1
|
Braeuning A, Pavek P. β-catenin signaling, the constitutive androstane receptor and their mutual interactions. Arch Toxicol 2020; 94:3983-3991. [PMID: 33097968 PMCID: PMC7655584 DOI: 10.1007/s00204-020-02935-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022]
Abstract
Aberrant signaling through β-catenin is an important determinant of tumorigenesis in rodents as well as in humans. In mice, xenobiotic activators of the constitutive androstane receptor (CAR), a chemo-sensing nuclear receptor, promote liver tumor growth by means of a non-genotoxic mechanism and, under certain conditions, select for hepatocellular tumors which contain activated β-catenin. In normal hepatocytes, interactions of β-catenin and CAR have been demonstrated with respect to the induction of proliferation and drug metabolism-related gene expression. The molecular details of these interactions are still not well understood. Recently it has been hypothesized that CAR might activate β-catenin signaling, thus providing a possible explanation for some of the observed phenomena. Nonetheless, many aspects of the molecular interplay of the two regulators have still not been elucidated. This review briefly summarizes our current knowledge about the interplay of CAR and β-catenin. By taking into account data and observations obtained with different mouse models and employing different experimental approaches, it is shown that published data also contain substantial evidence that xenobiotic activators of CAR do not activate, or do even inhibit signaling through the β-catenin pathway. The review highlights new aspects of possible ways of interaction between the two signaling cascades and will help to stimulate scientific discussion about the crosstalk of β-catenin signaling and the nuclear receptor CAR.
Collapse
Affiliation(s)
- Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy, Heyrovskeho 1203, Hradec Kralove, 500 05, Prague, Czech Republic
| |
Collapse
|
2
|
Dusek J, Skoda J, Holas O, Horvatova A, Smutny T, Linhartova L, Hirsova P, Kucera O, Micuda S, Braeuning A, Pavek P. Stilbene compound trans-3,4,5,4´-tetramethoxystilbene, a potential anticancer drug, regulates constitutive androstane receptor (Car) target genes, but does not possess proliferative activity in mouse liver. Toxicol Lett 2019; 313:1-10. [PMID: 31170421 DOI: 10.1016/j.toxlet.2019.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 01/06/2023]
Abstract
The constitutive androstane receptor(CAR) activation is connected with mitogenic effects leading to liver hyperplasia and tumorigenesis in rodents. CAR activators, including phenobarbital, are considered rodent non-genotoxic carcinogens. Recently, trans-3,4,5,4´-tetramethoxystilbene(TMS), a potential anticancer drug (DMU-212), have been shown to alleviate N-nitrosodiethylamine/phenobarbital-induced liver carcinogenesis. We studied whether TMS inhibits mouse Car to protect from the PB-induced tumorigenesis. Unexpectedly, we identified TMS as a murine CAR agonist in reporter gene experiments, in mouse hepatocytes, and in C57BL/6 mice in vivo. TMS up-regulated Car target genes Cyp2b10, Cyp2c29 and Cyp2c55 mRNAs, but down-regulated expression of genes involved in gluconeogenesis and lipogenesis. TMS did not change or down-regulate genes involved in liver proliferation or apoptosis such as Mki67, Foxm1, Myc, Mcl1, Pcna, Bcl2, or Mdm2, which were up-regulated by another Car ligand TCPOBOP. TMS did not increase liver weight and had no significant effect on Ki67 and Pcna labeling indices in mouse liver in vivo. In murine hepatic AML12 cells, we confirmed a Car-independent proapoptotic effect of TMS. We conclude that TMS is a Car ligand with limited effects on hepatocyte proliferation, likely due to promoting apoptosis in mouse hepatic cells, while controlling Car target genes involved in xenobiotic and endobiotic metabolism.
Collapse
Affiliation(s)
- Jan Dusek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Josef Skoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Ondrej Holas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Alzbeta Horvatova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Tomas Smutny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Lenka Linhartova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Otto Kucera
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, Simkova 870, 500 03 Hradec Kralove, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Kralove, Simkova 870, 500 03 Hradec Kralove, Czech Republic
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany; Department of Toxicology, University of Tübingen, Wilhelmstr. 56, 72074, Tübingen, Germany
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic.
| |
Collapse
|
3
|
Jiang G, Huang CK, Zhang X, Lv X, Wang Y, Yu T, Cai X. Wnt signaling in liver disease: emerging trends from a bibliometric perspective. PeerJ 2019; 7:e7073. [PMID: 31275745 PMCID: PMC6590390 DOI: 10.7717/peerj.7073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/05/2019] [Indexed: 12/20/2022] Open
Abstract
Background The Wnt signaling pathway, an evolutionarily conserved molecular transduction cascade, has been identified as playing a pivotal role in various physiological and pathological processes of the liver, including homeostasis, regeneration, cirrhosis, and hepatocellular carcinoma (HCC). In this study, we aimed to use a bibliometric method to evaluate the emerging trends on Wnt signaling in liver diseases. Methods Articles were retrieved from the Web of Science Core Collection. We used a bibliometric software, CiteSpace V 5.3.R4, to analyze the active countries or institutions in the research field, the landmark manuscripts, important subtopics, and evolution of scientific ideas. Results In total, 1,768 manuscripts were published, and each was cited 33.12 times on average. The U.S. published most of the articles, and the most active center was the University of Pittsburgh. The top 5 landmark papers were identified by four bibliometric indexes including citation, burstness, centrality, and usage 2013. The clustering process divided the whole area into nine research subtopics, and the two major important subtopics were "liver zonation" and "HCC." Using the "Part-of-Speech" technique, 1,743 terms representing scientific ideas were identified. After 2008, the bursting phrases were "liver development," "progenitor cells," "hepatic stellate cells," "liver regeneration," "liver fibrosis," "epithelial-mesenchymal transition," and etc. Conclusion Using bibliometric methods, we quantitatively summarized the advancements and emerging trends in Wnt signaling in liver diseases. These bibliometric findings may pioneer the future direction of this field in the next few years, and further studies are needed.
Collapse
Affiliation(s)
- Guangyi Jiang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chiung-Kuei Huang
- Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Xinjie Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xingyu Lv
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tunan Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Braeuning A, Kollotzek F, Zeller E, Knorpp T, Templin MF, Schwarz M. Mouse Hepatomas with Ha-ras and B-raf Mutations Differ in Mitogen-Activated Protein Kinase Signaling and Response to Constitutive Androstane Receptor Activation. Drug Metab Dispos 2018; 46:1462-1465. [PMID: 30115646 DOI: 10.1124/dmd.118.083014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/14/2018] [Indexed: 12/31/2022] Open
Abstract
Nuclear receptors mediate the hepatic induction of drug-metabolizing enzymes by xenobiotics. Not much is known about enzyme induction in liver tumors. Here, we treated tumor-bearing mice with phenobarbital, an activator of the constitutive androstane receptor (CAR), to analyze the response of chemically induced Ha-ras- and B-raf-mutated mouse liver adenoma to CAR activation in vivo. Both tumor subpopulations possess almost identical gene expression profiles. CAR target gene induction in the tumors was studied at the mRNA and protein levels, and a reverse-phase protein microarray approach was chosen to characterize important signaling cascades. CAR target gene induction was pronounced in B-raf-mutated but not in Ha-ras-mutated tumors. Phosphoproteomic profiling revealed that phosphorylation-activated extracellular signal-regulated kinase (ERK) 1/2 was more abundant in Ha-ras-mutated than in B-raf-mutated tumors. ERK activation in tumor tissue was negatively correlated with CAR target induction. ERK activation is known to inhibit CAR-dependent transcription. In summary, profound differences exist between the two closely related tumor subpopulations with respect to the activation of mitogenic signaling cascades, and these dissimilarities might explain the differences in xenobiotic induction of CAR target genes.
Collapse
Affiliation(s)
- Albert Braeuning
- Department of Toxicology, University of Tübingen, Tübingen, Germany (A.B., F.K., E.Z., M.S.); Natural and Medical Sciences Institute, Reutlingen, Germany (T.K., M.F.T.); and Department Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany (A.B.)
| | - Ferdinand Kollotzek
- Department of Toxicology, University of Tübingen, Tübingen, Germany (A.B., F.K., E.Z., M.S.); Natural and Medical Sciences Institute, Reutlingen, Germany (T.K., M.F.T.); and Department Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany (A.B.)
| | - Eva Zeller
- Department of Toxicology, University of Tübingen, Tübingen, Germany (A.B., F.K., E.Z., M.S.); Natural and Medical Sciences Institute, Reutlingen, Germany (T.K., M.F.T.); and Department Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany (A.B.)
| | - Thomas Knorpp
- Department of Toxicology, University of Tübingen, Tübingen, Germany (A.B., F.K., E.Z., M.S.); Natural and Medical Sciences Institute, Reutlingen, Germany (T.K., M.F.T.); and Department Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany (A.B.)
| | - Markus F Templin
- Department of Toxicology, University of Tübingen, Tübingen, Germany (A.B., F.K., E.Z., M.S.); Natural and Medical Sciences Institute, Reutlingen, Germany (T.K., M.F.T.); and Department Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany (A.B.)
| | - Michael Schwarz
- Department of Toxicology, University of Tübingen, Tübingen, Germany (A.B., F.K., E.Z., M.S.); Natural and Medical Sciences Institute, Reutlingen, Germany (T.K., M.F.T.); and Department Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany (A.B.)
| |
Collapse
|
5
|
Creation of Three-Dimensional Liver Tissue Models from Experimental Images for Systems Medicine. Methods Mol Biol 2018; 1506:319-362. [PMID: 27830563 DOI: 10.1007/978-1-4939-6506-9_22] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this chapter, we illustrate how three-dimensional liver tissue models can be created from experimental image modalities by utilizing a well-established processing chain of experiments, microscopic imaging, image processing, image analysis and model construction. We describe how key features of liver tissue architecture are quantified and translated into model parameterizations, and show how a systematic iteration of experiments and model simulations often leads to a better understanding of biological phenomena in systems biology and systems medicine.
Collapse
|
6
|
Bai L, Li J, Liu X, Li S, Li F, Chen Y, Yu Z. NH 4Cl affects the expression of Wnt/β-catenin pathway in hepatocytes. Can J Physiol Pharmacol 2017; 96:281-286. [PMID: 28977758 DOI: 10.1139/cjpp-2017-0604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We intended to explore whether NH4Cl influences the viability and regulates the expression of Wnt/β-catenin pathway in hepatocytes. The Chang liver cell line was used and cultured with different concentrations of NH4Cl (2.5, 5, 10, 20, 40, and 50 mmol/L) for 12, 24, and 48 h. The viability of hepatocytes was detected by MTT assay. The mRNA and protein expression level was analyzed with qRT-PCR and Western blotting, respectively. NH4Cl concentration significantly affects the viability of hepatocytes. With the increase of NH4Cl concentration, the viability of hepatocytes was decreased, accordingly. The mRNA and protein expression of Wnt1, β-catenin, and cyclin D was significantly increased after treatment with low concentrations of NH4Cl as compared with the control group, whereas their expression levels were decreased after treatment with high concentrations of NH4Cl. The mRNA and protein expression of Wnt1, β-catenin, and cyclin D was also significantly increased after treatment with NH4Cl for a short period as compared with the control group, whereas their expression levels were decreased after treatment with NH4Cl for a long period. In addition, we found NH4Cl treatment significantly reversed the results after RNA silencing of Wnt1 in hepatocytes. NH4Cl influences the viability of hepatocytes and affects the expression of Wnt/β-catenin pathway in hepatocytes.
Collapse
Affiliation(s)
- Lu Bai
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.,Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Jingjing Li
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.,Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Xiaorui Liu
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.,Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Shasha Li
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.,Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Fulei Li
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.,Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Yanling Chen
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.,Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Zujiang Yu
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.,Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
7
|
A frequent misinterpretation in current research on liver fibrosis: the vessel in the center of CCl 4-induced pseudolobules is a portal vein. Arch Toxicol 2017; 91:3689-3692. [PMID: 28825120 DOI: 10.1007/s00204-017-2040-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023]
Abstract
Carbon tetrachloride-induced liver injury is a thoroughly studied model for regeneration and fibrosis in rodents. Nevertheless, its pattern of liver fibrosis is frequently misinterpreted as portal type. To clarify this, we show that collagen type IV+ "streets" and α-SMA+ cells accumulate pericentrally and extend to neighbouring central areas of the liver lobule, forming a 'pseudolobule'. Blood vessels in the center of such pseudolobules are portal veins as indicated by the presence of bile duct cells (CK19+) and the absence of pericentral hepatocytes (glutamine synthetase+). It is critical to correctly describe this pattern of fibrosis, particulary for metabolic zonation studies.
Collapse
|
8
|
Groll N, Petrikat T, Vetter S, Colnot S, Weiss F, Poetz O, Joos TO, Rothbauer U, Schwarz M, Braeuning A. Coordinate regulation of Cyp2e1 by β-catenin- and hepatocyte nuclear factor 1α-dependent signaling. Toxicology 2016; 350-352:40-8. [PMID: 27153753 DOI: 10.1016/j.tox.2016.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 01/14/2023]
Abstract
Depending on their position within the liver lobule, hepatocytes fulfill different metabolic functions. Cytochrome P450 (CYP) 2E1 is a drug-metabolizing enzyme which is exclusively expressed in hepatocytes surrounding branches of the hepatic central vein. Previous publications have shown that signaling through the Wnt/β-catenin pathway, a major determinant of liver zonation, and the hepatocyte-enriched transcription factor HNF (hepatocyte nuclear factor) 1α participate in the regulation of the gene. This study was aimed to decipher the molecular mechanisms by which the two transcription factors, β-catenin and HNF1α, jointly regulate CYP2E1 at the gene promoter level. Chromatin immunoprecipitation identified a conserved Wnt/β-catenin-responsive site (WRE) in the murine Cyp2e1 promoter adjacent to a known HNF1α response element (HNF1-RE). In vitro analyses demonstrated that both, activated β-catenin and HNF1α, are needed for the full response of the promoter. The WRE was dispensable for β-catenin-mediated effects on the Cyp2e1 promoter, while activity of β-catenin was integrated into the promoter response via the HNF1-RE. Physical interaction of β-catenin and HNF1α was demonstrated by co-immunoprecipitation. In conclusion, present data the first time identify and characterize the interplay of HNF1α and β-catenin and elucidate molecular determinants of CYP2E1 expression in the liver.
Collapse
Affiliation(s)
- Nicola Groll
- Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Tamara Petrikat
- University of Tübingen, Dept. of Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Silvia Vetter
- University of Tübingen, Dept. of Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Sabine Colnot
- Institut Cochin, INSERM U1016, CNRS, UMR8104, Equipe labellisée Ligue Nationale Contre le Cancer, Université Paris Descartes, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Frederik Weiss
- Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Oliver Poetz
- Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Thomas O Joos
- Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Ulrich Rothbauer
- Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Michael Schwarz
- University of Tübingen, Dept. of Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Albert Braeuning
- University of Tübingen, Dept. of Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany; Federal Institute for Risk Assessment, Dept. Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| |
Collapse
|
9
|
Is the question of phenobarbital as potential liver cancer risk factor for humans really resolved? Arch Toxicol 2016; 90:1525-6. [DOI: 10.1007/s00204-016-1712-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/13/2016] [Indexed: 01/01/2023]
|
10
|
Tumor promotion and inhibition by phenobarbital in livers of conditional Apc-deficient mice. Arch Toxicol 2016; 90:1481-94. [DOI: 10.1007/s00204-016-1667-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/13/2016] [Indexed: 01/16/2023]
|
11
|
Haridy MAM, El-Sayed YS. Highlight report: Software for tissue analysis and reconstruction. EXCLI JOURNAL 2015; 14:1055-6. [PMID: 26648828 PMCID: PMC4669945 DOI: 10.17179/excli2015-587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 09/22/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Mohie A M Haridy
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Yasser S El-Sayed
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
12
|
Schulthess P, Löffler A, Vetter S, Kreft L, Schwarz M, Braeuning A, Blüthgen N. Signal integration by the CYP1A1 promoter--a quantitative study. Nucleic Acids Res 2015; 43:5318-30. [PMID: 25934798 PMCID: PMC4477655 DOI: 10.1093/nar/gkv423] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 04/17/2015] [Indexed: 01/23/2023] Open
Abstract
Genes involved in detoxification of foreign compounds exhibit complex spatiotemporal expression patterns in liver. Cytochrome P450 1A1 (CYP1A1), for example, is restricted to the pericentral region of liver lobules in response to the interplay between aryl hydrocarbon receptor (AhR) and Wnt/β-catenin signaling pathways. However, the mechanisms by which the two pathways orchestrate gene expression are still poorly understood. With the help of 29 mutant constructs of the human CYP1A1 promoter and a mathematical model that combines Wnt/β-catenin and AhR signaling with the statistical mechanics of the promoter, we systematically quantified the regulatory influence of different transcription factor binding sites on gene induction within the promoter. The model unveils how different binding sites cooperate and how they establish the promoter logic; it quantitatively predicts two-dimensional stimulus-response curves. Furthermore, it shows that crosstalk between Wnt/β-catenin and AhR signaling is crucial to understand the complex zonated expression patterns found in liver lobules. This study exemplifies how statistical mechanical modeling together with combinatorial reporter assays has the capacity to disentangle the promoter logic that establishes physiological gene expression patterns.
Collapse
Affiliation(s)
- Pascal Schulthess
- Institute for Pathology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany Integrative Research Institute for the Life Sciences and Institute for Theoretical Biology, Humboldt University of Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Alexandra Löffler
- Institute for Experimental and Clinical Pharmacology and Toxicology, Department of Toxicology, University of Tübingen, Wilhelmstraße 56, 72074 Tübingen, Germany
| | - Silvia Vetter
- Institute for Experimental and Clinical Pharmacology and Toxicology, Department of Toxicology, University of Tübingen, Wilhelmstraße 56, 72074 Tübingen, Germany
| | - Luisa Kreft
- Institute for Experimental and Clinical Pharmacology and Toxicology, Department of Toxicology, University of Tübingen, Wilhelmstraße 56, 72074 Tübingen, Germany
| | - Michael Schwarz
- Institute for Experimental and Clinical Pharmacology and Toxicology, Department of Toxicology, University of Tübingen, Wilhelmstraße 56, 72074 Tübingen, Germany
| | - Albert Braeuning
- Department of Food Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Nils Blüthgen
- Institute for Pathology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany Integrative Research Institute for the Life Sciences and Institute for Theoretical Biology, Humboldt University of Berlin, Philippstr. 13, 10115 Berlin, Germany
| |
Collapse
|
13
|
Genetic ablation of β-catenin inhibits the proliferative phenotype of mouse liver adenomas. Br J Cancer 2014; 111:132-8. [PMID: 24874479 PMCID: PMC4090738 DOI: 10.1038/bjc.2014.275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/10/2014] [Accepted: 04/25/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Aberrant activation of Wnt/β-catenin has been implicated in various cancer-related processes, for example, proliferation or tumour cell survival. However, the exact mechanism by which β-catenin provides liver tumour cells with a selective advantage is still unclear. This study was aimed to analyse growth behaviour and survival of β-catenin-driven mouse liver tumours after β-catenin ablation. METHODS Transgenic mice with a controllable hepatocyte-specific knockout of Ctnnb1 (encoding β-catenin) were generated and liver tumours were induced by means of a N-nitrosodiethylamine/phenobarbital tumour initiation/promotion protocol, which leads to the outgrowth of hepatocellular tumours with activated β-catenin. Cre recombinase was activated and the effects of the knockout in the tumours were studied. RESULTS Activation of Cre recombinase led to the knockout of Ctnnb1 in a fraction of tumour cells, thus resulting in the formation of two different tumour cell subpopulations, with or without β-catenin. Comparative analysis of the two subpopulations revealed that cell proliferation was significantly decreased in Ctnnb1-deleted hepatoma cells, compared with the corresponding non-deleted cell population, whereas no increased rate of apoptosis after knockout of Ctnnb1 was observed. CONCLUSIONS β-catenin-dependent signalling is an important regulator of hepatoma cell growth in mice, but not a crucial factor in the regulation of tumour survival.
Collapse
|
14
|
Braeuning A, Gavrilov A, Brown S, Wolf CR, Henderson CJ, Schwarz M. Phenobarbital-mediated tumor promotion in transgenic mice with humanized CAR and PXR. Toxicol Sci 2014; 140:259-70. [PMID: 24863967 DOI: 10.1093/toxsci/kfu099] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The nuclear receptors CAR (constitutive androstane receptor) and possibly PXR (pregnane X receptor) mediate the hepatic effects of phenobarbital (PB) and similar-acting compounds. Although PB is a potent nongenotoxic tumor promoter in rodent liver, epidemiological data from epilepsy patients treated with phenobarbital do not show a specific role of PB in human liver cancer risk. That points to species differences in the susceptibility to tumor promotion by PB, which might be attributed to divergent functions of the PB receptors CAR and PXR in mice and humans. In the present study, male transgenic mice expressing human CAR and PXR were used to detect possible differences between wild-type (WT) and humanized mice in their response to CAR activation in a tumor initiation/promotion experiment with a single injection of the tumor initiator N-nitrosodiethylamine preceding chronic PB treatment for 10 months. Analysis of liver tumor burden revealed that PB strongly promoted the outgrowth of hepatocellular adenoma driven by activated β-catenin in WT mice, whereas the tumor-promoting effect of PB was much less pronounced in the humanized group. In conclusion, the present findings demonstrate that human CAR and PXR support tumor promotion by PB in mouse liver, but to a significantly lesser extent than the WT murine receptors.
Collapse
Affiliation(s)
- Albert Braeuning
- University of Tuebingen, Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Toxicology, Wilhelmstr. 56, 72074 Tuebingen, Germany
| | - Alina Gavrilov
- University of Tuebingen, Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Toxicology, Wilhelmstr. 56, 72074 Tuebingen, Germany
| | - Susan Brown
- CXR Biosciences, 2 James Lyndsay Place, Dundee Technopole, Dundee DD1 5JJ, Scotland, UK
| | - C Roland Wolf
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, University of Dundee, James Arrott Drive, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland, UK
| | - Colin J Henderson
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, University of Dundee, James Arrott Drive, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland, UK
| | - Michael Schwarz
- University of Tuebingen, Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Toxicology, Wilhelmstr. 56, 72074 Tuebingen, Germany
| |
Collapse
|
15
|
Protocols for staining of bile canalicular and sinusoidal networks of human, mouse and pig livers, three-dimensional reconstruction and quantification of tissue microarchitecture by image processing and analysis. Arch Toxicol 2014; 88:1161-83. [PMID: 24748404 PMCID: PMC3996365 DOI: 10.1007/s00204-014-1243-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 03/17/2014] [Indexed: 02/06/2023]
Abstract
Histological alterations often constitute a fingerprint of toxicity and diseases. The extent to which these alterations are cause or consequence of compromised organ function, and the underlying mechanisms involved is a matter of intensive research. In particular, liver disease is often associated with altered tissue microarchitecture, which in turn may compromise perfusion and functionality. Research in this field requires the development and orchestration of new techniques into standardized processing pipelines that can be used to reproducibly quantify tissue architecture. Major bottlenecks include the lack of robust staining, and adequate reconstruction and quantification techniques. To bridge this gap, we established protocols employing specific antibody combinations for immunostaining, confocal imaging, three-dimensional reconstruction of approximately 100-μm-thick tissue blocks and quantification of key architectural features. We describe a standard procedure termed ‘liver architectural staining’ for the simultaneous visualization of bile canaliculi, sinusoidal endothelial cells, glutamine synthetase (GS) for the identification of central veins, and DAPI as a nuclear marker. Additionally, we present a second standard procedure entitled ‘S-phase staining’, where S-phase-positive and S-phase-negative nuclei (stained with BrdU and DAPI, respectively), sinusoidal endothelial cells and GS are stained. The techniques include three-dimensional reconstruction of the sinusoidal and bile canalicular networks from the same tissue block, and robust capture of position, size and shape of individual hepatocytes, as well as entire lobules from the same tissue specimen. In addition to the protocols, we have also established image analysis software that allows relational and hierarchical quantifications of different liver substructures (e.g. cells and vascular branches) and events (e.g. cell proliferation and death). Typical results acquired for routinely quantified parameters in adult mice (C57Bl6/N) include the hepatocyte volume (5,128.3 ± 837.8 μm3) and the fraction of the hepatocyte surface in contact with the neighbouring hepatocytes (67.4 ± 6.7 %), sinusoids (22.1 ± 4.8 %) and bile canaliculi (9.9 ± 3.8 %). Parameters of the sinusoidal network that we also routinely quantify include the radius of the sinusoids (4.8 ± 2.25 μm), the branching angle (32.5 ± 11.2°), the length of intersection branches (23.93 ± 5.9 μm), the number of intersection nodes per mm3 (120.3 × 103 ± 42.1 × 103), the average length of sinusoidal vessel per mm3 (5.4 × 103 ± 1.4 × 103mm) and the percentage of vessel volume in relation to the whole liver volume (15.3 ± 3.9) (mean ± standard deviation). Moreover, the provided parameters of the bile canalicular network are: length of the first-order branches (7.5 ± 0.6 μm), length of the second-order branches (10.9 ± 1.8 μm), length of the dead-end branches (5.9 ± 0.7 μm), the number of intersection nodes per mm3 (819.1 × 103 ± 180.7 × 103), the number of dead-end branches per mm3 (409.9 × 103 ± 95.6 × 103), the length of the bile canalicular network per mm3 (9.4 × 103 ± 0.7 × 103 mm) and the percentage of the bile canalicular volume with respect to the total liver volume (3.4 ± 0.005). A particular strength of our technique is that quantitative parameters of hepatocytes and bile canalicular as well as sinusoidal networks can be extracted from the same tissue block. Reconstructions and quantifications performed as described in the current protocols can be used for quantitative mathematical modelling of the underlying mechanisms. Furthermore, protocols are presented for both human and pig livers. The technique is also applicable for both vibratome blocks and conventional paraffin slices.
Collapse
|
16
|
Lin T, Ibrahim W, Peng CY, Finegold MJ, Tsai RY. A novel role of nucleostemin in maintaining the genome integrity of dividing hepatocytes during mouse liver development and regeneration. Hepatology 2013; 58:2176-87. [PMID: 23813570 PMCID: PMC3844114 DOI: 10.1002/hep.26600] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/17/2013] [Indexed: 01/04/2023]
Abstract
UNLABELLED During liver development and regeneration, hepatocytes undergo rapid cell division and face an increased risk of DNA damage associated with active DNA replication. The mechanism that protects proliferating hepatocytes from replication-induced DNA damage remains unclear. Nucleostemin (NS) is known to be up-regulated during liver regeneration, and loss of NS is associated with increased DNA damage in cancer cells. To determine whether NS is involved in protecting the genome integrity of proliferating hepatocytes, we created an albumin promoter-driven NS conditional-null (albNS(cko) ) mouse model. Livers of albNS(cko) mice begin to show loss of NS in developing hepatocytes from the first postnatal week and increased DNA damage and hepatocellular injury at 1-2 weeks of age. At 3-4 weeks, albNS(cko) livers develop bile duct hyperplasia and show increased apoptotic cells, necrosis, regenerative nodules, and evidence suggestive of hepatic stem/progenitor cell activation. CCl4 treatment enhances degeneration and DNA damage in NS-deleted hepatocytes and increases biliary hyperplasia and A6(+) cells in albNS(cko) livers. After 70% partial hepatectomy, albNS(cko) livers show increased DNA damage in parallel with a blunted and prolonged regenerative response. The DNA damage in NS-depleted hepatocytes is explained by the impaired recruitment of a core DNA repair enzyme, RAD51, to replication-induced DNA damage foci. CONCLUSION This work reveals a novel genome-protective role of NS in developing and regenerating hepatocytes.
Collapse
Affiliation(s)
- Tao Lin
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030 USA
| | - Wessam Ibrahim
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030 USA
| | - Cheng-Yuan Peng
- School of Medicine, China Medical University, Taichung, 40402, Taiwan, Division of Hepatogastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Milton J Finegold
- Gastrointestinal & Hepatobiliary Pathology, Texas Children's Hospital Houston, Texas 77030 USA, Department of Pathology & Immunology, Baylor College of Medicine, Texas 77030 USA
| | - Robert Y.L. Tsai
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030 USA
| |
Collapse
|
17
|
Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CEP, Gómez-Lechón MJ, Groothuis GMM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EHK, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013; 87:1315-530. [PMID: 23974980 PMCID: PMC3753504 DOI: 10.1007/s00204-013-1078-5] [Citation(s) in RCA: 1062] [Impact Index Per Article: 96.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.
Collapse
Affiliation(s)
- Patricio Godoy
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | | | - Ute Albrecht
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Melvin E. Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Nariman Ansari
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sudin Bhattacharya
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Johannes Georg Bode
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jennifer Bolleyn
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Jan Böttger
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Albert Braeuning
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Robert A. Budinsky
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Neil R. Cameron
- Department of Chemistry, Durham University, Durham, DH1 3LE UK
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - J. Craig Rowlands
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General Visceral, and Vascular Surgery, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Olaf Dirsch
- Institute of Pathology, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - María Teresa Donato
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Jian Dong
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dirk Drasdo
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
- INRIA (French National Institute for Research in Computer Science and Control), Domaine de Voluceau-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
- UPMC University of Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4, pl. Jussieu, 75252 Paris cedex 05, France
| | - Rowena Eakins
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Karine Sá Ferreira
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- GRK 1104 From Cells to Organs, Molecular Mechanisms of Organogenesis, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Valentina Fonsato
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Joanna Fraczek
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Andrew Gibson
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Matthias Glanemann
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Chris E. P. Goldring
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - María José Gómez-Lechón
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
| | - Geny M. M. Groothuis
- Department of Pharmacy, Pharmacokinetics Toxicology and Targeting, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lena Gustavsson
- Department of Laboratory Medicine (Malmö), Center for Molecular Pathology, Lund University, Jan Waldenströms gata 59, 205 02 Malmö, Sweden
| | - Christelle Guyot
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - David Hallifax
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Seddik Hammad
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Adam Hayward
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Claus Hellerbrand
- Department of Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | - Stefan Hoehme
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
| | - Hermann-Georg Holzhütter
- Institut für Biochemie Abteilung Mathematische Systembiochemie, Universitätsmedizin Berlin (Charité), Charitéplatz 1, 10117 Berlin, Germany
| | - J. Brian Houston
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | | | - Kiyomi Ito
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585 Japan
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Claus Kordes
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Edward L. LeCluyse
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Peng Lu
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | - Anna Lutz
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Daniel J. Maltman
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
| | - Madlen Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Patrick McMullen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | | | - Christoph Meyer
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jessica Mwinyi
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andreas K. Nussler
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Jingbo Pi
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Linda Pluta
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Stefan A. Przyborski
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Vera Rogiers
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Cliff Rowe
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Celine Schelcher
- Department of Surgery, Liver Regeneration, Core Facility, Human in Vitro Models of the Liver, Ludwig Maximilians University of Munich, Munich, Germany
| | - Kathrin Schmich
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Ernst H. K. Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Regina Stöber
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama Biopharmaceutical R&D Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Ciro Tetta
- Fresenius Medical Care, Bad Homburg, Germany
| | - Wolfgang E. Thasler
- Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich, Germany
| | - Tamara Vanhaecke
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Thomas S. Weiss
- Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Agata Widera
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Courtney G. Woods
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | | | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| |
Collapse
|
18
|
|
19
|
Ganzenberg K, Singh Y, Braeuning A. The time point of β-catenin knockout in hepatocytes determines their response to xenobiotic activation of the constitutive androstane receptor. Toxicology 2013; 308:113-21. [DOI: 10.1016/j.tox.2013.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 03/27/2013] [Accepted: 03/30/2013] [Indexed: 12/13/2022]
|
20
|
Singh Y, Braeuning A, Schmid A, Pichler BJ, Schwarz M. Selective poisoning of Ctnnb1-mutated hepatoma cells in mouse liver tumors by a single application of acetaminophen. Arch Toxicol 2013; 87:1595-607. [DOI: 10.1007/s00204-013-1030-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/25/2013] [Indexed: 01/26/2023]
|
21
|
The connection of β-catenin and phenobarbital in murine hepatocarcinogenesis: a critical discussion of Awuah et al., PLoS ONE 7(6):e39771, 2012. Arch Toxicol 2012; 87:401-2. [PMID: 23266721 DOI: 10.1007/s00204-012-1002-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
|
22
|
Postnatal development, maturation and aging in the mouse cochlea and their effects on hair cell regeneration. Hear Res 2012; 297:68-83. [PMID: 23164734 DOI: 10.1016/j.heares.2012.11.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/22/2012] [Accepted: 11/07/2012] [Indexed: 12/23/2022]
Abstract
The organ of Corti in the mammalian inner ear is comprised of mechanosensory hair cells (HCs) and nonsensory supporting cells (SCs), both of which are believed to be terminally post-mitotic beyond late embryonic ages. Consequently, regeneration of HCs and SCs does not occur naturally in the adult mammalian cochlea, though recent evidence suggests that these cells may not be completely or irreversibly quiescent at earlier postnatal ages. Furthermore, regenerative processes can be induced by genetic and pharmacological manipulations, but, more and more reports suggest that regenerative potential declines as the organ of Corti continues to age. In numerous mammalian systems, such effects of aging on regenerative potential are well established. However, in the cochlea, the problem of regeneration has not been traditionally viewed as one of aging. This is an important consideration as current models are unable to elicit widespread regeneration or full recovery of function at adult ages yet regenerative therapies will need to be developed specifically for adult populations. Still, the advent of gene targeting and other genetic manipulations has established mice as critically important models for the study of cochlear development and HC regeneration and suggests that auditory HC regeneration in adult mammals may indeed be possible. Thus, this review will focus on the pursuit of regeneration in the postnatal and adult mouse cochlea and highlight processes that occur during postnatal development, maturation, and aging that could contribute to an age-related decline in regenerative potential. Second, we will draw upon the wealth of knowledge pertaining to age related senescence in tissues outside of the ear to synthesize new insights and potentially guide future research aimed at promoting HC regeneration in the adult cochlea.
Collapse
|
23
|
Clinkenbeard EL, Butler JE, Spear BT. Pericentral activity of alpha-fetoprotein enhancer 3 and glutamine synthetase upstream enhancer in the adult liver are regulated by β-catenin in mice. Hepatology 2012; 56:1892-901. [PMID: 22544812 PMCID: PMC4339872 DOI: 10.1002/hep.25819] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED We previously showed that mouse alpha-fetoprotein (AFP) enhancer 3 activity is highly restricted to pericentral hepatocytes in the adult liver. Here, using transgenic mice, we show that the upstream enhancer of the rat glutamine synthetase gene is also active, specifically in pericentral regions. Activity of both enhancers is lost in the absence of β-catenin, a key regulator of zonal gene expression in the adult liver. Both enhancers contain a single, highly conserved T-cell factor/lymphoid enhancer factor binding site that is required for responsiveness to β-catenin. We also show that endogenous AFP messenger RNA levels in the perinatal liver are lower when β-catenin is reduced. CONCLUSION These data identify the first distinct zonally active regulatory regions required for β-catenin responsiveness in the adult liver, and suggest that postnatal AFP repression and the establishment of zonal regulation are controlled, at least in part, by the same factors.
Collapse
Affiliation(s)
- Erica L. Clinkenbeard
- Department of Microbiology, Immunology, & Molecular Genetics, University of Kentucky, Lexington, KY 40536
| | - James E. Butler
- Department of Microbiology, Immunology, & Molecular Genetics, University of Kentucky, Lexington, KY 40536
| | - Brett T. Spear
- Department of Microbiology, Immunology, & Molecular Genetics, University of Kentucky, Lexington, KY 40536,Markey Cancer Center, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
24
|
Wickline ED, Awuah PK, Behari J, Ross M, Stolz DB, Monga SPS. Hepatocyte γ-catenin compensates for conditionally deleted β-catenin at adherens junctions. J Hepatol 2011; 55:1256-62. [PMID: 21703193 PMCID: PMC3221911 DOI: 10.1016/j.jhep.2011.03.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 03/01/2011] [Accepted: 03/04/2011] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS Wnt/β-catenin signaling is important in liver physiology. Moreover, β-catenin is also pivotal in adherens junctions (AJ). Here, we investigate hepatocyte-specific β-catenin conditional null mice (KO) for any alterations in AJ and related tight junctions (TJ). METHODS Using gene array, PCR, Western blot, immunohistochemistry, immunofluorescence, and co-immunoprecipitation, we compare and contrast the composition of AJ and TJ in KO and littermate wild-type (WT) control livers. RESULTS We show association of E-cadherin with β-catenin in epithelial cells of WT livers, which is lost in the KOs. While total levels of α-catenin, E-cadherin, and F-actin were modestly decreased, KO livers show increased γ-catenin/plakoglobin. By co-immunoprecipitation, E-cadherin/β-catenin/F-actin association was observed in WT livers, while the association of E-cadherin/γ-catenin/F-actin was evident in KO livers. γ-Catenin was localized at the hepatocyte membrane at baseline in the KO liver. While γ-catenin gene expression remained unaltered, an increase in serine- and threonine-phosphorylated, but not tyrosine-phosphorylated γ-catenin was observed in KO livers. A continued presence of γ-catenin at the hepatocyte membrane, without any nuclear localization, was observed in liver regeneration after partial hepatectomy at 40 and 72 h, in both KO and WT. Analysis of TJ revealed lack of claudin-2 and increased levels of JAM-A and claudin-1 in KO livers. CONCLUSIONS β-Catenin adequately maintains AJ in the absence of β-catenin in hepatocytes; however, it lacks nuclear localization. Moreover, β-catenin/claudin-2 may be an important mechanism of crosstalk between the AJ and TJ.
Collapse
Affiliation(s)
- Emily Diane Wickline
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Prince Kwaku Awuah
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Jaideep Behari
- Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Mark Ross
- Department of Cell Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Donna B. Stolz
- Department of Cell Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Satdarshan P. S. Monga
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA,Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Depletion of β-catenin from mature hepatocytes of mice promotes expansion of hepatic progenitor cells and tumor development. Proc Natl Acad Sci U S A 2011; 108:18384-9. [PMID: 22042854 DOI: 10.1073/pnas.1116386108] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Depletion of β-catenin impairs regeneration of the rapid turn-over gut epithelial cells, but appears dispensable for that of the slow turn-over mature hepatocytes in mice until 1 y of age. As the life span of mature murine hepatocytes is about 400 d, we studied conditional β-catenin knockout mice (Alb-Cre;Ctnnb1(flx/flx)) until 20 mo of age to determine the function of β-catenin in the postnatal liver. β-catenin was absent from the hepatocytes of β-catenin knockout mice 4 wk after delivery. From 9 mo of age, hepatocytes were gradually replaced by newly formed β-catenin-positive hepatocytes, which constituted about 90% of hepatocytes at 18-20 mo of age. This process was accompanied by active proliferation of bile duct/ductule cells. β-catenin-positive hepatocytes exhibited elevated proliferation activity and expression of progenitor cell markers, but lower albumin and Cre. This might explain their intact β-catenin protein, and suggest their origins from hepatic progenitor cells. Liver tumors arose spontaneously from β-catenin-positive cells, and tumorigenesis was accelerated by hepatitis B X protein. These results indicate β-catenin critical for the regeneration of mature hepatocytes. Failure to regenerate mature hepatocytes results in proliferation of hepatic progenitor cells that are able to maintain liver function but are predisposed to form liver tumors.
Collapse
|
26
|
Thompson MD, Wickline ED, Bowen WB, Lu A, Singh S, Misse A, Monga SPS. Spontaneous repopulation of β-catenin null livers with β-catenin-positive hepatocytes after chronic murine liver injury. Hepatology 2011; 54:1333-43. [PMID: 21721031 PMCID: PMC3184210 DOI: 10.1002/hep.24506] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Accepted: 06/07/2011] [Indexed: 12/28/2022]
Abstract
UNLABELLED Prolonged exposure of mice to diet containing 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) results in hepatobiliary injury, atypical ductular proliferation, oval cell appearance, and limited fibrosis. Previously, we reported that short-term ingestion of DDC diet by hepatocyte-specific β-catenin conditional knockout (KO) mice led to fewer A6-positive oval cells than wildtype (WT) littermates. To examine the role of β-catenin in chronic hepatic injury and repair, we exposed WT and KO mice to DDC for 80 and 150 days. Paradoxically, long-term DDC exposure led to significantly more A6-positive cells, indicating greater atypical ductular proliferation in KO, which coincided with increased fibrosis and cholestasis. Surprisingly, at 80 and 150 days in KO we observed a significant amelioration of hepatocyte injury. This coincided with extensive repopulation of β-catenin null livers with β-catenin-positive hepatocytes at 150 days, which was preceded by appearance of β-catenin-positive hepatocyte clusters at 80 days and a few β-catenin-positive hepatocytes at earlier times. Intriguingly, occasional β-catenin-positive hepatocytes that were negative for progenitor markers were also observed at baseline in the KO livers, suggesting spontaneous escape from cre-mediated recombination. These cells with hepatocyte morphology expressed mature hepatocyte markers but lacked markers of hepatic progenitors. The gradual repopulation of KO livers with β-catenin-positive hepatocytes occurred only following DDC injury and coincided with a progressive loss of hepatic cre-recombinase expression. A few β-catenin-positive cholangiocytes were observed albeit only after long-term DDC exposure and trailed the appearance of β-catenin-positive hepatocytes. CONCLUSION In a chronic liver injury model, β-catenin-positive hepatocytes exhibit growth and survival advantages and repopulate KO livers, eventually limiting hepatic injury and dysfunction despite increased fibrosis and intrahepatic cholestasis.
Collapse
Affiliation(s)
- Michael D. Thompson
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Emily D. Wickline
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - William B. Bowen
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Amy Lu
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Sucha Singh
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Amalea Misse
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Satdarshan P. S. Monga
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA,
Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
27
|
Schreiber S, Rignall B, Braeuning A, Marx-Stoelting P, Ott T, Buchmann A, Hammad S, Hengstler JG, Schwarz M, Köhle C. Phenotype of single hepatocytes expressing an activated version of β-catenin in liver of transgenic mice. J Mol Histol 2011; 42:393-400. [DOI: 10.1007/s10735-011-9342-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 07/23/2011] [Indexed: 01/28/2023]
|
28
|
Braeuning A, Heubach Y, Knorpp T, Kowalik MA, Templin M, Columbano A, Schwarz M. Gender-specific interplay of signaling through β-catenin and CAR in the regulation of xenobiotic-induced hepatocyte proliferation. Toxicol Sci 2011; 123:113-22. [PMID: 21705713 DOI: 10.1093/toxsci/kfr166] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aberrant signaling through the Wnt/β-catenin pathway is a critical determinant in human and rodent liver carcinogenesis and generally accepted to be a potent driver of proliferation. Xenobiotic agonists of the constitutive androstane receptor (CAR) induce massive acute hyperplasia of mouse liver and facilitate the outgrowth of hepatocellular carcinomas with activated β-catenin. In the present study, the interplay of β-catenin-dependent and CAR-dependent signaling in the liver and its effect on hepatocyte proliferation were analyzed in transgenic mice with hepatocyte-specific knockout of Ctnnb1 (encoding β-catenin) following treatment with two CAR agonists, 1,4-bis[2-(3,5-dichloropyridyloxy)]-benzene (TCPOBOP) and phenobarbital. Hepatocyte-specific knockout of β-catenin inhibited CAR agonists-induced hepatocyte proliferation in male mice. By contrast, the proliferative effect of CAR agonists was strongly augmented in female β-catenin knockout animals. This was due to prolonged proliferation of the knockout hepatocytes. CAR-mediated hepatocyte proliferation was, at least in part, dependent on estrogen signaling and was associated with enhanced expression of FoxM1 and elevated activity of the PDK1/p90RSK pathway. In conclusion, our study shows that gender-specific factors determine whether β-catenin signaling plays a pro- or an antiproliferative role in the regulation of mouse hepatocyte proliferation induced by CAR agonists.
Collapse
Affiliation(s)
- Albert Braeuning
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, 72074 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Hübner S, Efthymiadis A. Histochemistry and cell biology: the annual review 2010. Histochem Cell Biol 2011; 135:111-40. [PMID: 21279376 DOI: 10.1007/s00418-011-0781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
This review summarizes recent advances in histochemistry and cell biology which complement and extend our knowledge regarding various aspects of protein functions, cell and tissue biology, employing appropriate in vivo model systems in conjunction with established and novel approaches. In this context several non-expected results and discoveries were obtained which paved the way of research into new directions. Once the reader embarks on reading this review, it quickly becomes quite obvious that the studies contribute not only to a better understanding of fundamental biological processes but also provide use-oriented aspects that can be derived therefrom.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstrasse 6, 97070 Würzburg, Germany.
| | | |
Collapse
|
30
|
Sekine S, Ogawa R, Kanai Y. Hepatomas with activating Ctnnb1 mutations in 'Ctnnb1-deficient' livers: a tricky aspect of a conditional knockout mouse model. Carcinogenesis 2011; 32:622-8. [PMID: 21216847 DOI: 10.1093/carcin/bgr002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Conditional knockout mice, based on the Cre-loxP system, are a widely used model for examining organ-specific gene functions. To date, efficient hepatocyte-specific knockout has been reported in many different models, but little attention has been paid to the long-term stability of the recombination efficiency. In the present study, we characterized Alb-Cre;Ctnnb1flox/flox 'hepatocyte-specific Ctnnb1 knockout' mice of different ages to test whether efficient recombination is maintained over time. At 2 months of age, the knockout mouse livers achieved efficient deletions of β-catenin in hepatocytes. However, as the mice aged, the reappearance and expansion of β-catenin-expressing hepatocytes were observed. In 1-year-old mice, a significant proportion of the pericentral hepatocytes in the knockout mouse livers were replaced with β-catenin-positive hepatocytes, whereas the periportal hepatocytes mostly remained β-catenin-negative. Furthermore, most of the 1-year-old mice spontaneously developed hepatocellular adenomas and carcinomas that were positive for β-catenin and overexpressed glutamine synthetase and Slc1a2, both of which are hallmarks of active β-catenin signaling. Sequencing analysis revealed that the Ctnnb1 alleles were not inactivated but had activating mutations in these tumors. The present study suggests that recombination efficiency should be carefully examined when hepatocyte-specific knockout mice of different ages are analyzed. In addition, illegitimate deletion mutations should be recognized as potential adverse effects of the Cre-loxP system.
Collapse
Affiliation(s)
- Shigeki Sekine
- Pathology Division, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, Japan 104-0045.
| | | | | |
Collapse
|
31
|
Rignall B, Braeuning A, Buchmann A, Schwarz M. Tumor formation in liver of conditional β-catenin-deficient mice exposed to a diethylnitrosamine/phenobarbital tumor promotion regimen. Carcinogenesis 2010; 32:52-7. [PMID: 21047994 DOI: 10.1093/carcin/bgq226] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The antiepileptic drug phenobarbital (PB) is a potent tumor promoter in mouse liver, where it stimulates the selective outgrowth of tumor populations harboring activating mutations in Ctnnb1, encoding β-catenin. A tumor initiation-promotion study was conducted in mice with conditional hepatocyte-specific knockout (KO) of Ctnnb1 and in Ctnnb1 wild-type controls. Mice received a single injection of N-nitrosodiethylamine (DEN) at the age of 6 weeks followed by continuous administration of PB given in the diet (0.05%) for 27 weeks. Metabolic activation of DEN in hepatocytes from both Ctnnb1 wild-type and KO mice was demonstrated. PB strongly enhanced liver tumor formation in Ctnnb1 wild-type mice, and 90% of the PB-promoted tumors were Ctnnb1-mutated. A similar increase in carcinogenic response was seen when using glucose-6-phosphatase and glutamine synthetase as tumor markers. The prevalence of tumors in Ctnnb1 KO mice was ∼7-fold higher than in wild-type mice, suggesting an enhancing effect of the gene KO on liver tumor development. However, in strong contrast to wild-type mice, PB did not promote tumor formation in the Ctnnb1 KO mice. Livers of KO mice, particularly from the PB treatment group, demonstrated fibrosis and massive infiltration of immune cells, an effect not seen in wild-type mice. In summary, our data demonstrate that (i) liver tumor promotion by PB requires functional β-catenin signaling and (ii) absence of β-catenin enhances carcinogen-induced hepatocarcinogenesis and induces a pre-cirrhotic phenotype in mouse liver.
Collapse
Affiliation(s)
- Benjamin Rignall
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, Germany
| | | | | | | |
Collapse
|