1
|
Piecha F, Jahn BV, Köntopf J, Koop A, Ozga AK, Al-Jawazneh A, Harberts A, Riedel C, Buggisch P, Benten D, Hübener P, Adam G, Huber S, Lohse AW, Bannas P, Kluwe J. Recompensation of Liver Cirrhosis by TIPS Reduces Epithelial Cell Death Markers, Translating Into Improved Clinical Outcome. Liver Int 2024. [PMID: 39533838 DOI: 10.1111/liv.16156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND AIMS Portal hypertension is the main pathophysiological driver of decompensation in patients with liver cirrhosis. Epithelial cell death markers, m30 and m65, correlate with hepatic injury and predict outcomes across various stages of liver disease. We aim (i) to evaluate whether portal hypertension itself contributes to liver outcome-relevant epithelial injury, and (ii) to analyse the capacity of m30/m65 to predict outcome in patients receiving a transjugular intrahepatic portosystemic shunt (TIPS) for refractory ascites. METHODS Sixty-six patients undergoing TIPS placement for refractory ascites and 20 patients with compensated cirrhosis as controls were prospectively enrolled in this monocentric cohort study. Epithelial cell death markers were analysed pre-TIPS, as well as 1-3 and 6-9 months post-TIPS. The capacity of baseline levels of m30/m65 in predicting six-month transplant-free survival rates was analysed by multivariable Cox proportional hazards regression. RESULTS Levels of m30 and m65 were higher in patients with decompensated cirrhosis (pre-TIPS) compared with compensated cirrhosis (controls). Following correction of portal hypertension by TIPS and recompensation, both markers decreased over time, reaching levels comparable to patients with compensated cirrhosis. On multivariable analysis, pre-TIPS baseline levels of m30 and m65 were not predictive for six-month survival. CONCLUSION Correction of portal hypertension via TIPS reduces levels of epithelial cell death markers, indicating that portal hypertension is a driver of outcome-relevant, hepatic cell death in patients with decompensated cirrhosis. Baseline m30/m65 values do not affect six-month survival rates, which suggests that TIPS placement overcomes the unfavourable spontaneous prognosis otherwise indicated by elevated baseline m30/65 levels.
Collapse
Affiliation(s)
- Felix Piecha
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | | | - Johannes Köntopf
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anja Koop
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ann-Kathrin Ozga
- Center for Experimental Medicine, Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Amirah Al-Jawazneh
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Aenne Harberts
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Riedel
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Buggisch
- Ifi-Institute for Interdisciplinary Medicine, Hamburg, Germany
| | - Daniel Benten
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Gastroenterology, Asklepios Hospital Harburg, Hamburg, Germany
| | - Peter Hübener
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ansgar W Lohse
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Bannas
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Kluwe
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
He L, Zhang C, Liu LL, Huang LP, Lu WJ, Zhang YY, Zou DY, Wang YF, Zhang Q, Yang XL. Development of a diagnostic nomogram for alpha-fetoprotein-negative hepatocellular carcinoma based on serological biomarkers. World J Gastrointest Oncol 2024; 16:2451-2463. [DOI: 10.4251/wjgo.v16.i6.2451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/12/2024] [Accepted: 04/01/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Serum biomarkers play an important role in the early diagnosis and prognosis of HCC. Because a certain percentage of HCC patients are negative for alpha-fetoprotein (AFP), the diagnosis of AFP-negative HCC is essential to improve the detection rate of HCC.
AIM To establish an effective model for diagnosing AFP-negative HCC based on serum tumour biomarkers.
METHODS A total of 180 HCC patients were enrolled in this study. The expression levels of GP73, des-γ-carboxyprothrombin (DCP), CK18-M65, and CK18-M30 were detected by a fully automated chemiluminescence analyser. The variables were selected by logistic regression analysis. Several models were constructed using stepwise backward logistic regression. The performance of the models was compared using the C statistic, integrated discrimination improvement, net reclassification improvement, and calibration curves. The clinical utility of the nomogram was assessed using decision curve analysis (DCA).
RESULTS The results showed that the expression levels of GP73, DCP, CK18-M65, and CK18-M30 were significantly greater in AFP-negative HCC patients than in healthy controls (P < 0.001). Multivariate logistic regression analysis revealed that GP73, DCP, and CK18-M65 were independent factors for diagnosing AFP-negative HCC. By comparing the diagnostic performance of multiple models, we included GP73 and CK18-M65 as the model variables, and the model had good discrimination ability (area under the curve = 0.946) and good goodness of fit. The DCA curves indicated the good clinical utility of the nomogram.
CONCLUSION Our study identified GP73 and CK18-M65 as serum biomarkers with certain application value in the diagnosis of AFP-negative HCC. The diagnostic nomogram based on CK18-M65 combined with GP73 demonstrated good performance and effectively identified high-risk groups of patients with HCC.
Collapse
Affiliation(s)
- Li He
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, Shandong Province, China
- Department of Organ Transplantation, The Third Medical Centre of Chinese PLA General Hospital, Beijing 100039, China
| | - Cui Zhang
- Department of Laboratory Medicine, The Third Medical Centre of Chinese PLA General Hospital, Beijing 100039, China
| | - Lan-Lan Liu
- Department of Laboratory Medicine, The Third Medical Centre of Chinese PLA General Hospital, Beijing 100039, China
| | - Li-Ping Huang
- Department of Laboratory Medicine, Jingyu County People’s Hospital, Baishan 135200, Jilin Province, China
| | - Wen-Jing Lu
- Department of Laboratory Medicine, The Third Medical Centre of Chinese PLA General Hospital, Beijing 100039, China
| | - Yuan-Yuan Zhang
- Department of Laboratory Medicine, The Third Medical Centre of Chinese PLA General Hospital, Beijing 100039, China
| | - De-Yong Zou
- Department of Laboratory Medicine, The Third Medical Centre of Chinese PLA General Hospital, Beijing 100039, China
| | - Yu-Fei Wang
- Department of Laboratory Medicine, The Third Medical Centre of Chinese PLA General Hospital, Beijing 100039, China
| | - Qing Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, Shandong Province, China
- Department of Organ Transplantation, The Third Medical Centre of Chinese PLA General Hospital, Beijing 100039, China
| | - Xiao-Li Yang
- Department of Laboratory Medicine, The Third Medical Centre of Chinese PLA General Hospital, Beijing 100039, China
- School of Laboratory Medicine, Weifang Medical University, Weifang 261053, Shandong Province, China
| |
Collapse
|
3
|
He L, Zhang C, Liu LL, Huang LP, Lu WJ, Zhang YY, Zou DY, Wang YF, Zhang Q, Yang XL. Development of a diagnostic nomogram for alpha-fetoprotein-negative hepatocellular carcinoma based on serological biomarkers. World J Gastrointest Oncol 2024; 16:2463-2475. [PMID: 38994169 PMCID: PMC11236252 DOI: 10.4251/wjgo.v16.i6.2463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/12/2024] [Accepted: 04/01/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Serum biomarkers play an important role in the early diagnosis and prognosis of HCC. Because a certain percentage of HCC patients are negative for alpha-fetoprotein (AFP), the diagnosis of AFP-negative HCC is essential to improve the detection rate of HCC. AIM To establish an effective model for diagnosing AFP-negative HCC based on serum tumour biomarkers. METHODS A total of 180 HCC patients were enrolled in this study. The expression levels of GP73, des-γ-carboxyprothrombin (DCP), CK18-M65, and CK18-M30 were detected by a fully automated chemiluminescence analyser. The variables were selected by logistic regression analysis. Several models were constructed using stepwise backward logistic regression. The performance of the models was compared using the C statistic, integrated discrimination improvement, net reclassification improvement, and calibration curves. The clinical utility of the nomogram was assessed using decision curve analysis (DCA). RESULTS The results showed that the expression levels of GP73, DCP, CK18-M65, and CK18-M30 were significantly greater in AFP-negative HCC patients than in healthy controls (P < 0.001). Multivariate logistic regression analysis revealed that GP73, DCP, and CK18-M65 were independent factors for diagnosing AFP-negative HCC. By comparing the diagnostic performance of multiple models, we included GP73 and CK18-M65 as the model variables, and the model had good discrimination ability (area under the curve = 0.946) and good goodness of fit. The DCA curves indicated the good clinical utility of the nomogram. CONCLUSION Our study identified GP73 and CK18-M65 as serum biomarkers with certain application value in the diagnosis of AFP-negative HCC. The diagnostic nomogram based on CK18-M65 combined with GP73 demonstrated good performance and effectively identified high-risk groups of patients with HCC.
Collapse
Affiliation(s)
- Li He
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, Shandong Province, China
- Department of Organ Transplantation, The Third Medical Centre of Chinese PLA General Hospital, Beijing 100039, China
| | - Cui Zhang
- Department of Laboratory Medicine, The Third Medical Centre of Chinese PLA General Hospital, Beijing 100039, China
| | - Lan-Lan Liu
- Department of Laboratory Medicine, The Third Medical Centre of Chinese PLA General Hospital, Beijing 100039, China
| | - Li-Ping Huang
- Department of Laboratory Medicine, Jingyu County People’s Hospital, Baishan 135200, Jilin Province, China
| | - Wen-Jing Lu
- Department of Laboratory Medicine, The Third Medical Centre of Chinese PLA General Hospital, Beijing 100039, China
| | - Yuan-Yuan Zhang
- Department of Laboratory Medicine, The Third Medical Centre of Chinese PLA General Hospital, Beijing 100039, China
| | - De-Yong Zou
- Department of Laboratory Medicine, The Third Medical Centre of Chinese PLA General Hospital, Beijing 100039, China
| | - Yu-Fei Wang
- Department of Laboratory Medicine, The Third Medical Centre of Chinese PLA General Hospital, Beijing 100039, China
| | - Qing Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, Shandong Province, China
- Department of Organ Transplantation, The Third Medical Centre of Chinese PLA General Hospital, Beijing 100039, China
| | - Xiao-Li Yang
- Department of Laboratory Medicine, The Third Medical Centre of Chinese PLA General Hospital, Beijing 100039, China
- School of Laboratory Medicine, Weifang Medical University, Weifang 261053, Shandong Province, China
| |
Collapse
|
4
|
Denk H, Abuja PM, Zatloukal K. Mallory-Denk bodies and hepatocellular senescence: a causal relationship? Virchows Arch 2024; 484:637-644. [PMID: 38289501 PMCID: PMC11063002 DOI: 10.1007/s00428-024-03748-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 05/02/2024]
Abstract
Mallory-Denk bodies (MDBs) are hepatocellular cytoplasmic inclusions, which occur in certain chronic liver diseases, such as alcohol-related (ASH) and metabolic dysfunction-associated (MASH) steatohepatitis, copper toxicosis, some drug-induced liver disorders, chronic cholangiopathies, and liver tumors. Our study focused on the expression of the senescence markers p21WAF1/cip1 and p16INK4a in hepatocytes containing MDBs in steatohepatitis, chronic cholangiopathies with fibrosis or cirrhosis, Wilson's disease, and hepatocellular carcinomas. Cytoplasm and nuclei of MDB-containing hepatocytes as well as MDB inclusions, except those associated with carcinoma cells, were strongly p16-positive, p21-positive, as well as p21-negative nuclei in MDB-containing hepatocytes which were observed whereas MDBs were p21-negative. Expression of the senescence marker p16 suggests that MDB formation reflects an adaptive response to chronic stress resembling senescence with its consequences, i.e., expression of inflammation- and fibrosis-prone secretome. Thus, senescence can be regarded as "double-edged sword" since, on the one hand, it may be an attempt of cellular defense, but, on the other, also causes further and sustained damage by inducing inflammation and fibrosis related to the senescence-associated secretory phenotype and thus progression of chronic liver disease.
Collapse
Affiliation(s)
- Helmut Denk
- Diagnostic and Research Institute of Pathology, Diagnostic & Research Center of Molecular Biomedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, A-8010, Graz, Austria.
| | - Peter M Abuja
- Diagnostic and Research Institute of Pathology, Diagnostic & Research Center of Molecular Biomedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, A-8010, Graz, Austria
| | - Kurt Zatloukal
- Diagnostic and Research Institute of Pathology, Diagnostic & Research Center of Molecular Biomedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, A-8010, Graz, Austria
| |
Collapse
|
5
|
Zoncapè M, Liguori A, Tsochatzis EA. Non-invasive testing and risk-stratification in patients with MASLD. Eur J Intern Med 2024; 122:11-19. [PMID: 38246813 DOI: 10.1016/j.ejim.2024.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
The development and validation of non-invasive fibrosis tests (NITs) has changed clinical practice in Hepatology over the last 15 years. Metabolic associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is the most prevalent liver disease in western countries, with up to a third of the unselected adult population affected. In this article, we review the use of NITs in the diagnosis and staging of MASLD. We discuss their use in the diagnosis of steatosis, steatohepatitis and fibrosis and critically evaluate recently published data. These NITs include a variety of approaches, such as serum markers like FIB-4, pro-C3 and ELF, imaging techniques like Fibroscan® and MRE, and combined scores like Agile 3+ and Agile 4, offering a range of options for healthcare providers. Furthermore, these non-invasive tests also serve as valuable prognostic tools, allowing for better risk assessment and improved patient management, particularly in predicting liver-related events and overall mortality.
Collapse
Affiliation(s)
- Mirko Zoncapè
- Sheila Sherlock Liver Unit, Royal Free Hospital, London, UK; UCL Institute for Liver and Digestive Health, University College London, UK; Liver Unit, Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Antonio Liguori
- Sheila Sherlock Liver Unit, Royal Free Hospital, London, UK; UCL Institute for Liver and Digestive Health, University College London, UK; Medical and Surgical Sciences Department, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Emmanuel A Tsochatzis
- Sheila Sherlock Liver Unit, Royal Free Hospital, London, UK; UCL Institute for Liver and Digestive Health, University College London, UK.
| |
Collapse
|
6
|
Shiratsuchi G, Konishi S, Yano T, Yanagihashi Y, Nakayama S, Katsuno T, Kashihara H, Tanaka H, Tsukita K, Suzuki K, Herawati E, Watanabe H, Hirai T, Yagi T, Kondoh G, Gotoh S, Tamura A, Tsukita S. Dual-color live imaging unveils stepwise organization of multiple basal body arrays by cytoskeletons. EMBO Rep 2024; 25:1176-1207. [PMID: 38316902 PMCID: PMC10933483 DOI: 10.1038/s44319-024-00066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 02/07/2024] Open
Abstract
For mucociliary clearance of pathogens, tracheal multiciliated epithelial cells (MCCs) organize coordinated beating of cilia, which originate from basal bodies (BBs) with basal feet (BFs) on one side. To clarify the self-organizing mechanism of coordinated intracellular BB-arrays composed of a well-ordered BB-alignment and unidirectional BB-orientation, determined by the direction of BB to BF, we generated double transgenic mice with GFP-centrin2-labeled BBs and mRuby3-Cep128-labeled BFs for long-term, high-resolution, dual-color live-cell imaging in primary-cultured tracheal MCCs. At early timepoints of MCC differentiation, BB-orientation and BB-local alignment antecedently coordinated in an apical microtubule-dependent manner. Later during MCC differentiation, fluctuations in BB-orientation were restricted, and locally aligned BB-arrays were further coordinated to align across the entire cell (BB-global alignment), mainly in an apical intermediate-sized filament-lattice-dependent manner. Thus, the high coordination of the BB-array was established for efficient mucociliary clearance as the primary defense against pathogen infection, identifying apical cytoskeletons as potential therapeutic targets.
Collapse
Affiliation(s)
- Gen Shiratsuchi
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Satoshi Konishi
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Tomoki Yano
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | | | - Shogo Nakayama
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan
| | - Tatsuya Katsuno
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Center for Anatomical Studies, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroka Kashihara
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Hiroo Tanaka
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- School of Medicine, Teikyo University, Tokyo, Japan
| | - Kazuto Tsukita
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koya Suzuki
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Elisa Herawati
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| | - Hitomi Watanabe
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Yagi
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Gen Kondoh
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shimpei Gotoh
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Atsushi Tamura
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
- School of Medicine, Teikyo University, Tokyo, Japan.
| | - Sachiko Tsukita
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| |
Collapse
|
7
|
Tiniakos DG, Anstee QM, Brunt EM, Burt AD. Fatty Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:330-401. [DOI: 10.1016/b978-0-7020-8228-3.00005-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
de Alteriis G, Pugliese G, Di Sarno A, Muscogiuri G, Barrea L, Cossiga V, Perruolo G, Di Tolla MF, Zumbolo F, Formisano P, Morisco F, Savastano S. Visceral Obesity and Cytokeratin-18 Antigens as Early Biomarkers of Liver Damage. Int J Mol Sci 2023; 24:10885. [PMID: 37446065 DOI: 10.3390/ijms241310885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Visceral obesity is linked to the progression of fatty liver to nonalcoholic steatohepatitis (NASH). Cytokeratin-18 (CK18) epitopes M30 (CK18M30) and M65 (CK18M65) represent accurate markers for detecting NASH. The aim of this study was to evaluate the association of CK18M30 and CK18M65 levels with anthropometric and metabolic characteristics, liver stiffness, and liver indices of steatosis and fibrosis in a cohort of subjects with visceral obesity; in this cross-sectional study, transient elastography (TE-Fibroscan®), anthropometric measurements, metabolic parameters, High Sensitivity C-Reactive Protein (hsCRP), and CK18M30 and CK18M65 levels (Apoptosense ELISA, PEVIVA, Germany) were evaluated. Fatty Liver Index (FLI), Fibrosis 4 (FIB-4), and Aspartate transaminase (AST)-platelet ratio index (APRI) were calculated; among 48 subjects, 47.2% presented metabolic syndrome, 93.8% hepatic steatosis, 60.4% high liver stiffness, and 14.6% hypertransminasemia, while FIB-4 and APRI were normal. CK18M30 and CK18M65 levels were significantly correlated with waist circumference, AST, ALT, HoMA-IR, liver stiffness, and APRI (p < 0.001). Subjects with CK18 fragments above the median values showed significantly higher waist circumference, HbA1c, AST, ALT, HoMA-IR, FLI, and APRI compared to those with values below the median; CK18M30 and CK18M65 levels correlated well with anthropometric and metabolic characteristics, representing good biomarkers for early identification of NASH in subjects with visceral obesity.
Collapse
Affiliation(s)
- Giulia de Alteriis
- Endocrinology Unit, Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, 80131 Naples, Italy
| | - Gabriella Pugliese
- Endocrinology Unit, Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, 80131 Naples, Italy
| | - Antonella Di Sarno
- Endocrinology Unit, Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, 80131 Naples, Italy
| | - Giovanna Muscogiuri
- Endocrinology Unit, Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, 80131 Naples, Italy
| | - Luigi Barrea
- Department of Humanities, Telematic University Pegaso, 80143 Naples, Italy
| | - Valentina Cossiga
- Diseases of the Liver and Biliary System Unit, Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Giuseppe Perruolo
- Department of Translational Medical Science, University of Naples "Federico II", 80131 Naples, Italy
| | | | - Francesca Zumbolo
- Endocrinology Unit, Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, 80131 Naples, Italy
| | - Pietro Formisano
- Department of Translational Medical Science, University of Naples "Federico II", 80131 Naples, Italy
| | - Filomena Morisco
- Diseases of the Liver and Biliary System Unit, Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Silvia Savastano
- Endocrinology Unit, Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
9
|
Goralska J, Razny U, Gruca A, Zdzienicka A, Micek A, Dembinska-Kiec A, Solnica B, Malczewska-Malec M. Plasma Cytokeratin-18 Fragment Level Reflects the Metabolic Phenotype in Obesity. Biomolecules 2023; 13:biom13040675. [PMID: 37189422 DOI: 10.3390/biom13040675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
There is growing interest in the non-invasive identification and monitoring of the outcome of liver damage in obese patients. Plasma cytokeratin-18 (CK-18) fragment levels correlate with the magnitude of hepatocyte apoptosis and have recently been proposed to independently predict the presence of non-alcoholic steatohepatitis (NASH). The aim of the study was to analyze the associations of CK-18 with obesity and related complications: insulin resistance, impaired lipid metabolism and the secretion of hepatokines, adipokines and pro-inflammatory cytokines. The study involved 151 overweight and obese patients (BMI 25-40), without diabetes, dyslipidemia or apparent liver disease. Liver function was assessed based on alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT) and the fatty liver index (FLI). CK-18 M30 plasma levels, FGF-21, FGF-19 and cytokines were determined by ELISA. CK-18 values >150 U/l were accompanied by high ALT, GGT and FLI, insulin resistance, postprandial hypertriglyceridemia, elevated FGF-21 and MCP-1 and decreased adiponectin. ALT activity was the strongest independent factor influencing high CK-18 plasma levels, even after an adjustment for age, sex and BMI [β coefficient (95%CI): 0.40 (0.19-0.61)]. In conclusion, the applied CK-18 cut-off point at 150 U/l allows to distinguish between two metabolic phenotypes in obesity.
Collapse
Affiliation(s)
- Joanna Goralska
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Urszula Razny
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Anna Gruca
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Anna Zdzienicka
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Agnieszka Micek
- Institute of Nursing and Midwifery, Jagiellonian University Medical College; Michałowskiego 12, 31-126 Krakow, Poland
| | - Aldona Dembinska-Kiec
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Bogdan Solnica
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Malgorzata Malczewska-Malec
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| |
Collapse
|
10
|
Wang K, Tao G, Sun Z, Wei J, Liu J, Taylor J, Gibson M, Mostaghimi M, Good M, Sylvester KG. Fecal Keratin 8 Is a Noninvasive and Specific Marker for Intestinal Injury in Necrotizing Enterocolitis. J Immunol Res 2023; 2023:5356646. [PMID: 36959922 PMCID: PMC10030213 DOI: 10.1155/2023/5356646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/11/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Specific biomarkers of intestinal injury associated with necrotizing enterocolitis (NEC) are needed to diagnose and monitor intestinal mucosal injury and recovery. This study aims to develop and test a modified enzyme-linked immunosorbent assay (ELISA) protocol to detect the total keratin 8 (K8) in the stool of newborns with NEC and investigate the clinical value of fecal K8 as a marker of intestinal injury specifically associated with NEC. We collected fecal samples from five newborns with NEC and five gestational age-matched premature neonates without NEC at the Lucile Packard Children's Hospital Stanford and Washington University School of Medicine, respectively. Fecal K8 levels were measured using a modified ELISA protocol and Western blot, and fecal calprotectin was measured using a commercial ELISA kit. Clinical data, including gestational age, birth weight, Bell stage for NEC, feeding strategies, total white blood cell (WBC) count, and other pertinent clinical variables, were collected and analyzed. Fecal K8 levels were significantly higher in the pre-NEC group (1-2 days before diagnosis of NEC) and NEC group than those in the non-NEC group (p = 0.013, p = 0.041). Moreover, fecal K8 was relatively higher at the onset of NEC and declined after the resolution of the disease (p = 0.019). Results with similar trends to fecal K8 were also seen in fecal calprotectin (p = 0.046), but not seen in total WBC count (p = 0.182). In conclusion, a modified ELISA protocol for the total K8 protein was successfully developed for the detection of fecal K8 in the clinical setting of premature newborns with NEC. Fecal K8 is noted to be significantly increased in premature newborns with NEC and may, therefore, serve as a noninvasive and specific marker for intestinal epithelial injury associated with NEC.
Collapse
Affiliation(s)
- Kewei Wang
- 1Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang 110001, China
- 2Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Guozhong Tao
- 2Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zhen Sun
- 2Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jingjing Wei
- 2Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Junlin Liu
- 2Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jordan Taylor
- 2Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle Gibson
- 2Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- 3Stanford Metabolic Health Center, Stanford University School of Medicine and Stanford Healthcare, Stanford, CA 94305, USA
| | - Mirko Mostaghimi
- 2Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Misty Good
- 4Department of Pediatrics, Pathology and Immunology Division of Newborn Medicine, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Karl G. Sylvester
- 2Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- 3Stanford Metabolic Health Center, Stanford University School of Medicine and Stanford Healthcare, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Jolayemi AK, Adeyemi DO, Awoniran PO. Lead nitrate toxicity: its effects on hepatic extracellular matrix fibers, filamentous cytoskeleton and the mitigative potentials of Morinda lucida extract. Vet Anim Sci 2022; 17:100260. [PMID: 35800154 PMCID: PMC9253832 DOI: 10.1016/j.vas.2022.100260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Lead nitrate accumulation cause severe deleterious effect on the cellular and cytoskeletal structure of the liver. Efficacy of Morinda lucida, a medicinal plant, in the mitigation of lead nitrate-induced cellular, cytoskeletal and extracellular alterations in the liver was investigated in Wistar rats. Morinda lucida significantly reversed lead-nitrate-induced hepatocellular, cytoskeletal and extracellular changes in Wistar rats. Possible ameliorative property of Morinda lucida could be due to the antioxidant and membrane stabilizing properties of its phenolic compounds.
In this study, the effect of orally administered methanolic extract of Morinda lucida stem bark (MLSB) was tested for its efficacy to reverse lead nitrate-induced hepatotoxicity in Wistar rats. Thirty-six female rats were assigned into six groups (n = 6). Rats in group I received 2.2 mL/kg distilled water for 28 days, those in group II received 30 mg/kg lead nitrate for 14 days while those in groups III to VI received 30 mg/kg lead nitrate for 14 days followed by a treatment with 100, 250, 500 mg/kg BW MLSB extract and 0.2 mL/100 kg rats silymarin respectively for 14 days. They were sacrificed after 28 days after which biochemical, histological, and immunohistochemical parameters were examined. The results of this study showed a reduction of catalase and superoxide dismutase activities by lead nitrate. Deranged hepatic histomorphology was also observed intracellularly and extracellularly in lead nitrate-treated rats. Altered vimentin arrangement was also observed in lead nitrate-treated rats. However, 250 mg/kg BW dose of Morinda lucida significantly reversed some of these changes while the 500 mg had some toxic effect on liver tissue. We concluded that the extract at 250mg/kg BW dose may be a potential treatment for conditions associated with lead toxicity and other metallic particles.
Collapse
|
12
|
p62 Promotes Survival and Hepatocarcinogenesis in Mice with Liver-Specific NEMO Ablation. Cancers (Basel) 2022; 14:cancers14102436. [PMID: 35626041 PMCID: PMC9139637 DOI: 10.3390/cancers14102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Chronic liver injury is a predisposing factor for hepatocellular carcinoma (HCC) development. p62-mediated Nrf2 overactivation has been shown to drive liver injury and HCC in mice with hepatic impairment of autophagy. Here, we addressed the role of this pathway in a liver disease mouse model that does not exhibit inherent autophagy defect. Genetically-induced Nrf2 overactivation without concomitant strong increase in p62 expression did not aggravate liver injury and hepatocarcinogenesis. In contrast, p62-driven Nrf2 overactivation was prominent in liver tumors of mice that expressed a p62 mutant and showed enhanced hepatocarcinogenesis. Moreover, a negative correlation was observed between p62/Nrf2high liver tumors and the autophagosome marker LC3, suggesting that acquired autophagy defects precede the activation of this pro-tumorigenic pathway. Our results suggest that autophagy activators or Nrf2 inhibitors could be considered therapeutically in cases of p62/Nrf2high liver tumors. Abstract SQSTM1/p62 is a multitasking protein that functions as an autophagy receptor, but also as a signaling hub regulating diverse cellular pathways. p62 accumulation in mice with autophagy-deficient hepatocytes mediates liver damage and hepatocarcinogenesis through Nrf2 overactivation, yet the role of the p62-Keap1-Nrf2 axis in cell death and hepatocarcinogenesis in the absence of underlying autophagy defects is less clear. Here, we addressed the role of p62 and Nrf2 activation in a chronic liver disease model, namely mice with liver parenchymal cell-specific knockout of NEMO (NEMOLPC-KO), in which we demonstrate that they show no inherent autophagy impairment. Unexpectedly, systemic p62 ablation aggravated the phenotype and caused early postnatal lethality in NEMOLPC-KO mice. Expression of a p62 mutant (p62ΔEx2-5), which retains the ability to form aggregates and activate Nrf2 signaling, did not cause early lethality, but exacerbated hepatocarcinogenesis in these mice. Our immunohistological and molecular analyses showed that the increased tumor burden was only consistent with increased expression/stability of p62ΔEx2-5 driving Nrf2 hyperactivation, but not with other protumorigenic functions of p62, such as mTOR activation, cMYC upregulation or increased fibrosis. Surprisingly, forced activation of Nrf2 per se did not increase liver injury or tumor burden in NEMOLPC-KO mice, suggesting that autophagy impairment is a necessary prerequisite to unleash the Nrf2 oncogenic potential in mice with autophagy-competent hepatocytes.
Collapse
|
13
|
Pessoa J, Teixeira J. Cytoskeleton alterations in non-alcoholic fatty liver disease. Metabolism 2022; 128:155115. [PMID: 34974078 DOI: 10.1016/j.metabol.2021.155115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Due to its extremely high prevalence and severity, non-alcoholic fatty liver disease (NALFD) is a serious health and economic concern worldwide. Developing effective methods of diagnosis and therapy demands a deeper understanding of its molecular basis. One of the strategies in such an endeavor is the analysis of alterations in the morphology of liver cells. Such alterations, widely reported in NAFLD patients and disease models, are related to the cytoskeleton. Therefore, the fate of the cytoskeleton components is useful to uncover the molecular basis of NAFLD, to further design innovative approaches for its diagnosis and therapy. MAIN FINDINGS Several cytoskeleton proteins are up-regulated in liver cells of NAFLD patients. Under pathological conditions, keratin 18 is released from hepatocytes and its detection in the blood emerges as a non-invasive diagnosis tool. α-Smooth muscle actin is up-regulated in hepatic stellate cells and its down-regulation has been widely tested as a potential NALFD therapeutic approach. Other cytoskeleton proteins, such as vimentin, are also up-regulated. CONCLUSIONS NAFLD progression involves alterations in expression levels of proteins that build the liver cytoskeleton or associate with it. These findings provide a timely opportunity of developing novel approaches for NAFLD diagnosis and therapy.
Collapse
Affiliation(s)
- João Pessoa
- CNC - Center for Neuroscience and Cell Biology, CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
| | - José Teixeira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
14
|
Windoffer R, Schwarz N, Yoon S, Piskova T, Scholkemper M, Stegmaier J, Bönsch A, Di Russo J, Leube R. Quantitative mapping of keratin networks in 3D. eLife 2022; 11:75894. [PMID: 35179484 PMCID: PMC8979588 DOI: 10.7554/elife.75894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/15/2022] [Indexed: 11/26/2022] Open
Abstract
Mechanobiology requires precise quantitative information on processes taking place in specific 3D microenvironments. Connecting the abundance of microscopical, molecular, biochemical, and cell mechanical data with defined topologies has turned out to be extremely difficult. Establishing such structural and functional 3D maps needed for biophysical modeling is a particular challenge for the cytoskeleton, which consists of long and interwoven filamentous polymers coordinating subcellular processes and interactions of cells with their environment. To date, useful tools are available for the segmentation and modeling of actin filaments and microtubules but comprehensive tools for the mapping of intermediate filament organization are still lacking. In this work, we describe a workflow to model and examine the complete 3D arrangement of the keratin intermediate filament cytoskeleton in canine, murine, and human epithelial cells both, in vitro and in vivo. Numerical models are derived from confocal airyscan high-resolution 3D imaging of fluorescence-tagged keratin filaments. They are interrogated and annotated at different length scales using different modes of visualization including immersive virtual reality. In this way, information is provided on network organization at the subcellular level including mesh arrangement, density and isotropic configuration as well as details on filament morphology such as bundling, curvature, and orientation. We show that the comparison of these parameters helps to identify, in quantitative terms, similarities and differences of keratin network organization in epithelial cell types defining subcellular domains, notably basal, apical, lateral, and perinuclear systems. The described approach and the presented data are pivotal for generating mechanobiological models that can be experimentally tested.
Collapse
Affiliation(s)
- Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Sungjun Yoon
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Teodora Piskova
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | | | - Johannes Stegmaier
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Andrea Bönsch
- Visual Computing Institute, RWTH Aachen University, Aachen, Germany
| | - Jacopo Di Russo
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany
| | - Rudolf Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
15
|
Abstract
Apoptosis plays a key role in removing abnormal or senescent cells, maintaining the overall health of the tissue, and coordinating individual development. Recently, it has been discovered that the intracellular cytoskeleton plays a role in the apoptotic process. In addition, the regulatory role of extracellular matrix (ECM) fibrous proteins, which can be considered as the extracellular skeleton, in the process of apoptosis is rarely summarized. In this review, we collect the latest knowledge about how fibrous proteins inside and outside cells regulate apoptosis. We describe how ECM fibrous proteins participate in the regulation of death receptor and mitochondrial pathways through various signaling cascades mediated by integrins. We then explore the molecular mechanisms by which intracellular intermediate filaments regulate cell apoptosis by regulating death receptors on the cell membrane surface. Similarly, we report on novel supporting functions of microtubules in the execution phase of apoptosis and discuss their formation mechanisms. Finally, we discuss that the polypeptide fragments formed by caspase degradation of ECM fibrous proteins and intracellular intermediate filament act as local regulatory signals to play different regulatory roles in apoptosis.
Collapse
Affiliation(s)
- Jia-Hao Ni
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Yadav R, Das SK, Ali M, Pandey BN, Kumar A. Role of calcium ion channels and cytoskeletal proteins in Thorium-232 induced toxicity in normal human liver cells (WRL 68) and its validation in swiss mice. CHEMOSPHERE 2022; 288:132557. [PMID: 34653484 DOI: 10.1016/j.chemosphere.2021.132557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/17/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Hepatic disorders reported in humans exposed to Thorium-232 (Th-232) rationalizes the present study investigating the toxicological response of normal human liver cells (WRL 68) and its validation in Swiss mice. Cell count analysis of WRL 68 cells-treated with Th-nitrate (1-200 μM) estimated IC50 of ∼24 μM (at 24 h) and 35 μM (at 48 h). Analysis of cell viability (trypan blue assay) showed the IC50 of ∼172 μM. Phase contrast bright-field microscopy revealed Th-induced morphological changes and cell-released microvesicle-like structures in extracellular space. Th-estimation by ICP-MS (Inductively-coupled plasma mass-spectrometry) showed uptake of Th by cells as a function of concentration and incubation time. Employing DTPA as a chelating agent in cell harvesting solution, cell-internalized/strongly-bound Th was estimated to be ∼42% of total incubated Th. Th-uptake studies in the presence of ion-channel specific inhibitors (e.g. nifedipine, thapsigargin) revealed the role of plasma membrane calcium channels and cytoplasmic calcium in modulating the Th-uptake. Transmission electron microscopy of Th-treated cells showed cell-derived extracellular vesicles, alterations in the shape and size of nucleus and mitochondria as well as cytoplasmic inclusions. The order of Th accumulation in various sub-cellular protein fractions was found to be as cytoskeleton (43%) > cytoplasmic (15%) > chromatin (7%) > nuclear (5%) & membrane (5%). Immunofluorescence analysis of WRL 68 cells showed that Th significantly altered the expression of cytoskeleton proteins (F-actin and keratin), which was further validated in liver tissues of Swiss mice administered with Th-232. Findings herein highlight the role of calcium channels and cytoskeleton in Th-induced toxicity. Keywords: Thorium toxicity; Liver cells; Calcium channels; Sub-cellular targets, Cytoskeleton; Swiss Mice.
Collapse
Affiliation(s)
- Rakhee Yadav
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| | - Sourav Kumar Das
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Manjoor Ali
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Badri N Pandey
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| | - Amit Kumar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India.
| |
Collapse
|
17
|
Gęgotek A, Atalay S, Skrzydlewska E. UV induced changes in proteome of rats plasma are reversed by dermally applied cannabidiol. Sci Rep 2021; 11:20666. [PMID: 34667212 PMCID: PMC8526570 DOI: 10.1038/s41598-021-00134-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/07/2021] [Indexed: 11/20/2022] Open
Abstract
UV radiation is known to induce a multiple changes in the metabolism of skin-building cells, what can affect the functioning not only neighboring cells, but also, following signal transduction releasing into the blood vessels, the entire body. Therefore, the aim of this study was to analyze the proteomic disturbances occurred in plasma of chronically UVA/UVB irradiated rats and define the effect on these changes of skin topically applied cannabidiol (CBD). Obtained results showed significant changes in the expression of numerous anti-inflammatory and signaling proteins including: NFκB inhibitor, 14-3-3 protein, protein kinase C, keratin, and protein S100 after UV irradiation and CBD treatment. Moreover, the effects of UVA and UVB were manifested by increased level of lipid peroxidation products-protein adducts formation. CBD partially prevented all of these changes, but in a various degree depending on the UV radiation type. Moreover, topical treatment with CBD resulted in the penetration of CBD into the blood and, as a consequence, in direct modifications to the plasma protein structure by creating CBD adducts with molecules, such as proline-rich protein 30, transcription factor 19, or N-acetylglucosamine-6-sulfatase, what significantly changed the activity of these proteins. In conclusion, it may be suggested that CBD applied topically may be an effective compound against systemic UV-induced oxidative stress, but its effectiveness requires careful analysis of CBD's effects on other tissues of the living organism.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Sinemyiz Atalay
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| |
Collapse
|
18
|
Cytoskeleton Response to Ionizing Radiation: A Brief Review on Adhesion and Migration Effects. Biomedicines 2021; 9:biomedicines9091102. [PMID: 34572287 PMCID: PMC8465203 DOI: 10.3390/biomedicines9091102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
The cytoskeleton is involved in several biological processes, including adhesion, motility, and intracellular transport. Alterations in the cytoskeletal components (actin filaments, intermediate filaments, and microtubules) are strictly correlated to several diseases, such as cancer. Furthermore, alterations in the cytoskeletal structure can lead to anomalies in cells’ properties and increase their invasiveness. This review aims to analyse several studies which have examined the alteration of the cell cytoskeleton induced by ionizing radiations. In particular, the radiation effects on the actin cytoskeleton, cell adhesion, and migration have been considered to gain a deeper knowledge of the biophysical properties of the cell. In fact, the results found in the analysed works can not only aid in developing new diagnostic tools but also improve the current cancer treatments.
Collapse
|
19
|
Keratin 8/18 Regulate the Akt Signaling Pathway. Int J Mol Sci 2021; 22:ijms22179227. [PMID: 34502133 PMCID: PMC8430995 DOI: 10.3390/ijms22179227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
Keratin 8 and keratin 18 (K8/K18) are intermediate filament proteins that form the obligate heteropolymers in hepatocytes and protect the liver against toxins. The mechanisms of protection include the regulation of signaling pathway associated with cell survival. Previous studies show K8/K18 binding with Akt, which is a well-known protein kinase involved in the cell survival signaling pathway. However, the role of K8/K18 in the Akt signaling pathway is unclear. In this study, we found that K8/K18-Akt binding is downregulated by K8/K18 phosphorylation, specifically phosphorylation of K18 ser7/34/53 residues, whereas the binding is upregulated by K8 gly-62-cys mutation. K8/K18 expression in cultured cell system tends to enhance the stability of the Akt protein. A comparison of the Akt signaling pathway in a mouse system with liver damage shows that the pathway is downregulated in K18-null mice compared with nontransgenic mice. K18-null mice with Fas-induced liver damage show enhanced apoptosis combined with the downregulation of the Akt signaling pathway, i.e., lower phosphorylation levels of GSK3β and NFκB, which are the downstream signaling factors in the Akt signaling pathway, in K18-null mice compared with the control mice. Our study indicates that K8/K18 expression protects mice from liver damage by participating in enhancing the Akt signaling pathway.
Collapse
|
20
|
Sakellariou S, Michaelides C, Voulgaris T, Vlachogiannakos J, Manesis E, Tiniakos DG, Delladetsima I. Keratin 7 expression in hepatic cholestatic diseases. Virchows Arch 2021; 479:815-824. [PMID: 34312700 PMCID: PMC8516784 DOI: 10.1007/s00428-021-03152-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/21/2022]
Abstract
We evaluated keratin 7 (K7) hepatocellular expression in 92 patients with common types of acute and chronic cholestatic diseases caused by bile duct obstruction/destruction or parenchymal lesions [acute hepatitis (n=20), mixed/pure cholestasis (n=16), primary biliary cholangitis-PBC (n=35), primary sclerosing cholangitis-PSC (n=10), vanishing bile duct syndrome (n=3), complete large bile duct obstruction due to space-occupying lesions (n=8)]. K7 immunohistochemical hepatocellular expression and ductular reaction (DR) were semi-quantitatively assessed. Results were correlated with liver enzyme serum levels, cholestasis type, histological features, hepatocellular Ki67 labelling index (LI) and HepPar1 expression. Hepatocellular K7 expression was detected in 87% (81/92) cases and in all cholestatic disease types with lowest incidence in pure/mixed cholestasis and highest in incomplete bile duct obstruction (iBDO), reaching 100% in PSC. K7-positive hepatocytes had low Ki67 LI (0-5%) retaining HepPar1 expression, irrespective of disease type. PSC cases had high K7 hepatocellular expression even with intact bile ducts, a feature that may aid differential diagnosis of cholestatic syndromes. K7 hepatocellular expression significantly correlated with cholestasis type, bile duct loss and fibrosis stage. It was higher in milder acute cholestatic hepatitis showing inverse correlation with hepatocyte proliferation and serum transaminase levels. In iBDO, younger age independently correlated with high K7 expression, while serum GGT levels showed a nearly significant correlation. Correlation with DR findings implied that K7-positive hepatocytes may result through metaplasia. In conclusion, K7 hepatocellular expression is a sensitive though non-specific marker of cholestasis. It may represent a cytoprotective reaction of resting hepatocytes in cholestasis of longer duration especially in younger patients.
Collapse
Affiliation(s)
- S Sakellariou
- 1st Department of Pathology, Medical School, Laiko General Hospital, National and Kapodistrian University of Athens, 75 Mikras Asias str, 11527, Athens, Greece
| | - C Michaelides
- 1st Department of Pathology, Medical School, Laiko General Hospital, National and Kapodistrian University of Athens, 75 Mikras Asias str, 11527, Athens, Greece
| | - T Voulgaris
- Academic Department of Gastroenterology and Hepatology, Laiko General Hospital, National and Kapodistrian University of Athens, 17 Agiou Thoma str, 11527, Athens, Greece
| | - J Vlachogiannakos
- Academic Department of Gastroenterology and Hepatology, Laiko General Hospital, National and Kapodistrian University of Athens, 17 Agiou Thoma str, 11527, Athens, Greece
| | - E Manesis
- Liver Unit, Euroclinic, 7-9 Athanasiadou str, 11521, Athens, Greece
| | - D G Tiniakos
- Department of Pathology, Aretaieion Hospital, National and Kapodistrian University of Athens, 76 Vasilissis Sofias Ave, 11528, Athens, Greece. .,Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | - I Delladetsima
- 1st Department of Pathology, Medical School, Laiko General Hospital, National and Kapodistrian University of Athens, 75 Mikras Asias str, 11527, Athens, Greece
| |
Collapse
|
21
|
Silva ALN, Rodrigues RA, Siqueira MS, Farias KNN, Kuibida KV, Franco-Belussi L, Fernandes CE. Transaminase profile and hepatic histopathological traits in Piaractus mesopotamicus exposed to insecticide Diflubenzuron. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22002-22010. [PMID: 33410075 DOI: 10.1007/s11356-020-12013-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Diflubenzuron (DFB) is a widely used insecticide to control ectoparasites in fish farming. Although therapeutic concentrations (i.e., 50 to 100 mg/L) are safe as they fail to induce mortality, they can promote tissue changes. In Brazil, Pacu (Piaractus mesopotamicus) is a native species used for commercial production, and it remains crucial to determine underlying mechanisms to mitigate the potential effects of pathogens on productivity. The aim of this study was to analyze the transaminase profile and histopathological changes in the liver of P. mesopotamicus exposed to a DFB bath. Hence, the fish were exposed to an immersion bath containing a 70 mg/L nominal concentration of Difluchem 240 SC® (24% (m/m) DFB) for 30 (n = 10), 60 (n = 10), and 120 min (n = 10), every 24 h for 3 days. Following exposure, plasma transaminases and liver histology were analyzed. In DFB-exposed fish, levels of aspartate transaminase (AST) and alanine transaminase (ALT) were elevated when compared with the control at 30 and 60 min. Furthermore, liver morphology was altered based on exposure times. Compared with controls, the degree of reversible damage (degree of tissue change (DTC)) demonstrated high scores for all exposure times, with no difference between individual groups. Irreversible changes were increased in the 60 and 120-min baths. These findings highlight the impact of the therapeutic DFB concentration (i.e., 70 mg/L), revealing that 60-min and 120-min bathing induces irreversible and progressive hepatic changes.
Collapse
Affiliation(s)
- André Luiz N Silva
- Programa de Pós Graduação em Ciência Animal, Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Robson Andrade Rodrigues
- Departamento de Aquicultura do Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Mayara Schueroff Siqueira
- Laboratório de Patologia Experimental (LAPEx), Instituto de Biociências Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Karine Nathiele Nogueira Farias
- Programa de Pós Graduação em Ciência Animal, Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Karin Virgínia Kuibida
- Laboratório de Patologia Experimental (LAPEx), Instituto de Biociências Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Lilian Franco-Belussi
- Laboratório de Patologia Experimental (LAPEx), Instituto de Biociências Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Carlos E Fernandes
- Laboratório de Patologia Experimental (LAPEx), Instituto de Biociências Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil.
| |
Collapse
|
22
|
Time-Course Changes of Serum Keratin Concentrations after Liver Transplantation: Contrasting Results of Keratin-18 and Keratin-19 Fragments. Case Reports Hepatol 2020; 2020:8895435. [PMID: 33335785 PMCID: PMC7723486 DOI: 10.1155/2020/8895435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/08/2020] [Accepted: 11/16/2020] [Indexed: 11/18/2022] Open
Abstract
Objective Under normal conditions, adult hepatocytes express only keratin-8 (K8) and keratin-18 (K18), whereas cholangiocytes also express K19. In this study, we delineate the pattern of normal time-course changes in serum K19 and K18 levels after liver transplantation. Patients and Methods. Serum levels of the K19 fragment CYFRA 21-1 and the K18 fragments tissue polypeptide specific antigen (TPS) and M30 (a neoepitope that is generated after caspase cleavage during apoptosis) were measured at baseline and at regular intervals (up to 6 months) after liver transplantation in 11 adult patients. Results There was a gradual decrease in serum K19 concentrations from baseline values after transplantation, following a time-course pattern similar to that of serum bilirubin. In contrast, serum concentrations of K18 fragments increased markedly shortly after transplantation and gradually decreased thereafter, following a time-course pattern similar to that of serum transaminases. The increase in TPS tended to occur earlier than that in M30, suggesting an initial predominance of hepatocyte necrosis followed by a predominance of apoptosis in the first days after transplantation. Five patients presented posttransplant complications (acute rejection in three cases and HCV recurrence in two cases). An early increase in serum K19 concentrations was observed in all cases. An increase in serum concentrations of K18 fragments (M30 and TPS) was observed in the two cases with HCV recurrence and was more variable in the three cases with acute rejection. Conclusions Serum concentrations of K19 and K18 fragments follow a dissimilar pattern of time-course changes after liver transplantation. The diagnostic value of variations in these normal patterns should be addressed in future studies.
Collapse
|
23
|
Sjöqvist M, Antfolk D, Suarez-Rodriguez F, Sahlgren C. From structural resilience to cell specification - Intermediate filaments as regulators of cell fate. FASEB J 2020; 35:e21182. [PMID: 33205514 PMCID: PMC7839487 DOI: 10.1096/fj.202001627r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022]
Abstract
During the last decades intermediate filaments (IFs) have emerged as important regulators of cellular signaling events, ascribing IFs with functions beyond the structural support they provide. The organ and developmental stage‐specific expression of IFs regulate cell differentiation within developing or remodeling tissues. Lack of IFs causes perturbed stem cell differentiation in vasculature, intestine, nervous system, and mammary gland, in transgenic mouse models. The aberrant cell fate decisions are caused by deregulation of different stem cell signaling pathways, such as Notch, Wnt, YAP/TAZ, and TGFβ. Mutations in genes coding for IFs cause an array of different diseases, many related to stem cell dysfunction, but the molecular mechanisms remain unresolved. Here, we provide a comprehensive overview of how IFs interact with and regulate the activity, localization and function of different signaling proteins in stem cells, and how the assembly state and PTM profile of IFs may affect these processes. Identifying when, where and how IFs and cell signaling congregate, will expand our understanding of IF‐linked stem cell dysfunction during development and disease.
Collapse
Affiliation(s)
- Marika Sjöqvist
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Daniel Antfolk
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Freddy Suarez-Rodriguez
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
24
|
Keratin intermediate filaments in the colon: guardians of epithelial homeostasis. Int J Biochem Cell Biol 2020; 129:105878. [PMID: 33152513 DOI: 10.1016/j.biocel.2020.105878] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Keratin intermediate filament proteins are major cytoskeletal components of the mammalian simple layered columnar epithelium in the gastrointestinal tract. Human colon crypt epithelial cells express keratins 18, 19 and 20 as the major type I keratins, and keratin 8 as the type II keratin. Keratin expression patterns vary between species, and mouse colonocytes express keratin 7 as a second type II keratin. Colonic keratin patterns change during cell differentiation, such that K20 increases in the more differentiated crypt cells closer to the central lumen. Keratins provide a structural and mechanical scaffold to support cellular stability, integrity and stress protection in this rapidly regenerating tissue. They participate in central colonocyte processes including barrier function, ion transport, differentiation, proliferation and inflammatory signaling. The cell-specific keratin compositions in different epithelial tissues has allowed for the utilization of keratin-based diagnostic methods. Since the keratin expression pattern in tumors often resembles that in the primary tissue, it can be used to recognize metastases of colonic origin. This review focuses on recent findings on the biological functions of mammalian colon epithelial keratins obtained from pivotal in vivo models. We also discuss the diagnostic value of keratins in chronic colonic disease and known keratin alterations in colon pathologies. This review describes the biochemical properties of keratins and their molecular actions in colonic epithelial cells and highlights diagnostic data in colorectal cancer and inflammatory bowel disease patients, which may facilitate the recognition of disease subtypes and the establishment of personal therapies in the future.
Collapse
|
25
|
Maddah M, Mandegar MA, Dame K, Grafton F, Loewke K, Ribeiro AJS. Quantifying drug-induced structural toxicity in hepatocytes and cardiomyocytes derived from hiPSCs using a deep learning method. J Pharmacol Toxicol Methods 2020; 105:106895. [PMID: 32629158 DOI: 10.1016/j.vascn.2020.106895] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022]
Abstract
Cardiac and hepatic toxicity result from induced disruption of the functioning of cardiomyocytes and hepatocytes, respectively, which is tightly related to the organization of their subcellular structures. Cellular structure can be analyzed from microscopy imaging data. However, subtle or complex structural changes that are not easily perceived may be missed by conventional image-analysis techniques. Here we report the evaluation of PhenoTox, an image-based deep-learning method of quantifying drug-induced structural changes using human hepatocytes and cardiomyocytes derived from human induced pluripotent stem cells. We assessed the ability of the deep learning method to detect variations in the organization of cellular structures from images of fixed or live cells. We also evaluated the power and sensitivity of the method for detecting toxic effects of drugs by conducting a set of experiments using known toxicants and other methods of screening for cytotoxic effects. Moreover, we used PhenoTox to characterize the effects of tamoxifen and doxorubicin-which cause liver toxicity-on hepatocytes. PhenoTox revealed differences related to loss of cytochrome P450 3A4 activity, for which it showed greater sensitivity than a caspase 3/7 assay. Finally, PhenoTox detected structural toxicity in cardiomyocytes, which was correlated with contractility defects induced by doxorubicin, erlotinib, and sorafenib. Taken together, the results demonstrated that PhenoTox can capture the subtle morphological changes that are early signs of toxicity in both hepatocytes and cardiomyocytes.
Collapse
Affiliation(s)
| | | | - Keri Dame
- Division of Applied Regulatory Science, Office of Translational Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | | | | | - Alexandre J S Ribeiro
- Division of Applied Regulatory Science, Office of Translational Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
26
|
Denk H, Stumptner C, Abuja PM, Zatloukal K. Sequestosome 1/p62-related pathways as therapeutic targets in hepatocellular carcinoma. Expert Opin Ther Targets 2019; 23:393-406. [PMID: 30987486 DOI: 10.1080/14728222.2019.1601703] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Protein sequestosome 1/p62 (p62) plays a crucial role in vital complex and interacting signaling pathways in normal and neoplastic cells. P62 is involved in autophagy, defense against oxidative stress via activation of the Keap1/Nrf2 system, in protein aggregation and sequestration, and in apoptosis. Autophagy contributes to cell survival and proliferation by eliminating damaged organelles, potentially toxic protein aggregates and invading microorganisms, and by providing nutrients under starvation conditions. The same holds true for oxidative stress defense, which may prevent genomic alterations and tumor initiation but also protect established tumor cells and promote tumor progression. Cross-talk between autophagy and apoptosis is regulated by a signaling network with the involvement of p62. Areas covered: The review deals with structure, function, and regulation of p62 and its role in liver carcinogenesis. Emphasis is placed on mechanisms leading to overexpression of p62 and its accumulation as inclusion bodies in HCC and on the impact of p62-dependent signaling pathways in tumor cells with the aim to explore the possible role of p62 as the therapeutic target. Expert opinion: Depending on the context, targeting p62 or interference with related pathways, such as autophagy, is a potential therapeutic strategy in HCC. However, the heterogeneity of this tumor entity and the complexity and mutual interactions of the p62-dependent pathways involved are challenges for a targeted therapy since interference with p62-mediated regulatory processes could result likewise in inhibition of tumorigenesis and in its promotion and thus provoke harmful side effects. Therapy-related patient stratification based on reliable markers to better define pathogenic principles of the tumor is a necessity when this type of treatment is considered.
Collapse
Affiliation(s)
- Helmut Denk
- a Institute of Pathology , Medical University of Graz , Graz , Austria
| | - Conny Stumptner
- a Institute of Pathology , Medical University of Graz , Graz , Austria
| | - Peter M Abuja
- a Institute of Pathology , Medical University of Graz , Graz , Austria
| | - Kurt Zatloukal
- a Institute of Pathology , Medical University of Graz , Graz , Austria
| |
Collapse
|
27
|
Gijbels E, Vilas-Boas V, Deferm N, Devisscher L, Jaeschke H, Annaert P, Vinken M. Mechanisms and in vitro models of drug-induced cholestasis. Arch Toxicol 2019; 93:1169-1186. [PMID: 30972450 DOI: 10.1007/s00204-019-02437-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/02/2019] [Indexed: 12/12/2022]
Abstract
Cholestasis underlies one of the major manifestations of drug-induced liver injury. Drug-induced cholestatic liver toxicity is a complex process, as it can be triggered by a variety of factors that induce 2 types of biological responses, namely a deteriorative response, caused by bile acid accumulation, and an adaptive response, aimed at removing the accumulated bile acids. Several key events in both types of responses have been characterized in the past few years. In parallel, many efforts have focused on the development and further optimization of experimental cell culture models to predict the occurrence of drug-induced cholestatic liver toxicity in vivo. In this paper, a state-of-the-art overview of mechanisms and in vitro models of drug-induced cholestatic liver injury is provided.
Collapse
Affiliation(s)
- Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Vânia Vilas-Boas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Neel Deferm
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N2, Herestraat 49, Bus 921, 3000, Leuven, Belgium
| | - Lindsey Devisscher
- Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 1018, Kansas City, KS, 66160, USA
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N2, Herestraat 49, Bus 921, 3000, Leuven, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
28
|
Gong ZJ, Cheng JW, Gao PT, Huang A, Sun YF, Zhou KQ, Hu B, Qiu SJ, Zhou J, Fan J, Yang XR. Clinical Characteristics and Prognostic Factors of Patients with Intrahepatic Cholangiocarcinoma with Fever: A Propensity Score Matching Analysis. Oncologist 2019; 24:997-1007. [PMID: 30910867 DOI: 10.1634/theoncologist.2018-0268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 02/04/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Patients with intrahepatic cholangiocarcinoma (ICC) rarely present fever as the initial symptom. We aimed to identify clinical characteristics and prognostic factors for these feverish patients. SUBJECTS, MATERIALS, AND METHODS This study retrospectively reviewed 31 patients with ICC with fever (≥38.0°C) treated at our hospital between January 2002 and December 2014. A propensity score was used to match patients with and without fever at a ratio of 1:2. RESULTS Patients with ICC with fever had higher serum γ-glutamyl transferase and carcinoembryonic antigen levels, larger tumors, poorer tumor differentiation, and worse prognosis (all p < .05) than those without fever. This was supported by propensity score matching (PSM) analysis. Univariate and multivariate analyses indicated that microvascular invasion, hilar lymph node metastasis, and temperature ≥ 38.6°C were related to prognosis. Patients with ICC with fever had higher levels of leucocytes, neutrophils, neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR) in peripheral blood before and after PSM analysis. Body temperature positively correlated with leucocytes (r = 0.599, p < .001), neutrophils (r = 0.644, p < .001), NLR (r = 0.681, p < .001), and PLR (r = 0.457, p = .010). CONCLUSION Patients with ICC with fever ≥38.0°C and ≥38.6°C had poor and extremely poor prognosis, respectively. Radical surgical treatment may improve the prognosis of patients with ICC with fever <38.6°C. However, systemic therapy (e.g., anti-inflammatory and immune therapy) may be preferable to surgery for these patients with fever ≥38.6°C. IMPLICATIONS FOR PRACTICE Patients with intrahepatic cholangiocarcinoma (ICC) with fever (≥38.0°C) as the initial symptom are extremely rare. Because their symptoms are similar to those of liver abscess, diagnosis is challenging, and most of these patients are already at an advanced stage at the time of diagnosis. Patients with ICC with fever had different clinical characteristics and worse prognosis than those without fever. The prognosis of those with temperature <38.6°C would be improved by timely surgical intervention. Those with fever ≥38.6°C had an extremely dismal outcome, although they all received radical surgical treatment. New therapeutic strategies are needed to improve survival for patients with ICC with temperature ≥38.6°C.
Collapse
Affiliation(s)
- Zi-Jun Gong
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, People's Republic of China
- Department of General Surgery, Zhongshan Hospital, Biliary Tract Diseases Institute, Fudan University, Shanghai, People's Republic of China
| | - Jian-Wen Cheng
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, People's Republic of China
| | - Pin-Ting Gao
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, People's Republic of China
| | - Ao Huang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, People's Republic of China
| | - Yun-Fan Sun
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, People's Republic of China
| | - Kai-Qian Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, People's Republic of China
| | - Bo Hu
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, People's Republic of China
| | - Shuang-Jian Qiu
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, People's Republic of China
| | - Jian Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, People's Republic of China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jia Fan
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, People's Republic of China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Xin-Rong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, People's Republic of China
| |
Collapse
|
29
|
Abstract
Cholestasis can be defined as any situation of impaired bile secretion with concomitant accumulation of bile acids in the liver or in the systemic circulation. A variety of factors may evoke cholestasis, including genetic disorders, metabolic pathologies, infectious diseases, immunogenic stimuli, and drugs. Drug-induced cholestasis is a mechanistically complex process. At least three triggering factors of drug-induced cholestasis have been described, including effects on drug transporters, various hepatocellular changes, and altered bile canaliculi dynamics. These stimuli induce two cellular responses, each typified by a number of key events, namely a deteriorative response activated by bile acid accumulation and an adaptive response aimed at decreasing the uptake and increasing the export of bile acids into and from the liver, respectively. The mechanistic scenario of drug-induced cholestasis is described in this chapter.
Collapse
Affiliation(s)
- Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
30
|
Suttitheptumrong A, Rawarak N, Reamtong O, Boonnak K, Pattanakitsakul SN. Plectin is Required for Trans-Endothelial Permeability: A Model of Plectin Dysfunction in Human Endothelial Cells After TNF-α Treatment and Dengue Virus Infection. Proteomics 2018; 18:e1800215. [PMID: 30365215 DOI: 10.1002/pmic.201800215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/15/2018] [Indexed: 12/11/2022]
Abstract
The clinical sign of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) in humans is increased vascular permeability. Virus-specific factors and host factors, including secreted cytokines and especially TNF-α, are suggested as having roles in the pathogenesis of these conditions. Proteomic analysis with MS is performed in membrane fraction isolated from human endothelial cells (EA.hy926) upon DENV infection and TNF-α treatment. In the 451 altered proteins that are identified, decreased plectin expression is revealed by Western blot analysis, while immunofluorescence staining (IFA) shows actin stress fiber rearrangement and decreased VE-cadherin in treated EA.hy926 cells. In vitro vascular permeability assay was used to determine transepithelial electrical resistance (TEER) in EA.hy926 cells seeded on collagen-coated Transwell inserts. The low level of TEER, the low expression of plectin and VE-cadherin, and the unusual organization of actin stress fiber are found to be correlated with increased membrane permeability in DENV2 and TNF-α-treated EA.hy926 cells. Similar results are observed when using siRNA knockdown plectin in mock EA.hy926 cells. This study provides better understanding of the role that disruption of cytoskeleton linker protein plays in increased vascular permeability, and suggests these factors as major contributors to vascular leakage in DHF/DSS patients.
Collapse
Affiliation(s)
- Aroonroong Suttitheptumrong
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nantapon Rawarak
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kobporn Boonnak
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sa-Nga Pattanakitsakul
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
31
|
High Keratin 8/18 Ratio Predicts Aggressive Hepatocellular Cancer Phenotype. Transl Oncol 2018; 12:256-268. [PMID: 30439626 PMCID: PMC6234703 DOI: 10.1016/j.tranon.2018.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND & AIMS: Steatohepatitis (SH) and SH-associated hepatocellular carcinoma (HCC) are of considerable clinical significance. SH is morphologically characterized by steatosis, liver cell ballooning, cytoplasmic aggregates termed Mallory-Denk bodies (MDBs), inflammation, and fibrosis at late stage. Disturbance of the keratin cytoskeleton and aggregation of keratins (KRTs) are essential for MDB formation. METHODS: We analyzed livers of aged Krt18−/− mice that spontaneously developed in the majority of cases SH-associated HCC independent of sex. Interestingly, the hepatic lipid profile in Krt18−/− mice, which accumulate KRT8, closely resembles human SH lipid profiles and shows that the excess of KRT8 over KRT18 determines the likelihood to develop SH-associated HCC linked with enhanced lipogenesis. RESULTS: Our analysis of the genetic profile of Krt18−/− mice with 26 human hepatoma cell lines and with data sets of >300 patients with HCC, where Krt18−/− gene signatures matched human HCC. Interestingly, a high KRT8/18 ratio is associated with an aggressive HCC phenotype. CONCLUSIONS: We can prove that intermediate filaments and their binding partners are tightly linked to hepatic lipid metabolism and to hepatocarcinogenesis. We suggest KRT8/18 ratio as a novel HCC biomarker for HCC.
Collapse
|
32
|
Alam CM, Silvander JSG, Helenius TO, Toivola DM. Decreased levels of keratin 8 sensitize mice to streptozotocin-induced diabetes. Acta Physiol (Oxf) 2018; 224:e13085. [PMID: 29719117 PMCID: PMC6175344 DOI: 10.1111/apha.13085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 01/10/2023]
Abstract
AIM Diabetes is a result of an interplay between genetic, environmental and lifestyle factors. Keratin intermediate filaments are stress proteins in epithelial cells, and keratin mutations predispose to several human diseases. However, the involvement of keratins in diabetes is not well known. K8 and its partner K18 are the main β-cell keratins, and knockout of K8 (K8-/- ) in mice causes mislocalization of glucose transporter 2, mitochondrial defects, reduced insulin content and altered systemic glucose/insulin control. We hypothesize that K8/K18 offer protection during β-cell stress and that decreased K8 levels contribute to diabetes susceptibility. METHODS K8-heterozygous knockout (K8+/- ) and wild-type (K8+/+ ) mice were used to evaluate the influence of keratin levels on endocrine pancreatic function and diabetes development under basal conditions and after T1D streptozotocin (STZ)-induced β-cell stress and T2D high-fat diet (HFD). RESULTS Murine K8+/- endocrine islets express ~50% less K8/K18 compared with K8+/+ . The decreased keratin levels have little impact on basal systemic glucose/insulin regulation, β-cell health or insulin levels. Diabetes incidence and blood glucose levels are significantly higher in K8+/- mice after low-dose/chronic STZ treatment, and STZ causes more β-cell damage and polyuria in K8+/- compared with K8+/+ . K8 appears upregulated 5 weeks after STZ treatment in K8+/+ islets but not in K8+/- . K8+/- mice showed no major susceptibility risk to HFD compared to K8+/+ . CONCLUSION Partial K8 deficiency reduces β-cell stress tolerance and aggravates diabetes development in response to STZ, while there is no major susceptibility to HFD.
Collapse
Affiliation(s)
- C. M. Alam
- Department of Biosciences, Cell Biology; Faculty of Science and Engineering; Åbo Akademi University; Turku Finland
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; Turku Finland
| | - J. S. G. Silvander
- Department of Biosciences, Cell Biology; Faculty of Science and Engineering; Åbo Akademi University; Turku Finland
| | - T. O. Helenius
- Department of Biosciences, Cell Biology; Faculty of Science and Engineering; Åbo Akademi University; Turku Finland
| | - D. M. Toivola
- Department of Biosciences, Cell Biology; Faculty of Science and Engineering; Åbo Akademi University; Turku Finland
- Turku Center for Disease Modeling; University of Turku; Turku Finland
| |
Collapse
|
33
|
The role of keratins in the digestive system: lessons from transgenic mouse models. Histochem Cell Biol 2018; 150:351-359. [PMID: 30039330 DOI: 10.1007/s00418-018-1695-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2018] [Indexed: 01/17/2023]
Abstract
Keratins are the largest subfamily of intermediate filament proteins. They are either type I acidic or type II basic keratins. Keratins form obligate heteropolymer in epithelial cells and their expression patterns are tissue-specific. Studies have shown that keratin mutations are the cause of many diseases in humans or predispose humans to acquiring them. Using mouse models to study keratin-associated human diseases is critical, because they allow researchers to get a better understanding of these diseases and their progressions, and so many such studies have been conducted. Acknowledging the importance, researches with genetically modified mice expressing human disease-associated keratin mutants have been widely done. Numerous studies using keratin knockout mice, keratin-overexpressed mice, or transgenic mice expressing keratin mutants have been conducted. This review summarizes the mouse models that have been used to study type I and type II keratin expression in the digestive organs, namely, the liver, pancreas, and colon.
Collapse
|
34
|
Morales-Prieto N, Ruiz-Laguna J, Abril N. Dietary Se supplementation partially restores the REDOX proteomic map of M. spretus liver exposed to p,p ′-DDE. Food Chem Toxicol 2018; 114:292-301. [DOI: 10.1016/j.fct.2018.02.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/14/2018] [Accepted: 02/21/2018] [Indexed: 12/29/2022]
|
35
|
Nagel M, Schulz J, Maderer A, Goepfert K, Gehrke N, Thomaidis T, Thuss-Patience PC, Al-Batran SE, Hegewisch-Becker S, Grimminger P, Galle PR, Möhler M, Schattenberg JM. Cytokeratin-18 fragments predict treatment response and overall survival in gastric cancer in a randomized controlled trial. Tumour Biol 2018. [PMID: 29534639 DOI: 10.1177/1010428318764007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Gastric cancer is common malignancy and exhibits a poor prognosis. At the time of diagnosis, the majority of patients present with metastatic disease which precludes curative treatment. Non-invasive biomarkers which discriminate early from advanced stages or predict the response to treatment are urgently required. This study explored the cytokeratin-18 fragment M30 and full-length cytokeratin-18 M65 in predicting treatment response and survival in a randomized, placebo-controlled trial of advanced gastric cancer. METHODS Patients enrolled in the SUN-CASE study received sunitinib or placebo as an adjunct to standard therapy with leucovorin (Ca-folinate), 5-fluorouracil, and irinotecan in second or third line. Treatment response rates, progression-free survival and overall survival were assessed during a follow-up period of 12 months. Cytokeratin-18 fragments were analyzed in 52 patients at baseline and day 14 of therapy. RESULTS Levels of M30 correlated with the presence of metastasis and lymph node involvement and decreased significantly during chemotherapy. Importantly, baseline levels of M30 were significantly higher in patients who failed therapy. In addition, patients who did not respond to treatment were also identifiable at day 14 based on elevated M30 levels. By stepwise regression analysis, M30 at day 14 was identified as independent predictor of treatment response. Likewise, serum levels of full-length cytokeratin-18 M65 at baseline also correlated with treatment failure and progression-free survival. The addition of sunitinib did not exert any effects on serum levels of M30 or M65. CONCLUSION The cytokeratin-18 fragment M30 at day 14 identifies patients that fail to second- or third-line therapy for advanced gastric cancer. Validation of this non-invasive biomarker in gastric cancer is warranted.
Collapse
Affiliation(s)
- Michael Nagel
- 1 Department of Medicine I, University Medical Center of Johannes Gutenberg University Mainz, Mainz, Germany
| | - Julia Schulz
- 1 Department of Medicine I, University Medical Center of Johannes Gutenberg University Mainz, Mainz, Germany
| | - Annett Maderer
- 1 Department of Medicine I, University Medical Center of Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katrin Goepfert
- 1 Department of Medicine I, University Medical Center of Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nadine Gehrke
- 1 Department of Medicine I, University Medical Center of Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Thomaidis
- 1 Department of Medicine I, University Medical Center of Johannes Gutenberg University Mainz, Mainz, Germany
| | - Peter C Thuss-Patience
- 2 Department of Hematology, Oncology and Tumor Immunology, Campus Virchow-Klinikum, Charite-University Medicine Berlin, Berlin, Germany
| | - Salah E Al-Batran
- 3 Institute of Clinical Cancer Research, Krankenhaus Nordwest, UCT University Cancer Center, Frankfurt am Main, Germany
| | | | - Peter Grimminger
- 5 General-, Visceral- and Transplant Surgery; University Medical Center of Johannes Gutenberg University Mainz, Mainz, Germany
| | - Peter Robert Galle
- 1 Department of Medicine I, University Medical Center of Johannes Gutenberg University Mainz, Mainz, Germany
| | - Markus Möhler
- 1 Department of Medicine I, University Medical Center of Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jörn Markus Schattenberg
- 1 Department of Medicine I, University Medical Center of Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
36
|
Feng R, Yuan X, Shao C, Ding H, Liebe R, Weng HL. Are we any closer to treating liver fibrosis (and if no, why not)? J Dig Dis 2018; 19:118-126. [PMID: 29389083 DOI: 10.1111/1751-2980.12584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2018] [Indexed: 12/11/2022]
Abstract
This review provides a personal view on anti-fibrosis therapy in the liver. The worst clinical consequence of liver fibrosis is the development of liver cirrhosis and portal hypertension. Etiology is a decisive factor which determines patterns of fibrous septa and subsequent vascular remodeling, which is essential for the development of portal hypertension. Removing or controlling the disease-causing agent, i.e. anti-viral treatment for hepatitis, is the essential first step for treating chronic liver diseases and can reverse fibrosis in some settings. However, removing etiology is not always sufficient to prevent fibrosis from progressing towards cirrhosis and portal hypertension. In liver diseases such as severe alcoholic hepatitis and massive parenchymal loss, the formation of vascular anastomoses between portal to central veins based on bridging fibrosis results in cirrhosis and portal hypertension. For these patients, anti-fibrotic treatment is crucial and urgent. Unfortunately, a lack of understanding how fibrosis contributes to vascular remodeling caused by and combined with a lack of suitable experimental models that recapitulate human liver diseases, has hampered the development of successful anti-fibrotic drugs for clinical use to date.
Collapse
Affiliation(s)
- Rilu Feng
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xiaodong Yuan
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Chen Shao
- Department of Pathology, Beijing You'an Hospital, Affiliated with Capital Medical University, Beijing, China
| | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital, Affiliated with Capital Medical University, Beijing, China
| | - Roman Liebe
- Department of Medicine II, Saarland University Medical Center, Homburg/Saar, Germany
| | - Hong-Lei Weng
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
37
|
Vernon RM, Chong PA, Tsang B, Kim TH, Bah A, Farber P, Lin H, Forman-Kay JD. Pi-Pi contacts are an overlooked protein feature relevant to phase separation. eLife 2018; 7:31486. [PMID: 29424691 PMCID: PMC5847340 DOI: 10.7554/elife.31486] [Citation(s) in RCA: 517] [Impact Index Per Article: 73.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/08/2018] [Indexed: 12/12/2022] Open
Abstract
Protein phase separation is implicated in formation of membraneless organelles, signaling puncta and the nuclear pore. Multivalent interactions of modular binding domains and their target motifs can drive phase separation. However, forces promoting the more common phase separation of intrinsically disordered regions are less understood, with suggested roles for multivalent cation-pi, pi-pi, and charge interactions and the hydrophobic effect. Known phase-separating proteins are enriched in pi-orbital containing residues and thus we analyzed pi-interactions in folded proteins. We found that pi-pi interactions involving non-aromatic groups are widespread, underestimated by force-fields used in structure calculations and correlated with solvation and lack of regular secondary structure, properties associated with disordered regions. We present a phase separation predictive algorithm based on pi interaction frequency, highlighting proteins involved in biomaterials and RNA processing.
Collapse
Affiliation(s)
| | - Paul Andrew Chong
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
| | - Brian Tsang
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Tae Hun Kim
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
| | - Alaji Bah
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
| | - Patrick Farber
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
| | - Hong Lin
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
| | - Julie Deborah Forman-Kay
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
38
|
|
39
|
Hassan SS, Razzaque A, Ahmad Z, Pazdernik V, Amin SN. Does posttreatment thymoquinone reverse high-dose atorvastatin-induced hepatic oxidative injury in rats? Can J Physiol Pharmacol 2017; 96:51-59. [PMID: 28968507 DOI: 10.1139/cjpp-2017-0599] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Atorvastatin (ATO) was commonly used to lower blood cholesterol, but it caused harmful effects to organs, including the liver. Thymoquinone (TQ), a prominent constituent of Nigella sativa, has antioxidant, antiinflammatory, antiapoptotic, antimicrobial, and anticancer activity. The current study investigated the mechanism of ATO-induced hepatotoxicity, whether posttreatment TQ could reverse ATO-induced hepatic injury, and the mechanism of action of TQ as a hepatoprotective agent. Forty adult male Sprague Dawley rats were divided into four equal groups: control, TQ-treated, ATO-treated, and combined ATO/TQ-treated. Rats were treated for 8 weeks and 10 days and euthanized by cervical dislocation 3 days after the last treatment. Blood samples and livers were tested for liver enzymes, oxidative stress, and apoptosis markers and used for histopathological and ultrastructural examination. The ATO-treated group showed an increase in liver enzymes, decreases in reduced glutathione and catalase, and increases in the malondialdehyde lipid peroxidation marker, protein carbonylation, and caspase 3 activity. Posttreatment TQ in the ATO/TQ-treated group seemed to reverse these changes. Histopathological and ultrastructural examination supported these data. Results from the current study suggested that posttreatment TQ may reverse oxidative stress injury in rat liver produced by ATO, suggesting a potential clinical application of using TQ to prevent ATO-induced hepatic injury.
Collapse
Affiliation(s)
- Sherif Sabry Hassan
- a Department of Medical Education, School of Medicine, California University of Science and Medicine, San Bernardino, CA 92408, USA.,b Department of Anatomy, Faculty of Medicine, Cairo University, El-Manial, Cairo, Egypt
| | - Ahmer Razzaque
- c Department of Anatomy, A.T. Still University-Kirksville College of Osteopathic Medicine, Kirksville, MO 63501, USA
| | - Zulfiqar Ahmad
- d Department of Biochemistry, A.T. Still University-Kirksville College of Osteopathic Medicine, Kirksville, MO 63501, USA
| | - Vanessa Pazdernik
- e Department of Research Support, A.T. Still University, Kirksville, MO 63501, USA
| | - Shaimaa Nasr Amin
- f Department of Medical Physiology, Faculty of Medicine, Cairo University, El-Manial, Cairo, Egypt
| |
Collapse
|
40
|
Lepczyński A, Herosimczyk A, Ożgo M, Marynowska M, Pawlikowska M, Barszcz M, Taciak M, Skomiał J. Dietary chicory root and chicory inulin trigger changes in energetic metabolism, stress prevention and cytoskeletal proteins in the liver of growing pigs - a proteomic study. J Anim Physiol Anim Nutr (Berl) 2017; 101:e225-e236. [PMID: 27859709 DOI: 10.1111/jpn.12595] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/07/2016] [Indexed: 02/06/2023]
Abstract
Currently, a wide array of plant preparations exerting health-promoting properties are commonly used as feed additives. Among them, Cichorium intybus L. have gained considerable attention as a source of compounds showing prebiotic character. Large body of evidence suggests that products of prebiotic fermentation (short-chain fatty acids) may influence the expression of genes encoding liver enzymes involved in the regulation of energetic metabolism. Given the above, the present study was aimed at estimating the influence of a diet supplemented with chicory root or water extract of chicory inulin on liver proteome in growing pigs. The study was performed on 24 castrated male piglets (PIC × Penarlan P76). Animals were assigned to three equal groups (n = 8) and fed cereal-based isoenergetic diets: control and supplemented with 2% of inulin extract from chicory root or 4% of dried chicory root. Liver proteins were separated using two-dimensional electrophoresis, followed by the identification of statistically valid protein spots with the aid of MALDI-TOF mass spectrometry. Both experimental factors significantly modulated the expression of liver proteins associated with energetic metabolism, particularly those involved in cholesterol and triglyceride metabolism. Additionally, both dietary additives induced increased expression of proteins involved in hepatocyte protection against oxidative stress. In the present study, we have shown for the first time that diet supplementation with dried chicory root or inulin caused significant changes in the expression of liver cytoskeletal proteins. Close attention should be paid to the downregulation of cytokeratin 18, hepatic acute phase protein that can enhance the anti-inflammatory properties of inulin-type fructans.
Collapse
Affiliation(s)
- A Lepczyński
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, Szczecin, Poland
| | - A Herosimczyk
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, Szczecin, Poland
| | - M Ożgo
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, Szczecin, Poland
| | - M Marynowska
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, Szczecin, Poland
| | - M Pawlikowska
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, Szczecin, Poland
| | - M Barszcz
- The Kielanowski Institute of Animal Physiology and Nutrition Polish Academy of Sciences, Jabłonna, Poland
| | - M Taciak
- The Kielanowski Institute of Animal Physiology and Nutrition Polish Academy of Sciences, Jabłonna, Poland
| | - J Skomiał
- The Kielanowski Institute of Animal Physiology and Nutrition Polish Academy of Sciences, Jabłonna, Poland
| |
Collapse
|
41
|
Angioni MM, Bellofatto K, Merlin S, Menegon S, Perra A, Petrelli A, Sulas P, Giordano S, Columbano A, Follenzi A. A long term, non-tumorigenic rat hepatocyte cell line and its malignant counterpart, as tools to study hepatocarcinogenesis. Oncotarget 2017; 8:15716-15731. [PMID: 28157710 PMCID: PMC5362518 DOI: 10.18632/oncotarget.14984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 01/03/2017] [Indexed: 01/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the second cause of cancer-related death. Search for genes/proteins whose expression can discriminate between normal and neoplastic liver is fundamental for diagnostic, prognostic and therapeutic purposes. Currently, the most used in vitro hepatocyte models to study molecular alterations underlying transformation include primary hepatocytes and transformed cell lines. However, each of these models presents limitations. Here we describe the isolation and characterization of two rat hepatocyte cell lines as tools to study liver carcinogenesis. Long-term stable cell lines were obtained from a HCC-bearing rat exposed to the Resistant-Hepatocyte protocol (RH cells) and from a rat subjected to the same model in the absence of carcinogenic treatment, thus not developing HCCs (RNT cells). The presence of several markers identified the hepatocytic origin of both cell lines and confirmed their purity. Although morphologically similar to normal primary hepatocytes, RNT cells were able to survive and grow in monolayer culture for months and were not tumorigenic in vivo. On the contrary, RH cells displayed tumor-initiating cell markers, formed numerous colonies in soft agar and spheroids when grown in 3D and were highly tumorigenic and metastatic after injection into syngeneic rats and immunocompromised mice. Moreover, RNT gene expression profile was similar to normal liver, while that of RH resembled HCC. In conclusion, the two cell lines here described represent a useful tool to investigate the molecular changes underlying hepatocyte transformation and to experimentally demonstrate their role in HCC development.
Collapse
Affiliation(s)
| | - Kevin Bellofatto
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Simone Merlin
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Silvia Menegon
- Department of Oncology, University of Torino School of Medicine, Candiolo Cancer Institute-FPO, IRCCS, 10060 Candiolo, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Annalisa Petrelli
- Department of Oncology, University of Torino School of Medicine, Candiolo Cancer Institute-FPO, IRCCS, 10060 Candiolo, Italy
| | - Pia Sulas
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Silvia Giordano
- Department of Oncology, University of Torino School of Medicine, Candiolo Cancer Institute-FPO, IRCCS, 10060 Candiolo, Italy
| | - Amedeo Columbano
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
42
|
Kowalik MA, Sulas P, Ledda-Columbano GM, Giordano S, Columbano A, Perra A. Cytokeratin-19 positivity is acquired along cancer progression and does not predict cell origin in rat hepatocarcinogenesis. Oncotarget 2016; 6:38749-63. [PMID: 26452031 PMCID: PMC4770734 DOI: 10.18632/oncotarget.5501] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 09/21/2015] [Indexed: 02/06/2023] Open
Abstract
Although the expression of the stem/progenitor cell marker cytokeratin-19 (CK-19) has been associated with the worst clinical prognosis among all HCC subclasses, it is yet unknown whether its presence in HCC is the result of clonal expansion of hepatic progenitor cells (HPCs) or of de-differentiation of mature hepatocytes towards a progenitor-like cell phenotype. We addressed this question by using two rat models of hepatocarcinogenesis: the Resistant-Hepatocyte (R-H) and the Choline-methionine deficient (CMD) models. Our data indicate that the expression of CK-19 is not the result of a clonal expansion of HPCs (oval cells in rodents), but rather of a further step of preneoplastic hepatocytes towards a less differentiated phenotype and a more aggressive behavior. Indeed, although HCCs were positive for CK-19, very early preneoplastic foci (EPFs) were completely negative for this marker. While a few weeks later the vast majority of preneoplastic nodules remained CK-19 negative, a minority became positive, suggesting that CK-19 expression is the result of de-differentiation of a subset of EPFs, rather than a marker of stem/progenitor cells. Moreover, the gene expression profile of CK-19-negative EPFs clustered together with CK-19-positive nodules, but was clearly distinct from CK-19 negative nodules and oval cells.
Collapse
Affiliation(s)
- Marta Anna Kowalik
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Pia Sulas
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Silvia Giordano
- University of Torino School of Medicine, Candiolo Cancer Institute-FPO, IRCCS Candiolo, Torino, Italy
| | - Amedeo Columbano
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
43
|
Djudjaj S, Papasotiriou M, Bülow RD, Wagnerova A, Lindenmeyer MT, Cohen CD, Strnad P, Goumenos DS, Floege J, Boor P. Keratins are novel markers of renal epithelial cell injury. Kidney Int 2016; 89:792-808. [PMID: 26924053 DOI: 10.1016/j.kint.2015.10.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/25/2015] [Accepted: 10/22/2015] [Indexed: 12/14/2022]
Abstract
Keratins, the intermediate filaments of the epithelial cell cytoskeleton, are up-regulated and post-translationally modified in stress situations. Renal tubular epithelial cell stress is a common finding in progressive kidney diseases, but little is known about keratin expression and phosphorylation. Here, we comprehensively describe keratin expression in healthy and diseased kidneys. In healthy mice, the major renal keratins, K7, K8, K18, and K19, were expressed in the collecting ducts and K8, K18 in the glomerular parietal epithelial cells. Tubular expression of all 4 keratins increased by 20- to 40-fold in 5 different models of renal tubular injury as assessed by immunohistochemistry, Western blot, and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). The up-regulation became significant early after disease induction, increased with disease progression, was found de novo in distal tubules and was accompanied by altered subcellular localization. Phosphorylation of K8 and K18 increased under stress. In humans, injured tubules also exhibited increased keratin expression. Urinary K18 was only detected in mice and patients with tubular cell injury. Keratins labeled glomerular parietal epithelial cells forming crescents in patients and animals. Thus, all 4 major renal keratins are significantly, early, and progressively up-regulated upon tubular injury regardless of the underlying disease and may be novel sensitive markers of renal tubular cell stress.
Collapse
Affiliation(s)
- Sonja Djudjaj
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Institute of Pathology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Marios Papasotiriou
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Department of Nephrology, University Hospital of Patras, Patras, Greece
| | - Roman D Bülow
- Institute of Pathology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Alexandra Wagnerova
- Institute of Pathology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Maja T Lindenmeyer
- Division of Nephrology and Institute of Physiology, University Zürich, Zürich, Switzerland
| | - Clemens D Cohen
- Division of Nephrology and Institute of Physiology, University Zürich, Zürich, Switzerland
| | - Pavel Strnad
- Department of Internal Medicine 3 and Interdisziplinäres Zentrum für Klinische Forschung, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | | | - Jürgen Floege
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Peter Boor
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Institute of Pathology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
44
|
Stumptner C, Gogg-Kamerer M, Viertler C, Denk H, Zatloukal K. Immunofluorescence and Immunohistochemical Detection of Keratins. Methods Enzymol 2016; 568:139-62. [DOI: 10.1016/bs.mie.2015.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
45
|
Chen Y, Guldiken N, Spurny M, Mohammed HHA, Haybaeck J, Pollheimer MJ, Fickert P, Gassler N, Jeon MK, Trautwein C, Strnad P. Loss of keratin 19 favours the development of cholestatic liver disease through decreased ductular reaction. J Pathol 2015; 237:343-54. [PMID: 26108453 DOI: 10.1002/path.4580] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 06/21/2015] [Accepted: 06/23/2015] [Indexed: 12/14/2022]
Abstract
Keratins (K) are cytoprotective proteins and keratin mutations predispose to the development of multiple human diseases. K19 represents the most widely used marker of biliary and hepatic progenitor cells as well as a marker of ductular reaction that constitutes the basic regenerative response to chronic liver injury. In the present study, we investigated the role of K19 in biliary and hepatic progenitor cells and its importance for ductular reaction. K19 wild-type (WT) and knockout (KO) mice were fed: (a) 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC); (b) cholic acid (CA); (c) a choline-deficient, ethionine-supplemented (CDE) diet; or (d) were subjected to common bile duct ligation (CBDL). The bile composition, liver damage, bile duct proliferation, oval cell content and biliary fibrosis were analysed. In untreated animals, loss of K19 led to redistribution of the K network in biliary epithelial cells (BECs) but to no obvious biliary phenotype. After DDC feeding, K19 KO mice exhibited (compared to WTs): (a) increased cholestasis; (b) less pronounced ductular reaction with reduced ductular proliferation and fewer oval cells; (c) impaired Notch 2 signalling in BECs; (d) lower biliary fibrosis score and biliary bicarbonate concentration. An attenuated oval cell proliferation in K19 KOs was also found after feeding with the CDE diet. K19 KOs subjected to CBDL displayed lower BEC proliferation, oval cell content and less prominent Notch 2 signal. K19 deficiency did not change the extent of CA- or CBDL-induced liver injury and fibrosis. Our results demonstrate that K19 plays an important role in the ductular reaction and might be of importance in multiple chronic liver disorders that frequently display a ductular reaction.
Collapse
Affiliation(s)
- Yu Chen
- Department of Internal Medicine III and IZKF, RWTH Aachen, Germany.,Department of Internal Medicine I, University Medical Centre Ulm, Germany
| | - Nurdan Guldiken
- Department of Internal Medicine III and IZKF, RWTH Aachen, Germany.,Department of Internal Medicine I, University Medical Centre Ulm, Germany
| | - Manuela Spurny
- Department of Internal Medicine I, University Medical Centre Ulm, Germany
| | | | | | - Marion J Pollheimer
- Institute of Pathology, Medical University Graz, Austria.,Department of Internal Medicine, Medical University Graz, Austria
| | - Peter Fickert
- Institute of Pathology, Medical University Graz, Austria.,Department of Internal Medicine, Medical University Graz, Austria
| | - Nikolaus Gassler
- Institute of Pathology, University Hospital Aachen, RWTH Aachen, Germany
| | - Min Kyung Jeon
- Institute of Pathology, University Hospital Aachen, RWTH Aachen, Germany
| | | | - Pavel Strnad
- Department of Internal Medicine III and IZKF, RWTH Aachen, Germany.,Department of Internal Medicine I, University Medical Centre Ulm, Germany
| |
Collapse
|
46
|
Guldiken N, Usachov V, Levada K, Trautwein C, Ziol M, Nahon P, Strnad P. Keratins 8 and 18 are type II acute-phase responsive genes overexpressed in human liver disease. Liver Int 2015; 35:1203-12. [PMID: 24930437 DOI: 10.1111/liv.12608] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 05/18/2014] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Keratins (Ks) 7, 8, 18 and 19 constitute important markers and modifiers of liver disease. In mice, K8 and K18 are stress inducible and a dysregulated K8 > K18 stoichiometry predisposes to formation of Mallory-Denk bodies (MDBs), i.e. aggregates characteristic of chronic liver disorders such as alcoholic liver disease (ALD). In our study, we analyse the expression and the regulation of keratins in context of human liver disease. METHODS K7, K8, K18 and K19 mRNA levels were determined in liver biopsies from patients with ALD, non-alcoholic steatohepatitis (NASH), chronic hepatitis B (HBV), hepatitis C (HCV) and from control subjects. HepG2 and Hep3B cells were treated with IL-1β, IL-6 and TNF-α. Mice were injected with turpentine, an established IL-6 inducer. RESULTS K7, K8 and K18 were 1.5- to 3-fold upregulated in livers of ALD and HCV patients with a more active disease, but not in HBV/NASH subjects, while K19 was significantly elevated in all analysed disorders. K8 and K18 expression displayed a strong correlation (r = 0.89), but dysregulated levels with the K8 > K18 state were seen in ALD. All keratins were overexpressed in subjects with moderate vs. minimal inflammation, while K7, K8 and K18 were upregulated in patients with advanced liver fibrosis. In HepG2/Hep3B cells, IL-6 treatment but not IL-1β or TNF-α significantly increased K8 and K18 expression and elevated K18 levels were seen after turpentine injection. CONCLUSIONS Keratins represent type II acute-phase responsive genes overexpressed in specific human liver disorders. A K8 > K18 state occurs in ALD and predisposes to MDB formation.
Collapse
Affiliation(s)
- Nurdan Guldiken
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany; IZKF and Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Schwarz N, Windoffer R, Magin TM, Leube RE. Dissection of keratin network formation, turnover and reorganization in living murine embryos. Sci Rep 2015; 5:9007. [PMID: 25759143 PMCID: PMC4355630 DOI: 10.1038/srep09007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 02/10/2015] [Indexed: 11/09/2022] Open
Abstract
Epithelial functions are fundamentally determined by cytoskeletal keratin network organization. However, our understanding of keratin network plasticity is only based on analyses of cultured cells overexpressing fluorescently tagged keratins. In order to learn how keratin network organization is affected by various signals in functional epithelial tissues in vivo, we generated a knock-in mouse that produces fluorescence-tagged keratin 8. Homozygous keratin 8-YFP knock-in mice develop normally and show the expected expression of the fluorescent keratin network both in fixed and in vital tissues. In developing embryos, we observe for the first time de novo keratin network biogenesis in close proximity to desmosomal adhesion sites, keratin turnover in interphase cells and keratin rearrangements in dividing cells at subcellular resolution during formation of the first epithelial tissue. This mouse model will help to further dissect keratin network dynamics in its native tissue context during physiological and also pathological events.
Collapse
Affiliation(s)
- Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Thomas M Magin
- Translational Center for Regenerative Medicine and Institute of Biology, University of Leipzig, Leipzig, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
48
|
Probert PME, Meyer SK, Alsaeedi F, Axon AA, Fairhall EA, Wallace K, Charles M, Oakley F, Jowsey PA, Blain PG, Wright MC. An expandable donor-free supply of functional hepatocytes for toxicology. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00214h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Abstract
The B-13 cell is a readily expandable rat pancreatic acinar-like cell that differentiates on simple plastic culture substrata into replicatively-senescent hepatocyte-like (B-13/H) cells in response to glucocorticoid exposure. B-13/H cells express a variety of liver-enriched and liver-specific genes, many at levels similar to hepatocytes in vivo. Furthermore, the B-13/H phenotype is maintained for at least several weeks in vitro, in contrast to normal hepatocytes which rapidly de-differentiate under the same simple – or even under more complex – culture conditions. The origin of the B-13 cell line and the current state of knowledge regarding differentiation to B-13/H cells are presented, followed by a review of recent advances in the use of B-13/H cells in a variety of toxicity endpoints. B-13 cells therefore offer Toxicologists a cost-effective and easy to use system to study a range of toxicologically-related questions. Dissecting the mechanism(s) regulating the formation of B-13/H cell may also increase the likelihood of engineering a human equivalent, providing Toxicologists with an expandable donor-free supply of functional rat and human hepatocytes, invaluable additions to the tool kit of in vitro toxicity tests.
Collapse
Affiliation(s)
- Philip M. E. Probert
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Stephanie K. Meyer
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Fouzeyyah Alsaeedi
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Andrew A. Axon
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Emma A. Fairhall
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Karen Wallace
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Michelle Charles
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Fiona Oakley
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Paul A. Jowsey
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Peter G. Blain
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Matthew C. Wright
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| |
Collapse
|
49
|
Santos NP, Oliveira PA, Arantes-Rodrigues R, Faustino-Rocha AI, Colaço A, Lopes C, Gil da Costa RM. Cytokeratin 7/19 expression in N-diethylnitrosamine-induced mouse hepatocellular lesions: implications for histogenesis. Int J Exp Pathol 2014; 95:191-8. [PMID: 24730441 DOI: 10.1111/iep.12082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 03/06/2014] [Indexed: 01/20/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy with poor clinical outcome, whose histogenesis is the subject of intense debate. Specifically, expression of cytokeratins (CKs) 7 and 19, associated with aggressive biological behaviour, is proposed to reflect a possible progenitor cell origin or tumour dedifferentiation towards a primitive phenotype. This work addresses that problem by studying CKs 7 and 19 expression in N-diethylnitrosamine (DEN)-induced mouse HCCs. ICR mice were divided into six DEN-exposed and six matched control groups. Samples were taken from each group at consecutive time points. Hyperplastic foci (13 lesions) occurred at 29-40 weeks (groups 8, 10 and 12) with diffuse dysplastic areas (19 lesions) and with one hepatocellular adenoma (HCA) (at 29 weeks). HCCs (4 lesions) were observed 40 weeks after the first DEN administration (group 12). CKs 7 and 19 showed identical expression patterns and located to large, mature hepatocytes, isolated or in small clusters. Hyperplastic foci and the single HCA were consistently negative for both markers, while dysplastic areas and HCCs were positive. These results support the hypothesis that CKs 7 and 19 expression in hepatocellular malignancies results from a dedifferentiation process rather than from a possible progenitor cell origin.
Collapse
Affiliation(s)
- Nuno P Santos
- Veterinary Sciences Department, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Veterinary Science Department, Veterinary and Animal Science Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | | | | | | | | | | | | |
Collapse
|
50
|
CK8 phosphorylation induced by compressive loads underlies the downregulation of CK8 in human disc degeneration by activating protein kinase C. J Transl Med 2013; 93:1323-30. [PMID: 24166186 DOI: 10.1038/labinvest.2013.122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 08/21/2013] [Accepted: 09/23/2013] [Indexed: 12/23/2022] Open
Abstract
Cytokeratin 8 (CK8) is a member of the cytokeratins family with multiple functions on the basis of its unique structural hallmark. The aberrant expression of CK8 and its phosphorylation are pertinent with various diseases. We have previously shown that CK8 exists in normal human nucleus pulposus (NP) cells and decreases as the intervertebral disc degenerates. However, the underlying molecular regulatory machinery of CK8 in intervertebral disc degeneration (IDD) has not been clarified. Here, we collected NP samples from patients with idiopathic scoliosis as control and IDD as degenerate groups. We found that CK8 expression decreased in IDD with an increased phosphorylation in degenerate NP cells. Moreover, NP cells were cultured under different compressive load schemes for diverse time duration. We found that compressive loads resulted in phosphorylation and disassembly of CK8 in a time-dependent and degree-dependent manner in vitro. The activation of protein kinase C was a significant molecular factor contributing to this phenomenon. Taken together, this study is the first to address the molecular mechanisms of CK8 downregulation in NP cells. Importantly, our findings provide clues regarding a molecular link between compressive loads and CK8 alterations, which shed a novel light on the etiology of IDD.
Collapse
|