1
|
Sales CF, Pinheiro APB, Ribeiro YM, Moreira DP, Luz RK, Melo RMC, Rizzo E. Starvation-induced autophagy modulates spermatogenesis and sperm quality in Nile tilapia. Theriogenology 2024; 216:42-52. [PMID: 38154205 DOI: 10.1016/j.theriogenology.2023.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
Spermatogenesis is a finely regulated process that involves the interaction of several cellular mechanisms to ensure the proper development and maturation of germ cells. This study assessed autophagy contribution and its relation to apoptosis in fish spermatogenesis during starvation. To that end, Nile tilapia males were subjected to 0 (control), 7, 14, 21, and 28 days of starvation to induce autophagy. Testes samples were obtained for analyses of spermatogenesis by histology, electron microscopy, immunohistochemistry, and western blotting. Sperm quality was assessed using a computer-assisted sperm analysis (CASA) system. Data indicated a significant reduction in gonadosomatic index, seminiferous tubule area, and spermatozoa proportion in fish subject to starvation compared to the control group. Immunoblotting revealed a reduction of Bcl2 and Beclin 1 associated with increased Bax and Caspase-3, mainly after 21 and 28 days of starvation. LC3 and P62 indicated reduced autophagic flux in these starvation times. Immunolabeling for autophagic and apoptotic proteins occurred in all development stages of the germ cells, but protein expression varied throughout starvation. Beclin 1 and Cathepsin D decreased while Bax and Caspase-3 increased in spermatocytes, spermatids, and spermatozoa after 21 and 28 days. Autophagic and lysosomal proteins colocalization indicated the fusion of autophagosomes with lysosomes and lysosomal degradation in spermatogenic cells. The CASA system indicated reduced sperm motility and velocity in animals subjected to 21 and 28 days of starvation. Altogether, the data support autophagy acting at different spermatogenesis stages in Nile tilapia, with decreased autophagy and increased apoptosis after 21 and 28 days of starvation, which results in a decrease in the spermatozoa number and sperm quality.
Collapse
Affiliation(s)
- Camila Ferreira Sales
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Barbosa Pinheiro
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Yves Moreira Ribeiro
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Davidson Peruci Moreira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Ronald Kennedy Luz
- Laboratório de Aquacultura, Escola de Veterinária, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Magno Costa Melo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Elizete Rizzo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Horta Remedios M, Liang W, González LN, Li V, Da Ros VG, Cohen DJ, Zaremberg V. Ether lipids and a peroxisomal riddle in sperm. Front Cell Dev Biol 2023; 11:1166232. [PMID: 37397249 PMCID: PMC10309183 DOI: 10.3389/fcell.2023.1166232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
Sperm are terminally differentiated cells that lack most of the membranous organelles, resulting in a high abundance of ether glycerolipids found across different species. Ether lipids include plasmalogens, platelet activating factor, GPI-anchors and seminolipid. These lipids play important roles in sperm function and performance, and thus are of special interest as potential fertility markers and therapeutic targets. In the present article, we first review the existing knowledge on the relevance of the different types of ether lipids for sperm production, maturation and function. To further understand ether-lipid metabolism in sperm, we then query available proteomic data from highly purified sperm, and produce a map of metabolic steps retained in these cells. Our analysis pinpoints the presence of a truncated ether lipid biosynthetic pathway that would be competent for the production of precursors through the initial peroxisomal core steps, but devoid of subsequent microsomal enzymes responsible for the final synthesis of all complex ether-lipids. Despite the widely accepted notion that sperm lack peroxisomes, the thorough analysis of published data conducted herein identifies nearly 70% of all known peroxisomal resident proteins as part of the sperm proteome. In view of this, we highlight open questions related to lipid metabolism and possible peroxisomal functions in sperm. We propose a repurposed role for the truncated peroxisomal ether-lipid pathway in detoxification of products from oxidative stress, which is known to critically influence sperm function. The likely presence of a peroxisomal-derived remnant compartment that could act as a sink for toxic fatty alcohols and fatty aldehydes generated by mitochondrial activity is discussed. With this perspective, our review provides a comprehensive metabolic map associated with ether-lipids and peroxisomal-related functions in sperm and offers new insights into potentially relevant antioxidant mechanisms that warrant further research.
Collapse
Affiliation(s)
| | - Weisheng Liang
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Lucas N. González
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Victoria Li
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Vanina G. Da Ros
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Débora J. Cohen
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Vanina Zaremberg
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
O’Flaherty C, Scarlata E. OXIDATIVE STRESS AND REPRODUCTIVE FUNCTION: The protection of mammalian spermatozoa against oxidative stress. Reproduction 2022; 164:F67-F78. [PMID: 37021966 DOI: 10.1530/rep-22-0200] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In brief
This review focuses on the enzymatic antioxidant mechanisms to fight oxidative stress by spermatozoa, highlighting the differences among mammalian species. We discuss recent evidence about players that promote and fight oxidative stress and the need for novel strategies to diagnose and treat cases of male infertility associated with oxidative damage of the spermatozoon.
Abstract
The spermatozoon is very sensitive to high reactive oxygen species (ROS) levels due to its limited antioxidant system. A consortium of antioxidant enzymes, including superoxide dismutase (SOD), glutathione peroxidases (GPXs), peroxiredoxins (PRDXs), thioredoxins, and glutathione-S-transferases, is necessary to produce healthy spermatozoa and to maintain sperm quality to ensure motility, capacitation, and DNA integrity. A delicate balance between ROS production and antioxidant enzymes is needed to ensure ROS-dependent sperm capacitation. GPX4 is an essential component of the mitochondrial sheath in mammalian spermatozoa, and GPX5 is a crucial antioxidant defence in the mouse epididymis to protect the sperm genome during the maturation of the spermatozoon. The mitochondrial superoxide (O2·–) production is controlled by SOD2, and the hydrogen peroxide (H2O2) generated by SOD2 activity and peroxynitrite (ONOO–) are scavenged mainly by PRDXs in human spermatozoa. PRDXs regulate the redox signalling necessary for sperm motility and capacitation, particularly by PRDX6. This enzyme is the first line of defence against oxidative stress to prevent lipid peroxidation and DNA oxidation by scavenging H2O2 and ONOO– through its peroxidase activity and repairing oxidized membranes by its calcium-independent phospholipase A2 activity. The success of antioxidant therapy in treating infertility resides in the proper diagnosis of the presence of oxidative stress and which type of ROS are produced. Thus, more research on the molecular mechanisms affected by oxidative stress, the development of novel diagnostic tools to identify infertile patients with oxidative stress, and randomized controlled trials are of paramount importance to generate personalized antioxidant therapy to restore male fertility.
Collapse
Affiliation(s)
- Cristian O’Flaherty
- Urology Division, Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- The Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | - Eleonora Scarlata
- Urology Division, Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- The Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Epicatechin Surface Coating in Combating Toxicity of Silver Nanoparticle in Mice Male Reproductive System. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
5
|
Vismaya KU, Noorjasmine TN, Syam Das S, Kesavan L, Baby Chakrapani PS, Krishnakumar IM, Kumar CVS. Natural self-emulsifying reversible hybrid-hydrogel delivery (N'SERH) of tocopherol enhances bioavailability and modulates alcohol-induced reproductive toxicity in rats. Andrologia 2022; 54:e14305. [PMID: 34879438 DOI: 10.1111/and.14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/04/2021] [Accepted: 10/25/2021] [Indexed: 11/28/2022] Open
Abstract
Alpha-tocopherol (α-Toc), an antioxidant vitamin, has been widely prescribing in the treatment of infertility, in spite of its limited oral bioavailability. The present study describes the enhanced bioavailability and efficacy of a novel 'natural self-emulsifying reversible hydrogel' (N'SERH)-based oral delivery form of α-Toc-rich sunflower oil (Tα-fen) using fenugreek galactomannan hydrogel scaffold (hybrid-FENUMATTM ). Tα-fen was characterised by FTIR, SEM, TEM and DLS as a hybrid-hydrogel powder. The bioavailability study on thirty (n = 30) male Sprague Dawley rats randomised into two groups indicated 4.84-fold increase in the oral bioavailability when the formulation was provided at 15 mg/kg b. wt. of α-Toc by oral gavage. The efficacy study on 24 animals randomised into four groups as control, ethanol treated (4 mg/kg b. wt.), ethanol+unformulated, UTα (15 mg/kg b. wt.) and ethanol+formulation, Tα-fen (15 mg/kg b. wt.) revealed significant improvement (*p < 0.05) and reversal of alcohol-induced reproductive toxicity as evident from the enhanced sperm count, motility and viability parameters, testosterone levels, fructose content, and SDH activity and plasma antioxidant status among Tα-fen-treated rats, compared with unformulated, UTα-treated group. Histopathology further confirmed the reversal of the alterations in the testes morphology of Tα-fen-treated animals, indicating its promising potential in the treatment of reproductive health issues.
Collapse
Affiliation(s)
- K U Vismaya
- Department of Zoology, Government Victoria College, Palakkad, Kerala, India
| | - T N Noorjasmine
- Department of Zoology, Government Victoria College, Palakkad, Kerala, India
| | - S Syam Das
- R&D Centre Akay Natural Ingredients, Cochin, Kerala, India
| | - Lakshmi Kesavan
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - P S Baby Chakrapani
- Centre for Neuroscience, Cochin University of Science and Technology, Kochi, Kerala, India
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
| | | | | |
Collapse
|
6
|
Peroxiredoxin 6 Peroxidase and Ca 2+-Independent Phospholipase A 2 Activities Are Essential to Support Male-Mouse Fertility. Antioxidants (Basel) 2022; 11:antiox11020226. [PMID: 35204109 PMCID: PMC8868156 DOI: 10.3390/antiox11020226] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
Human infertility is an important health problem that affects one in six couples worldwide. Half of these cases are due to male infertility. Oxidative stress is a common culprit of male infertility, promoting lipid peroxidation and the oxidation of proteins and DNA in spermatozoa, thereby impairing motility, capacitation and fertilization. Peroxiredoxin 6 (PRDX6) possesses peroxidase and Ca2+-independent-phospholipase-A2 (iPLA2) activities that scavenge ROS and repair oxidized sperm membranes, respectively. PRDX6 protects spermatozoa against oxidative stress. Infertile men’s spermatozoa have impaired motility, elevated lipid peroxidation levels and DNA damage due to low PRDX6 levels. A lack of PRDX6 is associated with male-mouse infertility. Here, we determined the impact of the absence of PRDX6 peroxidase or iPLA2 activities on male-mouse fertility. Two-month-old male C57Bl6/J (wild-type), Prdx6−/−, C47S and D140A knock-in (peroxidase- and iPLA2-deficient, respectively) male mice were challenged with an in vivo oxidative stress triggered by tert-butyl hydroperoxide (t-BHP). C47S and D140A males produced smaller litters compared to wild-type controls. The t-BHP treatment promoted a lower number of pups, high levels of lipid peroxidation, tyrosine nitration, and DNA oxidation in all mutant spermatozoa compared to wild-type controls. All mutant spermatozoa had impaired capacitation and motility. In summary, both PRDX6 peroxidase and iPLA2 activities are essential to support male-mouse fertility.
Collapse
|
7
|
Ruiz-Valderrama L, Posadas-Rodríguez J, Bonilla-Jaime H, Tarragó-Castellanos MDR, González-Márquez H, Arrieta-Cruz I, González-Núñez L, Salame-Méndez A, Rodríguez-Tobón A, Morales-Méndez JG, Arenas-Ríos E. Sperm Dysfunction in the Testes and Epididymides due to Overweight and Obesity Is Not Caused by Oxidative Stress. Int J Endocrinol 2022; 2022:3734572. [PMID: 36263361 PMCID: PMC9576436 DOI: 10.1155/2022/3734572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 12/08/2022] Open
Abstract
Obesity is a condition that has been linked to male infertility. The current hypothesis regarding the cause of infertility is that sperm are highly sensitive to reactive oxygen species (ROS) during spermatogenesis in the testes and transit through the epididymides, so the increase in ROS brought on by obesity could cause oxidative stress. The aim of this study was to evaluate whether the activity of the enzymes catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPX) is capable of counteracting oxidative stress in sperm. The male Wistar rat was used as an overweight and obesity model, and analysis of fertility in these groups was carried out including the control group. Serum testosterone levels were determined, and the scrotal fat, testes, and epididymides were extracted. The epididymides were separated ini0 3 principal parts (caput, corpus, and cauda) before evaluating sperm viability, sperm morphology, damage to desoxyribonucleic acid of the sperm, and ROS production. The protein content and specific activity of the three enzymes mentioned above were evaluated. Results showed a gain in body weight and scrotal fat in the overweight and obese groups with decreased parameters for serum testosterone levels and sperm viability and morphology. Fertility was not greatly affected and no DNA integrity damage was found, although ROS in the epididymal sperm increased markedly and Raman spectroscopy showed a disulfide bridge collapse associated with DNA. The specific activities of CAT and GPX increased in the overweight and obesity groups, but those of SOD did not change. The amounts of proteins in the testes and epididymides decreased. These findings confirm that overweight and obesity decrease concentrations of free testosterone and seem to decrease protein content, causing poor sperm quality. Implications. An increase in scrotal fat in these conditions fosters an increase of ROS, but the increase of GPX and CAT activity seems to avoid oxidative stress increase in the sperm without damaging your DNA.
Collapse
Affiliation(s)
- Lorena Ruiz-Valderrama
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad y Estado de México, Mexico
| | - Jaqueline Posadas-Rodríguez
- Maestría en Biología de la Reproducción Animal, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09340, Mexico
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de La Reproducción, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09340, Mexico
| | | | - Humberto González-Márquez
- Departamento de Ciencias de La Salud, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09340, Mexico
| | - Isabel Arrieta-Cruz
- Departamento de Investigación Básica, Instituto Nacional de Geriatría, Ciudad de México 10200, Mexico
| | - Leticia González-Núñez
- Departamento de Biología de La Reproducción, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09340, Mexico
| | - Arturo Salame-Méndez
- Departamento de Biología de La Reproducción, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09340, Mexico
| | - Ahiezer Rodríguez-Tobón
- Departamento de Biología, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09340, Mexico
| | | | - Edith Arenas-Ríos
- Departamento de Biología de La Reproducción, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09340, Mexico
| |
Collapse
|
8
|
O'Flaherty C, Matsushita-Fournier D. Reactive oxygen species and protein modifications in spermatozoa. Biol Reprod 2018; 97:577-585. [PMID: 29025014 DOI: 10.1093/biolre/iox104] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023] Open
Abstract
Cellular response to reactive oxygen species (ROS) includes both reversible redox signaling and irreversible nonenzymatic reactions which depend on the nature and concentration of the ROS involved. Changes in thiol/disulfide pairs affect protein conformation, enzymatic activity, ligand binding, and protein-protein interactions. During spermatogenesis and epididymal maturation, there are ROS-dependent modifications of the sperm chromatin and flagellar proteins.The spermatozoon is regulated by redox mechanisms to acquire fertilizing ability. For this purpose, controlled amounts of ROS are necessary to assure sperm activation (motility and capacitation). Modifications of the thiol groups redox status of sperm proteins are needed for spermatozoon to achieve fertilizing ability. However, when ROS are produced at high concentrations, the established oxidative stress promotes pathological changes affecting sperm function and leading to infertility. Sperm proteins are sensitive to high levels of ROS and suffer modifications that impact on motility, capacitation, and the ability of the spermatozoon to recognize and bind to the zona pellucida and damage of sperm DNA. Thiol oxidation, tyrosine nitration, and S-glutathionylation are highlighted in this review as significant redox-dependent protein modifications associated with impairment of sperm function and alteration of paternal genome leading to infertility. Peroxiredoxins, the primary antioxidant protection in spermatozoa, are affected by most of the protein modifications described in this review. They play a significant role in both physiological and pathological processes in mammalian spermatozoa.
Collapse
Affiliation(s)
- Cristian O'Flaherty
- Department of Surgery (Urology Division), McGill University, Montréal, Québec, Canada.,Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montréal, Québec, Canada.,The Research Institute, McGill University Health Centre, Montréal, Québec, Canada
| | - David Matsushita-Fournier
- Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montréal, Québec, Canada.,The Research Institute, McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
9
|
Deb R, Nagotu S. Versatility of peroxisomes: An evolving concept. Tissue Cell 2017; 49:209-226. [DOI: 10.1016/j.tice.2017.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 02/04/2023]
|
10
|
Fan J, Li X, Issop L, Culty M, Papadopoulos V. ACBD2/ECI2-Mediated Peroxisome-Mitochondria Interactions in Leydig Cell Steroid Biosynthesis. Mol Endocrinol 2016; 30:763-82. [PMID: 27167610 DOI: 10.1210/me.2016-1008] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Fatty acid metabolism and steroid biosynthesis are 2 major pathways shared by peroxisomes and mitochondria. Both organelles are in close apposition to the endoplasmic reticulum, with which they communicate via interorganelle membrane contact sites to promote cellular signaling and the exchange of ions and lipids. To date, no convincing evidence of the direct contact between peroxisomes and mitochondria was reported in mammalian cells. Hormone-induced, tightly controlled steroid hormone biosynthesis requires interorganelle interactions. Using immunofluorescent staining and live-cell imaging, we found that dibutyryl-cAMP treatment of MA-10 mouse tumor Leydig cells rapidly induces peroxisomes to approach mitochondria and form peroxisome-mitochondrial contact sites/fusion, revealed by the subcellular distribution of the endogenous acyl-coenzyme A-binding domain (ACBD)2/ECI2 isoform A generated by alternative splicing, and further validated using a proximity ligation assay. This event occurs likely via a peroxisome-like structure, which is mediated by peroxisomal and mitochondrial matrix protein import complexes: peroxisomal import receptor peroxisomal biogenesis factor 5 (PEX5), and the mitochondrial import receptor subunit translocase of outer mitochondrial membrane 20 homolog (yeast) protein. Similar results were obtained using the mLTC-1 mouse tumor Leydig cells. Ectopic expression of the ACBD2/ECI2 isoform A in MA-10 cells led to increased basal and hormone-stimulated steroid formation, indicating that ACBD2/ECI2-mediated peroxisomes-mitochondria interactions favor in the exchange of metabolites and/or macromolecules between these 2 organelles in support of steroid biosynthesis. Considering the widespread occurrence of the ACBD2/ECI2 protein, we propose that this protein might serve as a tool to assist in understanding the contact between peroxisomes and mitochondria.
Collapse
Affiliation(s)
- Jinjiang Fan
- The Research Institute of the McGill University Health Centre (J.F., X.L., L.I., M.C., V.P.) and Departments of Medicine (J.F., L.I., M.C., V.P.), Biochemistry (X.L., V.P.), and Pharmacology and Therapeutics (M.C., V.P.), McGill University, Montréal, Québec, Canada H4A 3J1
| | - Xinlu Li
- The Research Institute of the McGill University Health Centre (J.F., X.L., L.I., M.C., V.P.) and Departments of Medicine (J.F., L.I., M.C., V.P.), Biochemistry (X.L., V.P.), and Pharmacology and Therapeutics (M.C., V.P.), McGill University, Montréal, Québec, Canada H4A 3J1
| | - Leeyah Issop
- The Research Institute of the McGill University Health Centre (J.F., X.L., L.I., M.C., V.P.) and Departments of Medicine (J.F., L.I., M.C., V.P.), Biochemistry (X.L., V.P.), and Pharmacology and Therapeutics (M.C., V.P.), McGill University, Montréal, Québec, Canada H4A 3J1
| | - Martine Culty
- The Research Institute of the McGill University Health Centre (J.F., X.L., L.I., M.C., V.P.) and Departments of Medicine (J.F., L.I., M.C., V.P.), Biochemistry (X.L., V.P.), and Pharmacology and Therapeutics (M.C., V.P.), McGill University, Montréal, Québec, Canada H4A 3J1
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre (J.F., X.L., L.I., M.C., V.P.) and Departments of Medicine (J.F., L.I., M.C., V.P.), Biochemistry (X.L., V.P.), and Pharmacology and Therapeutics (M.C., V.P.), McGill University, Montréal, Québec, Canada H4A 3J1
| |
Collapse
|
11
|
García-Díaz EC, Gómez-Quiroz LE, Arenas-Ríos E, Aragón-Martínez A, Ibarra-Arias JA, del Socorro I Retana-Márquez M. Oxidative status in testis and epididymal sperm parameters after acute and chronic stress by cold-water immersion in the adult rat. Syst Biol Reprod Med 2015; 61:150-60. [PMID: 25640572 DOI: 10.3109/19396368.2015.1008071] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Stress is associated with detrimental effects on male reproductive function. It is known that stress increases reactive oxygen species (ROS) generation in the male reproductive tract. High ROS levels may be linked to low sperm quality and male infertility. However, it is still not clear if ROS are generated by stress in the testis. The objective of this study was to characterize the role of oxidative stress induced by cold-water immersion stress in the testis of adult male rats and its relation with alterations in cauda epididymal sperm. Adult male rats were exposed to acute stress or chronic stress by cold-water immersion. Rats were sacrificed at 0, 6, 12, and 24 hours immediately following acute stress exposure, and after 20, 40, and 50 days of chronic stress. ROS production increased only at 6 hours post-stress, while the activity and expression of antioxidant enzymes, lipid peroxidation (LPO), and sperm parameters were not modified in the testis. Corticosterone increased immediately after acute stress, whereas testosterone was not modified. After chronic stress, testicular absolute weight decreased; in addition, ROS production and LPO increased at 20, 40, and 50 days. The activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) decreased throughout the duration of chronic stress and the activity of catalase (CAT) decreased at 40 and 50 days, and increased at 20 days. The expression of copper/zinc superoxide dismutase (SOD1) and CAT were not modified, but the expression of phospholipid hydroperoxide glutathione peroxidase (GPx-4) decreased at 20 days. Motility, viability, and sperm count decreased, while abnormal sperm increased with chronic stress. These results suggest that during acute stress there is a redox state regulation in the testis since no deleterious effect was observed. In contrast, equilibrium redox is lost during chronic stress, with low enzyme activity but without modifying their expression. In addition, corticosterone increased while testosterone decreased, this decrease is related to the negative effects seen in sperm.
Collapse
|
12
|
Conrad M, Ingold I, Buday K, Kobayashi S, Angeli JPF. ROS, thiols and thiol-regulating systems in male gametogenesis. Biochim Biophys Acta Gen Subj 2014; 1850:1566-74. [PMID: 25450170 DOI: 10.1016/j.bbagen.2014.10.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND During maturation and storage, spermatozoa generate substantial amounts of reactive oxygen species (ROS) and are thus forced to cope with an increasingly oxidative environment that is both needed and detrimental to their biology. Such a janus-faceted intermediate needs to be tightly controlled and this is done by a wide array of redox enzymes. These enzymes not only have to prevent unspecific modifications of essential cellular biomolecules by quenching undesired ROS, but they are also required and often directly involved in critical protein modifications. SCOPE OF REVIEW The present review is conceived to present an update on what is known about critical roles of redox enzymes, whereby special emphasis is put on the family of glutathione peroxidases, which for the time being presents the best characterized tasks during gametogenesis. MAJOR CONCLUSIONS We therefore demonstrate that understanding the function of (seleno)thiol-based oxidases/reductases is not a trivial task and relevant knowledge will be mainly gained by using robust systems, as exemplified by several (conditional) knockout studies. We thus stress the importance of using such models for providing unequivocal evidence in the molecular understanding of redox regulatory mechanisms in sperm maturation. GENERAL SIGNIFICANCE ROS are not merely detrimental by-products of metabolism and their proper generation and usage by specific enzymes is essential for vital functions as beautifully exemplified during male gametogenesis. As such, lessons learnt from thiol-based oxidases/reductases in male gametogenesis could be used as a general principle for other organs as it is most likely not only restricted to this developmental phase. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - Irina Ingold
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Katalin Buday
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Sho Kobayashi
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Department of Functional Genomics and Biotechnology, United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Jose Pedro Friedmann Angeli
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
13
|
Abstract
The ejaculated spermatozoon, as an aerobic cell, must fight against toxic levels of reactive oxygen species (ROS) generated by its own metabolism but also by other sources such as abnormal spermatozoa, chemicals and toxicants, or the presence of leukocytes in semen. Mammalian spermatozoa are extremely sensitive to oxidative stress, a condition occurring when there is a net increase in ROS levels within the cell. Opportunely, this specialized cell has a battery of antioxidant enzymes (superoxide dismutase, peroxiredoxins, thioredoxins, thioredoxins reductases, and glutathione s-transferases) working in concert to assure normal sperm function. Any impairment of the antioxidant enzymatic activities will promote severe oxidative damage which is observed as plasma membrane lipid peroxidation, oxidation of structural proteins and enzymes, and oxidation of DNA bases that lead to abnormal sperm function. Altogether, these damages occurring in spermatozoa are associated with male infertility. The present review contains a description of the enzymatic antioxidant system of the human spermatozoon and a reevaluation of the role of its different components and highlights the necessity of sufficient supply of reducing agents (NADPH and reduced glutathione) to guarantee normal sperm function.
Collapse
|
14
|
Amaral A, Castillo J, Estanyol JM, Ballescà JL, Ramalho-Santos J, Oliva R. Human sperm tail proteome suggests new endogenous metabolic pathways. Mol Cell Proteomics 2012; 12:330-42. [PMID: 23161514 DOI: 10.1074/mcp.m112.020552] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proteomic studies are contributing greatly to our understanding of the sperm cell, and more detailed descriptions are expected to clarify additional cellular and molecular sperm attributes. The aim of this study was to characterize the subcellular proteome of the human sperm tail and, hopefully, identify less concentrated proteins (not found in whole cell proteome studies). Specifically, we were interested in characterizing the sperm metabolic proteome and gaining new insights into the sperm metabolism issue. Sperm were isolated from normozoospermic semen samples and depleted of any contaminating leukocytes. Tail fractions were obtained by means of sonication followed by sucrose-gradient ultracentrifugation, and their purity was confirmed via various techniques. Liquid chromatography and tandem mass spectrometry of isolated sperm tail peptides resulted in the identification of 1049 proteins, more than half of which had not been previously described in human sperm. The categorization of proteins according to their function revealed two main groups: proteins related to metabolism and energy production (26%), and proteins related to sperm tail structure and motility (11%). Interestingly, a great proportion of the metabolic proteome (24%) comprised enzymes involved in lipid metabolism, including enzymes for mitochondrial beta-oxidation. Unexpectedly, we also identified various peroxisomal proteins, some of which are known to be involved in the oxidation of very long chain fatty acids. Analysis of our data using Reactome suggests that both mitochondrial and peroxisomal pathways might indeed be active in sperm, and that the use of fatty acids as fuel might be more preponderant than previously thought. In addition, incubation of sperm with the fatty acid oxidation inhibitor etomoxir resulted in a significant decrease in sperm motility. Contradicting a common concept in the literature, we suggest that the male gamete might have the capacity to obtain energy from endogenous pools, and thus to adapt to putative exogenous fluctuations.
Collapse
Affiliation(s)
- Alexandra Amaral
- Human Genetics Research Group, IDIBAPS, Faculty of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Xiao Y, Karnati S, Qian G, Nenicu A, Fan W, Tchatalbachev S, Höland A, Hossain H, Guillou F, Lüers GH, Baumgart-Vogt E. Cre-mediated stress affects sirtuin expression levels, peroxisome biogenesis and metabolism, antioxidant and proinflammatory signaling pathways. PLoS One 2012; 7:e41097. [PMID: 22829911 PMCID: PMC3400606 DOI: 10.1371/journal.pone.0041097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/21/2012] [Indexed: 11/28/2022] Open
Abstract
Cre-mediated excision of loxP sites is widely used in mice to manipulate gene function in a tissue-specific manner. To analyze phenotypic alterations related to Cre-expression, we have used AMH-Cre-transgenic mice as a model system. Different Cre expression levels were obtained by investigation of C57BL/6J wild type as well as heterozygous and homozygous AMH-Cre-mice. Our results indicate that Cre-expression itself in Sertoli cells already has led to oxidative stress and lipid peroxidation (4-HNE lysine adducts), inducing PPARα/γ, peroxisome proliferation and alterations of peroxisome biogenesis (PEX5, PEX13 and PEX14) as well as metabolic proteins (ABCD1, ABCD3, MFP1, thiolase B, catalase). In addition to the strong catalase increase, a NRF2- and FOXO3-mediated antioxidative response (HMOX1 of the endoplasmic reticulum and mitochondrial SOD2) and a NF-κB activation were noted. TGFβ1 and proinflammatory cytokines like IL1, IL6 and TNFα were upregulated and stress-related signaling pathways were induced. Sertoli cell mRNA-microarray analysis revealed an increase of TNFR2-signaling components. 53BP1 recruitment and expression levels for DNA repair genes as well as for p53 were elevated and the ones for related sirtuin deacetylases affected (SIRT 1, 3-7) in Sertoli cells. Under chronic Cre-mediated DNA damage conditions a strong downregulation of Sirt1 was observed, suggesting that the decrease of this important coordinator between DNA repair and metabolic signaling might induce the repression release of major transcription factors regulating metabolic and cytokine-mediated stress pathways. Indeed, caspase-3 was activated and increased germ cell apoptosis was observed, suggesting paracrine effects. In conclusion, the observed wide stress-induced effects and metabolic alterations suggest that it is essential to use the correct control animals (Cre/Wt) with matched Cre expression levels to differentiate between Cre-mediated and specific gene-knock out-mediated effects.
Collapse
Affiliation(s)
- Yu Xiao
- Institute for Anatomy and Cell Biology II, Justus Liebig University Giessen, Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
da Silva TF, Sousa VF, Malheiro AR, Brites P. The importance of ether-phospholipids: a view from the perspective of mouse models. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1501-8. [PMID: 22659211 DOI: 10.1016/j.bbadis.2012.05.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/06/2012] [Accepted: 05/23/2012] [Indexed: 12/11/2022]
Abstract
Ether-phospholipids represent an important group of phospholipids characterized by an alkyl or an alkenyl bond at the sn-1 position of the glycerol backbone. Plasmalogens are the most abundant form of alkenyl-glycerophospholipids, and their synthesis requires functional peroxisomes. Defects in the biosynthesis of plasmalogens are the biochemical hallmark of the human peroxisomal disorder Rhizomelic Chondrodysplasia Punctata (RCDP), which is characterized by defects in eye, bone and nervous tissue. The generation and characterization of mouse models with defects in plasmalogen levels have significantly advanced our understanding of the role and importance of plasmalogens as well as pathogenetic mechanisms underlying RCDP. A review of the current mouse models and the description of the combined knowledge gathered from the histopathological and biochemical studies is presented and discussed. Further characterization of the role and functions of plasmalogens will contribute to the elucidation of disease pathogenesis in peroxisomal and non-peroxisomal disorders. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of Peroxisomes in Health and Disease.
Collapse
|
17
|
The human gene SLC25A17 encodes a peroxisomal transporter of coenzyme A, FAD and NAD+. Biochem J 2012; 443:241-7. [PMID: 22185573 DOI: 10.1042/bj20111420] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The essential cofactors CoA, FAD and NAD+ are synthesized outside the peroxisomes and therefore must be transported into the peroxisomal matrix where they are required for important processes. In the present study we have functionally identified and characterized SLC25A17 (solute carrier family 25 member 17), which is the only member of the mitochondrial carrier family that has previously been shown to be localized in the peroxisomal membrane. Recombinant and purified SLC25A17 was reconstituted into liposomes. Its transport properties and kinetic parameters demonstrate that SLC25A17 is a transporter of CoA, FAD, FMN and AMP, and to a lesser extent of NAD+, PAP (adenosine 3',5'-diphosphate) and ADP. SLC25A17 functioned almost exclusively by a counter-exchange mechanism, was saturable and was inhibited by pyridoxal 5'-phosphate and other mitochondrial carrier inhibitors. It was expressed to various degrees in all of the human tissues examined. Its main function is probably to transport free CoA, FAD and NAD+ into peroxisomes in exchange for intraperoxisomally generated PAP, FMN and AMP. The present paper is the first report describing the identification and characterization of a transporter for multiple free cofactors in peroxisomes.
Collapse
|
18
|
Hübner S, Efthymiadis A. Recent progress in histochemistry and cell biology. Histochem Cell Biol 2012; 137:403-57. [PMID: 22366957 DOI: 10.1007/s00418-012-0933-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2012] [Indexed: 01/06/2023]
Abstract
Studies published in Histochemistry and Cell Biology in the year 2011 represent once more a manifest of established and newly sophisticated techniques being exploited to put tissue- and cell type-specific molecules into a functional context. The review is therefore the Histochemistry and Cell Biology's yearly intention to provide interested readers appropriate summaries of investigations touching the areas of tissue biology, developmental biology, the biology of the immune system, stem cell research, the biology of subcellular compartments, in order to put the message of such studies into natural scientific-/human- and also pathological-relevant correlations.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany.
| | | |
Collapse
|
19
|
Dastig S, Nenicu A, Otte DM, Zimmer A, Seitz J, Baumgart-Vogt E, Lüers GH. Germ cells of male mice express genes for peroxisomal metabolic pathways implicated in the regulation of spermatogenesis and the protection against oxidative stress. Histochem Cell Biol 2011; 136:413-25. [PMID: 21898072 DOI: 10.1007/s00418-011-0832-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2011] [Indexed: 12/21/2022]
Abstract
Peroxisomes are organelles with main functions in the metabolism of lipids and of reactive oxygen species. Within the testis, they have different functional profiles depending on the cell types. A dysfunction of peroxisomes interferes with regular spermatogenesis and can lead to infertility due to spermatogenic arrest. However, so far only very little is known about the functions of peroxisomes in germ cells. We have therefore analyzed the peroxisomal compartment in germ cells and its alterations during spermatogenesis by fluorescence and electron microscopy as well as by expression profiling of peroxisome-related genes in purified cell populations isolated from mouse testis. We could show that peroxisomes are present in all germ cells of the germinal epithelium. During late spermiogenesis, the peroxisomes form large clusters that are segregated from the spermatozoa into the residual bodies upon release from the germinal epithelium. Germ cells express genes for proteins involved in numerous metabolic pathways of peroxisomes. Based on the expression profile, we conclude that newly identified functions of germ cell peroxisomes are the synthesis of plasmalogens as well as the metabolism of retinoids, polyunsaturated fatty acids and polyamines. Thus, germ cell peroxisomes are involved in the regulation of the homeostasis of signaling molecules regulating spermatogenesis and they contribute to the protection of germ cells against oxidative stress.
Collapse
Affiliation(s)
- Sandra Dastig
- Department of Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Kaczmarek K, Studencka M, Meinhardt A, Wieczerzak K, Thoms S, Engel W, Grzmil P. Overexpression of peroxisomal testis-specific 1 protein induces germ cell apoptosis and leads to infertility in male mice. Mol Biol Cell 2011; 22:1766-79. [PMID: 21460186 PMCID: PMC3093327 DOI: 10.1091/mbc.e09-12-0993] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Peroxisomal testis-specific 1 gene (Pxt1) is the only male germ cell-specific gene that encodes a peroxisomal protein known to date. To elucidate the role of Pxt1 in spermatogenesis, we generated transgenic mice expressing a c-MYC-PXT1 fusion protein under the control of the PGK2 promoter. Overexpression of Pxt1 resulted in induction of male germ cells' apoptosis mainly in primary spermatocytes, finally leading to male infertility. This prompted us to analyze the proapoptotic character of mouse PXT1, which harbors a BH3-like domain in the N-terminal part. In different cell lines, the overexpression of PXT1 also resulted in a dramatic increase of apoptosis, whereas the deletion of the BH3-like domain significantly reduced cell death events, thereby confirming that the domain is functional and essential for the proapoptotic activity of PXT1. Moreover, we demonstrated that PXT1 interacts with apoptosis regulator BAT3, which, if overexpressed, can protect cells from the PXT1-induced apoptosis. The PXT1-BAT3 association leads to PXT1 relocation from the cytoplasm to the nucleus. In summary, we demonstrated that PXT1 induces apoptosis via the BH3-like domain and that this process is inhibited by BAT3.
Collapse
Affiliation(s)
- Karina Kaczmarek
- Institute of Human Genetics, Georg-August-University of Göttingen, 37073 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Islinger M, Cardoso MJR, Schrader M. Be different--the diversity of peroxisomes in the animal kingdom. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:881-97. [PMID: 20347886 DOI: 10.1016/j.bbamcr.2010.03.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/15/2010] [Accepted: 03/18/2010] [Indexed: 10/19/2022]
Abstract
Peroxisomes represent so-called "multipurpose organelles" as they contribute to various anabolic as well as catabolic pathways. Thus, with respect to the physiological specialization of an individual organ or animal species, peroxisomes exhibit a functional diversity, which is documented by significant variations in their proteome. These differences are usually regarded as an adaptational response to the nutritional and environmental life conditions of a specific organism. Thus, human peroxisomes can be regarded as an in part physiologically unique organellar entity fulfilling metabolic functions that differ from our animal model systems. In line with this, a profound understanding on how peroxisomes acquired functional heterogeneity in terms of an evolutionary and mechanistic background is required. This review summarizes our current knowledge on the heterogeneity of peroxisomal physiology, providing insights into the genetic and cell biological mechanisms, which lead to the differential localization or expression of peroxisomal proteins and further gives an overview on peroxisomal biochemical pathways, which are specialized in different animal species and organs. Moreover, it addresses the impact of proteome studies on our understanding of differential peroxisome function describing the utility of mass spectrometry and computer-assisted algorithms to identify peroxisomal target sequences for the detection of new organ- or species-specific peroxisomal proteins.
Collapse
Affiliation(s)
- M Islinger
- Department of Anatomy and Cell Biology, Ruprecht-Karls University, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
22
|
Abstract
More than half a century of research on peroxisomes has revealed unique features of this ubiquitous subcellular organelle, which have often been in disagreement with existing dogmas in cell biology. About 50 peroxisomal enzymes have so far been identified, which contribute to several crucial metabolic processes such as β-oxidation of fatty acids, biosynthesis of ether phospholipids and metabolism of reactive oxygen species, and render peroxisomes indispensable for human health and development. It became obvious that peroxisomes are highly dynamic organelles that rapidly assemble, multiply and degrade in response to metabolic needs. However, many aspects of peroxisome biology are still mysterious. This review addresses recent exciting discoveries on the biogenesis, formation and degradation of peroxisomes, on peroxisomal dynamics and division, as well as on the interaction and cross talk of peroxisomes with other subcellular compartments. Furthermore, recent advances on the role of peroxisomes in medicine and in the identification of novel peroxisomal proteins are discussed.
Collapse
Affiliation(s)
- Michael Schrader
- Centre for Cell Biology and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | |
Collapse
|
23
|
Grzmil P, Burfeind C, Preuss T, Dixkens C, Wolf S, Engel W, Burfeind P. The putative peroxisomal gene Pxt1 is exclusively expressed in the testis. Cytogenet Genome Res 2007; 119:74-82. [PMID: 18160785 DOI: 10.1159/000109622] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 06/18/2007] [Indexed: 01/18/2023] Open
Abstract
Genes reported to be crucial for spermatogenesis are often exclusively expressed in the testis. We have identified a novel male germ cell-specific expressed gene named peroxisomal testis specific 1 (Pxt1) with expression starting at the spermatocyte stage during mouse spermatogenesis. The putative amino acid sequence encoded by the cDNA of the Pxt1 gene contains a conserved Asn-His-Leu (NHL)-motif at its C-terminal end, which is characteristic for peroxisomal proteins. Pxt1-EGFP fusion protein is co-localized with known peroxisomal marker proteins in transfected NIH3T3 cells. In addition, we could demonstrate that the peroxisomal targeting signal NHL is functional and responsible for the correct subcellular localization of the Pxt1-EGFP fusion protein. In male germ cells peroxisomes were reported only in spermatogonia. The Pxt1 gene is so far the first gene coding for a putative peroxisomal protein which is expressed in later steps of spermatogenesis, namely in pachytene spermatocytes.
Collapse
Affiliation(s)
- P Grzmil
- Institute of Human Genetics, University of Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The progress in discerning the structure and function of cells and tissues in health and disease has been achieved to a large extent by the continued development of new reagents for histochemistry, the improvement of existing techniques and new imaging techniques. This review will highlight some advancements made in these fields.
Collapse
|
25
|
Nenicu A, Lüers GH, Kovacs W, David M, Zimmer A, Bergmann M, Baumgart-Vogt E. Peroxisomes in human and mouse testis: differential expression of peroxisomal proteins in germ cells and distinct somatic cell types of the testis. Biol Reprod 2007; 77:1060-72. [PMID: 17881773 DOI: 10.1095/biolreprod.107.061242] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The vital importance of peroxisomal metabolism for regular function of the testis is stressed by the severe spermatogenesis defects induced by peroxisomal dysfunction. However, only sparse information is available on the role and enzyme composition of this organelle in distinct cell types of the testis. In the present study, we characterized the peroxisomal compartment in human and mouse testis in primary cultures of murine somatic cells (Sertoli, peritubular myoid, and Leydig cells) and in GFP-PTS1 transgenic mice with a variety of morphological and biochemical techniques. Formerly, peroxisomes were thought to be absent in late stages of spermatogenesis. However, our results obtained by detection of different peroxisomal marker proteins show the presence of these organelles in most cell types in the testis, except for mature spermatozoa. Furthermore, we demonstrate a strong heterogeneity of peroxisomal protein content in various cell types of the human and mouse testis and show marked differences in structure, abundance, and localization of these organelles in spermatids, depending on their maturation. Highest and selective enrichment of the peroxisomal lipid transporters (ABCD1 and ABCD3) as well as ACOX2, the key regulatory enzyme of the beta-oxidation pathway 2 for side chain oxidation of cholesterol, were found in Sertoli cells, whereas Leydig cells were enriched in catalase and ABCD2. Our results suggest a cell type-specific metabolic function of peroxisomes in the testis and point to an important role for peroxisomes in spermiogenesis and in the lipid metabolism of Sertoli cells.
Collapse
Affiliation(s)
- Anca Nenicu
- Institute for Anatomy and Cell Biology II, Justus Liebig University, 35385 Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Taatjes DJ, Zuber C, Roth J. The histochemistry and cell biology vade mecum: a review of 2005–2006. Histochem Cell Biol 2006; 126:743-88. [PMID: 17149649 DOI: 10.1007/s00418-006-0253-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2006] [Indexed: 02/07/2023]
Abstract
The procurement of new knowledge and understanding in the ever expanding discipline of cell biology continues to advance at a breakneck pace. The progress in discerning the physiology of cells and tissues in health and disease has been driven to a large extent by the continued development of new probes and imaging techniques. The recent introduction of semi-conductor quantum dots as stable, specific markers for both fluorescence light microscopy and electron microscopy, as well as a virtual treasure-trove of new fluorescent proteins, has in conjunction with newly introduced spectral imaging systems, opened vistas into the seemingly unlimited possibilities for experimental design. Although it oftentimes proves difficult to predict what the future will hold with respect to advances in disciplines such as cell biology and histochemistry, it is facile to look back on what has already occurred. In this spirit, this review will highlight some advancements made in these areas in the past 2 years.
Collapse
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology, Microscopy Imaging Center, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | | | |
Collapse
|
27
|
Nazarko TY, Polupanov AS, Manjithaya RR, Subramani S, Sibirny AA. The requirement of sterol glucoside for pexophagy in yeast is dependent on the species and nature of peroxisome inducers. Mol Biol Cell 2006; 18:106-18. [PMID: 17079731 PMCID: PMC1751328 DOI: 10.1091/mbc.e06-06-0554] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sterol glucosyltransferase, Ugt51/Atg26, is essential for both micropexophagy and macropexophagy of methanol-induced peroxisomes in Pichia pastoris. However, the role of this protein in pexophagy in other yeast remained unclear. We show that oleate- and amine-induced peroxisomes in Yarrowia lipolytica are degraded by Atg26-independent macropexophagy. Surprisingly, Atg26 was also not essential for macropexophagy of oleate- and amine-induced peroxisomes in P. pastoris, suggesting that the function of sterol glucoside (SG) in pexophagy is both species and peroxisome inducer specific. However, the rates of degradation of oleate- and amine-induced peroxisomes in P. pastoris were reduced in the absence of SG, indicating that P. pastoris specifically uses sterol conversion by Atg26 to enhance selective degradation of peroxisomes. However, methanol-induced peroxisomes apparently have lost the redundant ability to be degraded without SG. We also show that the P. pastoris Vac8 armadillo repeat protein is not essential for macropexophagy of methanol-, oleate-, or amine-induced peroxisomes, which makes PpVac8 the first known protein required for the micropexophagy, but not for the macropexophagy, machinery. The uniqueness of Atg26 and Vac8 functions under different pexophagy conditions demonstrates that not only pexophagy inducers, such as glucose or ethanol, but also the inducers of peroxisomes, such as methanol, oleate, or primary amines, determine the requirements for subsequent pexophagy in yeast.
Collapse
Affiliation(s)
- Taras Y. Nazarko
- *Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; and
| | - Andriy S. Polupanov
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; and
| | - Ravi R. Manjithaya
- *Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322
| | - Suresh Subramani
- *Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322
| | - Andriy A. Sibirny
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; and
- Department of Metabolic Engineering, Rzeszow University, Cwiklinskiej 2, Rzeszow 3-601, Poland
| |
Collapse
|