1
|
Herrera G, Cheng Y, Attiku Y, Hiya FE, Shen M, Liu J, Lu J, Berni A, Trivizki O, Li J, O’Brien RC, Gregori G, Wang RK, Rosenfeld PJ. Comparison between Spectral-domain and Swept-source OCT Angiography Scans for the Measurement of Hyperreflective Foci in Age-related Macular Degeneration. OPHTHALMOLOGY SCIENCE 2025; 5:100633. [PMID: 39758131 PMCID: PMC11699460 DOI: 10.1016/j.xops.2024.100633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 09/04/2024] [Accepted: 10/09/2024] [Indexed: 01/07/2025]
Abstract
Purpose Spectral-domain OCT angiography (SD-OCTA) scans were used in an algorithm developed for swept-source OCT angiography (SS-OCTA) scans to determine if SD-OCTA scans yielded similar results for the measurement of hyperreflective foci (HRF) in intermediate age-related macular degeneration (iAMD). Design Retrospective study. Participants Forty eyes from 35 patients with iAMD. Methods Patients underwent SD-OCTA and SS-OCTA imaging at the same visit using a 6 × 6 mm OCTA scan pattern. Hyperreflective foci were detected as hypotransmission defects on en face structural images generated from a custom slab positioned 64 to 400 μm beneath Bruch's membrane and confirmed on corresponding B-scans by the presence of well circumscribed lesions within the neurosensory retina or along the retinal pigment epithelium (RPE) that are of equal or greater reflectivity than that of the RPE. Two independent graders evaluated the en face images and B-scans for the presence of these lesions. Outlines of HRF on en face images were generated using a published semiautomated algorithm developed for SS-OCTA scans and manually corrected by the graders when necessary. The total area measurements of the HRF within the 5-mm circle centered on the fovea were obtained from the algorithm using each imaging method. Main Outcome Measures Agreement of the square root (sqrt) of the HRF total areas obtained from SS-OCTA and SD-OCTA. Results The sqrt total areas of the HRF from both imaging modalities were highly concordant, with Lin's concordance correlation coefficient (rc) of 0.94 (95% confidence interval: 0.86-0.97; P < 0.001). The mean sqrt of the total HRF area measurements identified using SS-OCTA and SD-OCTA imaging were 0.390 mm (standard deviation [SD]: 0.170) and 0.393 mm (SD: 0.187), respectively with mean difference of -0.003 (95% confidence interval: -0.021 to 0.015; P=0.76). Conclusions Spectral-domain OCT angiography scans yielded results similar to SS-OCTA scans when the same semiautomated algorithm was used to measure HRF in the central 5 mm of the macula, suggesting that either a single 6 × 6 mm SD-OCTA or a SS-OCTA scan pattern can be used to determine the total macular HRF burden in eyes with age-related macular degeneration. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Gissel Herrera
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Yuxuan Cheng
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Yamini Attiku
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Farhan E. Hiya
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Mengxi Shen
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Jeremy Liu
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut
| | - Jie Lu
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Alessandro Berni
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Omer Trivizki
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
- Department of Ophthalmology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Jianqing Li
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
- Department of Ophthalmology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Robert C. O’Brien
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Giovanni Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, Washington
- Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Philip J. Rosenfeld
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
2
|
Verma A, Nittala MG, Corradetti G, Nassisi M, Velaga SB, He Y, Haines JL, Pericak-Vance MA, Stambolian D, Sadda SR. Longitudinal Evaluation of the Distribution of Intraretinal Hyper-Reflective Foci in Eyes with Intermediate Age-Related Macular Degeneration. Curr Eye Res 2024; 49:1278-1284. [PMID: 38639042 DOI: 10.1080/02713683.2024.2343334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
PURPOSE Intraretinal hyper-reflective foci (IHRF) are optical coherence tomography (OCT) risk factors for progression of age-related macular degeneration (AMD). In this study we assess the change in the number and distribution of IHRF over two years. METHODS The axial distribution of IHRF were quantified in eyes with intermediate AMD (iAMD) at baseline and 24 months, using a series of 5 sequential equidistant en face OCT retinal slabs generated between the outer border of the internal limiting membrane (ILM) and the inner border of the retinal pigment epithelium (RPE). Following thresholding and binarization, IHRF were quantified in each retinal slab using ImageJ. The change in IHRF number in each slab between baseline and month 24 was calculated. RESULTS Fifty-two eyes showed evidence of IHRF at baseline, and all continued to show evidence of IHRF at 24 months (M24). The total average IHRF count/eye increased significantly from 4.67 ± 0.63 at baseline to 11.62 ± 13.86 at M24 (p < 0.001) with a mean increase of 6.94 ± 11.12 (range: - 9 to + 60). Overall, at M24, 76.9% eyes showed an increase in IHRF whereas 15.4% of eyes showed a decrease (3 eyes [5.7%] showed no change). There was a greater number of IHRF and a greater increase in IHRF over M24 in the outer slabs. CONCLUSIONS IHRF are most common in the outer retinal layers and tend to increase in number over time. The impact of the distribution and frequency of these IHRF on the overall progression of AMD requires further study.
Collapse
Affiliation(s)
- Aditya Verma
- Doheny Eye Institute, Pasadena, CA, USA
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY, USA
| | | | - Giulia Corradetti
- Doheny Eye Institute, Pasadena, CA, USA
- Department of Ophthalmology, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Marco Nassisi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Ye He
- Doheny Eye Institute, Pasadena, CA, USA
- Department of Ophthalmology, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Jonathan L Haines
- Department of Population & Quantitative Health Sciences and Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dwight Stambolian
- Department of Ophthalmology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - SriniVas R Sadda
- Doheny Eye Institute, Pasadena, CA, USA
- Department of Ophthalmology, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Berni A, Shen M, Cheng Y, Herrera G, Hiya F, Liu J, Wang L, Li J, Zhou SW, Trivizki O, Waheed NK, O'Brien R, Gregori G, Wang RK, Rosenfeld PJ. The Total Macular Burden of Hyperreflective Foci and the Onset of Persistent Choroidal Hypertransmission Defects in Intermediate AMD. Am J Ophthalmol 2024; 267:61-75. [PMID: 38944135 PMCID: PMC11486582 DOI: 10.1016/j.ajo.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
PURPOSE The association between the total macular burden of hyperreflective foci (HRF) in eyes with intermediate AMD (iAMD) and the onset of persistent choroidal hypertransmission defects (hyperTDs) was studied using swept-source optical coherence tomography (SS-OCT). DESIGN Post hoc subgroup analysis of a prospective study. METHODS A retrospective review of iAMD eyes from subjects enrolled in a prospective SS-OCT study was performed. All eyes underwent 6×6 mm SS-OCT angiography (SS-OCTA) imaging at baseline and follow-up visits. En face sub-retinal pigment epithelium (subRPE) slabs with segmentation boundaries positioned 64 to 400 µm beneath Bruch's membrane (BM) were used to identify persistent choroidal hyperTDs. None of the eyes had persistent hyperTDs at baseline. The same subRPE slab was used to identify choroidal hypotransmission defects (hypoTDs) attributable to HRF located either intraretinally (iHRF) or along the RPE (rpeHRF) based on corresponding B-scans. A semiautomated algorithm was used by 2 independent graders to validate and refine the HRF outlines. The HRF area and the drusen volume within a 5 mm fovea-centered circle were measured at each visit. RESULTS The median follow-up time for the 171 eyes from 121 patients included in this study was 59.1 months (95% CI: 52.0-67.8 months). Of these, 149 eyes (87%) had HRF, and 82 (48%) developed at least one persistent hyperTD during the follow-up. Although univariable Cox regression analyses showed that both drusen volume and total HRF area were associated with the onset of the first persistent hyperTD, multivariable analysis showed that the area of total HRF was the sole significant predictor for the onset of hyperTDs (P < .001). ROC analysis identified an HRF area ≥ 0.07 mm² to predict the onset of persistent hyperTDs within 1 year with an area under the curve (AUC) of 0.661 (0.570-0.753), corresponding to a sensitivity of 55% and a specificity of 74% (P < .001). CONCLUSIONS The total macular burden of HRF, which includes both the HRF along the RPE and within the retina, is an important predictor of disease progression from iAMD to the onset of persistent hyperTDs and should serve as a key OCT biomarker to select iAMD patients at high risk for disease progression in future clinical trials.
Collapse
Affiliation(s)
- Alessandro Berni
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Ophthalmology (A.B.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mengxi Shen
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Yuxuan Cheng
- Department of Bioengineering (Y.C., R.K.W.), University of Washington, Seattle, Washington, USA
| | - Gissel Herrera
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Farhan Hiya
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jeremy Liu
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Ophthalmology and Visual Science (J.L.), Yale University School of Medicine, New Haven, Connecticut, USA
| | - Liang Wang
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jianqing Li
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Ophthalmology (J.L.), First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Sandy Wenting Zhou
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Ophthalmology (W.Z.), Tan Tock Seng Hospital, National Health Group Eye Institute, Singapore
| | - Omer Trivizki
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Ophthalmology (O.T.), Tel Aviv Medical Center, University of Tel Aviv, Tel Aviv, Israel
| | - Nadia K Waheed
- New England Eye Center (N.K.W.), Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Robert O'Brien
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Giovanni Gregori
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ruikang K Wang
- Department of Bioengineering (Y.C., R.K.W.), University of Washington, Seattle, Washington, USA; Department of Ophthalmology (R.K.W.), University of Washington, Seattle, Washington, USA
| | - Philip J Rosenfeld
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
4
|
Vallino V, Berni A, Coletto A, Serafino S, Bandello F, Reibaldi M, Borrelli E. Structural OCT and OCT angiography biomarkers associated with the development and progression of geographic atrophy in AMD. Graefes Arch Clin Exp Ophthalmol 2024; 262:3421-3436. [PMID: 38689123 PMCID: PMC11584504 DOI: 10.1007/s00417-024-06497-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/12/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Geographic atrophy (GA) is an advanced, irreversible, and progressive form of age-related macular degeneration (AMD). Structural optical coherence tomography (OCT) and OCT angiography (OCTA) have been largely used to characterize this stage of AMD and, more importantly, to define biomarkers associated with the development and progression of GA in AMD. METHODS Articles pertaining to OCT and OCTA biomarkers related to the development and progression of GA with relevant key words were used to search in PubMed, Researchgate, and Google Scholar. The articles were selected based on their relevance, reliability, publication year, published journal, and accessibility. RESULTS Previous reports have highlighted various OCT and OCTA biomarkers linked to the onset and advancement of GA. These biomarkers encompass characteristics such as the size, volume, and subtype of drusen, the presence of hyperreflective foci, basal laminar deposits, incomplete retinal pigment epithelium and outer retinal atrophy (iRORA), persistent choroidal hypertransmission defects, and the existence of subretinal drusenoid deposits (also referred to as reticular pseudodrusen). Moreover, biomarkers associated with the progression of GA include thinning of the outer retina, photoreceptor degradation, the distance between retinal pigment epithelium and Bruch's membrane, and choriocapillaris loss. CONCLUSION The advent of novel treatment strategies for GA underscores the heightened need for prompt diagnosis and precise monitoring of individuals with this condition. The utilization of structural OCT and OCTA becomes essential for identifying distinct biomarkers associated with the initiation and progression of GA.
Collapse
Affiliation(s)
- Veronica Vallino
- Department of Surgical Sciences, University of Turin, Corso Dogliotti 14, Turin, Italy
- Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Alessandro Berni
- Vita-Salute San Raffaele University Milan, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Coletto
- Department of Surgical Sciences, University of Turin, Corso Dogliotti 14, Turin, Italy
- Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Sonia Serafino
- Department of Surgical Sciences, University of Turin, Corso Dogliotti 14, Turin, Italy
- Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Francesco Bandello
- Vita-Salute San Raffaele University Milan, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michele Reibaldi
- Department of Surgical Sciences, University of Turin, Corso Dogliotti 14, Turin, Italy
- Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Enrico Borrelli
- Department of Surgical Sciences, University of Turin, Corso Dogliotti 14, Turin, Italy.
- Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy.
| |
Collapse
|
5
|
Reiter GS, Mai J, Riedl S, Birner K, Frank S, Bogunovic H, Schmidt-Erfurth U. AI in the clinical management of GA: A novel therapeutic universe requires novel tools. Prog Retin Eye Res 2024; 103:101305. [PMID: 39343193 DOI: 10.1016/j.preteyeres.2024.101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Regulatory approval of the first two therapeutic substances for the management of geographic atrophy (GA) secondary to age-related macular degeneration (AMD) is a major breakthrough following failure of numerous previous trials. However, in the absence of therapeutic standards, diagnostic tools are a key challenge as functional parameters in GA are hard to provide. The majority of anatomical biomarkers are subclinical, necessitating advanced and sensitive image analyses. In contrast to fundus autofluorescence (FAF), optical coherence tomography (OCT) provides high-resolution visualization of neurosensory layers, including photoreceptors, and other features that are beyond the scope of human expert assessment. Artificial intelligence (AI)-based methodology strongly enhances identification and quantification of clinically relevant GA-related sub-phenotypes. Introduction of OCT-based biomarker analysis provides novel insight into the pathomechanisms of disease progression and therapeutic, moving beyond the limitations of conventional descriptive assessment. Accordingly, the Food and Drug Administration (FDA) has provided a paradigm-shift in recognizing ellipsoid zone (EZ) attenuation as a primary outcome measure in GA clinical trials. In this review, the transition from previous to future GA classification and management is described. With the advent of AI tools, diagnostic and therapeutic concepts have changed substantially in monitoring and screening of GA disease. Novel technology combined with pathophysiological knowledge and understanding of the therapeutic response to GA treatments, is currently opening the path for an automated, efficient and individualized patient care with great potential to improve access to timely treatment and reduce health disparities.
Collapse
Affiliation(s)
- Gregor S Reiter
- Department of Ophthalmology and Optometry, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| | - Julia Mai
- Department of Ophthalmology and Optometry, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| | - Sophie Riedl
- Department of Ophthalmology and Optometry, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| | - Klaudia Birner
- Department of Ophthalmology and Optometry, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| | - Sophie Frank
- Department of Ophthalmology and Optometry, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| | - Hrvoje Bogunovic
- Department of Ophthalmology and Optometry, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| | - Ursula Schmidt-Erfurth
- Department of Ophthalmology and Optometry, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| |
Collapse
|
6
|
Agrón E, Domalpally A, Chen Q, Lu Z, Chew EY, Keenan TDL. An Updated Simplified Severity Scale for Age-Related Macular Degeneration Incorporating Reticular Pseudodrusen: Age-Related Eye Disease Study Report Number 42. Ophthalmology 2024; 131:1164-1174. [PMID: 38657840 PMCID: PMC11416341 DOI: 10.1016/j.ophtha.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
PURPOSE To update the Age-Related Eye Disease Study (AREDS) simplified severity scale for risk of late age-related macular degeneration (AMD), including incorporation of reticular pseudodrusen (RPD), and to perform external validation on the Age-Related Eye Disease Study 2 (AREDS2). DESIGN Post hoc analysis of 2 clinical trial cohorts: AREDS and AREDS2. PARTICIPANTS Participants with no late AMD in either eye at baseline in AREDS (n = 2719) and AREDS2 (n = 1472). METHODS Five-year rates of progression to late AMD were calculated according to levels 0 to 4 on the simplified severity scale after 2 updates: (1) noncentral geographic atrophy (GA) considered part of the outcome, rather than a risk feature, and (2) scale separation according to RPD status (determined by validated deep learning grading of color fundus photographs). MAIN OUTCOME MEASURES Five-year rate of progression to late AMD (defined as neovascular AMD or any GA). RESULTS In the AREDS, after the first scale update, the 5-year rates of progression to late AMD for levels 0 to 4 were 0.3%, 4.5%, 12.9%, 32.2%, and 55.6%, respectively. As the final simplified severity scale, the 5-year progression rates for levels 0 to 4 were 0.3%, 4.3%, 11.6%, 26.7%, and 50.0%, respectively, for participants without RPD at baseline and 2.8%, 8.0%, 29.0%, 58.7%, and 72.2%, respectively, for participants with RPD at baseline. In external validation on the AREDS2, for levels 2 to 4, the progression rates were similar: 15.0%, 27.7%, and 45.7% (RPD absent) and 26.2%, 46.0%, and 73.0% (RPD present), respectively. CONCLUSIONS The AREDS AMD simplified severity scale has been modernized with 2 important updates. The new scale for individuals without RPD has 5-year progression rates of approximately 0.5%, 4%, 12%, 25%, and 50%, such that the rates on the original scale remain accurate. The new scale for individuals with RPD has 5-year progression rates of approximately 3%, 8%, 30%, 60%, and 70%, that is, approximately double for most levels. This scale fits updated definitions of late AMD, has increased prognostic accuracy, seems generalizable to similar populations, but remains simple for broad risk categorization. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Elvira Agrón
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Amitha Domalpally
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Qingyu Chen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland; Biomedical Informatics and Data Science, School of Medicine, Yale University, New Haven, Connecticut
| | - Zhiyong Lu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Tiarnan D L Keenan
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
7
|
Avram O, Durmus B, Rakocz N, Corradetti G, An U, Nittala MG, Terway P, Rudas A, Chen ZJ, Wakatsuki Y, Hirabayashi K, Velaga S, Tiosano L, Corvi F, Verma A, Karamat A, Lindenberg S, Oncel D, Almidani L, Hull V, Fasih-Ahmad S, Esmaeilkhanian H, Cannesson M, Wykoff CC, Rahmani E, Arnold CW, Zhou B, Zaitlen N, Gronau I, Sankararaman S, Chiang JN, Sadda SR, Halperin E. Accurate prediction of disease-risk factors from volumetric medical scans by a deep vision model pre-trained with 2D scans. Nat Biomed Eng 2024:10.1038/s41551-024-01257-9. [PMID: 39354052 DOI: 10.1038/s41551-024-01257-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/23/2024] [Indexed: 10/03/2024]
Abstract
The application of machine learning to tasks involving volumetric biomedical imaging is constrained by the limited availability of annotated datasets of three-dimensional (3D) scans for model training. Here we report a deep-learning model pre-trained on 2D scans (for which annotated data are relatively abundant) that accurately predicts disease-risk factors from 3D medical-scan modalities. The model, which we named SLIViT (for 'slice integration by vision transformer'), preprocesses a given volumetric scan into 2D images, extracts their feature map and integrates it into a single prediction. We evaluated the model in eight different learning tasks, including classification and regression for six datasets involving four volumetric imaging modalities (computed tomography, magnetic resonance imaging, optical coherence tomography and ultrasound). SLIViT consistently outperformed domain-specific state-of-the-art models and was typically as accurate as clinical specialists who had spent considerable time manually annotating the analysed scans. Automating diagnosis tasks involving volumetric scans may save valuable clinician hours, reduce data acquisition costs and duration, and help expedite medical research and clinical applications.
Collapse
Affiliation(s)
- Oren Avram
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Berkin Durmus
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nadav Rakocz
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Giulia Corradetti
- Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, USA
- Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ulzee An
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Muneeswar G Nittala
- Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, USA
- Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Prerit Terway
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Akos Rudas
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zeyuan Johnson Chen
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu Wakatsuki
- Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, USA
| | | | - Swetha Velaga
- Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, USA
| | - Liran Tiosano
- Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, USA
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Federico Corvi
- Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, USA
| | - Aditya Verma
- Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, USA
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY, USA
| | - Ayesha Karamat
- Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, USA
| | - Sophiana Lindenberg
- Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, USA
| | - Deniz Oncel
- Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, USA
| | - Louay Almidani
- Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, USA
| | - Victoria Hull
- Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, USA
| | - Sohaib Fasih-Ahmad
- Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, USA
| | | | - Maxime Cannesson
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Charles C Wykoff
- Retina Consultants of Texas, Retina Consultants of America, Houston, TX, USA
- Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Elior Rahmani
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Corey W Arnold
- Department of Radiology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pathology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bolei Zhou
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Noah Zaitlen
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ilan Gronau
- School of Computer Science, Reichman University, Herzliya, Israel
| | - Sriram Sankararaman
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeffrey N Chiang
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Srinivas R Sadda
- Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, USA.
- Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Eran Halperin
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
8
|
de Vente C, Valmaggia P, Hoyng CB, Holz FG, Islam MM, Klaver CCW, Boon CJF, Schmitz-Valckenberg S, Tufail A, Saßmannshausen M, Sánchez CI. Generalizable Deep Learning for the Detection of Incomplete and Complete Retinal Pigment Epithelium and Outer Retinal Atrophy: A MACUSTAR Report. Transl Vis Sci Technol 2024; 13:11. [PMID: 39235402 PMCID: PMC11379096 DOI: 10.1167/tvst.13.9.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Purpose The purpose of this study was to develop a deep learning algorithm for detecting and quantifying incomplete retinal pigment epithelium and outer retinal atrophy (iRORA) and complete retinal pigment epithelium and outer retinal atrophy (cRORA) in optical coherence tomography (OCT) that generalizes well to data from different devices and to validate in an intermediate age-related macular degeneration (iAMD) cohort. Methods The algorithm comprised a domain adaptation (DA) model, promoting generalization across devices, and a segmentation model for detecting granular biomarkers defining iRORA/cRORA, which are combined into iRORA/cRORA segmentations. Manual annotations of iRORA/cRORA in OCTs from different devices in the MACUSTAR study (168 patients with iAMD) were compared to the algorithm's output. Eye level classification metrics included sensitivity, specificity, and quadratic weighted Cohen's κ score (κw). Segmentation performance was assessed quantitatively using Bland-Altman plots and qualitatively. Results For ZEISS OCTs, sensitivity and specificity for iRORA/cRORA classification were 38.5% and 93.1%, respectively, and 60.0% and 96.4% for cRORA. For Spectralis OCTs, these were 84.0% and 93.7% for iRORA/cRORA, and 62.5% and 97.4% for cRORA. The κw scores for 3-way classification (none, iRORA, and cRORA) were 0.37 and 0.73 for ZEISS and Spectralis, respectively. Removing DA reduced κw from 0.73 to 0.63 for Spectralis. Conclusions The DA-enabled iRORA/cRORA segmentation algorithm showed superior consistency compared to human annotations, and good generalization across OCT devices. Translational Relevance The application of this algorithm may help toward precise and automated tracking of iAMD-related lesion changes, which is crucial in clinical settings and multicenter longitudinal studies on iAMD.
Collapse
Affiliation(s)
- Coen de Vente
- Quantitative Healthcare Analysis (qurAI) Group, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Biomedical Engineering and Physics, Amsterdam, The Netherlands
- Diagnostic Image Analysis Group (DIAG), Department of Radiology and Nuclear Medicine, Radboud UMC, Nijmegen, The Netherlands
| | - Philippe Valmaggia
- Department of Biomedical Engineering, Universität Basel, Basel, Basel-Stadt, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Basel-Stadt, Switzerland
| | - Carel B Hoyng
- Department of Ophthalmology, Radboudumc, Nijmegen, The Netherlands
| | - Frank G Holz
- Department of Ophthalmology and GRADE Reading Center, University Hospital Bonn, Germany
| | - Mohammad M Islam
- Quantitative Healthcare Analysis (qurAI) Group, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Radboudumc, Nijmegen, The Netherlands
- Ophthalmology and Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Steffen Schmitz-Valckenberg
- Department of Ophthalmology and GRADE Reading Center, University Hospital Bonn, Germany
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Adnan Tufail
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | | | - Clara I Sánchez
- Quantitative Healthcare Analysis (qurAI) Group, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Biomedical Engineering and Physics, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Rosenfeld PJ, Shen M, Trivizki O, Liu J, Herrera G, Hiya FE, Li J, Berni A, Wang L, El-Mulki OS, Cheng Y, Lu J, Zhang Q, O'Brien RC, Gregori G, Wang RK. Rediscovering Age-Related Macular Degeneration with Swept-Source OCT Imaging: The 2022 Charles L. Schepens, MD, Lecture. Ophthalmol Retina 2024; 8:839-853. [PMID: 38641006 DOI: 10.1016/j.oret.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
PURPOSE Swept-source OCT angiography (SS-OCTA) scans of eyes with age-related macular degeneration (AMD) were used to replace color, autofluorescence, infrared reflectance, and dye-based fundus angiographic imaging for the diagnosis and staging of AMD. Through the use of different algorithms with the SS-OCTA scans, both structural and angiographic information can be viewed and assessed using both cross sectional and en face imaging strategies. DESIGN Presented at the 2022 Charles L. Schepens, MD, Lecture at the American Academy of Ophthalmology Retina Subspecialty Day, Chicago, Illinois, on September 30, 2022. PARTICIPANTS Patients with AMD. METHODS Review of published literature and ongoing clinical research using SS-OCTA imaging in AMD. MAIN OUTCOME MEASURES Swept-source OCT angiography imaging of AMD at different stages of disease progression. RESULTS Volumetric SS-OCTA dense raster scans were used to diagnose and stage both exudative and nonexudative AMD. In eyes with nonexudative AMD, a single SS-OCTA scan was used to detect and measure structural features in the macula such as the area and volume of both typical soft drusen and calcified drusen, the presence and location of hyperreflective foci, the presence of reticular pseudodrusen, also known as subretinal drusenoid deposits, the thickness of the outer retinal layer, the presence and thickness of basal laminar deposits, the presence and area of persistent choroidal hypertransmission defects, and the presence of treatment-naïve nonexudative macular neovascularization. In eyes with exudative AMD, the same SS-OCTA scan pattern was used to detect and measure the presence of macular fluid, the presence and type of macular neovascularization, and the response of exudation to treatment with vascular endothelial growth factor inhibitors. In addition, the same scan pattern was used to quantitate choriocapillaris (CC) perfusion, CC thickness, choroidal thickness, and the vascularity of the choroid. CONCLUSIONS Compared with using several different instruments to perform multimodal imaging, a single SS-OCTA scan provides a convenient, comfortable, and comprehensive approach for obtaining qualitative and quantitative anatomic and angiographic information to monitor the onset, progression, and response to therapies in both nonexudative and exudative AMD. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Philip J Rosenfeld
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida.
| | - Mengxi Shen
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Omer Trivizki
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida; Department of Ophthalmology, Tel Aviv Medical Center, University of Tel Aviv, Tel Aviv, Israel
| | - Jeremy Liu
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida; Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut
| | - Gissel Herrera
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Farhan E Hiya
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Jianqing Li
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida; Department of Ophthalmology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Alessandro Berni
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida; Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Liang Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Omar S El-Mulki
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Yuxuan Cheng
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Jie Lu
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Qinqin Zhang
- Research and Development, Carl Zeiss Meditec, Inc., Dublin, California
| | - Robert C O'Brien
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Giovanni Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington, Seattle, Washington; Department of Ophthalmology, University of Washington, Seattle, Washington
| |
Collapse
|
10
|
Goh KL, Abbott CJ, Campbell TG, Cohn AC, Ong DN, Wickremasinghe SS, Hodgson LAB, Guymer RH, Wu Z. Clinical performance of predicting late age-related macular degeneration development using multimodal imaging. Clin Exp Ophthalmol 2024; 52:774-782. [PMID: 38812454 DOI: 10.1111/ceo.14405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/17/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND To examine whether the clinical performance of predicting late age-related macular degeneration (AMD) development is improved through using multimodal imaging (MMI) compared to using colour fundus photography (CFP) alone, and how this compares with a basic prediction model using well-established AMD risk factors. METHODS Individuals with AMD in this study underwent MMI, including optical coherence tomography (OCT), fundus autofluorescence, near-infrared reflectance and CFP at baseline, and then at 6-monthly intervals for 3-years to determine MMI-defined late AMD development. Four retinal specialists independently assessed the likelihood that each eye at baseline would progress to MMI-defined late AMD over 3-years with CFP, and then with MMI. Predictive performance with CFP and MMI were compared to each other, and to a basic prediction model using age, presence of pigmentary abnormalities, and OCT-based drusen volume. RESULTS The predictive performance of the clinicians using CFP [AUC = 0.75; 95% confidence interval (CI) = 0.68-0.82] improved when using MMI (AUC = 0.79; 95% CI = 0.72-0.85; p = 0.034). However, a basic prediction model outperformed clinicians using either CFP or MMI (AUC = 0.85; 95% CI = 0.78-91; p ≤ 0.002). CONCLUSIONS Clinical performance for predicting late AMD development was improved by using MMI compared to CFP. However, a basic prediction model using well-established AMD risk factors outperformed retinal specialists, suggesting that such a model could further improve personalised counselling and monitoring of individuals with the early stages of AMD in clinical practice.
Collapse
Affiliation(s)
- Kai Lyn Goh
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia
| | - Carla J Abbott
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia
| | - Thomas G Campbell
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Amy C Cohn
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Dai Ni Ong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Sanjeewa S Wickremasinghe
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia
| | - Lauren A B Hodgson
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia
| | - Zhichao Wu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia
| |
Collapse
|
11
|
Félix R, Gouveia N, Bernardes J, Silva R, Murta J, Marques JP. Prognostic impact of hyperreflective foci in nonsyndromic retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 2024; 262:2851-2858. [PMID: 38578334 PMCID: PMC11377603 DOI: 10.1007/s00417-024-06474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/22/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024] Open
Abstract
PURPOSE To evaluate the prognostic impact of hyperreflective foci (HRF) on spectral-domain optical coherence tomography (SD-OCT) in nonsyndromic retinitis pigmentosa (RP). METHODS Retrospective, single-center cohort study including genetically-tested RP patients with a minimum follow-up of 24 months. Clinical data including demographics, genetic results and best-corrected visual acuity (BCVA) at baseline and follow-up were collected. Horizontal and vertical SD-OCT scans were analyzed by 2 independent graders. Outer nuclear layer (ONL) thickness and ellipsoid zone (EZ) width were manually measured in horizontal and vertical scans. HRF were classified according to location: outer retinal layers within the central 3mm (central-HRF), outer retinal layers beyond the central 3mm (perifoveal-HRF), and choroid (choroidal-HRF). Central macular thickness (CMT), central point thickness (CPT) and choroidal thickness (CT) at baseline and follow-up were also recorded. RESULTS A total of 175 eyes from 94 RP patients (47.9% female, mean age 50.7±15.5 years) were included, with a mean follow-up of 29.24±7.17 months. Mean ETDRS (early treatment diabetic retinopathy study) BCVA decreased from 61.09±23.54 to 56.09±26.65 (p=0.082). At baseline, 72 eyes (41.1%) showed central-HRF, 110 eyes (62.9%) had perifoveal-HRF and 149 eyes (85.1%) exhibited choroidal-HRF. Central-HRF and perifoveal-HRF were associated with worse final BCVA, as well as greater BCVA deterioration (all p<0.0029). Only central-HRF were associated with a worse final CMT (p<0.001). Shorter EZ widths were associated with all types of HRF (p<0.05). Perifoveal and choroidal-HRF predicted smaller final EZ areas (p<0.01). CONCLUSION HRF are highly prevalent in RP patients and appear to have a negative prognostic impact in visual function and EZ area.
Collapse
Affiliation(s)
- Raquel Félix
- Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Nuno Gouveia
- Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - João Bernardes
- Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Rufino Silva
- Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Joaquim Murta
- Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - João Pedro Marques
- Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal.
| |
Collapse
|
12
|
Carvajal N, Yang D, Nava K, Kedia A, Keenan JD, Yiu G, Stewart JM. Intergrader Agreement in Grading Optical Coherence Tomography Morphologic Features in Eyes With Intermediate Nonexudative Age-Related Macular Degeneration. Transl Vis Sci Technol 2024; 13:3. [PMID: 39087929 PMCID: PMC11305419 DOI: 10.1167/tvst.13.8.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/02/2024] [Indexed: 08/02/2024] Open
Abstract
Purpose To determine the reliability of a nine-point summary scale for grading intermediate age-related macular degeneration (AMD) image morphologic features based on the Early Treatment Diabetic Retinopathy Study (ETDRS) grid. Methods Two trained graders independently divided spectral domain-optical coherence tomography (SD-OCT) scans into nine subfields and then graded each subfield for the presence of intraretinal hyperreflective foci (HRF), reticular pseudodrusen (RPD), and incomplete or complete retinal pigment epithelium and outer retinal atrophy (iRORA or cRORA). Grading results were assessed by summing the subfield grades into a nine-point summary score and also by using an eye-level binary grade for presence of the finding in any subfield. Gwet's first-order agreement coefficient (AC1) was calculated to assess intergrader agreement. Results Images of 79 eyes from 52 patients were evaluated. Intergrader agreement was higher when the OCT grades were summarized with a nine-point summary score (Gwet's AC1 0.92, 0.89, 0.99, and 0.99 for HRF, RPD, iRORA, and cRORA, respectively) compared with the eye-level binary grade (Gwet's AC1 0.75, 0.76, 0.97, and 0.96 for HRF, RPD, iRORA, and cRORA, respectively), with significant differences detected for HRF and RPD. Conclusions The use of a nine-point summary score showed higher reliability in grading when compared to the binary subfield- and eye-level data, and thus may offer more precise estimation of AMD disease staging. Translational Relevance These findings suggest that a nine-point summary score could be a useful means of disease staging by using findings on OCT in clinical studies of AMD.
Collapse
Affiliation(s)
- Nicole Carvajal
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
- Department of Ophthalmology, Zuckerberg San Francisco General Hospital and Trauma Center, Department of Ophthalmology, San Francisco, CA, USA
| | - Daphne Yang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
- Department of Ophthalmology, Zuckerberg San Francisco General Hospital and Trauma Center, Department of Ophthalmology, San Francisco, CA, USA
| | - Kiana Nava
- Department of Ophthalmology, University of California, Davis, Department of Ophthalmology, Sacramento, CA, USA
| | - Anjani Kedia
- Department of Ophthalmology, University of California, Davis, Department of Ophthalmology, Sacramento, CA, USA
| | - Jeremy D Keenan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, CA, USA
| | - Glenn Yiu
- Department of Ophthalmology, University of California, Davis, Department of Ophthalmology, Sacramento, CA, USA
| | - Jay M Stewart
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
- Department of Ophthalmology, Zuckerberg San Francisco General Hospital and Trauma Center, Department of Ophthalmology, San Francisco, CA, USA
| |
Collapse
|
13
|
Romano F, Ding X, Yuan M, Vingopoulos F, Garg I, Choi H, Alvarez R, Tracy JH, Finn M, Ravazi P, Stettler IVM, Laìns I, Vavvas DG, Husain D, Miller JW, Miller JB. Progressive Choriocapillaris Changes on Optical Coherence Tomography Angiography Correlate With Stage Progression in AMD. Invest Ophthalmol Vis Sci 2024; 65:21. [PMID: 38990069 PMCID: PMC11246100 DOI: 10.1167/iovs.65.8.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024] Open
Abstract
Purpose We investigated the association between inner choroid flow deficit percentage (IC-FD%) using swept-source optical coherence tomography angiography (SS-OCTA) and progression of AMD. Methods Retrospective, observational study including 64 eyes (42 participants) with early or intermediate AMD at baseline. Participants had two or more consecutive swept-source optical coherence tomography angiography covering a period of at least 18 months. Demographics, visual acuity, and AMD staging based on Beckman classification were reviewed. OCT was analyzed for hyperreflective foci, subretinal drusenoid deposits, hyporeflective drusen cores, and subfoveal choroidal thickness. IC-FD% was measured within the central 3- and 6-mm using a 16-µm slab, after compensation and binarization (Phansalkar method). Mixed-effects Cox regression models assessed the association between imaging biomarkers and AMD progression. Results During follow-up (37 ± 9 months), 4 eyes with early AMD (31%) progressed to intermediate AMD and 30 (59%) eyes with intermediate AMD developed late AMD (19 geographic atrophy; 11 wet AMD). Baseline hyporeflective drusen core was associated with geographic atrophy development (P < 0.01), whereas greater IC-FD% (3-mm) was associated with wet AMD (P = 0.03). Time-varying analysis showed that faster subfoveal choroidal thickness reduction and IC-FD% (6-mm) increase were associated with geographic atrophy onset (P < 0.05), whereas IC-FD% (3-mm) increase was associated with wet AMD (P = 0.03). Notably, greater IC-FD% increases in the 3 mm (area under the curve = 0.72) and 6 mm (area under the curve = 0.89) were better predictive of wet AMD and geographic atrophy development, respectively. Conclusions Our longitudinal IC-FD% assessment emphasizes the role of progressive choriocapillaris changes as a biomarker for AMD progression. Our findings support that widespread choriocapillaris alterations (6 mm) may precede progression to geographic atrophy, whereas more central choriocapillaris loss (3 mm) may provide an ischemic stimulus for wet AMD.
Collapse
Affiliation(s)
- Francesco Romano
- Harvard Retinal Imaging Lab, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, Massachusetts, United States
| | - Xinyi Ding
- Harvard Retinal Imaging Lab, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, Massachusetts, United States
| | - Melissa Yuan
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, Massachusetts, United States
| | - Filippos Vingopoulos
- Harvard Retinal Imaging Lab, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
- Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, United States
| | - Itika Garg
- Harvard Retinal Imaging Lab, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
- Department of Ophthalmology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Hanna Choi
- Harvard Retinal Imaging Lab, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Rodrigo Alvarez
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, Massachusetts, United States
| | - Jack H. Tracy
- Harvard Retinal Imaging Lab, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Matthew Finn
- Harvard Retinal Imaging Lab, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Peyman Ravazi
- Harvard Retinal Imaging Lab, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Isabella V. M. Stettler
- Harvard Retinal Imaging Lab, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Inês Laìns
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, Massachusetts, United States
| | - Demetrios G. Vavvas
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, Massachusetts, United States
| | - Deeba Husain
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, Massachusetts, United States
| | - Joan W. Miller
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, Massachusetts, United States
| | - John B. Miller
- Harvard Retinal Imaging Lab, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, Massachusetts, United States
| |
Collapse
|
14
|
Manafi N, Mahmoudi A, Emamverdi M, Corradetti G, Corona ST, Wykoff CC, Sadda SR. Topographic analysis of local OCT biomarkers which predict progression to atrophy in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 2024; 262:2083-2091. [PMID: 38300334 PMCID: PMC11222249 DOI: 10.1007/s00417-024-06389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/10/2024] [Accepted: 01/20/2024] [Indexed: 02/02/2024] Open
Abstract
PURPOSE To define optical coherence tomography (OCT) biomarkers that precede the development of complete retinal pigment epithelium and outer retinal atrophy (cRORA) at that location in eyes with age-related macular degeneration (AMD). METHODS In this retrospective case-control study, patients with dry AMD who had evidence of cRORA and OCT data available for 4 years (48 ± 4 months) prior to the first visit with evidence of cRORA were included. The visit 4 years prior to the development of cRORA was defined as the baseline visit, and the region on the OCT B-scans of future cRORA development was termed the case region. A region in the same eye at the same distance from the foveal center as the case region that did not progress to cRORA was selected as the control region. OCT B-scans at the baseline visit through both the case and control regions were evaluated for the presence of soft and cuticular drusen, drusen with hyporeflective cores (hcD), drusenoid pigment epithelial detachments (PED), subretinal drusenoid deposits (SDD), thick and thin double-layer signs (DLS), intraretinal hyperreflective foci (IHRF), and acquired vitelliform lesions (AVL). RESULTS A total of 57 eyes of 41 patients with dry AMD and evidence of cRORA were included. Mean time from the baseline visit to the first visit with cRORA was 44.7 ± 6.5 months. The presence of soft drusen, drusenoid PED, AVL, thin DLS, and IHRF at the baseline visit was all associated with a significantly increased risk of cRORA at that location. Multivariable logistic regression revealed that IHRF (OR, 8.559; p < 0.001), drusenoid PED (OR, 7.148; p = 0.001), and a thin DLS (OR, 3.483; p = 0.021) were independent predictors of development of cRORA at that location. CONCLUSIONS IHRF, drusenoid PED, and thin DLS are all local risk factors for the development of cRORA at that same location. These findings would support the inclusion of these features within a more granular staging system defining specific steps in the progression from early AMD to atrophy.
Collapse
Affiliation(s)
- Navid Manafi
- Doheny Image Reading and Research Laboratory, Doheny Eye Institute, 150 N. Orange Grove Blvd, Suite 232, Pasadena, CA, 91103, USA
- Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Alireza Mahmoudi
- Doheny Image Reading and Research Laboratory, Doheny Eye Institute, 150 N. Orange Grove Blvd, Suite 232, Pasadena, CA, 91103, USA
- Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Mehdi Emamverdi
- Doheny Image Reading and Research Laboratory, Doheny Eye Institute, 150 N. Orange Grove Blvd, Suite 232, Pasadena, CA, 91103, USA
- Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Giulia Corradetti
- Doheny Image Reading and Research Laboratory, Doheny Eye Institute, 150 N. Orange Grove Blvd, Suite 232, Pasadena, CA, 91103, USA
- Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | | | - Charles C Wykoff
- Retina Consultants of Texas, Retina Consultants of America, Houston, TX, USA
| | - SriniVas R Sadda
- Doheny Image Reading and Research Laboratory, Doheny Eye Institute, 150 N. Orange Grove Blvd, Suite 232, Pasadena, CA, 91103, USA.
- Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Vidal-Oliver L, Montolío-Marzo E, Gallego-Pinazo R, Dolz-Marco R. Optical coherence tomography biomarkers in early and intermediate age-related macular degeneration: A clinical guide. Clin Exp Ophthalmol 2024; 52:207-219. [PMID: 38214056 DOI: 10.1111/ceo.14337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/06/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
Advanced forms of age-related macular degeneration (AMD), characterised by atrophic and neovascular changes, are a leading cause of vision loss in the elderly population worldwide. Prior to the development of advanced AMD, a myriad of risk factors from the early and intermediate stages of AMD have been published in the scientific literature over the last years. The ability to precisely recognise structural and anatomical changes in the ageing macula, altogether with the understanding of the individual risk implications of each one of them is key for an accurate and personalised diagnostic assessment. The present review aims to summarise updated evidence of the relative risk conferred by diverse macular signs, commonly seen on optical coherence tomography, in terms of progression to geographic atrophy or macular neovascularization. This information may also serve as a basis for tailored follow-up monitoring visits.
Collapse
Affiliation(s)
- Lourdes Vidal-Oliver
- Department of Ophthalmology, Fundación Oftalmología Médica de la Comunidad Valenciana, Valencia, Spain
- Department of Ophthalmology, Clínico San Carlos Hospital, Madrid, Spain
- Macula Unit, Oftalvist Clinic, Valencia, Spain
| | | | | | | |
Collapse
|
16
|
Goh KL, Wintergerst MWM, Abbott CJ, Hadoux X, Jannaud M, Kumar H, Hodgson LAB, Guzman G, Janzen S, van Wijngaarden P, Finger RP, Guymer RH, Wu Z. HYPERREFLECTIVE FOCI NOT SEEN AS HYPERPIGMENTARY ABNORMALITIES ON COLOR FUNDUS PHOTOGRAPHS IN AGE-RELATED MACULAR DEGENERATION. Retina 2024; 44:214-221. [PMID: 37831941 DOI: 10.1097/iae.0000000000003958] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
PURPOSE To investigate the prognostic value of quantifying optical coherence tomography (OCT)-defined hyperreflective foci (HRF) that do not correspond to hyperpigmentary abnormalities (HPAs) on color fundus photographs (CFPs)-HRF (OCT+/CFP-) -when considered in addition to HPA extent, for predicting late age-related macular degeneration development. This study sought to understand the impact of HRF (OCT+/CFP-) extent on visual sensitivity. METHODS Two hundred eighty eyes from 140 participants with bilateral large drusen underwent imaging and microperimetry at baseline, and then 6-monthly for 3-years. The extent of HPAs on CFPs and HRF (OCT+/CFP-) on OCT was quantified at baseline. Predictive models for progression to late age-related macular degeneration, accounting for drusen volume and age, were developed using HPA extent, with and without HRF (OCT+/CFP-) extent. The association between HPA and HRF (OCT+/CFP-) extent with sector-based visual sensitivity was also evaluated. RESULTS Incorporating HRF (OCT+/CFP-) extent did not improve the predictive performance for late age-related macular degeneration development ( P ≥ 0.32). Increasing HPA and HRF (OCT+/CFP-) extent in each sector were independently and significantly associated with reduced sector-based visual sensitivity ( P ≤ 0.004). CONCLUSION The addition of HRF (OCT+/CFP-) extent to HPA extent did not improve the prediction of late age-related macular degeneration development. HRF (OCT+/CFP-) extent was also independently associated with local reductions in visual sensitivity, after accounting for HPAs.
Collapse
Affiliation(s)
- Kai Lyn Goh
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia; and
| | | | - Carla J Abbott
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia; and
| | - Xavier Hadoux
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia; and
| | - Maxime Jannaud
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Himeesh Kumar
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia; and
| | - Lauren A B Hodgson
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Gabriela Guzman
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Simon Janzen
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Peter van Wijngaarden
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia; and
| | - Robert P Finger
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia; and
| | - Zhichao Wu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia; and
| |
Collapse
|
17
|
Oncel D, Corradetti G, He Y, Ashrafkhorasani M, Nittala MG, Stambolian D, Pericak-Vance MA, Haines JL, Sadda SR. Assessment of intraretinal hyperreflective foci using multimodal imaging in eyes with age-related macular degeneration. Acta Ophthalmol 2024; 102:e126-e132. [PMID: 37199278 PMCID: PMC10656356 DOI: 10.1111/aos.15708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
PURPOSE This study aimed to investigate the correspondence between intraretinal hyperreflective foci (IHRF) identified on optical coherence tomography (OCT) B-scans with hyperpigmentation on colour fundus photography (CFP) or hyperreflectivity on infrared reflectance (IR) images in eyes with age-related macular degeneration (AMD). METHODS Flash CFP, IR images and OCT B-scans obtained at the same visit were evaluated. Individual IHRF identified on OCT B-scans were assessed for the qualitative presence or absence of a hypotransmission tail into the choroid. The corresponding IR image obtained at the time of OCT acquisition was analysed for the presence or absence of hyperreflectivity in this region. The IR images were manually registered to the CFP image, and CFP images were inspected for the presence or absence of hyperpigmentation at the location of IHRF. RESULTS From 122 eyes, a total of 494 IHRF were evaluated. For the primary analysis of qualitative presence or absence of hyperpigmentation on CFP and hyperreflectivity on IR at the locations corresponding to IHRF on OCT, 301 (61.0%) of the IHRFs demonstrated evidence of hyperpigmentation on CFP, while only 115 (23.3%) showed evidence of hyperreflectivity on IR. The qualitative determination of the presence or absence of an abnormality on CFP or IR were significantly different (p < 0.0001). 327 (66.2%) of the IHRF showed hypotransmission, and 80.4% of these IHRF showed hyperpigmentation on CFP, though only 23.9% (p < 0.0001) demonstrated hyperreflectivity on IR. CONCLUSIONS Less than two-thirds of IHRF evident on OCT manifest as hyperpigmentation on colour photos, though IHRF with posterior shadowing are more likely to be evident as pigment. IR imaging appears to be even more poorly sensitive for visualizing IHRF.
Collapse
Affiliation(s)
- Deniz Oncel
- Doheny Eye Institute, Los Angeles, California
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Giulia Corradetti
- Doheny Eye Institute, Los Angeles, California
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ye He
- Doheny Eye Institute, Los Angeles, California
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Maryam Ashrafkhorasani
- Doheny Eye Institute, Los Angeles, California
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Muneeswar Gupta Nittala
- Doheny Eye Institute, Los Angeles, California
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Dwight Stambolian
- Ophthalmology and Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jonathan L. Haines
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland OH, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - SriniVas R. Sadda
- Doheny Eye Institute, Los Angeles, California
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
18
|
Samanta A, Alsoudi AF, Rahimy E, Chhablani J, Weng CY. Imaging Modalities for Dry Macular Degeneration. Int Ophthalmol Clin 2024; 64:35-55. [PMID: 38146880 DOI: 10.1097/iio.0000000000000512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
|
19
|
Verma A, Corradetti G, He Y, Nittala MG, Nassisi M, Velaga SB, Haines JL, Pericak-Vance MA, Stambolian D, Sadda SR. Relationship between the distribution of intra-retinal hyper-reflective foci and the progression of intermediate age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 2023; 261:3437-3447. [PMID: 37566303 PMCID: PMC10667133 DOI: 10.1007/s00417-023-06180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023] Open
Abstract
PURPOSE To assess the relationship between the distribution of intra-retinal hyper-reflective foci (IHRF) on optical coherence tomography (OCT) and progression of intermediate age-related macular degeneration (iAMD) over 2 years. METHODS Cirrus OCT volumes of the macula of subjects enrolled in the Amish Eye Study with 2 years of follow-up were evaluated for the presence of iAMD and IHRF at baseline. The IHRF were counted in a series of 5 sequential en face slabs from outer to inner retina. The number of IHRF in each slab at baseline and the change in IHRF from baseline to year 2 were correlated with progression to late AMD at 2 years. RESULTS Among 120 eyes from 71 patients with iAMD, 52 eyes (43.3%) of 42 patients had evidence of both iAMD and IHRF at baseline. Twenty-three eyes (19.0%) showed progression to late AMD after 2 years. The total IHRF count increased from 243 at baseline to 604 at 2 years, with a significant increase in the IHRF number in each slab, except for the innermost slab 5 which had no IHRF at baseline or follow-up. The IHRF count increased from 121 to 340 in eyes that showed progression to late AMD. The presence of IHRF in the outermost retinal slabs 1 and 2 was independently associated with a significant risk of progression to late AMD. A greater increase in IHRF count over 2 years in these same slabs 1 and 2 was also associated with a higher risk of conversion to late AMD. CONCLUSIONS The risk of progression to late AMD appears to be significantly associated with the distribution and extent of IHRF in the outermost retinal layers. This observation may point to significant pathophysiologic differences of IHRF in inner versus outer layers of the retina.
Collapse
Affiliation(s)
- Aditya Verma
- Doheny Eye Institute, Pasadena, CA, USA
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Eye Specialists, Louisville, KY, USA
| | - Giulia Corradetti
- Doheny Eye Institute, Pasadena, CA, USA
- Department of Ophthalmology, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Ye He
- Doheny Eye Institute, Pasadena, CA, USA
- Department of Ophthalmology, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | | | - Marco Nassisi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Jonathan L Haines
- Department of Population & Quantitative Health Sciences and Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Dwight Stambolian
- Department of Ophthalmology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - SriniVas R Sadda
- Doheny Eye Institute, Pasadena, CA, USA.
- Department of Ophthalmology, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Vujosevic S, Alovisi C, Chakravarthy U. Epidemiology of geographic atrophy and its precursor features of intermediate age-related macular degeneration. Acta Ophthalmol 2023; 101:839-856. [PMID: 37933608 DOI: 10.1111/aos.15767] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 11/08/2023]
Abstract
Globally age-related macular degeneration (AMD) is a leading cause of blindness with a significant impact on quality of life. Geographic atrophy (GA) is the atrophic late form of AMD and its prevalence increases markedly with age with around 1 in 5 persons aged 85 and above having GA in at least one eye. Bilateral GA leads to severe visual impairment thus posing a significant burden on patients, careers and health providers. The incidence and prevalence of GA varies across different geographic regions, with the highest rates in those of European ancestry. Although heterogeneity in definitions of GA and reporting strategy can explain some of the discrepancies, the data overall are consistent in showing a lower prevalence in other ethnicities such as those of Asian heritage. This is at present unexplained but thought to be due to the existence of protective factors such as differences in eye pigmentation, diet, environmental exposures and genetic variability. This review covers key aspects of the prevalence and incidence of the ocular precursor features of GA (large drusen, pigmentary abnormalities and reticular pseudo-drusen), the late stage of GA and factors that have been known to be associated with modifying risk including systemic, demographic, environment, genetic and ocular. Understanding the global epidemiology scenario is crucial for the prevention of and management of patients with GA.
Collapse
Affiliation(s)
- Stela Vujosevic
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Eye Clinic, IRCCS MultiMedica, Milan, Italy
| | | | - Usha Chakravarthy
- Center for Public Health, Queen's University of Belfast, Belfast, Northern Ireland
| |
Collapse
|
21
|
Corvi F, Corradetti G, Laiginhas R, Liu J, Gregori G, Rosenfeld PJ, Sadda SR. Comparison between B-Scan and En Face Images for Incomplete and Complete Retinal Pigment Epithelium and Outer Retinal Atrophy. Ophthalmol Retina 2023; 7:999-1009. [PMID: 37437713 DOI: 10.1016/j.oret.2023.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE To evaluate and compare the detection of incomplete retinal pigment epithelium and outer retinal atrophy (iRORA) and complete retinal pigment epithelium and outer retinal atrophy (cRORA) assessed on OCT B-scans versus persistent choroidal hypertransmission defects (hyperTDs) assessed by en face choroidal OCT images. DESIGN Retrospective, cross-sectional study. PARTICIPANTS Patients with late atrophic age-related macular degeneration imaged on the same day using both Spectralis OCT and Cirrus OCT. MAIN OUTCOME MEASURE Agreement between the B-scan and en face OCT for the detection of hyperTDs, cRORA, and iRORA. METHODS Two independent graders examined en face OCT and structural OCT to determine the presence and location of hyperTDs, iRORA, and cRORA. RESULTS A total of 239 iRORA and cRORA lesions were detected on the B-scans, and 249 hyperTD lesions were identified on the en face OCT images. There was no significant difference (P = 0.88) in the number of lesions. There was no significant difference in the 134 cRORA lesions identified on B-scans and the 131 hyperTDs detected on en face OCT images (P = 0.13). A total of 105 iRORA lesions were identified by B-scan assessment; however, 50 of these iRORA lesions met the criteria for persistent hyperTDs on en face OCT images (P < 0.001). When considering the topographic correspondence between B-scan and en face OCT detected lesions, the mean percentage of agreement between B-scan detection of cRORA lesions with en face OCT detection was 97.6 % (P = 0.13). CONCLUSIONS We observed high overall agreement between cRORA lesions identified on B-scans and persistent hyperTDs identified on en face OCT. However, en face imaging was able to detect iRORA lesions that had a greatest linear dimension ≥ 250 μm in a nonhorizontal en face dimension. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Federico Corvi
- Doheny Eye Institute, University of California at Los Angeles, Los Angeles, California; Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; Eye Clinic, Department of Biomedical and Clinical Science "Luigi Sacco", Sacco Hospital, University of Milan, Milan, Italy
| | - Giulia Corradetti
- Doheny Eye Institute, University of California at Los Angeles, Los Angeles, California; Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Rita Laiginhas
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal. Centro Hospitalar e Universitário São João, Porto, Portugal; Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Jeremy Liu
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Giovanni Gregori
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Philip J Rosenfeld
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Srinivas R Sadda
- Doheny Eye Institute, University of California at Los Angeles, Los Angeles, California; Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| |
Collapse
|
22
|
Schmetterer L, Scholl H, Garhöfer G, Janeschitz-Kriegl L, Corvi F, Sadda SR, Medeiros FA. Endpoints for clinical trials in ophthalmology. Prog Retin Eye Res 2023; 97:101160. [PMID: 36599784 DOI: 10.1016/j.preteyeres.2022.101160] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
With the identification of novel targets, the number of interventional clinical trials in ophthalmology has increased. Visual acuity has for a long time been considered the gold standard endpoint for clinical trials, but in the recent years it became evident that other endpoints are required for many indications including geographic atrophy and inherited retinal disease. In glaucoma the currently available drugs were approved based on their IOP lowering capacity. Some recent findings do, however, indicate that at the same level of IOP reduction, not all drugs have the same effect on visual field progression. For neuroprotection trials in glaucoma, novel surrogate endpoints are required, which may either include functional or structural parameters or a combination of both. A number of potential surrogate endpoints for ophthalmology clinical trials have been identified, but their validation is complicated and requires solid scientific evidence. In this article we summarize candidates for clinical endpoints in ophthalmology with a focus on retinal disease and glaucoma. Functional and structural biomarkers, as well as quality of life measures are discussed, and their potential to serve as endpoints in pivotal trials is critically evaluated.
Collapse
Affiliation(s)
- Leopold Schmetterer
- Singapore Eye Research Institute, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore; Academic Clinical Program, Duke-NUS Medical School, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore; Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria; Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland.
| | - Hendrik Scholl
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria
| | - Lucas Janeschitz-Kriegl
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Federico Corvi
- Eye Clinic, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Italy
| | - SriniVas R Sadda
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Felipe A Medeiros
- Vision, Imaging and Performance Laboratory, Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| |
Collapse
|
23
|
Kang D, Lee YJ, Nam KT, Choi M, Yun C. Hyperreflective foci distribution in eyes with dry age-related macular degeneration with subretinal drusenoid deposits. Graefes Arch Clin Exp Ophthalmol 2023; 261:2821-2828. [PMID: 37231279 DOI: 10.1007/s00417-023-06127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023] Open
Abstract
PURPOSE To investigate the distribution of hyperreflective foci (HRF) in eyes with dry age-related macular degeneration (AMD). METHODS We retrospectively reviewed optical coherence tomography (OCT) images of 58 dry AMD eyes presenting HRF. The distribution of HRF according to the early treatment diabetic retinopathy study area was analyzed according to the presence of subretinal drusenoid deposits (SDDs). RESULTS We classified 32 eyes and 26 eyes into the dry AMD with SDD group (SDD group) and dry AMD without SDD group (non-SDD group), respectively. The non-SDD group had higher prevalence and density of HRF at the fovea (65.4% and 1.71 ± 1.48) than the SDD group (37.5% and 0.48 ± 0.63, P = 0.035 and P < 0.001, respectively). However, the prevalence and density of HRF in the outer circle area of the SDD group (81.3% and 0.11 ± 0.09) were greater than those of the non-SDD group (53.8% and 0.05 ± 0.06, p = 0.025 and p = 0.004, respectively). The SDD group showed higher prevalence and mean densities of HRF in the superior and temporal area than in the non-SDD group (all, p < 0.05). CONCLUSION HRF distributions in dry AMD varied according to the presence of SDDs. This might support that the degenerative features may be different between dry AMD eyes with and without SDDs.
Collapse
Affiliation(s)
| | - Young Joo Lee
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Ki Tae Nam
- Department of Ophthalmology, Jeju National University College of Medicine, Jeju, Korea
| | - Mihyun Choi
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Cheolmin Yun
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea.
| |
Collapse
|
24
|
Sadda S, Verma A, Corradetti G, Nittala M, He Y, Nassisi M, Velaga SB, Haines J, Pericak-Vance M, Stambolian D. Longitudinal evaluation of the distribution of intraretinal hyper-reflective foci in eyes with intermediate age-related macular degeneration. RESEARCH SQUARE 2023:rs.3.rs-3273570. [PMID: 37790320 PMCID: PMC10543506 DOI: 10.21203/rs.3.rs-3273570/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Purpose Intraretinal hyper-reflective foci (IHRF) are optical coherence tomography (OCT) risk factors for progression of age-related macular degeneration (AMD). In this study we assess the change in the number and distribution of IHRF over two years. Methods The axial distribution of IHRF were quantified in eyes with intermediate AMD (iAMD) at baseline and 24 months, using a series of 5 sequential equidistant en face OCT retinal slabs generated between the outer border of the internal limiting membrane (ILM) and the inner border of the retinal pigment epithelium (RPE). Following thresholding and binarization, IHRF were quantified in each retinal slab using ImageJ. The change in IHRF number in each slab between baseline and month 24 was calculated. Results Fifty-two eyes showed evidence of IHRF at baseline, and all continued to show evidence of IHRF at 24 months (M24). The total average IHRF count/eye increased significantly from 4.67 ± 0.63 at baseline to 11.62 ± 13.86 at M24 (p<0.001) with a mean increase of 6.94 ± 11.12 (range: - 9 to + 60). Overall, at M24, 76.9% eyes showed an increase in IHRF whereas 15.4% of eyes showed a decrease (4 eyes [7.6%] showed no change). There was a greater number of IHRF and a greater increase in IHRF over M24 in the outer slabs. Conclusions IHRF are most common in the outer retinal layers and tend to increase in number over time. The impact of the distribution and frequency of these IHRF on the overall progression of AMD requires further study.
Collapse
|
25
|
Goździewska E, Wichrowska M, Kocięcki J. Early Optical Coherence Tomography Biomarkers for Selected Retinal Diseases-A Review. Diagnostics (Basel) 2023; 13:2444. [PMID: 37510188 PMCID: PMC10378475 DOI: 10.3390/diagnostics13142444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Optical coherence tomography (OCT) is a non-invasive, easily accessible imaging technique that enables diagnosing several retinal diseases at various stages of development. This review discusses early OCT findings as non-invasive imaging biomarkers for predicting the future development of selected retinal diseases, with emphasis on age-related macular degeneration, macular telangiectasia, and drug-induced maculopathies. Practitioners, by being able to predict the development of many conditions and start treatment at the earliest stage, may thus achieve better treatment outcomes.
Collapse
Affiliation(s)
- Ewa Goździewska
- Department of Ophthalmology, Poznan University of Medical Sciences, 60-569 Poznań, Poland
| | - Małgorzata Wichrowska
- Department of Ophthalmology, Poznan University of Medical Sciences, 60-569 Poznań, Poland
- Doctoral School, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Jarosław Kocięcki
- Department of Ophthalmology, Poznan University of Medical Sciences, 60-569 Poznań, Poland
| |
Collapse
|
26
|
Wei W, Anantharanjit R, Patel RP, Cordeiro MF. Detection of macular atrophy in age-related macular degeneration aided by artificial intelligence. Expert Rev Mol Diagn 2023:1-10. [PMID: 37144908 DOI: 10.1080/14737159.2023.2208751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
INTRODUCTION Age-related macular degeneration (AMD) is a leading cause of irreversible visual impairment worldwide. The endpoint of AMD, both in its dry or wet form, is macular atrophy (MA) which is characterized by the permanent loss of the RPE and overlying photoreceptors either in dry AMD or in wet AMD. A recognized unmet need in AMD is the early detection of MA development. AREAS COVERED Artificial Intelligence (AI) has demonstrated great impact in detection of retinal diseases, especially with its robust ability to analyze big data afforded by ophthalmic imaging modalities, such as color fundus photography (CFP), fundus autofluorescence (FAF), near-infrared reflectance (NIR), and optical coherence tomography (OCT). Among these, OCT has been shown to have great promise in identifying early MA using the new criteria in 2018. EXPERT OPINION There are few studies in which AI-OCT methods have been used to identify MA; however, results are very promising when compared to other imaging modalities. In this paper, we review the development and advances of ophthalmic imaging modalities and their combination with AI technology to detect MA in AMD. In addition, we emphasize the application of AI-OCT as an objective, cost-effective tool for the early detection and monitoring of the progression of MA in AMD.
Collapse
Affiliation(s)
- Wei Wei
- Department of Ophthalmology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
- Department of Surgery & Cancer, Imperial College London, London, UK
- Imperial College Ophthalmology Research Group (ICORG), Imperial College Ophthalmology Research Group, London, UK
| | - Rajeevan Anantharanjit
- Imperial College Ophthalmology Research Group (ICORG), Imperial College Ophthalmology Research Group, London, UK
- Western Eye Hospital, Imperial College Healthcare NHS trust, London, UK
| | - Radhika Pooja Patel
- Imperial College Ophthalmology Research Group (ICORG), Imperial College Ophthalmology Research Group, London, UK
- Western Eye Hospital, Imperial College Healthcare NHS trust, London, UK
| | - Maria Francesca Cordeiro
- Department of Surgery & Cancer, Imperial College London, London, UK
- Imperial College Ophthalmology Research Group (ICORG), Imperial College Ophthalmology Research Group, London, UK
- Western Eye Hospital, Imperial College Healthcare NHS trust, London, UK
| |
Collapse
|
27
|
Liu TYA, Wang J, Csaky KG. Correlation between hyperreflective foci and visual function testing in eyes with intermediate age-related macular degeneration. Int J Retina Vitreous 2023; 9:24. [PMID: 37029401 PMCID: PMC10080743 DOI: 10.1186/s40942-023-00461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/26/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND To investigate the relationship between intraretinal hyperreflective foci (HRF) and visual function in intermediate age-related macular degeneration (iAMD). METHODS Retrospective, cross-sectional study. iAMD patients underwent spectral domain optical coherence tomography (SD-OCT) imaging and vision function testing: normal luminance best corrected visual acuity (VA), low luminance VA (LLVA), quantitative contrast sensitivity function (qCSF), low luminance qCSF (LLqCSF), and mesopic microperimetry. Each OCT volume was graded for the presence and number of HRF. Each HRF was graded for: separation from the retinal pigment epithelium (RPE), above drusen, and shadowing. Central drusen volume was calculated by the built-in functionality of the commercial OCT software after manual segmentation of the RPE and Bruch's membrane. RESULTS HRF group: 11 eyes; 9 patients; mean age 75.7 years. No-HRF group: 11 eyes; 10 patients; mean age 74.8 years. In linear mixed effect model adjusting for cube-root transformed drusen volume, HRF group showed statistically significant worse VA, LLVA, LLqCSF, and microperimetry. HRF group showed worse cone function, as measured by our pre-defined multicomponent endpoint, incorporating LLVA, LLqCSF and microperimetry (p = 0.018). For eyes with HRF, # of HRF did not correlate with any functional measures; however, % of HRF separated from RPE and # of HRF that created shadowing were statistically associated with low luminance deficit (LLD). CONCLUSIONS The association between the presence of HRF and worse cone visual function supports the hypothesis that eyes with HRF have more advanced disease.
Collapse
Affiliation(s)
- T Y Alvin Liu
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jiangxia Wang
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Karl G Csaky
- Retina Foundation of the Southwest, 9600 N Central Expy #200, Dallas, TX, 75231, USA.
| |
Collapse
|
28
|
Hirabayashi K, Yu HJ, Wakatsuki Y, Marion KM, Wykoff CC, Sadda SR. OCT Risk Factors for Development of Atrophy in Eyes with Intermediate Age-Related Macular Degeneration. Ophthalmol Retina 2023; 7:253-260. [PMID: 36208726 DOI: 10.1016/j.oret.2022.09.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE To determine the frequency of multiple OCT biomarkers of intermediate age-related macular degeneration (iAMD) and their relationship with the development of complete retinal pigment epithelium and outer retinal atrophy (cRORA) after 2 years. DESIGN Retrospective cohort study. PARTICIPANTS This retrospective analysis included 330 eyes of 330 consecutive patients with iAMD in ≥ 1 eye who had 24 months of follow-up data. METHODS Spectralis OCT volume scans (49 B-scans over 6 × 6 mm, automatic real time = 6, fovea-centered) at baseline were evaluated for the previously described iAMD biomarkers, including a high-central drusen volume (DV; ≥ 0.03 mm3), intraretinal hyper-reflective foci (IHRF), subretinal drusenoid deposits (SDDs), hypo-reflective drusen cores (hDCs), and a thin or thick (multilayered) double-layer sign (DLS). The age-related macular degeneration (AMD) status in the fellow eye was also assessed and classified as normal or early AMD, iAMD, exudative macular neovascularization, or cRORA. MAIN OUTCOME MEASURES Incidence of cRORA, odds ratio for demographics, and OCT features. RESULTS At month 24, 16.36% (54/330) of the iAMD eyes developed cRORA. Several baseline features, including high-central DV, IHRF, SDD, hDC, thin DLS, and cRORA in the fellow eye, were associated with a significantly greater risk for development of cRORA at 2 years. The odds ratio, 95% confidence interval, P value, and baseline frequencies of these biomarkers were DV (6.510, 2.467-17.176, P < 0.001, 49.1%), IHRF (12.763, 4.763-34.202, P < 0.001, 38.8%), SDD (2.307, 1.003-5.304, P = 0.049, 34.2%), hDC (3.012, 1.152-7.873, P = 0.024, 13.0%), thin DLS (4.517, 1.555-13.126, P = 0.006, 11.8%), and cRORA in the fellow eye (7.184, 1.938-26.623, P = 0.003, 8.2%). CONCLUSIONS In addition to the 4 previously reported factors that are present in a significant proportion of iAMD (DV, IHRF, hDC, and SDD), a thin DLS and cRORA in the fellow eye were associated with an increased risk of progression to cRORA over 2 years. These biomarkers may aid in prognostication, risk stratification, and selection of patients for clinical trials. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
| | - Hannah J Yu
- Retina Consultants of Texas, Retina Consultants of America, Houston, Texas
| | | | | | - Charles C Wykoff
- Retina Consultants of Texas, Retina Consultants of America, Houston, Texas
| | | |
Collapse
|
29
|
Anegondi N, Gao SS, Steffen V, Spaide RF, Sadda SR, Holz FG, Rabe C, Honigberg L, Newton EM, Cluceru J, Kawczynski MG, Bengtsson T, Ferrara D, Yang Q. Deep Learning to Predict Geographic Atrophy Area and Growth Rate from Multimodal Imaging. Ophthalmol Retina 2023; 7:243-252. [PMID: 36038116 DOI: 10.1016/j.oret.2022.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To develop deep learning models for annualized geographic atrophy (GA) growth rate prediction using fundus autofluorescence (FAF) images and spectral-domain OCT volumes from baseline visits, which can be used for prognostic covariate adjustment to increase power of clinical trials. DESIGN This retrospective analysis estimated GA growth rate as the slope of a linear fit on all available measurements of lesion area over a 2-year period. Three multitask deep learning models-FAF-only, OCT-only, and multimodal (FAF and OCT)-were developed to predict concurrent GA area and annualized growth rate. PARTICIPANTS Patients were from prospective and observational lampalizumab clinical trials. METHODS The 3 models were trained on the development data set, tested on the holdout set, and further evaluated on the independent test sets. Baseline FAF images and OCT volumes from study eyes of patients with bilateral GA (NCT02247479; NCT02247531; and NCT02479386) were split into development (1279 patients/eyes) and holdout (443 patients/eyes) sets. Baseline FAF images from study eyes of NCT01229215 (106 patients/eyes) and NCT02399072 (169 patients/eyes) were used as independent test sets. MAIN OUTCOME MEASURES Model performance was evaluated using squared Pearson correlation coefficient (r2) between observed and predicted lesion areas/growth rates. Confidence intervals were calculated by bootstrap resampling (B = 10 000). RESULTS On the holdout data set, r2 (95% confidence interval) of the FAF-only, OCT-only, and multimodal models for GA lesion area prediction was 0.96 (0.95-0.97), 0.91 (0.87-0.95), and 0.94 (0.92-0.96), respectively, and for GA growth rate prediction was 0.48 (0.41-0.55), 0.36 (0.29-0.43), and 0.47 (0.40-0.54), respectively. On the 2 independent test sets, r2 of the FAF-only model for GA lesion area was 0.98 (0.97-0.99) and 0.95 (0.93-0.96), and for GA growth rate was 0.65 (0.52-0.75) and 0.47 (0.34-0.60). CONCLUSIONS We show the feasibility of using baseline FAF images and OCT volumes to predict individual GA area and growth rates using a multitask deep learning approach. The deep learning-based growth rate predictions could be used for covariate adjustment to increase power of clinical trials. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Neha Anegondi
- Clinical Imaging Group, Genentech, Inc., South San Francisco, California; Roche Ophthalmology Personalized Healthcare, Genentech, Inc., South San Francisco, California
| | - Simon S Gao
- Clinical Imaging Group, Genentech, Inc., South San Francisco, California; Roche Ophthalmology Personalized Healthcare, Genentech, Inc., South San Francisco, California
| | - Verena Steffen
- Roche Ophthalmology Personalized Healthcare, Genentech, Inc., South San Francisco, California; Biostatistics, Genentech, Inc., South San Francisco, California
| | - Richard F Spaide
- Vitreous Retina Macula Consultants of New York, New York, New York
| | - SriniVas R Sadda
- Doheny Eye Institute, Los Angeles, California; Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Frank G Holz
- Department of Ophthalmology and GRADE Reading Center, University of Bonn, Bonn, Germany
| | - Christina Rabe
- Roche Ophthalmology Personalized Healthcare, Genentech, Inc., South San Francisco, California; Biostatistics, Genentech, Inc., South San Francisco, California
| | - Lee Honigberg
- Roche Ophthalmology Personalized Healthcare, Genentech, Inc., South San Francisco, California; Biomarker Development, Genentech, Inc., South San Francisco, California
| | - Elizabeth M Newton
- Roche Ophthalmology Personalized Healthcare, Genentech, Inc., South San Francisco, California
| | - Julia Cluceru
- Clinical Imaging Group, Genentech, Inc., South San Francisco, California; Roche Ophthalmology Personalized Healthcare, Genentech, Inc., South San Francisco, California
| | - Michael G Kawczynski
- Roche Ophthalmology Personalized Healthcare, Genentech, Inc., South San Francisco, California; Data Science Imaging, Genentech, Inc., South San Francisco, California
| | - Thomas Bengtsson
- Roche Ophthalmology Personalized Healthcare, Genentech, Inc., South San Francisco, California; Data Science Imaging, Genentech, Inc., South San Francisco, California
| | - Daniela Ferrara
- Roche Ophthalmology Personalized Healthcare, Genentech, Inc., South San Francisco, California
| | - Qi Yang
- Roche Ophthalmology Personalized Healthcare, Genentech, Inc., South San Francisco, California; Data Science Imaging, Genentech, Inc., South San Francisco, California.
| |
Collapse
|
30
|
Optical Coherence Tomography Biomarkers for Conversion to Exudative Neovascular Age-related Macular Degeneration. Am J Ophthalmol 2023; 247:137-144. [PMID: 36228779 DOI: 10.1016/j.ajo.2022.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/04/2022] [Accepted: 09/20/2022] [Indexed: 01/04/2023]
Abstract
PURPOSE To identify optical coherence tomography (OCT) biomarkers, including thin and thick double-layer sign (DLS) for the progression from intermediate AMD (iAMD) to exudative macular neovascularization (MNV) over 24 months. DESIGN Retrospective cohort study. METHODS Setting: Retina consultants of Texas. PATIENT POPULATION 458 eyes of 458 subjects with iAMD in at least 1 eye with 24 months of follow-up data. MAIN OUTCOMES MEASURES The following biomarkers were assessed at baseline: high central drusen volume (≥0.03 mm3), intraretinal hyper-reflective foci (IHRF), subretinal drusenoid deposits, hyporeflective drusen cores, thick DLS, thin DLS, and central choroidal thickness. A binary logistic regression was computed to investigate the association between baseline OCT covariates and the conversion to exudative MNV within 24 months. In addition, fellow eye status was also included in the model. RESULTS During follow-up, 18.1% (83 of 458) of eyes with iAMD progressed to exudative MNV. Thick DLS, IHRF, and fellow eye exudative MNV were found to be independent predictors for the development of exudative MNV within 2 years. The baseline frequencies, odds ratios, 95% confidence intervals, and P values for these biomarkers were as follows: thick DLS (9.6%, 4.339, 2.178-8.644; P < .001), IHRF (36.0%, 2.340, 1.396-3.922; P = 0.001), and fellow eye exudative MNV (35.8%, 1.694, 1.012-2.837; P = .045). CONCLUSIONS Thick DLS, IHRF, and fellow eye exudative MNV were associated with an increased risk of progression from iAMD to exudative MNV. These biomarkers, which are readily identified by the review of OCT volume scans, may aid in risk prognostication for patients and for identifying patients for early intervention trials.
Collapse
|
31
|
Automated large-scale prediction of exudative AMD progression using machine-read OCT biomarkers. PLOS DIGITAL HEALTH 2023; 2:e0000106. [PMID: 36812608 PMCID: PMC9931262 DOI: 10.1371/journal.pdig.0000106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/14/2023] [Indexed: 02/17/2023]
Abstract
Age-related Macular Degeneration (AMD) is a major cause of irreversible vision loss in individuals over 55 years old in the United States. One of the late-stage manifestations of AMD, and a major cause of vision loss, is the development of exudative macular neovascularization (MNV). Optical Coherence Tomography (OCT) is the gold standard to identify fluid at different levels within the retina. The presence of fluid is considered the hallmark to define the presence of disease activity. Anti-vascular growth factor (anti-VEGF) injections can be used to treat exudative MNV. However, given the limitations of anti-VEGF treatment, as burdensome need for frequent visits and repeated injections to sustain efficacy, limited durability of the treatment, poor or no response, there is a great interest in detecting early biomarkers associated with a higher risk for AMD progression to exudative forms in order to optimize the design of early intervention clinical trials. The annotation of structural biomarkers on optical coherence tomography (OCT) B-scans is a laborious, complex and time-consuming process, and discrepancies between human graders can introduce variability into this assessment. To address this issue, a deep-learning model (SLIVER-net) was proposed, which could identify AMD biomarkers on structural OCT volumes with high precision and without human supervision. However, the validation was performed on a small dataset, and the true predictive power of these detected biomarkers in the context of a large cohort has not been evaluated. In this retrospective cohort study, we perform the largest-scale validation of these biomarkers to date. We also assess how these features combined with other EHR data (demographics, comorbidities, etc) affect and/or improve the prediction performance relative to known factors. Our hypothesis is that these biomarkers can be identified by a machine learning algorithm without human supervision, in a way that they preserve their predictive nature. The way we test this hypothesis is by building several machine learning models utilizing these machine-read biomarkers and assessing their added predictive power. We found that not only can we show that the machine-read OCT B-scan biomarkers are predictive of AMD progression, we also observe that our proposed combined OCT and EHR data-based algorithm outperforms the state-of-the-art solution in clinically relevant metrics and provides actionable information which has the potential to improve patient care. In addition, it provides a framework for automated large-scale processing of OCT volumes, making it possible to analyze vast archives without human supervision.
Collapse
|
32
|
Chiang JN, Corradetti G, Nittala MG, Corvi F, Rakocz N, Rudas A, Durmus B, An U, Sankararaman S, Chiu A, Halperin E, Sadda SR. Automated Identification of Incomplete and Complete Retinal Epithelial Pigment and Outer Retinal Atrophy Using Machine Learning. Ophthalmol Retina 2023; 7:118-126. [PMID: 35995411 DOI: 10.1016/j.oret.2022.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To assess and validate a deep learning algorithm to automatically detect incomplete retinal pigment epithelial and outer retinal atrophy (iRORA) and complete retinal pigment epithelial and outer retinal atrophy (cRORA) in eyes with age-related macular degeneration. DESIGN In a retrospective machine learning analysis, a deep learning model was trained to jointly classify the presence of iRORA and cRORA within a given B-scan. The algorithm was evaluated using 2 separate and independent datasets. PARTICIPANTS OCT B-scan volumes from 71 patients with nonneovascular age-related macular degeneration captured at the Doheny-University of California Los Angeles Eye Centers and the following 2 external OCT B-scans testing datasets: (1) University of Pennsylvania, University of Miami, and Case Western Reserve University and (2) Doheny Image Reading Research Laboratory. METHODS The images were annotated by an experienced grader for the presence of iRORA and cRORA. A Resnet18 model was trained to classify these annotations for each B-scan using OCT volumes collected at the Doheny-University of California Los Angeles Eye Centers. The model was applied to 2 testing datasets to assess out-of-sample model performance. MAIN OUTCOMES MEASURES Model performance was quantified in terms of area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC). Sensitivity, specificity, and positive predictive value were also compared against additional clinician annotators. RESULTS On an independently collected test set, consisting of 1117 volumes from the general population, the model predicted iRORA and cRORA presence within the entire volume with nearly perfect AUROC performance and AUPRC scores (iRORA, 0.61; 95% confidence interval [CI] [0.45, 0.82]: cRORA, 0.83; 95% CI [0.68, 0.95]). On another independently collected set, consisting of 60 OCT B-scans enriched for iRORA and cRORA lesions, the model performed with AUROC (iRORA: 0.68, 95% CI [0.54, 0.81]; cRORA: 0.84, 95% CI [0.75, 0.94]) and AUPRC (iRORA: 0.70, 95% CI [0.55, 0.86]; cRORA: 0.82, 95% CI [0.70, 0.93]). CONCLUSIONS A deep learning model can accurately and precisely identify both iRORA and cRORA lesions within the OCT B-scan volume. The model can achieve similar sensitivity compared with human graders, which potentially obviates a laborious and time-consuming annotation process and could be developed into a diagnostic screening tool.
Collapse
Affiliation(s)
- Jeffrey N Chiang
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, California
| | - Giulia Corradetti
- Doheny Eye Institute, Pasadena, California; Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | | | - Federico Corvi
- Doheny Eye Institute, Pasadena, California; Eye Clinic, Department of Biomedical and Clinical Science "Luigi Sacco,"," Sacco Hospital, University of Milan, Milan, Italy
| | - Nadav Rakocz
- Department of Computer Science, University of California Los Angeles, Los Angeles, California
| | - Akos Rudas
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, California
| | - Berkin Durmus
- Department of Computer Science, University of California Los Angeles, Los Angeles, California
| | - Ulzee An
- Department of Computer Science, University of California Los Angeles, Los Angeles, California
| | - Sriram Sankararaman
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, California; Department of Computer Science, University of California Los Angeles, Los Angeles, California; Department of Human Genetics, University of California Los Angeles, Los Angeles, California
| | - Alec Chiu
- Department of Computer Science, University of California Los Angeles, Los Angeles, California
| | - Eran Halperin
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, California; Department of Computer Science, University of California Los Angeles, Los Angeles, California; Department of Human Genetics, University of California Los Angeles, Los Angeles, California; Department of Anesthesiology, University of California Los Angeles, Los Angeles, California; Institute of Precision Health, University of California Los Angeles, Los Angeles, California
| | - Srinivas R Sadda
- Doheny Eye Institute, Pasadena, California; Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
33
|
Saßmannshausen M, Vaisband M, von der Emde L, Sloan KR, Hasenauer J, Holz FG, Ach T. Hyper-Reflective Foci in Intermediate Age-Related Macular Degeneration: Spatial Abundance and Impact on Retinal Morphology. Invest Ophthalmol Vis Sci 2023; 64:20. [PMID: 36705929 PMCID: PMC9896840 DOI: 10.1167/iovs.64.1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Purpose The purpose of this study was to analyze spatially resolved structural changes at retinal locations in presence (+) or absence (-) of hyper-reflective foci (HRF) in eyes with subretinal pigment epithelium (RPE) drusen in intermediate age-related macular degeneration (iAMD). Methods Patients with IAMD (n = 40; mean age = 69.7 ± 9.2 [SD] years) and healthy controls (n = 27; 64.2 ± 9.0) underwent spectral-domain optical-coherence-tomography imaging and fundus-controlled perimetry testing. After reviewing retinal layer segmentation, presence of HRF was annotated and retinal layer thicknesses (RLTs) extracted using ImageJ. Localized RLTs were compared between +HRF and -HRF positions. Univariate mixed linear models were used to investigate associations among RLT, HRF presence, and HRF size. Results In iAMD eyes, a mean of 11.1 ± 12.5 HRF were detected with a peak abundance at 0.5 to 1.5 mm eccentricity to the fovea. At +HRF positions, outer nuclear layer (ONL; P = 0.0013, average difference = -12.4 µm) and retinal pigment epithelium drusen complex (RPEDC; P < 0.0001, +45.6 µm) thicknesses differed significantly compared to -HRF positions, even after correcting for accompanying drusen-related RPEDC layer thickening (P = 0.01). Mixed linear models revealed a significant association between increasing HRF area and decreasing ONL (association score = -0.17, P < 0.0001; 95% confidence interval [CI] = -0.22 to -0.11), and inner photoreceptor segments (IS) layer thicknesses (-0.08, P = 0.005; 95% CI = -0.14 to -0.03). Spearman rank correlation analysis yielded a significant correlation between total HRF area and mesopic (P = 0.015), but not scotopic (P = 0.305) retinal sensitivity losses. Conclusions Descriptive analysis of this study demonstrated a predominant distribution of HRF at a foveal eccentricity of 0.5 to 1.5 mm, whereas further refined topographic analysis revealed a significant ONL layer thinning in presence of HRF even after correction for sub-RPE drusen presence compared to lesions in absence of HRF. Longitudinal studies are further needed to analyze the prognostic impact as well as the role of HRF presence in the context of iAMD.
Collapse
Affiliation(s)
- Marlene Saßmannshausen
- Department of Ophthalmology, University Hospital Bonn, Germany,Grade Reading Center, University of Bonn, Germany
| | - Marc Vaisband
- Life & Medical Sciences Institute, University of Bonn, Germany,Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center; Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Paracelsus Medical University, Salzburg, Austria, Cancer Cluster Salzburg, Austria
| | | | - Kenneth R. Sloan
- Department of Computer Science, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jan Hasenauer
- Life & Medical Sciences Institute, University of Bonn, Germany,Helmholtz Center Munich – German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
| | - Frank G. Holz
- Department of Ophthalmology, University Hospital Bonn, Germany,Grade Reading Center, University of Bonn, Germany
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, Germany,Grade Reading Center, University of Bonn, Germany
| |
Collapse
|
34
|
Wang S, Wang Z, Vejalla S, Ganegoda A, Nittala MG, Sadda SR, Hu ZJ. Reverse engineering for reconstructing baseline features of dry age-related macular degeneration in optical coherence tomography. Sci Rep 2022; 12:22620. [PMID: 36587062 PMCID: PMC9805430 DOI: 10.1038/s41598-022-27140-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
Age-related macular degeneration (AMD) is the most widespread cause of blindness and the identification of baseline AMD features or biomarkers is critical for early intervention. Optical coherence tomography (OCT) imaging produces a 3D volume consisting of cross sections of retinal tissue while fundus fluorescence (FAF) imaging produces a 2D mapping of retina. FAF has been a good standard for assessing dry AMD late-stage geographic atrophy (GA) while OCT has been used for assessing early AMD biomarkers beyond as well. However, previous approaches in large extent defined AMD features subjectively based on clinicians' observation. Deep learning-an objective artificial intelligence approach, may enable to discover 'true' salient AMD features. We develop a novel reverse engineering approach which bases on the backbone of a fully convolutional neural network to objectively identify and visualize AMD early biomarkers in OCT from baseline exams before significant atrophy occurs. Utilizing manually annotated GA regions on FAF from a follow-up visit as ground truth, we segment GA regions and reconstruct early AMD features in baseline OCT volumes. In this preliminary exploration, compared with ground truth, we achieve baseline GA segmentation accuracy of 0.95 and overlapping ratio of 0.65. The reconstructions consistently highlight that large druse and druse clusters with or without mixed hyper-reflective focus lesion on baseline OCT cause the conversion of GA after 12 months. However, hyper-reflective focus lesions and subretinal drusenoid deposit lesions alone are not seen such conversion after 12 months. Further research with larger dataset would be needed to verify these findings.
Collapse
Affiliation(s)
- Shuxian Wang
- grid.280881.b0000 0001 0097 5623Doheny Eye Institute, 150 North Orange Grove Boulevard, Room 251, Pasadena, CA 91103 USA ,grid.10698.360000000122483208University of North Carolina at Chapel Hill, Chapel Hill, NC 27514 USA
| | - Ziyuan Wang
- grid.280881.b0000 0001 0097 5623Doheny Eye Institute, 150 North Orange Grove Boulevard, Room 251, Pasadena, CA 91103 USA
| | - Srimanasa Vejalla
- grid.280881.b0000 0001 0097 5623Doheny Eye Institute, 150 North Orange Grove Boulevard, Room 251, Pasadena, CA 91103 USA
| | - Anushika Ganegoda
- grid.280881.b0000 0001 0097 5623Doheny Eye Institute, 150 North Orange Grove Boulevard, Room 251, Pasadena, CA 91103 USA
| | - Muneeswar Gupta Nittala
- grid.280881.b0000 0001 0097 5623Doheny Eye Institute, 150 North Orange Grove Boulevard, Room 251, Pasadena, CA 91103 USA
| | - SriniVas Reddy Sadda
- grid.280881.b0000 0001 0097 5623Doheny Eye Institute, 150 North Orange Grove Boulevard, Room 251, Pasadena, CA 91103 USA
| | - Zhihong Jewel Hu
- grid.280881.b0000 0001 0097 5623Doheny Eye Institute, 150 North Orange Grove Boulevard, Room 251, Pasadena, CA 91103 USA
| |
Collapse
|
35
|
Higgins BE, Montesano G, Crabb DP, Naskas TT, Graham KW, Chakravarthy U, Kee F, Wright DM, Hogg RE. Assessment of the Classification of Age-Related Macular Degeneration Severity from the Northern Ireland Sensory Ageing Study Using a Measure of Dark Adaptation. OPHTHALMOLOGY SCIENCE 2022; 2:100204. [PMID: 36531574 PMCID: PMC9754971 DOI: 10.1016/j.xops.2022.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/27/2022] [Accepted: 07/12/2022] [Indexed: 06/17/2023]
Abstract
Purpose To assess the differences in rod-mediated dark adaptation (RMDA) between different grades of age-related macular degeneration (AMD) severity using an OCT-based criterion compared with those of AMD severity using the Beckman color fundus photography (CFP)-based classification and to assess the association between the presence of subretinal drusenoid deposits (SDDs) and RMDA at different grades of AMD severity using an OCT-based classification. Design Cross-sectional study. Participants Participants from the Northern Ireland Sensory Ageing study (Queen's University Belfast). Methods Complete RMDA (rod-intercept time [RIT]) data, CFP, and spectral-domain OCT images were extracted. Participants were stratified into 4 Beckman groups (omitting late-stage AMD) and 3 OCT-based groups. The presence and stage of SDDs were identified using OCT. Main Outcome Measures Rod-intercept time data (age-corrected). Results Data from 459 participants (median [interquartile range] age, 65 [59-71] years) were stratified by both the classifications. Subretinal drusenoid deposits were detected in 109 eyes. The median (interquartile range) RMDA for the Beckman classification (Beckman 0-3, with 3 being intermediate age-related macular degeneration [iAMD]) groups was 6.0 (4.5-8.7), 6.6 (4.7-10.5), 5.7 (4.4-7.4), and 13.2 (6-21.1) minutes, respectively. OCT classifications OCT0-OCT2 yielded different median (interquartile range) values: 5.8 (4.5-8.5), 8.4 (5.2-13.3), and 11.1 (5.3-20.1) minutes, respectively. After correcting for age, eyes in Beckman 3 (iAMD) had statistically significantly worse RMDA than eyes in the other Beckman groups (P ≤ 0.005 for all), with no statistically significant differences between the other Beckman groups. Similarly, after age correction, eyes in OCT2 had worse RMDA than eyes in OCT0 (P ≤ 0.001) and OCT1 (P < 0.01); however, there was no statistically significant difference between eyes in OCT0 and eyes in OCT1 (P = 0.195). The presence of SDDs was associated with worse RMDA in OCT2 (P < 0.01) but not in OCT1 (P = 0.285). Conclusions Eyes with a structural definition of iAMD have delayed RMDA, regardless of whether a CFP- or OCT-based criterion is used. In this study, after correcting for age, the RMDA did not differ between groups of eyes defined to have early AMD or normal aging, regardless of the classification. The presence of SDDs has some effect on RMDA at different grades of AMD severity.
Collapse
Affiliation(s)
- Bethany E. Higgins
- Optometry and Visual Sciences, City, University of London, London, United Kingdom
| | - Giovanni Montesano
- Optometry and Visual Sciences, City, University of London, London, United Kingdom
- National Institute for Health and Care Research, Biomedical Research Centre, Moorfields Eye Hospital, National Health Service Foundation Trust and University College London, Institute of Ophthalmology, London, United Kingdom
| | - David P. Crabb
- Optometry and Visual Sciences, City, University of London, London, United Kingdom
| | - Timos T. Naskas
- Centre for Public Health, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Katie W. Graham
- Centre for Public Health, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Usha Chakravarthy
- Centre for Public Health, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Frank Kee
- Centre for Public Health, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - David M. Wright
- Centre for Public Health, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Ruth E. Hogg
- Centre for Public Health, Queen’s University Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
36
|
Zhang Q, Shi Y, Shen M, Cheng Y, Zhou H, Feuer W, de Sisternes L, Gregori G, Rosenfeld PJ, Wang RK. Does the Outer Retinal Thickness Around Geographic Atrophy Represent Another Clinical Biomarker for Predicting Growth? Am J Ophthalmol 2022; 244:79-87. [PMID: 36002074 DOI: 10.1016/j.ajo.2022.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE To determine whether the outer retinal layer (ORL) thickness around geographic atrophy (GA) could serve as a clinical biomarker to predict the annual enlargement rate (ER) of GA. DESIGN Retrospective analysis of a prospective, observational case series. METHODS Eyes with GA were imaged with a swept-source OCT 6 × 6 mm scan pattern. GA lesions were measured from customized en face OCT images and the annual ERs were calculated. The ORL was defined and segmented from the inner boundary of outer plexiform layer (OPL) to the inner boundary of retinal pigment epithelium (RPE) layer. The ORL thickness was measured at different subregions around GA. RESULTS A total of 38 eyes from 27 participants were included. The same eyes were used for the choriocapillaris (CC) flow deficit (FD) analysis and the RPE to the Bruch membrane (RPE-BM) distance measurements. A negative correlation was observed between the ORL thickness and the GA growth. The ORL thickness in a 300-μm rim around GA showed the strongest correlation with the GA growth (r = -0.457, P = .004). No correlations were found between the ORL thickness and the CC FDs; however, a significant correlation was found between the ORL thickness and the RPE-BM distances around GA (r = -0.398, P = .013). CONCLUSIONS ORL thickness showed a significant negative correlation with annual GA growth, but also showed a significant correlation with the RPE-BM distances, suggesting that they were dependently correlated with GA growth. This finding suggests that the loss of photoreceptors was associated with the formation of basal laminar deposits around GA.
Collapse
Affiliation(s)
- Qinqin Zhang
- From the Department of Bioengineering (Q.Z., Y.C., H.Z., R.K.W.), University of Washington, Seattle, Washington, USA
| | - Yingying Shi
- Department of Ophthalmology (Y.S., M.S., W.F., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mengxi Shen
- Department of Ophthalmology (Y.S., M.S., W.F., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Yuxuan Cheng
- From the Department of Bioengineering (Q.Z., Y.C., H.Z., R.K.W.), University of Washington, Seattle, Washington, USA
| | - Hao Zhou
- From the Department of Bioengineering (Q.Z., Y.C., H.Z., R.K.W.), University of Washington, Seattle, Washington, USA
| | - William Feuer
- Department of Ophthalmology (Y.S., M.S., W.F., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Luis de Sisternes
- Research and Development (L.d.S.), Carl Zeiss Meditec, Inc, Dublin, California, USA
| | - Giovanni Gregori
- Department of Ophthalmology (Y.S., M.S., W.F., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Philip J Rosenfeld
- Department of Ophthalmology (Y.S., M.S., W.F., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ruikang K Wang
- From the Department of Bioengineering (Q.Z., Y.C., H.Z., R.K.W.), University of Washington, Seattle, Washington, USA; Department of Ophthalmology (R.K.W.), University of Washington, Seattle, Washington, USA.
| |
Collapse
|
37
|
Duic C, Pfau K, Keenan TDL, Wiley H, Thavikulwat A, Chew EY, Cukras C. Hyperreflective Foci in Age-Related Macular Degeneration are Associated with Disease Severity and Functional Impairment. Ophthalmol Retina 2022; 7:307-317. [PMID: 36403926 DOI: 10.1016/j.oret.2022.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE To analyze presence of hyperreflective foci (HRF) across different age-related macular degeneration (AMD) severities and examine its correlation with other structural and functional AMD features. DESIGN Longitudinal, single-center, case-control study. PARTICIPANTS One hundred and fifty-eight participants aged > 50 years old with varying AMD severities (including no AMD). METHODS Color fundus imaging was used to assess AMD severity and hyperpigmentation (PGM) presence. Subretinal drusenoid deposits (SDD) and HRF were detected on OCT volumes. The correlations of HRF with additional AMD features were evaluated using linear and logistic mixed-effects models. One study eye per participant underwent dark adaptation (DA) testing to measure rod intercept time (RIT) for structure function associations. Eyes were followed longitudinally and changes in AMD severity and RIT were measured relative to HRF presence. MAIN OUTCOME MEASURES The primary outcome was presence of HRF, which was compared with presence of other AMD features and DA impairment. RESULTS One hundred and fifty-eight participants (median baseline age of 73.1 [interquartile range (IQR) = 66-79] years) contributing 1277 eye visits were included. Hyperreflective foci (HRF) were detected more frequently in higher AMD severities. Hyperreflective-foci presence was significantly associated with PGM presence (odds ratio 832.9, P < 0.001) and SDD presence (odds ratio 9.42, P = 0.017). Eyes with HRF demonstrated significantly longer DA (median 27.1 [IQR = 16-40] minutes) than those without HRF (13.5 [10-22] minutes) but less than eyes with SDD only (40 [28-40] minutes). Highest RIT values were found in eyes with both HRF and SDD (40.0 [40-40] minutes). Age and HRF explained a similar proportion of RIT variability as age and SDD. Eyes that developed HRF demonstrated baseline RITs closer to eyes with HRF at baseline, compared with eyes that never developed HRF (29.1 [16-40], 38.5 [22-40] versus 13.1 [10-22] minutes; Kruskal-Wallis P < 0.001). CONCLUSIONS The progressively increased presence of HRF in higher AMD severities, and its correlation with previously associated AMD biomarkers, suggests HRF is an important OCT feature adding to the understanding of disease progression. Hyperreflective foci presence was associated with delays in DA, indicating HRF is a marker for visual cycle impairment. FINANCIAL DISCLOSURE Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Cameron Duic
- Unit on Clinical Investigation of Retinal Diseases, National Eye Institute, National Institute of Health, Bethesda, Maryland
| | - Kristina Pfau
- Unit on Clinical Investigation of Retinal Diseases, National Eye Institute, National Institute of Health, Bethesda, Maryland; Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Tiarnan D L Keenan
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institute of Health, Bethesda, Maryland
| | - Henry Wiley
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institute of Health, Bethesda, Maryland
| | - Alisa Thavikulwat
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institute of Health, Bethesda, Maryland
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institute of Health, Bethesda, Maryland
| | - Catherine Cukras
- Unit on Clinical Investigation of Retinal Diseases, National Eye Institute, National Institute of Health, Bethesda, Maryland.
| |
Collapse
|
38
|
Characteristics of intermediate age-related macular degeneration with hyperreflective foci. Sci Rep 2022; 12:18420. [PMID: 36319691 PMCID: PMC9626558 DOI: 10.1038/s41598-022-23380-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
Hyperreflective foci (HRF) are the findings observed in optical coherence tomography (OCT) in several retinal diseases and are believed to be associated with the increased risk of atrophy in eyes with age-related macular degeneration (AMD). In this study, we investigated the clinical and genetic characteristics of intermediate AMD with HRF. We reviewed the medical charts for 155 patients with intermediate AMD, in whom macular neovascularization (MNV) was observed in the contralateral eye. The presence or absence of an HRF was evaluated using a spectral-domain OCT volume scan spanning the macular region. Patients were followed longitudinally for at least 12 months, and the maximum follow-up period was 60 months. Genotyping of ARMS2 A69S and CFH I62V was performed in all participants. Of the 155 patients (mean age: 77.8 ± 7.6 years, male/female: 103/52), HRF was observed in 53 eyes (34.2%) and was significantly associated with type-3 MNV (p = 1.0 × 10-5) in the contralateral eye, pseudodrusen (p = 5.0 × 10-4), thinner subfoveal choroidal thickness (p = 0.013), and risk of ARMS2 A69S (p = 0.023). During follow-up (40.8 ± 17.5), 38 eyes (24.5%) developed advanced AMD. The mean time to the onset of advanced AMD was 29.8 ± 12.9 months in eyes with intermediate AMD. HRF was associated with MNV (p = 1.0 × 10-3), but not with atrophy.
Collapse
|
39
|
Bui PTA, Reiter GS, Fabianska M, Waldstein SM, Grechenig C, Bogunovic H, Arikan M, Schmidt-Erfurth U. Fundus autofluorescence and optical coherence tomography biomarkers associated with the progression of geographic atrophy secondary to age-related macular degeneration. Eye (Lond) 2022; 36:2013-2019. [PMID: 34400806 PMCID: PMC9499954 DOI: 10.1038/s41433-021-01747-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES To investigate the impact of qualitatively graded and deep learning quantified imaging biomarkers on growth of geographic atrophy (GA) secondary to age-related macular degeneration. METHODS This prospective study included 1062 visits of 181 eyes of 100 patients with GA. Spectral-domain optical coherence tomography (SD-OCT) and fundus autofluorescence (FAF) images were acquired at each visit. Hyperreflective foci (HRF) were quantitatively assessed in SD-OCT volumes using a validated deep learning algorithm. FAF images were graded for FAF patterns, subretinal drusenoid deposits (SDD), GA lesion configuration and atrophy enlargement. Linear mixed models were calculated to investigate associations between all parameters and GA progression. RESULTS FAF patterns were significantly associated with GA progression (p < 0.001). SDD was associated with faster GA growth (p = 0.005). Eyes with higher HRF concentrations showed a trend towards faster GA progression (p = 0.072) and revealed a significant impact on GA enlargement in interaction with FAF patterns (p = 0.01). The fellow eye status had no significant effect on lesion enlargement (p > 0.05). The diffuse-trickling FAF pattern exhibited significantly higher HRF concentrations than any other pattern (p < 0.001). CONCLUSION Among a wide range of investigated biomarkers, SDD and FAF patterns, particularly in interaction with HRF, significantly impact GA progression. Fully automated quantification of retinal imaging biomarkers such as HRF is both reliable and merited as HRF are indicators of retinal pigment epithelium dysmorphia, a central pathogenetic mechanism in GA. Identifying disease markers using the combination of FAF and SD-OCT is of high prognostic value and facilitates individualized patient management in a clinical setting.
Collapse
Affiliation(s)
- Patricia T A Bui
- Christian Doppler Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Gregor S Reiter
- Christian Doppler Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Maria Fabianska
- Christian Doppler Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Sebastian M Waldstein
- Christian Doppler Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Christoph Grechenig
- Christian Doppler Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Hrvoje Bogunovic
- Christian Doppler Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Mustafa Arikan
- Christian Doppler Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Ursula Schmidt-Erfurth
- Christian Doppler Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
40
|
Agrón E, Domalpally A, Cukras CA, Clemons TE, Chen Q, Lu Z, Chew EY, Keenan TDL. Reticular Pseudodrusen: The Third Macular Risk Feature for Progression to Late Age-Related Macular Degeneration: Age-Related Eye Disease Study 2 Report 30. Ophthalmology 2022; 129:1107-1119. [PMID: 35660417 PMCID: PMC9509418 DOI: 10.1016/j.ophtha.2022.05.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE To analyze reticular pseudodrusen (RPD) as an independent risk factor for progression to late age-related macular degeneration (AMD), alongside traditional macular risk factors (soft drusen and pigmentary abnormalities) considered simultaneously. DESIGN Post hoc analysis of 2 clinical trial cohorts: Age-Related Eye Disease Study (AREDS) and AREDS2. PARTICIPANTS Eyes with no late AMD at baseline in AREDS (6959 eyes, 3780 participants) and AREDS2 (3355 eyes, 2056 participants). METHODS Color fundus photographs (CFPs) from annual visits were graded for soft drusen, pigmentary abnormalities, and late AMD. Presence of RPD was from grading of fundus autofluorescence images (AREDS2) and deep learning grading of CFPs (AREDS). Proportional hazards regression analyses were performed, considering AREDS AMD severity scales (modified simplified severity scale [person] and 9-step scale [eye]) and RPD presence simultaneously. MAIN OUTCOME MEASURES Progression to late AMD, geographic atrophy (GA), and neovascular AMD. RESULTS In AREDS, for late AMD analyses by person, in a model considering the simplified severity scale simultaneously, RPD presence was associated with a higher risk of progression: hazard ratio (HR), 2.15 (95% confidence interval [CI], 1.75-2.64). However, the risk associated with RPD presence differed at different severity scale levels: HR, 3.23 (95% CI, 1.60-6.51), HR, 3.81 (95% CI, 2.38-6.10), HR, 2.28 (95% CI, 1.59-3.27), and HR, 1.64 (95% CI, 1.20-2.24), at levels 0-1, 2, 3, and 4, respectively. Considering the 9-step scale (by eye), RPD presence was associated with higher risk: HR, 2.54 (95% CI, 2.07-3.13). The HRs were 5.11 (95% CI, 3.93-6.66) at levels 1-6 and 1.78 (95% CI, 1.43-2.22) at levels 7 and 8. In AREDS2, by person, RPD presence was not associated with higher risk: HR, 1.18 (95% CI, 0.90-1.56); by eye, it was HR, 1.57 (95% CI, 1.31-1.89). In both cohorts, RPD presence carried a higher risk for GA than neovascular AMD. CONCLUSIONS Reticular pseudodrusen represent an important risk factor for progression to late AMD, particularly GA. However, the added risk varies markedly by severity level, with highly increased risk at lower/moderate levels and less increased risk at higher levels. Reticular pseudodrusen status should be included in updated AMD classification systems, risk calculators, and clinical trials.
Collapse
Affiliation(s)
- Elvira Agrón
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Amitha Domalpally
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Catherine A Cukras
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Qingyu Chen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health (NIH), Bethesda, Maryland
| | - Zhiyong Lu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health (NIH), Bethesda, Maryland
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland.
| | - Tiarnan D L Keenan
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
41
|
Oncel D, Manafi N, Nittala MG, Velaga SB, Stambolian D, Pericak-Vance MA, Haines JL, Sadda SR. Effect of OCT B-Scan Density on Sensitivity for Detection of Intraretinal Hyperreflective Foci in Eyes with Age-Related Macular Degeneration. Curr Eye Res 2022; 47:1294-1299. [PMID: 35603911 PMCID: PMC10350297 DOI: 10.1080/02713683.2022.2081981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/02/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE To evaluate the impact of reducing the density of B-scans in an optical coherence tomography (OCT) volume on the sensitivity for detecting intraretinal hyperreflective foci (IHRF) in eyes with intermediate age-related macular degeneration (AMD). METHODS A total of 165 eyes with intermediate AMD and IHRF were evaluated in this retrospective analysis. For each case, Cirrus HD-OCT volumes were imported into the reading center 3 D-OCTOR software. The number of IHRF cases was assessed based on all 128 B-scans (spaced 47 μm apart), using a categorical scale (graded as 1-4, 5-9, 10-14, 15-19, and >20). Additionally, the B-scan densities in the volume were lowered to 64 B-scans (spaced 94 μm apart), 43 B-scans (spaced 140 μm apart), and 32 B-scans (spaced 188 μm apart). The number of eyes with any IHRF and the numerical category of IHRF in the eye were used to compare the sensitivity at each reduced B-scan density against the reference 128 B-scan volume. RESULTS In the primary analysis for the qualitative presence or absence of any IHRF, the sensitivity decreased to 98.2% (p = .32) with 64 B-scans, 92.7% (p = .001) with 43 B-scans, and 75.2% (p = .001) with 32 B-scans, compared with the 128 B-scan reference. With regard to the number of IHRF per eye, there was a significant difference (with a lower level chosen on the scale) when the B-scan density was reduced to 43 or 32 B-scans (p = .002 and p < .001, respectively). CONCLUSION Increasing the inter-B-scan spacing from 47 to 188 microns significantly reduced the ability to accurately determine whether IHRF were present in an eye. An increase in inter-B-scan spacing to 140 microns was associated with a significant misclassification of the IHRF quantity. These findings may be relevant in the design of OCT scanning protocols for studies utilizing these biomarkers for AMD progression.
Collapse
Affiliation(s)
- Deniz Oncel
- Doheny Eye Institute, Los Angeles, California
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Navid Manafi
- Doheny Eye Institute, Los Angeles, California
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Muneeswar Gupta Nittala
- Doheny Eye Institute, Los Angeles, California
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Swetha Bindu Velaga
- Doheny Eye Institute, Los Angeles, California
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Dwight Stambolian
- Ophthalmology and Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jonathan L. Haines
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland OH, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - SriniVas R. Sadda
- Doheny Eye Institute, Los Angeles, California
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
42
|
Ong J, Zarnegar A, Corradetti G, Singh SR, Chhablani J. Advances in Optical Coherence Tomography Imaging Technology and Techniques for Choroidal and Retinal Disorders. J Clin Med 2022; 11:jcm11175139. [PMID: 36079077 PMCID: PMC9457394 DOI: 10.3390/jcm11175139] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Optical coherence tomography (OCT) imaging has played a pivotal role in the field of retina. This light-based, non-invasive imaging modality provides high-quality, cross-sectional analysis of the retina and has revolutionized the diagnosis and management of retinal and choroidal diseases. Since its introduction in the early 1990s, OCT technology has continued to advance to provide quicker acquisition times and higher resolution. In this manuscript, we discuss some of the most recent advances in OCT technology and techniques for choroidal and retinal diseases. The emerging innovations discussed include wide-field OCT, adaptive optics OCT, polarization sensitive OCT, full-field OCT, hand-held OCT, intraoperative OCT, at-home OCT, and more. The applications of these rising OCT systems and techniques will allow for a closer monitoring of chorioretinal diseases and treatment response, more robust analysis in basic science research, and further insights into surgical management. In addition, these innovations to optimize visualization of the choroid and retina offer a promising future for advancing our understanding of the pathophysiology of chorioretinal diseases.
Collapse
Affiliation(s)
- Joshua Ong
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Arman Zarnegar
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Giulia Corradetti
- Department of Ophthalmology, Doheny Eye Institute, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at the University of California, Los Angeles, CA 90033, USA
| | | | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Correspondence:
| |
Collapse
|
43
|
Nittala MG, Corvi F, Maram J, Velaga SB, Haines J, Pericak-Vance MA, Stambolian D, Sadda SR. Risk Factors for Progression of Age-Related Macular Degeneration: Population-Based Amish Eye Study. J Clin Med 2022; 11:5110. [PMID: 36079043 PMCID: PMC9457199 DOI: 10.3390/jcm11175110] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Objective: To evaluate the optical coherence tomography (OCT)-based risk factors for progression to late age-related macular degeneration (AMD) in a population-based study of elderly Amish. Methods: A total of 1332 eyes of 666 consecutive subjects who completed a 2-year follow-up visit were included in this multicenter, prospective, longitudinal, observational study. Imaging features were correlated with 2-year incidence of late AMD development. Odds ratios for imaging features were estimated from logistic regression. Baseline OCT images were reviewed for the presence of drusen volume ≥0.03 mm3 in the central 3 mm ring, intraretinal hyperreflective foci (IHRF), hyporeflective drusen cores (hDC), subretinal drusenoid deposits (SDD), and drusenoid pigment epithelium detachment (PED). Subfoveal choroidal thickness, drusen area, and drusen volume within 3 and 5 mm circles centered on the fovea were also assessed. Results: Twenty-one (1.5%) of 1332 eyes progressed to late AMD by 2 years. The mean age of the study subjects was 65 ± 10.17 (±SD) years and 410 subjects were female. Univariate logistic regression showed that drusen area and volume in both 3 mm and 5 mm circles, subfoveal choroidal thickness, drusen volume ≥ 0.03 mm3 in the 3 mm ring, SDD, IHRF, and hDC were all associated with an increased risk for development of late AMD. The multivariate regression model identified that drusen volume in the 3 mm ring (OR: 2.59, p = 0.049) and presence of IHRF (OR: 57.06, p < 0.001) remained as independent and significant risk factors for progression to late AMD. Conclusions: This population-based study confirms previous findings from clinic-based studies that high central drusen volume and IHRF are associated with an increased risk of progression to late AMD. These findings may be of value in risk-stratifying patients in clinical practice or identifying subjects for early intervention clinical trials.
Collapse
Affiliation(s)
| | - Federico Corvi
- Doheny Image Reading Center, Doheny Eye Institute, Los Angeles, CA 90033, USA
| | - Jyotsna Maram
- Doheny Image Reading Center, Doheny Eye Institute, Los Angeles, CA 90033, USA
| | - Swetha B. Velaga
- Doheny Image Reading Center, Doheny Eye Institute, Los Angeles, CA 90033, USA
| | - Jonathan Haines
- Department of Epidemiology & Biostatistics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Margaret A. Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Dwight Stambolian
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - SriniVas R. Sadda
- Doheny Image Reading Center, Doheny Eye Institute, Los Angeles, CA 90033, USA
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
44
|
Zhou H, Liu J, Laiginhas R, Zhang Q, Cheng Y, Zhang Y, Shi Y, Shen M, Gregori G, Rosenfeld PJ, Wang RK. Depth-resolved visualization and automated quantification of hyperreflective foci on OCT scans using optical attenuation coefficients. BIOMEDICAL OPTICS EXPRESS 2022; 13:4175-4189. [PMID: 36032584 PMCID: PMC9408241 DOI: 10.1364/boe.467623] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 05/11/2023]
Abstract
An automated depth-resolved algorithm using optical attenuation coefficients (OACs) was developed to visualize, localize, and quantify hyperreflective foci (HRF) seen on OCT imaging that are associated with macular hyperpigmentation and represent an increased risk of disease progression in age related macular degeneration. To achieve this, we first transformed the OCT scans to linear representation, which were then contrasted by OACs. HRF were visualized and localized within the entire scan by differentiating HRF within the retina from HRF along the retinal pigment epithelium (RPE). The total pigment burden was quantified using the en face sum projection of an OAC slab between the inner limiting membrane (ILM) to Bruch's membrane (BM). The manual total pigment burden measurements were also obtained by combining manual outlines of HRF in the B-scans with the total area of hypotransmission defects outlined on sub-RPE slabs, which was used as the reference to compare with those obtained from the automated algorithm. 6×6 mm swept-source OCT scans were collected from a total of 49 eyes from 42 patients with macular HRF. We demonstrate that the algorithm was able to automatically distinguish between HRF within the retina and HRF along the RPE. In 24 test eyes, the total pigment burden measurements by the automated algorithm were compared with measurements obtained from manual segmentations. A significant correlation was found between the total pigment area measurements from the automated and manual segmentations (P < 0.001). The proposed automated algorithm based on OACs should be useful in studying eye diseases involving HRF.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Jeremy Liu
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rita Laiginhas
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Qinqin Zhang
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Yuxuan Cheng
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Yi Zhang
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Yingying Shi
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mengxi Shen
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Giovanni Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Philip J. Rosenfeld
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- Karalis Johnson Retina Center, Department of Ophthalmology, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
45
|
Brinkmann M, Bacci T, Kar D, Messinger JD, Sloan KR, Chen L, Hamann T, Wiest M, Freund KB, Zweifel S, Curcio CA. Histology and Clinical Lifecycle of Acquired Vitelliform Lesion, a Pathway to Advanced Age-Related Macular Degeneration. Am J Ophthalmol 2022; 240:99-114. [PMID: 35192790 PMCID: PMC9592119 DOI: 10.1016/j.ajo.2022.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/19/2022]
Abstract
PURPOSE To evaluate hypotheses about the role of acquired vitelliform lesion (AVL) in age-related macular degeneration pathophysiology. DESIGN Laboratory histology study; retrospective, observational case series. METHODS Two donor eyes in a research archive with AVL and age-related macular degeneration were analyzed with light and electron microscopy for AVL content at locations matched to ex vivo B-scans. A retrospective, observational clinical cohort study of 42 eyes of 30 patients at 2 referral clinics determined the frequency of optical coherence tomography features stratified by AVL fate. RESULTS Histologic and clinical cases showed subretinal drusenoid deposit and drusen. Ultrastructural AVL components in 2 donor eyes included retinal pigment epithelium (RPE) organelles (3%-22% of volume), outer segments (2%-10%), lipid droplets (0.2%-12%), and a flocculent material (57%-59%). Of 48 AVLs (mean follow-up 46 ± 39 months), 50% collapsed to complete RPE and outer retinal atrophy, 38% were stable, 10% resorbed, and 2% developed neovascularization. The Early Treatment Diabetic Retinopathy Study grid central subfield contained 77% of AVLs. Hyperreflective foci, ellipsoid zone disruption, and hyperreflective thickening of the RPE-basal lamina-Bruch membrane band were common at maximum AVL expansion. Collapsing and noncollapsing AVLs had different growth rates (rapid vs slow, respectively). CONCLUSIONS AVL deposits contain unexpectedly low levels of RPE organelles and outer segments. Subfoveal predilection, reflectivity on optical coherence tomography, hyperautofluorescence, yellow color, and growth-regression phases suggest dysregulation of lipid transfer pathways specific to cone photoreceptors and supporting cells in formation of AVL deposit, analogous to drusen and subretinal drusenoid deposit. Prediction of AVL outcomes via growth rates should be confirmed in larger clinical studies.
Collapse
Affiliation(s)
- Max Brinkmann
- Department of Ophthalmology and Visual Sciences (M.B., D.K., J.D.M., K.R.S., L.C., C.A.C.), University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA; Department of Ophthalmology (M.B., T.H., M.W., S.Z.), University Hospital Zurich, Zurich, Switzerland
| | - Tommaso Bacci
- Vitreous Retina Macula Consultants of New York (T.B., K.B.F.), New York University School of Medicine, New York, New York, USA
| | - Deepayan Kar
- Department of Ophthalmology and Visual Sciences (M.B., D.K., J.D.M., K.R.S., L.C., C.A.C.), University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Jeffrey D Messinger
- Department of Ophthalmology and Visual Sciences (M.B., D.K., J.D.M., K.R.S., L.C., C.A.C.), University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Kenneth R Sloan
- Department of Ophthalmology and Visual Sciences (M.B., D.K., J.D.M., K.R.S., L.C., C.A.C.), University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Ling Chen
- Department of Ophthalmology and Visual Sciences (M.B., D.K., J.D.M., K.R.S., L.C., C.A.C.), University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA; First Affiliated Hospital of Chongqing Medical University (L.C.), Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, China
| | - Timothy Hamann
- Department of Ophthalmology (M.B., T.H., M.W., S.Z.), University Hospital Zurich, Zurich, Switzerland
| | - Maximilian Wiest
- Department of Ophthalmology (M.B., T.H., M.W., S.Z.), University Hospital Zurich, Zurich, Switzerland
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York (T.B., K.B.F.), New York University School of Medicine, New York, New York, USA; LuEsther T. Mertz Retinal Research Center (K.B.F.), New York University School of Medicine, New York, New York, USA; Manhattan Eye, Ear and Throat Hospital, and the Department of Ophthalmology (K.B.F.), New York University School of Medicine, New York, New York, USA
| | - Sandrine Zweifel
- Department of Ophthalmology (M.B., T.H., M.W., S.Z.), University Hospital Zurich, Zurich, Switzerland; Department of Ophthalmology, University of Zurich (S.Z.), Zurich, Switzerland
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences (M.B., D.K., J.D.M., K.R.S., L.C., C.A.C.), University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA.
| |
Collapse
|
46
|
Beer MC, Kuhrt H, Kohen L, Wiedemann P, Bringmann A, Hollborn M. Kir4.2 Potassium Channels in Retinal Pigment Epithelial Cells In Vitro: Contribution to Cell Viability and Proliferation, and Down-Regulation by Vascular Endothelial Growth Factor. Biomolecules 2022; 12:biom12060848. [PMID: 35740973 PMCID: PMC9220994 DOI: 10.3390/biom12060848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 01/27/2023] Open
Abstract
Dedifferentiation and proliferation of retinal pigment epithelial (RPE) cells are characteristics of retinal diseases. Dedifferentiation is likely associated with changes of inwardly rectifying potassium (Kir) channels. The roles of Kir4.2 channels in viability, and proliferation of cultured RPE cells were investigated. Gene expression levels were determined using qRT-PCR. RPE cells expressed Kir2.1, 2.2, 2.4, 3.2, 4.1, 4.2, 6.1, and 7.1 mRNA. Kir4.2 protein was verified by immunocytochemistry and Western blotting. Kir4.2 mRNA in cultured cells was upregulated by hypoxia (hypoxia mimetic CoCl2 or 0.2% O2) and extracellular hyperosmolarity (addition of high NaCl or sucrose). Kir4.2 mRNA was suppressed by vascular endothelial growth factor (VEGF), blood serum, and thrombin whereas platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF), and transforming growth factor-β1 (TGF-β1) increased it. Hyperosmotic Kir4.2 gene expression was mediated by TGF-β1 receptor signaling while hypoxic gene transcription was dependent on PDGF receptor signaling. VEGF receptor-2 blockade increased Kir4.2 mRNA level under control, hyperosmotic, and hypoxic conditions. SiRNA-mediated knockdown of Kir4.2 decreased the cell viability and proliferation under control and hyperosmotic conditions. Kir4.2 channels play functional roles in maintaining the viability and proliferation of RPE cells. Downregulation of Kir4.2 by VEGF, via activation of VEGF receptor-2 and induction of blood-retinal barrier breakdown, may contribute to decreased viability of RPE cells under pathological conditions.
Collapse
Affiliation(s)
- Marie-Christin Beer
- Department of Ophthalmology and Eye Hospital, University of Leipzig, 04103 Leipzig, Germany; (M.-C.B.); (L.K.); (P.W.); (A.B.)
| | - Heidrun Kuhrt
- Institute of Anatomy, University of Leipzig, 04103 Leipzig, Germany;
| | - Leon Kohen
- Department of Ophthalmology and Eye Hospital, University of Leipzig, 04103 Leipzig, Germany; (M.-C.B.); (L.K.); (P.W.); (A.B.)
- Department of Ophthalmology, Helios Klinikum Aue, 08280 Aue, Germany
| | - Peter Wiedemann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, 04103 Leipzig, Germany; (M.-C.B.); (L.K.); (P.W.); (A.B.)
| | - Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, 04103 Leipzig, Germany; (M.-C.B.); (L.K.); (P.W.); (A.B.)
| | - Margrit Hollborn
- Department of Ophthalmology and Eye Hospital, University of Leipzig, 04103 Leipzig, Germany; (M.-C.B.); (L.K.); (P.W.); (A.B.)
- Correspondence:
| |
Collapse
|
47
|
Liu J, Laiginhas R, Shen M, Shi Y, Li J, Trivizki O, Waheed NK, Gregori G, Rosenfeld PJ. Multimodal Imaging and En Face OCT Detection of Calcified Drusen in Eyes with Age-Related Macular Degeneration. OPHTHALMOLOGY SCIENCE 2022; 2:100162. [PMID: 35935092 PMCID: PMC9354070 DOI: 10.1016/j.xops.2022.100162] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 05/25/2023]
Abstract
Purpose En face OCT imaging was investigated as a method for the detection and monitoring of calcified drusen in eyes with nonexudative age-related macular degeneration (AMD). Design Retrospective case series of a prospective study. Participants Patients with nonexudative AMD. Methods A retrospective review was performed of same-day color fundus (CF), fundus autofluorescence (FAF), near-infrared (NIR), and en face swept-source (SS) OCT images to identify eyes with nonexudative AMD and calcified drusen. The appearance and progression of these lesions were compared using the different imaging methods. Main Outcome Measures Comparison between the presence of calcified drusen observed on CF images with the detection of these lesions on FAF, NIR, and en face SS OCT images. Results Two hundred twenty eyes from 139 patients with nonexudative AMD were studied, with 42.7% of eyes containing calcified drusen either at baseline or during follow-up visits. On the en face SS OCT images, calcified drusen appeared as dark focal lesions referred to as choroidal hypotransmission defects (hypoTDs) that were detected in the choroid using a sub-retinal pigment epithelium (RPE) slab. The corresponding B-scans showed drusen with heterogenous internal reflectivity, hyporeflective cores, and hyperreflective caps. In most calcified drusen, choroidal hypertransmission defects (hyperTDs) were observed to develop over time around the periphery of the hypoTDs, giving them the appearance of a donut lesion on the en face SS OCT images. These donut lesions were associated with significant attenuation of the overlying retina, and the corresponding FAF images showed hypoautofluorescence at the location of these lesions. The donut lesions fulfilled the requirement for a persistent hyperTD, which is synonymous with complete RPE and outer retinal atrophy (cRORA). Six eyes displayed regression of the calcified drusen without cRORA developing. B-scans at the location of these regressed calcified drusen showed deposits along the RPE, with outer retinal thinning in the regions where the calcified lesions previously existed. Conclusions En face OCT imaging is a useful method for the detection and monitoring of calcified drusen and can be used to document the evolution of these drusen as they form donut lesions or foci of cRORA.
Collapse
Affiliation(s)
- Jeremy Liu
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Rita Laiginhas
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Mengxi Shen
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Yingying Shi
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Jianqing Li
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Omer Trivizki
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Nadia K. Waheed
- New England Eye Center, Tufts Medical Center, Boston, Massachusetts
| | - Giovanni Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Philip J. Rosenfeld
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
48
|
Laiginhas R, Liu J, Shen M, Shi Y, Trivizki O, Waheed NK, Gregori G, Rosenfeld PJ. Multimodal Imaging, OCT B-Scan Localization, and En Face OCT Detection of Macular Hyperpigmentation in Eyes with Intermediate Age-Related Macular Degeneration. OPHTHALMOLOGY SCIENCE 2022; 2:100116. [PMID: 36249700 PMCID: PMC9560648 DOI: 10.1016/j.xops.2022.100116] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 12/03/2022]
Abstract
Purpose Multimodal imaging was used to identify and characterize the cause of hyperpigmentation seen on color fundus images (CFIs) of eyes with intermediate age-related macular degeneration (iAMD). Design Retrospective review of a prospective study. Participants Patients with iAMD. Methods Color fundus images with macular hyperpigmentation were compared with same-day images obtained using fundus autofluorescence (FAF), near infrared reflectance (NIR), and swept-source (SS) OCT imaging. Two SS OCT en face slabs were generated: a retinal slab to identify hyperreflective foci within the retina and a slab from beneath the retinal pigment epithelium (RPE; the sub-RPE slab) that was used to detect regions that cause decreased light transmission into the choroid, also known as hypotransmission defects. All images were registered to allow for qualitative comparisons by 2 independent graders. Main Outcome Measures Comparison between foci of macular hyperpigmentation seen on CFIs with the detection of these regions on FAF, NIR, and SS OCT en face images. Results Compared with CFIs, FAF imaging seemed to be the least sensitive method for the detection of hyperpigmentation, whereas NIR and SS OCT imaging reliably detected these hyperpigmented areas. Although NIR imaging detected most of the hyperpigmentation seen in CFIs, SS OCT imaging detected all the areas of hyperpigmentation and anatomically localized these areas by using both en face and B-scan images. En face OCT slabs of the retina and sub-RPE region were registered to the CFIs, and areas of hyperpigmentation were shown to correspond to hyperreflective foci in the retina and regions of thickened RPE seen on OCT B-scans. Although both hyperpigmentation and early atrophic lesions appeared bright on NIR imaging, en face SS OCT imaging was able to distinguish these lesions because hyperpigmentary changes appeared dark and early atrophic lesions appeared bright on the sub-RPE slab. Conclusions En face OCT imaging in conjunction with OCT B-scans were able to identify and localize the hyperpigmentation seen in CFIs reliably. This hyperpigmentation was not only associated with intraretinal hyperreflective foci, but also corresponded to areas with a thickened RPE.
Collapse
Affiliation(s)
- Rita Laiginhas
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Jeremy Liu
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Mengxi Shen
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Yingying Shi
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Omer Trivizki
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Nadia K. Waheed
- New England Eye Center, Tufts Medical Center, Boston, Massachusetts
| | - Giovanni Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Philip J. Rosenfeld
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
- Correspondence: Philip J. Rosenfeld, MD, PhD, Department of Ophthalmology, Bascom Palmer Eye Institute, 900 NW 17th Street, Miami, FL 33136.
| |
Collapse
|
49
|
Rosenfeld PJ, Trivizki O, Gregori G, Wang RK. An Update on the Hemodynamic Model of Age-Related Macular Degeneration. Am J Ophthalmol 2022; 235:291-299. [PMID: 34509436 DOI: 10.1016/j.ajo.2021.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/22/2021] [Accepted: 08/30/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE To provide an update on the hemodynamic model of age-related macular degeneration (AMD). DESIGN Evidence-based perspective. METHODS Review of the literature and experience of the authors. RESULTS Choroidal hemodynamics are not the primary cause of AMD as proposed by Ephraim Friedman in 1997. However, evidence is accumulating to suggest that choroidal perfusion is an important environmental influence that contributes to our understanding of disease progression in this complex genetic disorder. Although early and intermediate AMD seem to be influenced to a large extent by the underlying genetics, the asymmetry of disease progression to the later stages of AMD cannot be explained by genetics alone. The progression of disease and the asymmetry of this progression seem to correlate with abnormalities in choroidal perfusion that can be documented by optical coherence tomography. These perfusion abnormalities in the setting of a thickened Bruch's membrane are thought to exacerbate the impaired nutritional exchange between the retinal pigment epithelium and the choriocapillaris. We propose that the genetic susceptibility to develop AMD combined with age-related changes in macular choroidal hemodynamics, such as increasing choriocapillaris perfusion deficits and decreasing choroidal vascular densities, play an important role in disease progression and may help to explain the asymmetry between eyes, particularly in the later stages of AMD. CONCLUSIONS This updated hemodynamic model of AMD focuses on disease progression and highlights the importance of age-related changes in the choroidal circulation as a major environmental influence on disease severity in eyes that are genetically susceptible to develop AMD.
Collapse
Affiliation(s)
- Philip J Rosenfeld
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine (P.J.P., O.T., G.G.), Miami, Florida, USA.
| | - Omer Trivizki
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine (P.J.P., O.T., G.G.), Miami, Florida, USA; Department of Ophthalmology, Tel Aviv Medical Center, Tel Aviv University (O.T.), Tel Aviv, Israel and the Department of Bioengineering (R.K.W.) and Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | - Giovanni Gregori
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine (P.J.P., O.T., G.G.), Miami, Florida, USA
| | - Ruikang K Wang
- Department of Ophthalmology (R.K.W.), University of Washington, Seattle, Washington, USA
| |
Collapse
|
50
|
Huang CH, Yang CH, Lai YJ, Hsiao CK, Hou YC, Yang CM, Chen TC. HYPERREFLECTIVE FOCI AS IMPORTANT PROGNOSTIC INDICATORS OF PROGRESSION OF RETINITIS PIGMENTOSA. Retina 2022; 42:388-395. [PMID: 34510128 DOI: 10.1097/iae.0000000000003301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To investigate the presence and clinical relevance of hyperreflective foci (HRFs) in retinitis pigmentosa. METHODS Seventy seven retinitis pigmentosa cases were retrospectively reviewed. The 10-mm wide cross-line macular scans in optical coherence tomography were acquired. Hyperreflective foci were classified according to the location in optical coherence tomography: outer layers within the macula (HRF-outer-central), macular border beyond the central 3 mm (HRF-outer-perifoveal), and choroid (HRF-choroidal). The visual acuity at baseline, at 12 months, and other fundus characteristics were collected. RESULTS The mean logMAR best-corrected visual acuity decreased from 0.59 ± 0.66 (20/78 in Snellen) to 0.74 ± 0.81 (20/106 in Snellen) in 1 year. Sixty-six (42.9%), 105 (68.2%), and 98 (63.6%) eyes were classified to HRF-outer-central, HRF-outer-perifoveal, and HRF-choroidal group, respectively. Hyperreflective foci were positively correlated with poorer vision, central macular thinning, and ellipsoid zone disruption (all P < 0.001). Worse vision was associated with older age, macular involvement, and the coexistence of two or three HRF groups (P = 0.014, 0.047, 0.019, <0.001, respectively). Hyperreflective foci developed more frequently in patients with thick choroid than in those with thin choroid. The coexistence of three HRF groups was correlated with quicker visual deterioration (P = 0.034). CONCLUSION Hyperreflective foci are common in retinitis pigmentosa and can be a negative prognostic indicator of macular thickness and visual preservation. Thick choroid was associated with all groups of HRFs, especially HRF-choroidal.
Collapse
Affiliation(s)
- Chu-Hsuan Huang
- Department of Ophthalmology, Cathay General Hospital, Taipei, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan; and
| | - Ying-Ju Lai
- Division of Biostatistics and Data Science, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Chuhsing Kate Hsiao
- Division of Biostatistics and Data Science, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chih Hou
- Department of Ophthalmology, Cathay General Hospital, Taipei, Taiwan
| | - Chung-May Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan; and
| | - Ta-Ching Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan; and
| |
Collapse
|