, Yan X, Ren T, Zhang J, Wang N. Cerebrospinal Fluid Pressure Reduction Induces Glia-Mediated Retinal Inflammation and Leads to Retinal Ganglion Cell Injury in Rats. Mol Neurobiol 2023; 60:5770-5788. [PMID: 37347366 DOI: 10.1007/s12035-023-03430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023]
Abstract
Low intracranial pressure (LICP)-induced translaminar cribrosa pressure difference (TLCPD) elevation has been proven as a risk factor in glaucomatous neurodegeneration, whereas the underlying retinal immune features of LICP-induced retinal ganglion cells (RGC) injury remain elusive. Here, we identified the retinal immune characteristics of LICP rats, and minocycline (Mino) treatment was utilized to analyze its inhibitory role in glia-mediated retinal inflammation of LICP rats. The results showed that retrograde axonal transport was decreased in LICP rats without significant RGC loss, indicating the RGC injury was at an early stage before the morphological loss. The activation of retinal microglia and astrocytes with morphologic and M1 or A1-marker alternations was detected in TLCPD elevation rats, the activation level is more dramatic in HIOP rats than in the LICP rats (P<0.05). Besides, we detected reduced retinal tight junction protein expressions, accompanied by specific imbalance patterns of T lymphocytes in the retina of both LICP and HIOP rats (P<0.05). Further Mino treatment showed an effective inhibitory role in glia-driven inflammatory responses in LICP rats, including improving retrograde axonal transport, inhibiting retinal glial activation and proinflammatory subtype polarization, and alleviating the blood-retina barrier compromise. This study identified the glia-mediated retinal inflammation features triggered by LICP stimulus, and Mino application exhibited an effective role in the inhibition of retinal glia-mediated inflammation in LICP-induced TLCPD elevation rats.
Collapse
Affiliation(s)
- Ying Cheng
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Danting Lin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Qian Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Xuejing Yan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Tianmin Ren
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China.
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China.
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China.
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
5
|
Musa M, Zeppieri M, Atuanya GN, Enaholo ES, Topah EK, Ojo OM, Salati C. Nutritional Factors: Benefits in Glaucoma and Ophthalmologic Pathologies. Life (Basel) 2023; 13:1120. [PMID: 37240765 PMCID: PMC10222847 DOI: 10.3390/life13051120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Glaucoma is a chronic optic neuropathy that can lead to irreversible functional and morphological damage if left untreated. The gold standard therapeutic approaches in managing patients with glaucoma and limiting progression include local drops, laser, and/or surgery, which are all geared at reducing intraocular pressure (IOP). Nutrients, antioxidants, vitamins, organic compounds, and micronutrients have been gaining increasing interest in the past decade as integrative IOP-independent strategies to delay or halt glaucomatous retinal ganglion cell degeneration. In our minireview, we examine the various nutrients and compounds proposed in the current literature for the management of ophthalmology diseases, especially for glaucoma. With respect to each substance considered, this minireview reports the molecular and biological characteristics, neuroprotective activities, antioxidant properties, beneficial mechanisms, and clinical studies published in the past decade in the field of general medicine. This study highlights the potential benefits of these substances in glaucoma and other ophthalmologic pathologies. Nutritional supplementation can thus be useful as integrative IOP-independent strategies in the management of glaucoma and in other ophthalmologic pathologies. Large multicenter clinical trials based on functional and morphologic data collected over long follow-up periods in patients with IOP-independent treatments can pave the way for alternative and/or coadjutant therapeutic options in the management of glaucoma and other ocular pathologies.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Edo State, Nigeria
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | | | | | - Efioshiomoshi Kings Topah
- Department of Optometry, Faculty of Allied Health Sciences, College of Health Sciences Bayero University, Kano 700006, Kano State, Nigeria
| | - Oluwasola Michael Ojo
- School of Optometry and Vision Sciences, College of Health Sciences, University of Ilorin, Ilorin 240003, Kwara State, Nigeria
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
6
|
Reinehr S, Safaei A, Grotegut P, Guntermann A, Tsai T, Hahn SA, Kösters S, Theiss C, Marcus K, Dick HB, May C, Joachim SC. Heat Shock Protein Upregulation Supplemental to Complex mRNA Alterations in Autoimmune Glaucoma. Biomolecules 2022; 12:biom12101538. [PMID: 36291747 PMCID: PMC9599116 DOI: 10.3390/biom12101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Glaucomatous optic neuropathy is a common cause for blindness. An elevated intraocular pressure is the main risk factor, but also a contribution of the immune system seems likely. In the experimental autoimmune glaucoma model used here, systemic immunization with an optic nerve homogenate antigen (ONA) leads to retinal ganglion cell (RGC) and optic nerve degeneration. We processed retinae for quantitative real-time PCR and immunohistology 28 days after immunization. Furthermore, we performed mRNA profiling in this model for the first time. We detected a significant RGC loss in the ONA retinae. This was accompanied by an upregulation of mRNA expression of genes belonging to the heat shock protein family. Furthermore, mRNA expression levels of the genes of the immune system, such as C1qa, C1qb, Il18, and Nfkb1, were upregulated in ONA animals. After laser microdissection, inner retinal layers were used for mRNA microarrays. Nine of these probes were significantly upregulated in ONA animals (p < 0.05), including Hba-a1 and Cxcl10, while fifteen probes were significantly downregulated in ONA animals (p < 0.05), such as Gdf15 and Wwox. Taken together, these findings provide further insights into the pivotal role of the immune response in glaucomatous optic neuropathy and could help to identify novel diagnostic or therapeutic strategies.
Collapse
Affiliation(s)
- Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Armin Safaei
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Pia Grotegut
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Annika Guntermann
- Department Functional Proteomics, Medizinisches Proteom-Center, Ruhr-University Bochum, ProDi E2.227, Gesundheitscampus 4, 44801 Bochum, Germany
| | - Teresa Tsai
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Stephan A. Hahn
- Department of Molecular GI Oncology, Faculty of Medicine, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Steffen Kösters
- Department Functional Proteomics, Medizinisches Proteom-Center, Ruhr-University Bochum, ProDi E2.227, Gesundheitscampus 4, 44801 Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitaetsstr. 150, 44801 Bochum, Germany
| | - Katrin Marcus
- Department Functional Proteomics, Medizinisches Proteom-Center, Ruhr-University Bochum, ProDi E2.227, Gesundheitscampus 4, 44801 Bochum, Germany
| | - H. Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Caroline May
- Department Functional Proteomics, Medizinisches Proteom-Center, Ruhr-University Bochum, ProDi E2.227, Gesundheitscampus 4, 44801 Bochum, Germany
- Correspondence: (C.M.); (S.C.J.); Tel.: +49-234-24651 (C.M.); Tel.: +49-234-2993156 (S.C.J.)
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
- Correspondence: (C.M.); (S.C.J.); Tel.: +49-234-24651 (C.M.); Tel.: +49-234-2993156 (S.C.J.)
| |
Collapse
|
7
|
Pinilla I, Maneu V, Campello L, Fernández-Sánchez L, Martínez-Gil N, Kutsyr O, Sánchez-Sáez X, Sánchez-Castillo C, Lax P, Cuenca N. Inherited Retinal Dystrophies: Role of Oxidative Stress and Inflammation in Their Physiopathology and Therapeutic Implications. Antioxidants (Basel) 2022; 11:antiox11061086. [PMID: 35739983 PMCID: PMC9219848 DOI: 10.3390/antiox11061086] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a large group of genetically and clinically heterogeneous diseases characterized by the progressive degeneration of the retina, ultimately leading to loss of visual function. Oxidative stress and inflammation play fundamental roles in the physiopathology of these diseases. Photoreceptor cell death induces an inflammatory state in the retina. The activation of several molecular pathways triggers different cellular responses to injury, including the activation of microglia to eliminate debris and recruit inflammatory cells from circulation. Therapeutical options for IRDs are currently limited, although a small number of patients have been successfully treated by gene therapy. Many other therapeutic strategies are being pursued to mitigate the deleterious effects of IRDs associated with oxidative metabolism and/or inflammation, including inhibiting reactive oxygen species’ accumulation and inflammatory responses, and blocking autophagy. Several compounds are being tested in clinical trials, generating great expectations for their implementation. The present review discusses the main death mechanisms that occur in IRDs and the latest therapies that are under investigation.
Collapse
Affiliation(s)
- Isabel Pinilla
- Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Department of Ophthalmology, Lozano Blesa, University Hospital, 50009 Zaragoza, Spain
- Department of Surgery, University of Zaragoza, 50009 Zaragoza, Spain
- Correspondence: (I.P.); (V.M.)
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Correspondence: (I.P.); (V.M.)
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Laura Fernández-Sánchez
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
| | - Natalia Martínez-Gil
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Oksana Kutsyr
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Carla Sánchez-Castillo
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Pedro Lax
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Nicolás Cuenca
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| |
Collapse
|
8
|
Fan W, Huang W, Chen J, Li N, Mao L, Hou S. Retinal microglia: Functions and diseases. Immunology 2022; 166:268-286. [PMID: 35403700 DOI: 10.1111/imm.13479] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Wei Fan
- The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Ophthalmology Chongqing China
- Chongqing Eye Institute Chongqing China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases Chongqing China
| | - Weidi Huang
- The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Department of Ophthalmology, Second Xiangya Hospital Central South University Changsha Hunan China
| | - Jiayi Chen
- The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Na Li
- College of Basic Medicine Chongqing Medical University Chongqing China
| | - Liming Mao
- Department of Immunology School of Medicine, Nantong University, 19 Qixiu Road Nantong Jiangsu China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Ophthalmology Chongqing China
- Chongqing Eye Institute Chongqing China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases Chongqing China
| |
Collapse
|
9
|
Miralles de Imperial-Ollero JA, Gallego-Ortega A, Ortín-Martínez A, Villegas-Pérez MP, Valiente-Soriano FJ, Vidal-Sanz M. Animal Models of LED-Induced Phototoxicity. Short- and Long-Term In Vivo and Ex Vivo Retinal Alterations. Life (Basel) 2021; 11:life11111137. [PMID: 34833013 PMCID: PMC8617611 DOI: 10.3390/life11111137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022] Open
Abstract
Phototoxicity animal models have been largely studied due to their degenerative communalities with human pathologies, e.g., age-related macular degeneration (AMD). Studies have documented not only the effects of white light exposure, but also other wavelengths using LEDs, such as blue or green light. Recently, a blue LED-induced phototoxicity (LIP) model has been developed that causes focal damage in the outer layers of the superior-temporal region of the retina in rodents. In vivo studies described a progressive reduction in retinal thickness that affected the most extensively the photoreceptor layer. Functionally, a transient reduction in a- and b-wave amplitude of the ERG response was observed. Ex vivo studies showed a progressive reduction of cones and an involvement of retinal pigment epithelium cells in the area of the lesion and, in parallel, an activation of microglial cells that perfectly circumscribe the damage in the outer retinal layer. The use of neuroprotective strategies such as intravitreal administration of trophic factors, e.g., basic fibroblast growth factor (bFGF), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) or pigment epithelium-derived factor (PEDF) and topical administration of the selective alpha-2 agonist (Brimonidine) have demonstrated to increase the survival of the cone population after LIP.
Collapse
Affiliation(s)
- Juan A. Miralles de Imperial-Ollero
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, Campus de CC de la Salud, El Palmar, 30120 Murcia, Spain; (J.A.M.d.I.-O.); (A.G.-O.); (M.P.V.-P.)
| | - Alejandro Gallego-Ortega
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, Campus de CC de la Salud, El Palmar, 30120 Murcia, Spain; (J.A.M.d.I.-O.); (A.G.-O.); (M.P.V.-P.)
| | - Arturo Ortín-Martínez
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada;
| | - María Paz Villegas-Pérez
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, Campus de CC de la Salud, El Palmar, 30120 Murcia, Spain; (J.A.M.d.I.-O.); (A.G.-O.); (M.P.V.-P.)
| | - Francisco J. Valiente-Soriano
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, Campus de CC de la Salud, El Palmar, 30120 Murcia, Spain; (J.A.M.d.I.-O.); (A.G.-O.); (M.P.V.-P.)
- Correspondence: (F.J.V.-S.); (M.V.-S.); Tel.: +34-868-88-4503 (F.J.V-S.); +34-868-88-4330 (M.V.-S.)
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, Campus de CC de la Salud, El Palmar, 30120 Murcia, Spain; (J.A.M.d.I.-O.); (A.G.-O.); (M.P.V.-P.)
- Correspondence: (F.J.V.-S.); (M.V.-S.); Tel.: +34-868-88-4503 (F.J.V-S.); +34-868-88-4330 (M.V.-S.)
| |
Collapse
|
10
|
Pahlitzsch M, Fritsche-Guenther R, Pompös I, Pohlmann D, Maier AKB, Winterhalter S, Erb C, Rübsam A. Correlation of NUCB2/Nesfatin-1 with Cytokine Levels in Primary Open-Angle Glaucoma. Clin Ophthalmol 2021; 15:2505-2517. [PMID: 34163135 PMCID: PMC8216077 DOI: 10.2147/opth.s307379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/05/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Nesfatin-1 is produced in various tissues of the body including the hypothalamus. Neuroprotective properties of the neuropeptide hormone Nesfatin-1 were recently described. The aim of the study was to analyze the molecule Nesfatin-1 as a possible biomarker in POAG with neuroprotective properties pointing out the retinal-hypothalamic axis as target site in POAG and to obtain a molecular signature of cytokines in POAG as neuroinflammatory processes are a key factor of glaucoma development. Methods In this study, n=35 patients with moderate and advanced POAG (mean age 65.0y, IOP 13.9±3.0mmHg) and n=35 healthy controls (mean age 51.6y, IOP 14.3±2.7mmHg) were included. Clinical parameters including IOP, cup to disc ratio (CDR), glaucoma medication and retinal nerve fiber layer thickness (RNFL) were recorded. Plasma was collected for NUCB2/nesfatin-1 measurement using a Nesfatin-1 ELISA and for detection of 13 inflammatory cytokines using a multiplex bead-based immunoassay (MagPix). Multiple linear regression analysis was performed to adjust for confounding factors. Results Sex-independent or sex-dependent variables showed no significant differences in the Nesfatin-1 level (p>0.05). As a trend, an increase in NUCB2/nesfatin-1 in male glaucoma patients was found. Increased concentrations of 11 cytokines (GM-CSF, Interferon-γ, Interleukin-1β, IL-2, 4, 5, 6, 7, 10, 12 and TNF-α) were detected in POAG. The female glaucoma patients demonstrated elevated cytokine concentrations compared to male patients. NUCB2/nesfatin-1 showed a significant correlation to IL-2 and IL-13 levels in POAG. Stepwise multiple regression analysis showed no difference in NUCB2/nesfatin-1 level between POAG and healthy controls after adjusting for sex and age (all p>0.05). Conclusion As a trend, male POAG patients showed increased plasma NUCB2/nesfatin-1 levels. We further found inflammation as contributing factor to the pathogenesis of glaucoma, with a greater inflammatory response in women.
Collapse
Affiliation(s)
- Milena Pahlitzsch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Raphaela Fritsche-Guenther
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Metabolomics Platform, Berlin, Germany
| | - Inga Pompös
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dominika Pohlmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anna-Karina B Maier
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sibylle Winterhalter
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carl Erb
- Eye clinic Wittenbergplatz, Berlin, Germany
| | - Anne Rübsam
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
11
|
García-Bermúdez MY, Freude KK, Mouhammad ZA, van Wijngaarden P, Martin KK, Kolko M. Glial Cells in Glaucoma: Friends, Foes, and Potential Therapeutic Targets. Front Neurol 2021; 12:624983. [PMID: 33796062 PMCID: PMC8007906 DOI: 10.3389/fneur.2021.624983] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Glaucoma is the second leading cause of blindness worldwide, affecting ~80 million people by 2020 (1, 2). The condition is characterized by a progressive loss of retinal ganglion cells (RGCs) and their axons accompanied by visual field loss. The underlying pathophysiology of glaucoma remains elusive. Glaucoma is recognized as a multifactorial disease, and lowering intraocular pressure (IOP) is the only treatment that has been shown to slow the progression of the condition. However, a significant number of glaucoma patients continue to go blind despite intraocular pressure-lowering treatment (2). Thus, the need for alternative treatment strategies is indisputable. Accumulating evidence suggests that glial cells play a significant role in supporting RGC function and that glial dysfunction may contribute to optic nerve disease. Here, we review recent advances in understanding the role of glial cells in the pathophysiology of glaucoma. A particular focus is on the dynamic and essential interactions between glial cells and RGCs and potential therapeutic approaches to glaucoma by targeting glial cells.
Collapse
Affiliation(s)
| | - Kristine K Freude
- Department for Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Zaynab A Mouhammad
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Peter van Wijngaarden
- Center for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Keith K Martin
- Center for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| |
Collapse
|
12
|
Grotegut P, Perumal N, Kuehn S, Smit A, Dick HB, Grus FH, Joachim SC. Minocycline reduces inflammatory response and cell death in a S100B retina degeneration model. J Neuroinflammation 2020; 17:375. [PMID: 33317557 PMCID: PMC7737388 DOI: 10.1186/s12974-020-02012-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Previous studies noted that intravitreal injection of S100B triggered a glaucoma-like degeneration of retina and optic nerve as well as microglia activation after 14 days. The precise role of microglia in our intravitreal S100B model is still unclear. Hence, microglia were inhibited through minocycline. The aim is to investigate whether microglia have a significant influence on the degeneration process or whether they are only a side effect in the model studied here. METHODS Minocycline was applied daily in rats by intraperitoneal injection using two different concentrations (13.5 mg/kg body weight, 25 mg/kg body weight). One day after treatment start, S100B or PBS was intravitreally injected in one eye per rat. The naïve groups received no injections. This resulted in a total of five groups (naïve n = 14, PBS n = 14, S100B n = 13, 13.5 mg/kg mino n = 15, 25 mg/kg mino n = 15). At day 14, electroretinogram measurements were performed, followed by immunofluorescence and label-free quantitative proteomics analysis. The focus of these investigations was on the survival of RGCs as well as their axons, the response of the microglia, and the identification of further pathological modes of action of S100B. RESULTS The best signal transmission was detected via ERG in the 13.5 mg/kg mino group. The inhibition of the microglia protected optic nerve neurofilaments and decreased the negative impact of S100B on RGCs. However, the minocycline treatment could not trigger complete protection of RGCs. Furthermore, in retina and optic nerve, the minocycline treatment reduced the number and activity of S100B-triggered microglia in a concentration-dependent manner. Proteomics analysis showed that S100B application led to numerous metabolic functions and cellular stress, mainly an increased inflammatory response, glycolysis, and mitochondrial dysfunction, which caused oxidative stress in the retina. Importantly, the protective capability of lower dose of minocycline was unraveled by suppressing the apoptotic, inflammatory, and the altered metabolic processes caused by S100B insult in the retina. CONCLUSION Intravitreally injected S100B not only led to a pro-inflammatory microglial reaction, but also a mitochondrial and metabolic dysfunction. Also, these results suggest that an excessive microglial response may be a significant degenerative factor, but not the only trigger for increased cell death.
Collapse
Affiliation(s)
- Pia Grotegut
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Natarajan Perumal
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sandra Kuehn
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Andreas Smit
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Franz H Grus
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany.
| |
Collapse
|
13
|
Gao W, Du J, Chi Y, Zhu R, Gao X, Yang L. Minocycline prevents the inflammatory response after retinal detachment, where microglia phenotypes being regulated through A20. Exp Eye Res 2020; 203:108403. [PMID: 33326811 DOI: 10.1016/j.exer.2020.108403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022]
Abstract
Retinal detachment (RD) is a severe sight-threatening complication that can be caused by a multitude of retinal diseases. It has been evidenced that minocycline exerts neuroprotective effects by targeting microglia in the pathogenesis of massive ocular lesions including RD, but mechanisms remain elusive. We carried out this research to elucidate the potential mediators that link RD-induced vision loss with microglia reactivity by discussing effects of minocycline on cytokine levels and A20, a negative regulator of inflammation. Minocycline or vehicle was intraperitoneally administrated immediately after RD and continued daily before animals being euthanized. The oxygen glucose deprivation assay was undertaken on the co-cultured BV-2 and 661W cells to mimic the condition of RD in vitro, where A20 siRNA was adopted to knock down the A20 expression in BV-2 cells. Photoreceptor cells apoptosis, inflammatory response and microglia activity following RD with or without minocycline were evaluated. Photoreceptor cells apoptosis and inflammatory response were induced after RD, which could be largely counteracted by minocycline. Minocycline postponed the migration and proliferation of microglia and facilitated their transition to the M2 subtype following RD. Blocking A20 expression in BV-2 cells with siRNA crippled the effect of minocycline. Collectively, minocycline yields a promoting effect on photoreceptor cells survival post-RD by modulating the transformation of microglia phenotypes, in which process A20 may play a "bridge" role.
Collapse
Affiliation(s)
- Wenna Gao
- Department of Ophthalmology, Peking University First Hospital, Beijing, PR China
| | - Jiantong Du
- Department of Ophthalmology, Peking University First Hospital, Beijing, PR China
| | - Ying Chi
- Department of Ophthalmology, Peking University First Hospital, Beijing, PR China
| | - Ruilin Zhu
- Department of Ophthalmology, Peking University First Hospital, Beijing, PR China
| | - Xinran Gao
- Department of Ophthalmology, Peking University First Hospital, Beijing, PR China
| | - Liu Yang
- Department of Ophthalmology, Peking University First Hospital, Beijing, PR China.
| |
Collapse
|
14
|
Huang W, Lan Q, Jiang L, Yan W, Tang F, Shen C, Huang H, Zhong H, Lv J, Zeng S, Li M, Mo Z, Hu B, Liang N, Chen Q, Zhang M, Xu F, Cui L. Fasudil attenuates glial cell-mediated neuroinflammation via ERK1/2 and AKT signaling pathways after optic nerve crush. Mol Biol Rep 2020; 47:8963-8973. [PMID: 33161529 DOI: 10.1007/s11033-020-05953-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/28/2020] [Indexed: 11/28/2022]
Abstract
To investigate the functional role of fasudil in optic nerve crush (ONC), and further explore its possible molecular mechanism. After ONC injury, the rats were injected intraperitoneally either with fasudil or normal saline once a day until euthanized. RGCs survival was assessed by retrograde labeling with FluoroGold. Retinal glial cells activation and population changes (GFAP, iba-1) were measured by immunofluorescence. The expressions of cleaved caspase 3 and 9, p-ERK1/2 and p-AKT were detected by western blot. The levels of the pro-inflammatory cytokines were determined using real-time polymerase chain reaction. Fasudil treatment inhibited RGCs apoptosis and reduced RGCs loss demonstrated by the decreased apoptosis-associated proteins expression and the increased fluorogold labeling of RGCs after ONC, respectively. In addition, the ONC + fasudil group compared had a significantly lower expression of GFAP and iba1 compared with the ONC group. The levels of pro-inflammatory cytokines were significantly reduced in the ONC + fasudil group than in the ONC group. Furthermore, the phosphorylation levels of ERK1/2 and AKT (p-ERK1/2 and p-AKT) were obviously elevated by the fasudil treatment. Our study demonstrated that fasudil attenuated glial cell-mediated neuroinflammation by up-regulating the ERK1/2 and AKT signaling pathways in rats ONC models. We conclude that fasudil may be a novel treatment for traumatic optic neuropathy.
Collapse
Affiliation(s)
- Wei Huang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.,Guangxi Medical University, Nanning, 530021, China
| | - Qianqian Lan
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Li Jiang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Wenya Yan
- Guangzhou Medical University, Guangzhou, 511436, China
| | - Fen Tang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Chaolan Shen
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Hui Huang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Haibin Zhong
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Jian Lv
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Siming Zeng
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Min Li
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Zhongxiang Mo
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Bing Hu
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Ning Liang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Qi Chen
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Mingyuan Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Fan Xu
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.
| | - Ling Cui
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.
| |
Collapse
|
15
|
Baudouin C, Kolko M, Melik-Parsadaniantz S, Messmer EM. Inflammation in Glaucoma: From the back to the front of the eye, and beyond. Prog Retin Eye Res 2020; 83:100916. [PMID: 33075485 DOI: 10.1016/j.preteyeres.2020.100916] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/08/2023]
Abstract
The pathophysiology of glaucoma is complex, multifactorial and not completely understood. Elevated intraocular pressure (IOP) and/or impaired retinal blood flow may cause initial optic nerve damage. In addition, age-related oxidative stress in the retina concurrently with chronic mechanical and vascular stress is crucial for the initiation of retinal neurodegeneration. Oxidative stress is closely related to cell senescence, mitochondrial dysfunction, excitotoxicity, and neuroinflammation, which are involved in glaucoma progression. Accumulating evidence from animal glaucoma models and from human ocular samples suggests a dysfunction of the para-inflammation in the retinal ganglion cell layer and the optic nerve head. Moreover, quite similar mechanisms in the anterior chamber could explain the trabecular meshwork dysfunction and the elevated IOP in primary open-angle glaucoma. On the other hand, ocular surface disease due to topical interventions is the most prominent and visible consequence of inflammation in glaucoma, with a negative impact on filtering surgery failure, topical treatment efficacy, and possibly on inflammation in the anterior segment. Consequently, glaucoma appears as an outstanding eye disease where inflammatory changes may be present to various extents and consequences along the eye structure, from the ocular surface to the posterior segment, and the visual pathway. Here we reviewed the inflammatory processes in all ocular structures in glaucoma from the back to the front of the eye and beyond. Our approach was to explain how para-inflammation is necessary to maintain homoeostasis, and to describe abnormal inflammatory findings observed in glaucomatous patients or in animal glaucoma models, supporting the hypothesis of a dysregulation of the inflammatory balance toward a pro-inflammatory phenotype. Possible anti-inflammatory therapeutic approaches in glaucoma are also discussed.
Collapse
Affiliation(s)
- Christophe Baudouin
- Quinze-Vingts National Ophthalmology Hospital, INSERM-DGOS CIC 1423, IHU Foresight, Paris, France; Sorbonne Université, INSERM, CNRS, Institut de La Vision, Paris, France; Department of Ophthalmology, Ambroise Paré Hospital, APHP, Université de Versailles Saint-Quentin en Yvelines, Boulogne-Billancourt, France.
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| | | | | |
Collapse
|
16
|
Zheng W, Zhu XM, Zhang QE, Cheng G, Cai DB, He J, Ng CH, Ungvari GS, Peng XJ, Ning YP, Xiang YT. Adjunctive minocycline for major mental disorders: A systematic review. J Psychopharmacol 2019; 33:1215-1226. [PMID: 31294649 DOI: 10.1177/0269881119858286] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES This meta-analysis of randomized controlled trials (RCTs) examined the efficacy and safety of minocycline for three major mental disorders: schizophrenia, bipolar disorder and major depressive disorder (MDD). METHODS A systematic literature search of major electronic databases was conducted. Meta-analysis of clinical efficacy as defined by the respective studies, all-cause discontinuation, adverse drug reactions (ADRs) with standardized mean difference (SMD) and risk ratios (RRs) and their 95% confidence intervals (CI) was conducted using random-effects model. Quality assessment was performed with the Jadad scale and Cochrane risk of bias. RESULTS Sixteen RCTs (n=1357) on minocycline (50-300 mg/day) for schizophrenia (13 RCTs, n=1196), bipolar depression (1 RCT, n=49), and MDD (2 RCTs, n=112) were analyzed separately by diagnosis. Twelve RCTs mentioned randomized allocation specifically; the weighted Jadad scores were 4.0. Adjunctive minocycline outperformed placebo in improving total psychopathology [SMD: -0.45 (95%CI: -0.73, -0.16), p=0.002; I2=77%], positive [SMD: -0.15 (95%CI: -0.28, -0.02), p=0.02; I2=0%], negative [SMD: -0.62 (95%CI: -0.95, -0.28), p=0.0003; I2=85%] and general psychopathology scores [SMD: -0.28 (95%CI: -0.53, -0.03), p=0.03; I2=59%] in schizophrenia. Minocycline showed no significant effect on depressive and manic symptoms in both bipolar depression and MDD. Minocycline caused significantly less headache (p=0.02, number-needed-to-harm=14, 95%CI=5-14) than placebo in schizophrenia. All-cause discontinuation and other ADRs were similar between minocycline and placebo in each diagnostic category. CONCLUSION In this meta-analysis, adjunctive minocycline appeared to be efficacious and safe for schizophrenia. However, the efficacy of adjunctive minocycline for bipolar depression or MDD could not be demonstrated. REVIEW REGISTRATION PROSPERO: CRD42018102483.
Collapse
Affiliation(s)
- Wei Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Xiao-Min Zhu
- Suzhou Guangji Hospital, the Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Qing-E Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Gen Cheng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Dong-Bin Cai
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jie He
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chee H Ng
- Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Gabor S Ungvari
- The University of Notre Dame Australia, Fremantle, WA, Australia.,Division of Psychiatry, School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Xiao-Jiang Peng
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yu-Ping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yu-Tao Xiang
- Unit of Psychiatry, Faculty of Health Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
17
|
Abstract
The pathogenesis of glaucoma is still not fully clarified but a growing body of evidence suggests that neuroinflammation and immune response are part of the sequence of pathological events leading to the optic neuropathy. Indeed, inflammation - involving the activation and proliferation of resident glial cells (astrocytes, Muller cells and microglia) and the release of a plethora of anti- and pro-inflammatory cytokines, chemokines and reactive oxygen species - has been reported as common features in clinical and experimental glaucoma. In the insulted retina, as for other neuronal tissues, pathogenic and reparative aspects coexist in the inflammatory process, with extent and persistency affecting the final outcome. In view of this, therapies aimed at modulating the immune and inflammatory responses may represent a promising approach for limiting the optic nerve damage and the loss of retinal ganglion cells associated with glaucoma.
Collapse
Affiliation(s)
- Annagrazia Adornetto
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Rende, Italy
| | - Rossella Russo
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Rende, Italy
| | - Vincenzo Parisi
- Visual Neurophysiology and Neurophthalmology Research Unit, IRCCS G.B. Bietti Foundation, Roma, Italy
| |
Collapse
|
18
|
Rathnasamy G, Foulds WS, Ling EA, Kaur C. Retinal microglia - A key player in healthy and diseased retina. Prog Neurobiol 2018; 173:18-40. [PMID: 29864456 DOI: 10.1016/j.pneurobio.2018.05.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/09/2018] [Accepted: 05/29/2018] [Indexed: 01/04/2023]
Abstract
Microglia, the resident immune cells of the brain and retina, are constantly engaged in the surveillance of their surrounding neural tissue. During embryonic development they infiltrate the retinal tissues and participate in the phagocytosis of redundant neurons. The contribution of microglia in maintaining the purposeful and functional histo-architecture of the adult retina is indispensable. Within the retinal microenvironment, robust microglial activation is elicited by subtle changes caused by extrinsic and intrinsic factors. When there is a disturbance in the cell-cell communication between microglia and other retinal cells, for example in retinal injury, the activated microglia can manifest actions that can be detrimental. This is evidenced by activated microglia secreting inflammatory mediators that can further aggravate the retinal injury. Microglial activation as a harbinger of a variety of retinal diseases is well documented by many studies. In addition, a change in the microglial phenotype which may be associated with aging, may predispose the retina to age-related diseases. In light of the above, the focus of this review is to highlight the role played by microglia in the healthy and diseased retina, based on findings of our own work and from that of others.
Collapse
Affiliation(s)
- Gurugirijha Rathnasamy
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore; Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53706, United States
| | - Wallace S Foulds
- Singapore Eye Research Institute Level 6, The Academia, Discovery Tower, 20 College Road, 169856, Singapore; University of Glasgow, Glasgow, Scotland, G12 8QQ, United Kingdom
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore
| | - Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore.
| |
Collapse
|
19
|
Schultz R, Krug M, Precht M, Wohl SG, Witte OW, Schmeer C. Frataxin overexpression in Müller cells protects retinal ganglion cells in a mouse model of ischemia/reperfusion injury in vivo. Sci Rep 2018; 8:4846. [PMID: 29555919 PMCID: PMC5859167 DOI: 10.1038/s41598-018-22887-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/02/2018] [Indexed: 01/28/2023] Open
Abstract
Müller cells are critical for retinal function and neuronal survival but can become detrimental in response to retinal ischemia and increased oxidative stress. Elevated oxidative stress increases expression of the mitochondrial enzyme frataxin in the retina, and its overexpression is neuroprotective after ischemia. Whether frataxin expression in Müller cells might improve their function and protect neurons after ischemia is unknown. The aim of this study was to evaluate the effect of frataxin overexpression in Müller cells on neuronal survival after retinal ischemia/reperfusion in the mouse in vivo. Retinal ischemia/reperfusion was induced in mice overexpressing frataxin in Müller cells by transient elevation of intraocular pressure. Retinal ganglion cells survival was determined 14 days after lesion. Expression of frataxin, antioxidant enzymes, growth factors and inflammation markers was determined with qRT-PCR, Western blotting and immunohistochemistry 24 hours after lesion. Following lesion, there was a 65% increase in the number of surviving RGCs in frataxin overexpressing mice. Improved survival was associated with increased expression of the antioxidant enzymes Gpx1 and Sod1 as well as the growth factors Cntf and Lif. Additionally, microglial activation was decreased in these mice. Therefore, support of Müller cell function constitutes a feasible approach to reduce neuronal degeneration after ischemia.
Collapse
Affiliation(s)
- Rowena Schultz
- Department of Ophthalmology, Jena University Hospital, Jena, Germany
| | - Melanie Krug
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Michel Precht
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Stefanie G Wohl
- Department of Biological Structure, University of Washington Seattle, Seattle, United States
| | - Otto W Witte
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Christian Schmeer
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany.
| |
Collapse
|
20
|
Minocycline Has Anti-inflammatory Effects and Reduces Cytotoxicity in an Ex Vivo Spinal Cord Slice Culture Model of West Nile Virus Infection. J Virol 2017; 91:JVI.00569-17. [PMID: 28878079 DOI: 10.1128/jvi.00569-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/27/2017] [Indexed: 12/13/2022] Open
Abstract
West Nile virus (WNV) is a neurotropic flavivirus that can cause significant neurological disease. Mouse models of WNV infection demonstrate that a proinflammatory environment is induced within the central nervous system (CNS) after WNV infection, leading to entry of activated peripheral immune cells. We utilized ex vivo spinal cord slice cultures (SCSC) to demonstrate that anti-inflammatory mechanisms may also play a role in WNV-induced pathology and/or recovery. Microglia are a type of macrophage that function as resident CNS immune cells. Similar to mouse models, infection of SCSC with WNV induces the upregulation of proinflammatory genes and proteins that are associated with microglial activation, including the microglial activation marker Iba1 and CC motif chemokines CCL2, CCL3, and CCL5. This suggests that microglia assume a proinflammatory phenotype in response to WNV infection similar to the proinflammatory (M1) activation that can be displayed by other macrophages. We now show that the WNV-induced expression of these and other proinflammatory genes was significantly decreased in the presence of minocycline, which has antineuroinflammatory properties, including the ability to inhibit proinflammatory microglial responses. Minocycline also caused a significant increase in the expression of anti-inflammatory genes associated with alternative anti-inflammatory (M2) macrophage activation, including interleukin 4 (IL-4), IL-13, and FIZZ1. Minocycline-dependent alterations to M1/M2 gene expression were associated with a significant increase in survival of neurons, microglia, and astrocytes in WNV-infected slices and markedly decreased levels of inducible nitric oxide synthase (iNOS). These results demonstrate that an anti-inflammatory environment induced by minocycline reduces viral cytotoxicity during WNV infection in ex vivo CNS tissue.IMPORTANCE West Nile virus (WNV) causes substantial morbidity and mortality, with no specific therapeutic treatments available. Antiviral inflammatory responses are a crucial component of WNV pathology, and understanding how they are regulated is important for tailoring effective treatments. Proinflammatory responses during WNV infection have been extensively studied, but anti-inflammatory responses (and their potential protective and reparative capabilities) following WNV infection have not been investigated. Minocycline induced the expression of genes associated with the anti-inflammatory (M2) activation of CNS macrophages (microglia) in WNV-infected SCSC while inhibiting the expression of genes associated with proinflammatory (M1) macrophage activation and was protective for multiple CNS cell types, indicating its potential use as a therapeutic reagent. This ex vivo culture system can uniquely address the ability of CNS parenchymal cells (neurons, astrocytes, and microglia) to respond to minocycline and to modulate the inflammatory environment and cytotoxicity in response to WNV infection without peripheral immune cell involvement.
Collapse
|
21
|
Ahmed A, Wang LL, Abdelmaksoud S, Aboelgheit A, Saeed S, Zhang CL. Minocycline modulates microglia polarization in ischemia-reperfusion model of retinal degeneration and induces neuroprotection. Sci Rep 2017; 7:14065. [PMID: 29070819 PMCID: PMC5656679 DOI: 10.1038/s41598-017-14450-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/11/2017] [Indexed: 12/21/2022] Open
Abstract
Retinal ischemia-reperfusion (IR) injury causes irreversible loss of neurons and ultimately leads to permanent visual impairment and blindness. The cellular response under this pathological retinal condition is less clear. Using genetically modified mice, we systematically examined the behavior of microglia/macrophages after injury. We show that IR leads to activation of microglia/macrophages indicated by migration and proliferation of resident microglia and recruitment of circulating monocytes. IR-induced microglia/macrophages associate with apoptotic retinal neurons. Very interestingly, neuron loss can be mitigated by minocycline treatment. Minocycline induces Il4 expression and M2 polarization of microglia/macrophages. IL4 neutralization dampens minocycline-induced M2 polarization and neuroprotection. Given a well-established safety profile as an antibiotic, our results provide a rationale for using minocycline as a therapeutic agent for treating ischemic retinal degeneration.
Collapse
Affiliation(s)
- Amel Ahmed
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA.,Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Lei-Lei Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Safaa Abdelmaksoud
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amal Aboelgheit
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Safaa Saeed
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA. .,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA.
| |
Collapse
|
22
|
Thomas CN, Berry M, Logan A, Blanch RJ, Ahmed Z. Caspases in retinal ganglion cell death and axon regeneration. Cell Death Discov 2017; 3:17032. [PMID: 29675270 PMCID: PMC5903394 DOI: 10.1038/cddiscovery.2017.32] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/31/2017] [Accepted: 04/23/2017] [Indexed: 02/07/2023] Open
Abstract
Retinal ganglion cells (RGC) are terminally differentiated CNS neurons that possess limited endogenous regenerative capacity after injury and thus RGC death causes permanent visual loss. RGC die by caspase-dependent mechanisms, including apoptosis, during development, after ocular injury and in progressive degenerative diseases of the eye and optic nerve, such as glaucoma, anterior ischemic optic neuropathy, diabetic retinopathy and multiple sclerosis. Inhibition of caspases through genetic or pharmacological approaches can arrest the apoptotic cascade and protect a proportion of RGC. Novel findings have also highlighted a pyroptotic role of inflammatory caspases in RGC death. In this review, we discuss the molecular signalling mechanisms of apoptotic and inflammatory caspase responses in RGC specifically, their involvement in RGC degeneration and explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Chloe N Thomas
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Martin Berry
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Ann Logan
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Richard J Blanch
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
23
|
Bordone MP, González Fleitas MF, Pasquini LA, Bosco A, Sande PH, Rosenstein RE, Dorfman D. Involvement of microglia in early axoglial alterations of the optic nerve induced by experimental glaucoma. J Neurochem 2017; 142:323-337. [PMID: 28498493 DOI: 10.1111/jnc.14070] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/21/2017] [Accepted: 05/02/2017] [Indexed: 12/31/2022]
Abstract
Glaucoma is a leading cause of blindness, characterized by retinal ganglion cell (RGC) loss and optic nerve (ON) damage. Cumulative evidence suggests glial cell involvement in the degeneration of the ON and RGCs. We analyzed the contribution of microglial reactivity to early axoglial alterations of the ON in an induced model of ocular hypertension. For this purpose, vehicle or chondroitin sulfate (CS) were weekly injected into the eye anterior chamber from Wistar rats for different intervals. The amount of Brn3a(+) RGC significantly decreased in CS-injected eyes for 10 and 15 (but not 6) weeks. A reduction in anterograde transport of β-subunit cholera toxin was observed in the superior colliculus and the lateral geniculate nucleus contralateral to CS-injected eyes for 6 and 15 weeks. A disruption of cholera toxin β-subunit transport was observed at the proximal myelinated ON. A significant decrease in phosphorylated neurofilament heavy chain immunoreactivity, an increase in ionized calcium-binding adaptor molecule 1(+), ED1(+) (microglial markers), and glial fibrillary acidic protein (astrocytes) (+) area, and decreased luxol fast blue staining were observed in the ON at 6 and 15 weeks of ocular hypertension. Microglial reactivity involvement was examined through a daily treatment with minocycline (30 mg/kg, i.p.) for 2 weeks, after 4 weeks of ocular hypertension. Minocycline prevented the increase in ionized calcium-binding adaptor molecule 1(+), ED-1(+), and glial fibrillary acidic protein(+) area, the decrease in phosphorylated neurofilament heavy-chain immunoreactivity and luxol fast blue staining, and the deficit in anterograde transport induced by 6 weeks of ocular hypertension. Thus, targeting microglial reactivity might prevent early axoglial alterations in the glaucomatous ON. Cover Image for this issue: doi: 10.1111/jnc.13807.
Collapse
Affiliation(s)
- Melina P Bordone
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - María F González Fleitas
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Laura A Pasquini
- Department of Biological Chemistry and Institute of Chemistry and Biological Physicochemistry, IQUIFIB, School of Pharmacy and Biochemistry, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Alejandra Bosco
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, USA
| | - Pablo H Sande
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Ruth E Rosenstein
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Damián Dorfman
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| |
Collapse
|
24
|
Williams PA, Marsh-Armstrong N, Howell GR. Neuroinflammation in glaucoma: A new opportunity. Exp Eye Res 2017; 157:20-27. [PMID: 28242160 PMCID: PMC5497582 DOI: 10.1016/j.exer.2017.02.014] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 02/16/2017] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
Abstract
Mounting evidence suggests neuroinflammation is a key process in glaucoma, yet the precise roles are not known. Understanding these complex processes, which may also be a key in other common neurodegenerations such as Alzheimer's disease, will lead to targeted therapeutics for a disease that affects as many as 80 million people worldwide. Here, we define neuroinflammation as any immune-relevant response by a variety of cell types including astrocytes, microglia, and peripherally derived cells occurring in the optic nerve head and/or retina. In this review article, we first discuss clinical evidence for neuroinflammation in glaucoma and define neuroinflammation in glaucoma. We then review the inflammatory pathways that have been associated with glaucoma. Finally, we set out key research directions that we believe will greatly advance our understanding of the role of neuroinflammation in glaucoma. This review arose from a discussion of neuroinflammation in glaucoma at the 2015 meeting of The Lasker/IRRF Initiative for Innovation in Vision Science. This manuscript sets out to summarize one of these sessions; "Inflammation and Glaucomatous Neurodegeneration", as well as to review the current state of the literature surrounding neuroinflammation in glaucoma.
Collapse
Affiliation(s)
| | - Nick Marsh-Armstrong
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, USA; Graduate Program of Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
25
|
Micheal S, Saksens NTM, Hogewind BF, Khan MI, Hoyng CB, den Hollander AI. Identification of TP53BP2 as a Novel Candidate Gene for Primary Open Angle Glaucoma by Whole Exome Sequencing in a Large Multiplex Family. Mol Neurobiol 2017; 55:1387-1395. [PMID: 28150229 PMCID: PMC5820370 DOI: 10.1007/s12035-017-0403-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 01/12/2017] [Indexed: 01/11/2023]
Abstract
Primary open angle glaucoma (POAG) is a major type of glaucoma characterized by progressive loss of retinal ganglion cells with associated visual field loss without an identifiable secondary cause. Genetic factors are considered to be major contributors to the pathogenesis of glaucoma. The aim of the study was to identify the causative gene in a large family with POAG by applying whole exome sequencing (WES). WES was performed on the DNA of four affected family members. Rare pathogenic variants shared among the affected individuals were filtered. Polymerase chain reaction and Sanger sequencing were used to analyze variants segregating with the disease in additional family members. WES analysis identified a variant in TP53BP2 (c.109G>A; p.Val37Met) that segregated heterozygously with the disease. In silico analysis of the substitution predicted it to be pathogenic. The variant was absent in public databases and in 180 population-matched controls. A novel genetic variant in the TP53BP2 gene was identified in a family with POAG. Interestingly, it has previously been demonstrated that the gene regulates apoptosis in retinal ganglion cells. This supports that the TP53BP2 variant may represent the cause of POAG in this family. Additional screening of the gene in patients with POAG from different populations is required to confirm its involvement in the disease.
Collapse
Affiliation(s)
- Shazia Micheal
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Clinical Genetics, Academic Medical Centre, Amsterdam, the Netherlands
| | - Nicole T M Saksens
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Barend F Hogewind
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Muhammad Imran Khan
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands. .,Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
26
|
Niedzielska E, Smaga I, Gawlik M, Moniczewski A, Stankowicz P, Pera J, Filip M. Oxidative Stress in Neurodegenerative Diseases. Mol Neurobiol 2016; 53:4094-4125. [PMID: 26198567 PMCID: PMC4937091 DOI: 10.1007/s12035-015-9337-5] [Citation(s) in RCA: 514] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/01/2015] [Indexed: 12/12/2022]
Abstract
The pathophysiologies of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD), are far from being fully explained. Oxidative stress (OS) has been proposed as one factor that plays a potential role in the pathogenesis of neurodegenerative disorders. Clinical and preclinical studies indicate that neurodegenerative diseases are characterized by higher levels of OS biomarkers and by lower levels of antioxidant defense biomarkers in the brain and peripheral tissues. In this article, we review the current knowledge regarding the involvement of OS in neurodegenerative diseases, based on clinical trials and animal studies. In addition, we analyze the effects of the drug-induced modulation of oxidative balance, and we explore pharmacotherapeutic strategies for OS reduction.
Collapse
Affiliation(s)
- Ewa Niedzielska
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Irena Smaga
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Maciej Gawlik
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Andrzej Moniczewski
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Piotr Stankowicz
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Joanna Pera
- Department of Neurology, Faculty of Medicine, Jagiellonian University, Medical College, Botaniczna 3, 31-503, Krakow, Poland
| | - Małgorzata Filip
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland.
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
27
|
KEILHOFF GERBURG, LUCAS BENJAMIN, UHDE KATJA, FANSA HISHAM. Selected gene profiles of stressed NSC-34 cells and rat spinal cord following peripheral nerve reconstruction and minocycline treatment. Exp Ther Med 2016; 11:1685-1699. [PMID: 27168790 PMCID: PMC4840837 DOI: 10.3892/etm.2016.3130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/17/2015] [Indexed: 12/20/2022] Open
Abstract
The present study was conducted to investigate the effects of minocycline on the expression of selected transcriptional and translational profiles in the rat spinal cord following sciatic nerve (SNR) transection and microsurgical coaptation. The mRNA and protein expression levels of B cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), caspase-3, major histocompatibility complex I (MHC I), tumor necrosis factor-α (TNF-α), activating transcription factor 3 (ATF3), vascular endothelial growth factor (VEGF), matrix metalloproteinase 9 (MMP9), and growth associated protein-43 (GAP-43) were monitored in the rat lumbar spinal cord following microsurgical reconstruction of the sciatic nerves and minocycline treatment. The present study used semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. As a PCR analysis of spinal cord tissue enabled the examination of the expression patterns of all cell types including glia, the motorneuron-like NSC-34 cell line was used to investigate expression level changes in motorneurons. As stressors, oxygen glucose deprivation (OGD) and lipopolysaccharide (LPS) treatment were performed. SNR did not induce significant degeneration of ventral horn motorneurons, whereas microglia activation and synaptic terminal retraction were detectable. All genes were constitutively expressed at the mRNA and protein levels in untreated spinal cord and control cells. SNR significantly increased the mRNA expression levels of all genes, albeit only temporarily. In all genes except MMP9 and GAP-43, the induction was seen ipsilaterally and contralaterally. The effects of minocycline were moderate. The expression levels of MMP9, TNF-α, MHC I, VEGF, and GAP-43 were reduced, whereas those of Bax and Bcl-2 were unaffected. OGD, but not LPS, was toxic for NSC-34 cells. No changes in the expression levels of Bax, caspase-3, MHC I or ATF3 were observed. These results indicated that motorneurons were not preferentially or solely responsible for SNR-mediated upregulation of these genes. MMP9, TNF-α, VEGF and Bcl-2 were stress-activated. These results suggest that a substantial participation of motorneurons in gene expression levels in vivo. Minocycline was also shown to have inhibitory effects. The nuclear factor-κB signalling pathway may be a possible target of minocycline.
Collapse
Affiliation(s)
- GERBURG KEILHOFF
- Institute of Biochemistry and Cell Biology, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany
| | - BENJAMIN LUCAS
- Institute of Biochemistry and Cell Biology, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany
- Department of Trauma Surgery, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany
| | - KATJA UHDE
- Institute of Biochemistry and Cell Biology, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany
| | - HISHAM FANSA
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Klinikum Bielefeld, Bielefeld D-33604, Germany
| |
Collapse
|
28
|
Williams PA, Tribble JR, Pepper KW, Cross SD, Morgan BP, Morgan JE, John SWM, Howell GR. Inhibition of the classical pathway of the complement cascade prevents early dendritic and synaptic degeneration in glaucoma. Mol Neurodegener 2016; 11:26. [PMID: 27048300 PMCID: PMC4822272 DOI: 10.1186/s13024-016-0091-6] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/23/2016] [Indexed: 12/13/2022] Open
Abstract
Background Glaucoma is a complex, multifactorial disease characterised by the loss of retinal ganglion cells and their axons leading to a decrease in visual function. The earliest events that damage retinal ganglion cells in glaucoma are currently unknown. Retinal ganglion cell death appears to be compartmentalised, with soma, dendrite and axon changes potentially occurring through different mechanisms. There is mounting evidence from other neurodegenerative diseases suggesting that neuronal dendrites undergo a prolonged period of atrophy, including the pruning of synapses, prior to cell loss. In addition, recent evidence has shown the role of the complement cascade in synaptic pruning in glaucoma and other diseases. Results Using a genetic (DBA/2J mouse) and an inducible (rat microbead) model of glaucoma we first demonstrate that there is loss of retinal ganglion cell synapses and dendrites at time points that precede axon or soma loss. We next determine the role of complement component 1 (C1) in early synaptic loss and dendritic atrophy during glaucoma. Using a genetic knockout of C1qa (D2.C1qa-/- mouse) or pharmacological inhibition of C1 (in the rat bead model) we show that inhibition of C1 is sufficient to preserve dendritic and synaptic architecture. Conclusions This study further supports assessing the potential for complement-modulating therapeutics for the prevention of retinal ganglion cell degeneration in glaucoma.
Collapse
Affiliation(s)
| | - James R Tribble
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | | | - Stephen D Cross
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - B Paul Morgan
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - James E Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Simon W M John
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA. .,Department of Ophthalmology, Tufts University of Medicine, Boston, MA, 02111, USA. .,The Howard Hughes Medical Institute, Bar Harbor, ME, 04609, USA.
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA. .,Graduate Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA, USA.
| |
Collapse
|
29
|
Levkovitch-Verbin H. Retinal ganglion cell apoptotic pathway in glaucoma: Initiating and downstream mechanisms. PROGRESS IN BRAIN RESEARCH 2015; 220:37-57. [PMID: 26497784 DOI: 10.1016/bs.pbr.2015.05.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Apoptosis of retinal ganglion cells (RGCs) in glaucoma causes progressive visual field loss, making it the primary cause of irreversible blindness worldwide. Elevated intraocular pressure and aging, the main risk factors for glaucoma, accelerate RGC apoptosis. Numerous pathways and mechanisms were found to be involved in RGC death in glaucoma. Neurotrophic factors deprivation is an early event. Oxidative stress, mitochondrial dysfunction, inflammation, glial cell dysfunction, and activation of apoptotic pathways and prosurvival pathways play a significant role in RGC death in glaucoma. The most important among the involved pathways are the MAP-kinase pathway, PI-3 kinase/Akt pathway, Bcl-2 family, caspase family, and IAP family.
Collapse
Affiliation(s)
- Hani Levkovitch-Verbin
- Glaucoma Service, Goldschleger Eye Institute, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Hashomer, Israel.
| |
Collapse
|
30
|
Li L, Eter N, Heiduschka P. The microglia in healthy and diseased retina. Exp Eye Res 2015; 136:116-30. [PMID: 25952657 DOI: 10.1016/j.exer.2015.04.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 12/25/2022]
Abstract
The microglia are the immune cells of the central nervous system and, also the retina. They fulfil several tasks of surveillance in the healthy retina. In case of an injury or disease, microglia become activated and tries to repair the damage. However, in a lot of cases it does not work, and microglia deteriorate the situation by releasing toxic and pro-inflammatory compounds. Moreover, they further promote degenerative processes by attacking and phagocytosing damaged neurones and photoreceptors that otherwise would possibly have the chance to survive. Such deleterious action of the microglia has been observed in degeneration of retinal ganglion cells and photoreceptors, and it takes place in hereditary diseases, infections as well as in case of traumatic or light injuries. Therefore, a number of attempts has been undertaken so far to inhibit the microglia, with varying success. The task remains to study behaviour of the microglia and their interaction with other retinal cell populations in more detail with respect to released factors and expressed receptors including the time points of the corresponding events. The goal has to be to find a better balance between helpful and detrimental actions of the microglia.
Collapse
Affiliation(s)
- Lu Li
- University of Münster Medical School, Department of Ophthalmology, Domagkstr. 15, D-48149 Münster, Germany
| | - Nicole Eter
- University of Münster Medical School, Department of Ophthalmology, Domagkstr. 15, D-48149 Münster, Germany
| | - Peter Heiduschka
- University of Münster Medical School, Department of Ophthalmology, Domagkstr. 15, D-48149 Münster, Germany.
| |
Collapse
|
31
|
Madeira MH, Boia R, Santos PF, Ambrósio AF, Santiago AR. Contribution of microglia-mediated neuroinflammation to retinal degenerative diseases. Mediators Inflamm 2015; 2015:673090. [PMID: 25873768 PMCID: PMC4385698 DOI: 10.1155/2015/673090] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/16/2014] [Indexed: 12/27/2022] Open
Abstract
Retinal degenerative diseases are major causes of vision loss and blindness worldwide and are characterized by chronic and progressive neuronal loss. One common feature of retinal degenerative diseases and brain neurodegenerative diseases is chronic neuroinflammation. There is growing evidence that retinal microglia, as in the brain, become activated in the course of retinal degenerative diseases, having a pivotal role in the initiation and propagation of the neurodegenerative process. A better understanding of the events elicited and mediated by retinal microglia will contribute to the clarification of disease etiology and might open new avenues for potential therapeutic interventions. This review aims at giving an overview of the roles of microglia-mediated neuroinflammation in major retinal degenerative diseases like glaucoma, age-related macular degeneration, and diabetic retinopathy.
Collapse
Affiliation(s)
- Maria H. Madeira
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3004-548 Coimbra, Portugal
| | - Raquel Boia
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3004-548 Coimbra, Portugal
| | - Paulo F. Santos
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3004-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - António F. Ambrósio
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3004-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- AIBILI, Coimbra, Portugal
| | - Ana R. Santiago
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3004-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- AIBILI, Coimbra, Portugal
| |
Collapse
|
32
|
Song W, Huang P, Zhang C. Neuroprotective therapies for glaucoma. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1469-79. [PMID: 25792807 PMCID: PMC4362661 DOI: 10.2147/dddt.s80594] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glaucoma is the second leading cause for blindness worldwide. It is mainly caused by glaucomatous optic neuropathy (GON) characterized by retinal ganglion cell loss, which leads to visual field defect and blindness. Up to now, the main purpose of antiglaucomatous therapies has been to lower intraocular pressure (IOP) through surgeries and medications. However, it has been found that progressive GON is still present in some patients with effective IOP decrease. Therefore, risk factors other than IOP elevation, like neurotrophin deprivation and excitotoxicity, contribute to progressive GON. Novel approaches of neuroprotection may be more effective for preserving the function of the optic nerve.
Collapse
Affiliation(s)
- Wei Song
- Department of Ophthalmology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Ping Huang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Chun Zhang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, People's Republic of China
| |
Collapse
|