1
|
Salgado RM, Ryan BJ, Seeley AD, Charkoudian N. Improving Endurance Exercise Performance at High Altitude: Traditional and Nontraditional Approaches. Exerc Sport Sci Rev 2025; 53:10-22. [PMID: 39262050 DOI: 10.1249/jes.0000000000000347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Acute exposure to terrestrial altitude (hypobaric hypoxia) causes decrements in endurance performance relative to sea level. Altitude acclimatization consistently results in partial attenuation of these decrements, but due to logistical challenges, it is not readily implemented. We discuss mechanisms and impact (or lack thereof) of other non-acclimatization interventions to improve endurance performance and provide suggestions for future research directions.
Collapse
Affiliation(s)
- Roy M Salgado
- US Army Research Institute of Environmental Medicine, Thermal and Mountain Medicine Division, Natick, MA
| | | | | | | |
Collapse
|
2
|
Karpęcka-Gałka E, Frączek B. Nutrition, hydration and supplementation considerations for mountaineers in high-altitude conditions: a narrative review. Front Sports Act Living 2024; 6:1435494. [PMID: 39584049 PMCID: PMC11582915 DOI: 10.3389/fspor.2024.1435494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/11/2024] [Indexed: 11/26/2024] Open
Abstract
Staying and climbing in high mountains (>2,500 m) involves changes in diet due to poor access to fresh food, lack of appetite, food poisoning, environmental conditions and physiological changes. The purpose of this review is to summarize the current knowledge on the principles of nutrition, hydration and supplementation in high-altitude conditions and to propose practical recommendations/solutions based on scientific literature data. Databases such as Pubmed, Scopus, ScienceDirect and Google Scholar were searched to find studies published from 2000 to 2023 considering articles that were randomized, double-blind, placebo-controlled trials, narrative review articles, systematic reviews and meta-analyses. The manuscript provides recommendations for energy supply, dietary macronutrients and micronutrients, hydration, as well as supplementation recommendations and practical tips for mountaineers. In view of the difficulties of being in high mountains and practicing alpine climbing, as described in the review, it is important to increase athletes' awareness of nutrition and supplementation in order to improve well-being, physical performance and increase the chance of achieving a mountain goal, and to provide the appropriate dietary care necessary to educate mountaineers and personalize recommendations to the needs of the individual.
Collapse
Affiliation(s)
- Ewa Karpęcka-Gałka
- Doctoral School of Physical Culture Sciences, University of Physical Education in Krakow, Cracow, Poland
| | - Barbara Frączek
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University of Physical Education in Krakow, Cracow, Poland
| |
Collapse
|
3
|
Chiu CH, Chen CC, Ali A, Wu SL, Wu CL. The Effect of Pre-Exercise Caffeine and Glucose Ingestion on Endurance Capacity in Hypoxia: A Double-Blind Crossover Trial. Nutrients 2024; 16:3624. [PMID: 39519456 PMCID: PMC11547503 DOI: 10.3390/nu16213624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The impact of caffeine and glucose supplementation in a hypoxic environment on endurance exercise performance remains inconclusive. The current study examined the effect of pre-exercise carbohydrate and caffeine supplementation on endurance exercise performance in an acute hypoxic environment. Eight healthy active young males participated in this double-blind, within-subjects crossover study. Participants ingested the test drink 60 min before exercising at 50% Wmax for 90 min on a cycle ergometer (fatiguing preload); there followed an endurance performance test at 85% Wmax until exhaustion in a hypoxic chamber (~15%O2). Participants completed four experimental trials in a randomized order: caffeine (6 mg·kg-1; Caff), glucose (1 g·kg-1; CHO), caffeine (6 mg·kg-1) + glucose (1 g·kg-1; Caff-CHO), and taste- and color-matched placebo with no caffeine or CHO (PLA). Blood samples were collected during fasting, pre-exercise, every 30 min throughout the exercise, and immediately after exhaustion. The caffeine and glucose trials significantly enhanced endurance capacity in hypoxic conditions by Caff, 44% (68.8-31.5%, 95% confidence interval), CHO, 31% (44.7-15.6%), and Caff-CHO, 46% (79.1-13.2%). Plasma-free fatty-acid and glycerol concentrations were higher in Caff and PLA than in CHO and Caff-CHO (p < 0.05). The estimated rate of fat oxidation was higher in Caff and PLA than in CHO and Caff-CHO (p < 0.05). There were no significant differences in ratings of perceived exertion between trials. In conclusion, the ingestion of caffeine, glucose, or caffeine + glucose one hour before exercising in hypoxic conditions significantly improved 85% Wmax endurance performance after prolonged exercise.
Collapse
Affiliation(s)
- Chih-Hui Chiu
- Graduate Program in Department of Exercise Health Science, National Taiwan University of Sport, Taichung 404401, Taiwan;
| | - Chung-Chih Chen
- Graduate Institute of Sports and Health Management, National Chung Hsing University, Taichung 402202, Taiwan;
| | - Ajmol Ali
- School of Sport, Exercise and Nutrition, Massey University, Auckland 0745, New Zealand;
| | - Shey-Lin Wu
- Neurological Department, Show Chwan Memorial Hospital, Changhua 500209, Taiwan
- Neurological Department, Chang Bing Show Chwan Memorial Hospital, Changhua 500209, Taiwan
| | - Ching-Lin Wu
- Graduate Institute of Sports and Health Management, National Chung Hsing University, Taichung 402202, Taiwan;
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada
| |
Collapse
|
4
|
Costalat G, Lemaitre F, Ramos S, Renshaw GMC. Intermittent normobaric hypoxia alters substrate partitioning and muscle oxygenation in individuals with obesity: implications for fat burning. Am J Physiol Regul Integr Comp Physiol 2024; 326:R147-R159. [PMID: 38047315 DOI: 10.1152/ajpregu.00153.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
This single-blind, crossover study aimed to measure and evaluate the short-term metabolic responses to continuous and intermittent hypoxic patterns in individuals with obesity. Indirect calorimetry was used to quantify changes in resting metabolic rate (RMR), carbohydrate (CHOox, %CHO), and fat oxidation (FATox, %FAT) in nine individuals with obesity pre and post: 1) breathing normoxic air [normoxic sham control (NS-control)], 2) breathing continuous hypoxia (CH), or 3) breathing intermittent hypoxia (IH). A mean peripheral oxygen saturation ([Formula: see text]) of 80-85% was achieved over a total of 45 min of hypoxia. Throughout each intervention, pulmonary gas exchanges, oxygen consumption (V̇o2) carbon dioxide production (V̇co2), and deoxyhemoglobin concentration (Δ[HHb]) in the vastus lateralis were measured. Both RMR and CHOox measured pre- and postinterventions were unchanged following each treatment: NS-control, CH, or IH (all P > 0.05). Conversely, a significant increase in FATox was evident between pre- and post-IH (+44%, P = 0.048). Although the mean Δ[HHb] values significantly increased during both IH and CH (P < 0.05), the greatest zenith of Δ[HHb] was achieved in IH compared with CH (P = 0.002). Furthermore, there was a positive correlation between Δ[HHb] and the shift in FATox measured pre- and postintervention. It is suggested that during IH, the increased bouts of muscle hypoxia, revealed by elevated Δ[HHb], coupled with cyclic periods of excess posthypoxia oxygen consumption (EPHOC, inherent to the intermittent pattern) played a significant role in driving the increase in FATox post-IH.
Collapse
Affiliation(s)
- Guillaume Costalat
- Adaptations Physiologiques à l'Exercice et Réadaptation à l'Effort Laboratory, Faculty of Sport Sciences, University of Picardie Jules Verne, Amiens, France
| | - Frederic Lemaitre
- Centre d'Etude des Transformations des Activités Physiques et Sportives Laboratory, Faculty of Sport Sciences, Normandy University, Rouen, France
- Centre de Recherche Insulaire et Observatoire de l'Environnement, Centre National de la Recherche Scientifique-Ecole Pratique des Hautes Etudes-Université de Perpignan Via Domitia, Moorea, French Polynesia
| | - Sandra Ramos
- School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, Australia
| | - Gillian M C Renshaw
- Hypoxia and Ischemia Research Unit, School of Health Sciences and Social Work, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
5
|
Karpęcka-Gałka E, Mazur-Kurach P, Szyguła Z, Frączek B. Diet, Supplementation and Nutritional Habits of Climbers in High Mountain Conditions. Nutrients 2023; 15:4219. [PMID: 37836503 PMCID: PMC10574574 DOI: 10.3390/nu15194219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Appropriate nutritional preparation for a high-mountain expedition can contribute to the prevention of nutritional deficiencies affecting the deterioration of health and performance. The aim of the study was to analyze the dietary habits, supplementation and nutritional value of diets of high mountain climbers. The study group consisted of 28 men (average age 33.12 ± 5.96 years), taking part in summer mountaineering expeditions at an altitude above 3000 m above sea level, lasting at least 3 weeks. Food groups consumed with low frequency during the expedition include vegetables, fruits, eggs, milk and milk products, butter and cream, fish and meat. The energy demand of the study participants was 4559.5 ± 425 kcal, and the energy supply was 2776.8 ± 878 kcal. The participants provided 79.6 ± 18.5 g of protein (1.1 ± 0.3 g protein/kg bw), 374.0 ± 164.5 g of carbohydrates (5.3 ± 2.5 g/kg bw) and 110.7 ± 31.7 g of fat (1.6 ± 0.5 g/kg bw) in the diet. The climbers' diet was low in calories, the protein supply was too low, and the fat supply was too high. There is a need to develop nutritional and supplementation recommendations that would serve as guidelines for climbers, improving their well-being and exercise capacity in severe high-mountain conditions, which would take their individual taste preferences into account.
Collapse
Affiliation(s)
- Ewa Karpęcka-Gałka
- Doctoral School of Physical Culture Sciences, University School of Physical Education in Krakow, Jana Pawla II 78, 31-571 Krakow, Poland
| | - Paulina Mazur-Kurach
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University School of Physical Education in Krakow, Jana Pawla II 78, 31-571 Krakow, Poland; (P.M.-K.); (Z.S.); (B.F.)
| | - Zbigniew Szyguła
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University School of Physical Education in Krakow, Jana Pawla II 78, 31-571 Krakow, Poland; (P.M.-K.); (Z.S.); (B.F.)
| | - Barbara Frączek
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University School of Physical Education in Krakow, Jana Pawla II 78, 31-571 Krakow, Poland; (P.M.-K.); (Z.S.); (B.F.)
| |
Collapse
|
6
|
The role of exercise and hypoxia on glucose transport and regulation. Eur J Appl Physiol 2023; 123:1147-1165. [PMID: 36690907 DOI: 10.1007/s00421-023-05135-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/06/2023] [Indexed: 01/25/2023]
Abstract
Muscle glucose transport activity increases with an acute bout of exercise, a process that is accomplished by the translocation of glucose transporters to the plasma membrane. This process remains intact in the skeletal muscle of individuals with insulin resistance and type 2 diabetes mellitus (T2DM). Exercise training is, therefore, an important cornerstone in the management of individuals with T2DM. However, the acute systemic glucose responses to carbohydrate ingestion are often augmented during the early recovery period from exercise, despite increased glucose uptake into skeletal muscle. Accordingly, the first aim of this review is to summarize the knowledge associated with insulin action and glucose uptake in skeletal muscle and apply these to explain the disparate responses between systemic and localized glucose responses post-exercise. Herein, the importance of muscle glycogen depletion and the key glucoregulatory hormones will be discussed. Glucose uptake can also be stimulated independently by hypoxia; therefore, hypoxic training presents as an emerging method for enhancing the effects of exercise on glucose regulation. Thus, the second aim of this review is to discuss the potential for systemic hypoxia to enhance the effects of exercise on glucose regulation.
Collapse
|
7
|
Kelly LP, Basset FA, McCarthy J, Ploughman M. Normobaric Hypoxia Exposure During Treadmill Aerobic Exercise After Stroke: A Safety and Feasibility Study. Front Physiol 2021; 12:702439. [PMID: 34483958 PMCID: PMC8415265 DOI: 10.3389/fphys.2021.702439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/30/2021] [Indexed: 11/23/2022] Open
Abstract
Objective To evaluate the safety and feasibility of performing treadmill aerobic exercise in moderate normobaric hypoxia among chronic hemiparetic stroke survivors. Design Observational study using convenience sampling. Setting Research laboratory in a tertiary rehabilitation hospital. Participants Chronic hemiparetic stroke survivors who could walk at least 10-m with or without assistance and had no absolute contraindications to exercise testing. Intervention Participants (three male and four female) were asked to complete three normobaric hypoxia exposure protocols within a single session. First, they were passively exposed to normobaric hypoxia through gradual reductions in the fraction of inspired oxygen (FIO2 = 20.9, 17.0, and 15.0%) while seated (5-min at each level of FIO2). Participants were then exposed to the same reductions in FIO2 during constant-load exercise performed on a treadmill at 40% of heart rate reserve. Finally, participants completed 20-min of exercise while intermittently exposed to moderate normobaric hypoxia (5 × 2-min at FIO2 = 15.0%) interspaced with 2-min normoxia intervals (FIO2 = 20.9%). Outcome Measures The primary outcome was occurrence of adverse events, which included standardized criteria for terminating exercise testing, blood oxygen saturation (SpO2) <80%, or acute mountain sickness score >2. The increased cardiovascular strain imposed by normobaric hypoxia exposure at rest and during exercise was evaluated by changes in SpO2, heart rate (HR), blood pressure, and rating of perceived exertion (RPE). Results One participant reported mild symptoms of nausea during exercise in normobaric hypoxia and discontinued participation. No other adverse events were recorded. Intermittent normobaric hypoxia exposure was associated with reduced SpO2 (MD = −7.4%, CI: −9.8 to −5.0) and increased HR (MD = 8.2, CI: 4.6 to 11.7) compared to intervals while breathing typical room air throughout the 20-min constant-load exercise period. The increase in HR was associated with a 10% increase in relative effort. However, reducing FIO2 had little effect on blood pressure and RPE measurements. Conclusion Moderate normobaric hypoxia appeared to be a safe and feasible method to increase the cardiovascular strain of submaximal exercise in chronic hemiparetic stroke survivors. Future studies evaluating the effects of pairing normobaric hypoxia exposure with existing therapies on secondary prevention and functional recovery are warranted.
Collapse
Affiliation(s)
- Liam P Kelly
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada.,School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Fabien Andre Basset
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jason McCarthy
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michelle Ploughman
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
8
|
Margolis LM, Karl JP, Wilson MA, Coleman JL, Ferrando AA, Young AJ, Pasiakos SM. Metabolomic profiles are reflective of hypoxia-induced insulin resistance during exercise in healthy young adult males. Am J Physiol Regul Integr Comp Physiol 2021; 321:R1-R11. [PMID: 33949213 PMCID: PMC8321788 DOI: 10.1152/ajpregu.00076.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hypoxia-induced insulin resistance appears to suppress exogenous glucose oxidation during metabolically matched aerobic exercise during acute (<8 h) high-altitude (HA) exposure. However, a better understanding of this metabolic dysregulation is needed to identify interventions to mitigate these effects. The objective of this study was to determine if differences in metabolomic profiles during exercise at sea level (SL) and HA are reflective of hypoxia-induced insulin resistance. Native lowlanders (n = 8 males) consumed 145 g (1.8 g/min) of glucose while performing 80-min of metabolically matched treadmill exercise at SL (757 mmHg) and HA (460 mmHg) after 5-h exposure. Exogenous glucose oxidation and glucose turnover were determined using indirect calorimetry and dual tracer technique ([13C]glucose and [6,6-2H2]glucose). Metabolite profiles were analyzed in serum as change (Δ), calculated by subtracting postprandial/exercised state SL (ΔSL) and HA (ΔHA) from fasted, rested conditions at SL. Compared with SL, exogenous glucose oxidation, glucose rate of disappearance, and glucose metabolic clearance rate (MCR) were lower (P < 0.05) during exercise at HA. One hundred and eighteen metabolites differed between ΔSL and ΔHA (P < 0.05, Q < 0.10). Differences in metabolites indicated increased glycolysis, tricarboxylic acid cycle, amino acid catabolism, oxidative stress, and fatty acid storage, and decreased fatty acid mobilization for ΔHA. Branched-chain amino acids and oxidative stress metabolites, Δ3-methyl-2-oxobutyrate (r = -0.738) and Δγ-glutamylalanine (r = -0.810), were inversely associated (P < 0.05) with Δexogenous glucose oxidation. Δ3-Hydroxyisobutyrate (r = -0.762) and Δ2-hydroxybutyrate/2-hydroxyisobutyrate (r = -0.738) were inversely associated (P < 0.05) with glucose MCR. Coupling global metabolomics and glucose kinetic data suggest that the underlying cause for diminished exogenous glucose oxidative capacity during aerobic exercise is acute hypoxia-mediated peripheral insulin resistance.
Collapse
Affiliation(s)
- Lee M Margolis
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - J Philip Karl
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Marques A Wilson
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Julie L Coleman
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts.,Oak Ridge Institute of Science and Education, Oak Ridge, Tennessee
| | - Arny A Ferrando
- Department of Geriatrics, Center for Translational Research in Aging and Longevity, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Andrew J Young
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts.,Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Stefan M Pasiakos
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
9
|
Griffiths A, Deighton K, Boos CJ, Rowe J, Morrison DJ, Preston T, King R, O'Hara JP. Carbohydrate Supplementation and the Influence of Breakfast on Fuel Use in Hypoxia. Med Sci Sports Exerc 2021; 53:785-795. [PMID: 33044437 DOI: 10.1249/mss.0000000000002536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE This study investigated the effect of carbohydrate supplementation on substrate oxidation during exercise in hypoxia after preexercise breakfast consumption and omission. METHODS Eleven men walked in normobaric hypoxia (FiO2 ~11.7%) for 90 min at 50% of hypoxic V˙O2max. Participants were supplemented with a carbohydrate beverage (1.2 g·min-1 glucose) and a placebo beverage (both enriched with U-13C6 D-glucose) after breakfast consumption and after omission. Indirect calorimetry and isotope ratio mass spectrometry were used to calculate carbohydrate (exogenous and endogenous [muscle and liver]) and fat oxidation. RESULTS In the first 60 min of exercise, there was no significant change in relative substrate oxidation in the carbohydrate compared with placebo trial after breakfast consumption or omission (both P = 0.99). In the last 30 min of exercise, increased relative carbohydrate oxidation occurred in the carbohydrate compared with placebo trial after breakfast omission (44.0 ± 8.8 vs 28.0 ± 12.3, P < 0.01) but not consumption (51.7 ± 12.3 vs 44.2 ± 10.4, P = 0.38). In the same period, a reduction in relative liver (but not muscle) glucose oxidation was observed in the carbohydrate compared with placebo trials after breakfast consumption (liver, 7.7% ± 1.6% vs 14.8% ± 2.3%, P < 0.01; muscle, 25.4% ± 9.4% vs 29.4% ± 11.1%, P = 0.99) and omission (liver, 3.8% ± 0.8% vs 8.7% ± 2.8%, P < 0.01; muscle, 19.4% ± 7.5% vs 19.2% ± 12.2%, P = 0.99). No significant difference in relative exogenous carbohydrate oxidation was observed between breakfast consumption and omission trials (P = 0.14). CONCLUSION In acute normobaric hypoxia, carbohydrate supplementation increased relative carbohydrate oxidation during exercise (>60 min) after breakfast omission, but not consumption.
Collapse
Affiliation(s)
- Alex Griffiths
- Carnegie School of Sport, Leeds Beckett University, Leeds, UNITED KINGDOM
| | - Kevin Deighton
- Carnegie School of Sport, Leeds Beckett University, Leeds, UNITED KINGDOM
| | | | - Joshua Rowe
- Carnegie School of Sport, Leeds Beckett University, Leeds, UNITED KINGDOM
| | - Douglas J Morrison
- Stable Isotope Biochemistry Laboratory, SUERC, University of Glasgow. East Kilbride, Scotland, UNITED KINGDOM
| | - Tom Preston
- Stable Isotope Biochemistry Laboratory, SUERC, University of Glasgow. East Kilbride, Scotland, UNITED KINGDOM
| | - Roderick King
- Carnegie School of Sport, Leeds Beckett University, Leeds, UNITED KINGDOM
| | - John P O'Hara
- Carnegie School of Sport, Leeds Beckett University, Leeds, UNITED KINGDOM
| |
Collapse
|
10
|
O'Hara JP, Duckworth L, Black A, Woods DR, Mellor A, Boos C, Gallagher L, Tsakirides C, Arjomandkhah NC, Morrison DJ, Preston T, King RFGJ. Fuel Use during Exercise at Altitude in Women with Glucose-Fructose Ingestion. Med Sci Sports Exerc 2020; 51:2586-2594. [PMID: 31206498 DOI: 10.1249/mss.0000000000002072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE This study compared the coingestion of glucose and fructose on exogenous and endogenous substrate oxidation during prolonged exercise at terrestrial high altitude (HA) versus sea level, in women. METHOD Five women completed two bouts of cycling at the same relative workload (55% Wmax) for 120 min on acute exposure to HA (3375 m) and at sea level (~113 m). In each trial, participants ingested 1.2 g·min of glucose (enriched with C glucose) and 0.6 g·min of fructose (enriched with C fructose) before and every 15 min during exercise. Indirect calorimetry and isotope ratio mass spectrometry were used to calculate fat oxidation, total and exogenous carbohydrate oxidation, plasma glucose oxidation, and endogenous glucose oxidation derived from liver and muscle glycogen. RESULTS The rates and absolute contribution of exogenous carbohydrate oxidation was significantly lower at HA compared with sea level (effect size [ES] > 0.99, P < 0.024), with the relative exogenous carbohydrate contribution approaching significance (32.6% ± 6.1% vs 36.0% ± 6.1%, ES = 0.56, P = 0.059) during the second hour of exercise. In comparison, no significant differences were observed between HA and sea level for the relative and absolute contributions of liver glucose (3.2% ± 1.2% vs 3.1% ± 0.8%, ES = 0.09, P = 0.635 and 5.1 ± 1.8 vs 5.4 ± 1.7 g, ES = 0.19, P = 0.217), and muscle glycogen (14.4% ± 12.2% vs 15.8% ± 9.3%, ES = 0.11, P = 0.934 and 23.1 ± 19.0 vs 28.7 ± 17.8 g, ES = 0.30, P = 0.367). Furthermore, there was no significant difference in total fat oxidation between HA and sea level (66.3 ± 21.4 vs 59.6 ± 7.7 g, ES = 0.32, P = 0.557). CONCLUSIONS In women, acute exposure to HA reduces the reliance on exogenous carbohydrate oxidation during cycling at the same relative exercise intensity.
Collapse
Affiliation(s)
- John P O'Hara
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UNITED KINGDOM
| | - Lauren Duckworth
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UNITED KINGDOM
| | - Alistair Black
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UNITED KINGDOM
| | - David R Woods
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UNITED KINGDOM.,Royal Centre for Defence Medicine, Birmingham, UNITED KINGDOM.,Northumbria NHS Trust and Newcastle Trust, UNITED KINGDOM
| | - Adrian Mellor
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UNITED KINGDOM.,Royal Centre for Defence Medicine, Birmingham, UNITED KINGDOM.,James Cook University Hospital, Middlesborough, UNITED KINGDOM
| | - Christopher Boos
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UNITED KINGDOM.,Department of Cardiology, Poole Hospital, Poole, Dorset, UNITED KINGDOM
| | - Liam Gallagher
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UNITED KINGDOM
| | - Costas Tsakirides
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UNITED KINGDOM
| | - Nicola C Arjomandkhah
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UNITED KINGDOM
| | - Douglas J Morrison
- Scottish Universities Environmental Research Centre, University of Glasgow, East Kilbridge, UNITED KINGDOM
| | - Thomas Preston
- Scottish Universities Environmental Research Centre, University of Glasgow, East Kilbridge, UNITED KINGDOM
| | - Roderick F G J King
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UNITED KINGDOM
| |
Collapse
|
11
|
Pasiakos SM. Nutritional Requirements for Sustaining Health and Performance During Exposure to Extreme Environments. Annu Rev Nutr 2020; 40:221-245. [PMID: 32530730 DOI: 10.1146/annurev-nutr-011720-122637] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dietary guidelines are formulated to meet minimum nutrient requirements, which prevent deficiencies and maintain health, growth, development, and function. These guidelines can be inadequate and contribute to disrupted homeostasis, lean body mass loss, and deteriorated performance in individuals who are working long, arduous hours with limited access to food in environmentally challenging locations. Environmental extremes can elicit physiological adjustments that alone alter nutrition requirements by upregulating energy expenditure, altering substrate metabolism, and accelerating body water and muscle protein loss. The mechanisms by which the environment, including high-altitude, heat, and cold exposure, alters nutrition requirements have been studied extensively. This contemporary review discusses physiological adjustments to environmental extremes, particularly when those adjustments alter dietary requirements.
Collapse
Affiliation(s)
- Stefan M Pasiakos
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts 01760, USA;
| |
Collapse
|
12
|
Effects of an Acute Pilates Program under Hypoxic Conditions on Vascular Endothelial Function in Pilates Participants: A Randomized Crossover Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072584. [PMID: 32283854 PMCID: PMC7178013 DOI: 10.3390/ijerph17072584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022]
Abstract
This study aimed to compare the effects of an acute Pilates program under hypoxic vs. normoxic conditions on the metabolic, cardiac, and vascular functions of the participants. Ten healthy female Pilates experts completed a 50-min tubing Pilates program under normoxic conditions (N trial) and under 3000 m (inspired oxygen fraction = 14.5%) hypobaric hypoxia conditions (H trial) after a 30-min exposure in the respective environments on different days. Blood pressure, branchial ankle pulse wave velocity, and flow-mediated dilation (FMD) in the branchial artery were measured before and after the exercise. Metabolic parameters and cardiac function were assessed every minute during the exercise. Both trials showed a significant increase in FMD; however, the increase in FMD was significantly higher after the H trial than that after the N trial. Furthermore, FMD before exercise was significantly higher in the H trial than in the N trial. In terms of metabolic parameters, minute ventilation, carbon dioxide excretion, respiratory exchange ratio, and carbohydrate oxidation were significantly higher but fat oxidation was lower during the H trial than during the N trial. In terms of cardiac function, heart rate was significantly increased during the H trial than during the N trial. Our results suggested that, compared to that under normoxic conditions, Pilates exercise under hypoxic conditions led to greater metabolic and cardiac responses and also elicited an additive effect on vascular endothelial function.
Collapse
|
13
|
Margolis LM, Young AJ, Pasiakos SM. Re: "High Carbohydrate Ingestion in High Altitude" by Pesta et al. High Alt Med Biol 2020; 21:213-214. [PMID: 32239974 DOI: 10.1089/ham.2020.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Lee M Margolis
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, USA
| | - Andrew J Young
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, USA.,Oak Ridge Institute of Science and Education, Oak Ridge, Tennessee, USA
| | - Stefan M Pasiakos
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, USA
| |
Collapse
|
14
|
Griffiths A, Deighton K, Shannon OM, Boos C, Rowe J, Matu J, King R, O'Hara JP. Appetite and energy intake responses to breakfast consumption and carbohydrate supplementation in hypoxia. Appetite 2020; 147:104564. [PMID: 31870935 DOI: 10.1016/j.appet.2019.104564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/29/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023]
Abstract
PURPOSE The purpose of experiment one was to determine the appetite, acylated ghrelin and energy intake response to breakfast consumption and omission in hypoxia and normoxia. Experiment two aimed to determine the appetite, acylated ghrelin and energy intake response to carbohydrate supplementation after both breakfast consumption and omission in hypoxia. METHODS In experiment one, twelve participants rested and exercised once after breakfast consumption and once after omission in normobaric hypoxia (4300 m: FiO2 ~11.7%) and normoxia. In experiment two, eleven participants rested and exercised in normobaric hypoxia (4300 m: FiO2 ~11.7%), twice after consuming a high carbohydrate breakfast and twice after breakfast omission. Participants consumed both a carbohydrate (1.2g·min-1 glucose) and a placebo beverage after breakfast consumption and omission. Measures of appetite perceptions and acylated ghrelin were taken at regular intervals throughout both experiments and an ad-libitum meal was provided post-exercise to quantify energy intake. RESULTS Breakfast consumption had no significant effect on post exercise energy intake or acylated ghrelin concentrations, despite reductions in appetite perceptions. As such, breakfast consumption increased total trial energy intake compared with breakfast omission in hypoxia (7136 ± 2047 kJ vs. 5412 ± 1652 kJ; p = 0.02) and normoxia (9276 ± 3058 vs. 6654 ± 2091 kJ; p < 0.01). Carbohydrate supplementation had no effect on appetite perceptions or acylated ghrelin concentrations after breakfast consumption or omission. As such, carbohydrate supplementation increased total energy intake after breakfast consumption (10222 ± 2831 kJ vs. 7695 ± 1970 kJ p < 0.01) and omission (8058 ± 2574 kJ vs. 6174 ± 2222 kJ p = 0.02). CONCLUSION Both breakfast consumption and carbohydrate supplementation provide beneficial dietary interventions for increasing energy intake in hypoxic conditions.
Collapse
Affiliation(s)
- Alex Griffiths
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.
| | - Kevin Deighton
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.
| | - Oliver M Shannon
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK; Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Leech Building, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
| | - Chris Boos
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK; Department of Cardiology, Poole Hospital NHS Trust, Poole, BH15 2JB, UK.
| | - Joshua Rowe
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.
| | - Jamie Matu
- School of Clinical and Applied Science, Leeds Beckett University, Leeds, LS1 3HE, UK.
| | - Roderick King
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.
| | - John P O'Hara
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.
| |
Collapse
|
15
|
Margolis LM, Wilson MA, Whitney CC, Carrigan CT, Murphy NE, Radcliffe PN, Gwin JA, Church DD, Wolfe RR, Ferrando AA, Young AJ, Pasiakos SM. Acute hypoxia reduces exogenous glucose oxidation, glucose turnover, and metabolic clearance rate during steady-state aerobic exercise. Metabolism 2020; 103:154030. [PMID: 31778707 DOI: 10.1016/j.metabol.2019.154030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/30/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Exogenous carbohydrate oxidation is lower during steady-state aerobic exercise in native lowlanders sojourning at high altitude (HA) compared to sea level (SL). However, the underlying mechanism contributing to reduction in exogenous carbohydrate oxidation during steady-state aerobic exercise performed at HA has not been explored. OBJECTIVE To determine if alterations in glucose rate of appearance (Ra), disappearance (Rd) and metabolic clearance rate (MCR) at HA provide a mechanism for explaining the observation of lower exogenous carbohydrate oxidation compared to during metabolically-matched, steady-state exercise at SL. METHODS Using a randomized, crossover design, native lowlanders (n = 8 males, mean ± SD, age: 23 ± 2 yr, body mass: 87 ± 10 kg, and VO2peak: SL 4.3 ± 0.2 L/min and HA 2.9 ± 0.2 L/min) consumed 145 g (1.8 g/min) of glucose while performing 80-min of metabolically-matched (SL: 1.66 ± 0.14 V̇O2 L/min 329 ± 28 kcal, HA: 1.59 ± 0.10 V̇O2 L/min, 320 ± 19 kcal) treadmill exercise in SL (757 mmHg) and HA (460 mmHg) conditions after a 5-h exposure. Substrate oxidation rates (g/min) and glucose turnover (mg/kg/min) during exercise were determined using indirect calorimetry and dual tracer technique (13C-glucose oral ingestion and [6,6-2H2]-glucose primed, continuous infusion). RESULTS Total carbohydrate oxidation was higher (P < 0.05) at HA (2.15 ± 0.32) compared to SL (1.39 ± 0.14). Exogenous glucose oxidation rate was lower (P < 0.05) at HA (0.35 ± 0.07) than SL (0.44 ± 0.05). Muscle glycogen oxidation was higher at HA (1.67 ± 0.26) compared to SL (0.83 ± 0.13). Total glucose Ra was lower (P < 0.05) at HA (12.3 ± 1.5) compared to SL (13.8 ± 2.0). Exogenous glucose Ra was lower (P < 0.05) at HA (8.9 ± 1.3) compared to SL (10.9 ± 2.2). Glucose Rd was lower (P < 0.05) at HA (12.7 ± 1.7) compared to SL (14.3 ± 2.0). MCR was lower (P < 0.05) at HA (9.0 ± 1.8) compared to SL (12.1 ± 2.3). Circulating glucose and insulin concentrations were higher in response carbohydrate intake during exercise at HA compared to SL. CONCLUSION Novel results from this investigation suggest that reductions in exogenous carbohydrate oxidation at HA may be multifactorial; however, the apparent insensitivity of peripheral tissue to glucose uptake may be a primary determinate.
Collapse
Affiliation(s)
- Lee M Margolis
- U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States of America.
| | - Marques A Wilson
- U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| | - Claire C Whitney
- U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| | - Christopher T Carrigan
- U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| | - Nancy E Murphy
- U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| | - Patrick N Radcliffe
- U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States of America; Oak Ridge Institute of Science and Education, Oak Ridge, TN, United States of America
| | - Jess A Gwin
- U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States of America; Oak Ridge Institute of Science and Education, Oak Ridge, TN, United States of America
| | - David D Church
- Department of Geriatrics, Center for Translational Research in Aging and Longevity, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Robert R Wolfe
- Department of Geriatrics, Center for Translational Research in Aging and Longevity, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Arny A Ferrando
- Department of Geriatrics, Center for Translational Research in Aging and Longevity, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Andrew J Young
- U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States of America; Oak Ridge Institute of Science and Education, Oak Ridge, TN, United States of America
| | - Stefan M Pasiakos
- U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| |
Collapse
|
16
|
Effects of carbohydrate supplementation on aerobic exercise performance during acute high altitude exposure and after 22 days of acclimatization and energy deficit. J Int Soc Sports Nutr 2020; 17:4. [PMID: 31918720 PMCID: PMC6953153 DOI: 10.1186/s12970-020-0335-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/03/2020] [Indexed: 11/18/2022] Open
Abstract
Background The ergogenic effects of supplemental carbohydrate on aerobic exercise performance at high altitude (HA) may be modulated by acclimatization status. Longitudinal evaluation of potential performance benefits of carbohydrate supplementation in the same volunteers before and after acclimatization to HA have not been reported. Purpose This study examined how consuming carbohydrate affected 2-mile time trial performance in lowlanders at HA (4300 m) before and after acclimatization. Methods Fourteen unacclimatized men performed 80 min of metabolically-matched (~ 1.7 L/min) treadmill walking at sea level (SL), after ~ 5 h of acute HA exposure, and after 22 days of HA acclimatization and concomitant 40% energy deficit (chronic HA). Before, and every 20 min during walking, participants consumed either carbohydrate (CHO, n = 8; 65.25 g fructose + 79.75 g glucose, 1.8 g carbohydrate/min) or flavor-matched placebo (PLA, n = 6) beverages. A self-paced 2-mile treadmill time trial was performed immediately after completing the 80-min walk. Results There were no differences (P > 0.05) in time trial duration between CHO and PLA at SL, acute HA, or chronic HA. Time trial duration was longer (P < 0.05) at acute HA (mean ± SD; 27.3 ± 6.3 min) compared to chronic HA (23.6 ± 4.5 min) and SL (17.6 ± 3.6 min); however, time trial duration at chronic HA was still longer than SL (P < 0.05). Conclusion These data suggest that carbohydrate supplementation does not enhance aerobic exercise performance in lowlanders acutely exposed or acclimatized to HA. Trial registration NCT, NCT02731066, Registered March 292,016
Collapse
|
17
|
Griffiths A, Shannon O, Matu J, King R, Deighton K, O'Hara JP. Response: Commentary on the effects of hypoxia on energy substrate use during exercise. J Int Soc Sports Nutr 2019; 16:61. [PMID: 31856846 PMCID: PMC6924012 DOI: 10.1186/s12970-019-0330-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A recent commentary has been published on our meta-analysis, which investigated substrate oxidation during exercise matched for relative intensities in hypoxia compared with normoxia. Within this commentary, the authors proposed that exercise matched for absolute intensities in hypoxia compared with normoxia, should have been included within the analysis, as this model provides a more suitable experimental design when considering nutritional interventions in hypoxia. MAIN BODY Within this response, we provide a rationale for the use of exercise matched for relative intensities in hypoxia compared with normoxia. Specifically, we argue that this model provides a physiological stimulus replicable of real world situations, by reducing the absolute workload undertaken in hypoxia. Further, the use of exercise matched for relative intensities isolates the metabolic response to hypoxia, rather than the increased relative exercise intensity experienced in hypoxia when utilising exercise matched for absolute intensities. In addition, we also report previously unpublished data analysed at the time of the original meta-analysis, assessing substrate oxidation during exercise matched for absolute intensities in hypoxia compared with normoxia. CONCLUSION An increased reliance on carbohydrate oxidation was observed during exercise matched for absolute intensities in hypoxia compared with normoxia. These data now provide a comparable dataset for the use of researchers and practitioners alike in the design of nutritional interventions for relevant populations.
Collapse
Affiliation(s)
- Alex Griffiths
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.
| | - Oliver Shannon
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.,Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Leech Building, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Jamie Matu
- School of Clinical and Applied Science, Leeds Beckett University, Leeds, LS1 3HE, UK
| | - Roderick King
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| | - Kevin Deighton
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| | - John P O'Hara
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| |
Collapse
|
18
|
Young AJ, Margolis LM, Pasiakos SM. Commentary on the effects of hypoxia on energy substrate use during exercise. J Int Soc Sports Nutr 2019; 16:28. [PMID: 31299980 PMCID: PMC6624974 DOI: 10.1186/s12970-019-0295-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/03/2019] [Indexed: 11/23/2022] Open
Abstract
A recently published meta-analysis in this journal analyzed findings from studies comparing substrate use during exercise at the same relative intensity (i.e., % V̇O2max) in normoxic and hypoxic conditions. The primary conclusion was that hypoxia had no consistent effects on the contribution of carbohydrate oxidation to total energy expenditure. However, findings from studies comparing exercise at the same absolute intensity in normoxic as hypoxic conditions were not considered in the meta-analysis. Assessment of substrate oxidation using matched absolute intensity leads to different conclusions regarding hypoxic effects on fuel use during exercise, and that experimental model, (i.e., comparing responses to exercise at matched absolute intensity) has more practical application for developing nutritional recommendations for high-altitude sojourners. This commentary will discuss those differences.
Collapse
Affiliation(s)
- Andrew J Young
- U.S. Army Research Institute of Environmental Medicine, 10 General Greene Ave, Bldg 42, Natick, MA, 01760, USA. .,Oak Ridge Institute for Science and Education, Belcamp, MD, 21017, USA.
| | - Lee M Margolis
- U.S. Army Research Institute of Environmental Medicine, 10 General Greene Ave, Bldg 42, Natick, MA, 01760, USA
| | - Stefan M Pasiakos
- U.S. Army Research Institute of Environmental Medicine, 10 General Greene Ave, Bldg 42, Natick, MA, 01760, USA
| |
Collapse
|
19
|
Griffiths A, Deighton K, Shannon OM, Matu J, King R, O'Hara JP. Substrate oxidation and the influence of breakfast in normobaric hypoxia and normoxia. Eur J Appl Physiol 2019; 119:1909-1920. [PMID: 31270614 PMCID: PMC6694084 DOI: 10.1007/s00421-019-04179-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/17/2019] [Indexed: 11/02/2022]
Abstract
PURPOSE Previous research has reported inconsistent effects of hypoxia on substrate oxidation, which may be due to differences in methodological design, such as pre-exercise nutritional status and exercise intensity. This study investigated the effect of breakfast consumption on substrate oxidation at varying exercise intensities in normobaric hypoxia compared with normoxia. METHODS Twelve participants rested and exercised once after breakfast consumption and once after omission in normobaric hypoxia (4300 m: FiO2 ~ 11.7%) and normoxia. Exercise consisted of walking for 20 min at 40%, 50% and 60% of altitude-specific [Formula: see text]O2max at 10-15% gradient with a 10 kg backpack. Indirect calorimetry was used to calculate carbohydrate and fat oxidation. RESULTS The relative contribution of carbohydrate oxidation to energy expenditure was significantly reduced in hypoxia compared with normoxia during exercise after breakfast omission at 40% (22.4 ± 17.5% vs. 38.5 ± 15.5%, p = 0.03) and 60% [Formula: see text]O2max (35.4 ± 12.4 vs. 50.1 ± 17.6%, p = 0.03), with a trend observed at 50% [Formula: see text]O2max (23.6 ± 17.9% vs. 38.1 ± 17.0%, p = 0.07). The relative contribution of carbohydrate oxidation to energy expenditure was not significantly different in hypoxia compared with normoxia during exercise after breakfast consumption at 40% (42.4 ± 15.7% vs. 48.5 ± 13.3%, p = 0.99), 50% (43.1 ± 11.7% vs. 47.1 ± 14.0%, p = 0.99) and 60% [Formula: see text]O2max (54.6 ± 17.8% vs. 55.1 ± 15.0%, p = 0.99). CONCLUSIONS Relative carbohydrate oxidation was significantly reduced in hypoxia compared with normoxia during exercise after breakfast omission but not during exercise after breakfast consumption. This response remained consistent with increasing exercise intensities. These findings may explain some of the disparity in the literature.
Collapse
Affiliation(s)
- Alex Griffiths
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.
| | - Kevin Deighton
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| | - Oliver M Shannon
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.,Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Leech Building, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Jamie Matu
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| | - Roderick King
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| | - John P O'Hara
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| |
Collapse
|
20
|
Griffiths A, Shannon OM, Matu J, King R, Deighton K, O'Hara JP. The effects of environmental hypoxia on substrate utilisation during exercise: a meta-analysis. J Int Soc Sports Nutr 2019; 16:10. [PMID: 30813949 PMCID: PMC6391781 DOI: 10.1186/s12970-019-0277-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/13/2019] [Indexed: 02/08/2023] Open
Abstract
Background A better understanding of hypoxia-induced changes in substrate utilisation can facilitate the development of nutritional strategies for mountaineers, military personnel and athletes during exposure to altitude. However, reported metabolic responses are currently divergent. As such, this systematic review and meta-analysis aims to determine the changes in substrate utilisation during exercise in hypoxia compared with normoxia and identify study characteristics responsible for the heterogeneity in findings. Methods A total of six databases (PubMed, the Cochrane Library, MEDLINE, SPORTDiscus, PsychINFO, and CINAHL via EBSCOhost) were searched for published original studies, conference proceedings, abstracts, dissertations and theses. Studies were included if they evaluated respiratory exchange ratio (RER) and/or carbohydrate or fat oxidation during steady state exercise matched for relative intensities in normoxia and hypoxia (normobaric or hypobaric). A random-effects meta-analysis was performed on outcome variables. Meta-regression analysis was performed to investigate potential sources of heterogeneity. Results In total, 18 studies were included in the meta-analysis. There was no significant change in RER during exercise matched for relative exercise intensities in hypoxia, compared with normoxia (mean difference: 0.01, 95% CI: -0.02 to 0.05; n = 31, p = 0.45). Meta-regression analysis suggests that consumption of a pre-exercise meal (p < 0.01) and a higher exercise intensity (p = 0.04) when exposed to hypoxia may increase carbohydrate oxidation compared with normoxia. Conclusions Exposure to hypoxia did not induce a consistent change in the relative contribution of carbohydrate or fat to the total energy yield during exercise matched for relative intensities, compared with normoxia. The direction of these responses appears to be mediated by the consumption of a pre-exercise meal and exercise intensity. Electronic supplementary material The online version of this article (10.1186/s12970-019-0277-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alex Griffiths
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.
| | - Oliver M Shannon
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.,Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Leech Building, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Jamie Matu
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, 2nd floor Chapel Allerton Hospital, Chapeltown Road, Leeds, LS7 4SA, UK
| | - Roderick King
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| | - Kevin Deighton
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| | - John P O'Hara
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| |
Collapse
|
21
|
Young AJ, Berryman CE, Kenefick RW, Derosier AN, Margolis LM, Wilson MA, Carrigan CT, Murphy NE, Carbone JW, Rood JC, Pasiakos SM. Altitude Acclimatization Alleviates the Hypoxia-Induced Suppression of Exogenous Glucose Oxidation During Steady-State Aerobic Exercise. Front Physiol 2018; 9:830. [PMID: 30038576 PMCID: PMC6046468 DOI: 10.3389/fphys.2018.00830] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
This study investigated how high-altitude (HA, 4300 m) acclimatization affected exogenous glucose oxidation during aerobic exercise. Sea-level (SL) residents (n = 14 men) performed 80-min, metabolically matched exercise (V˙O2 ∼ 1.7 L/min) at SL and at HA < 5 h after arrival (acute HA, AHA) and following 22-d of HA acclimatization (chronic HA, CHA). During HA acclimatization, participants sustained a controlled negative energy balance (-40%) to simulate the “real world” conditions that lowlanders typically experience during HA sojourns. During exercise, participants consumed carbohydrate (CHO, n = 8, 65.25 g fructose + 79.75 g glucose, 1.8 g carbohydrate/min) or placebo (PLA, n = 6). Total carbohydrate oxidation was determined by indirect calorimetry and exogenous glucose oxidation by tracer technique with 13C. Participants lost (P ≤ 0.05, mean ± SD) 7.9 ± 1.9 kg body mass during the HA acclimatization and energy deficit period. In CHO, total exogenous glucose oxidized during the final 40 min of exercise was lower (P < 0.01) at AHA (7.4 ± 3.7 g) than SL (15.3 ± 2.2 g) and CHA (12.4 ± 2.3 g), but there were no differences between SL and CHA. Blood glucose and insulin increased (P ≤ 0.05) during the first 20 min of exercise in CHO, but not PLA. In CHO, glucose declined to pre-exercise concentrations as exercise continued at SL, but remained elevated (P ≤ 0.05) throughout exercise at AHA and CHA. Insulin increased during exercise in CHO, but the increase was greater (P ≤ 0.05) at AHA than at SL and CHA, which did not differ. Thus, while acute hypoxia suppressed exogenous glucose oxidation during steady-state aerobic exercise, that hypoxic suppression is alleviated following altitude acclimatization and concomitant negative energy balance.
Collapse
Affiliation(s)
- Andrew J Young
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States.,Oak Ridge Institute of Science and Education, Oak Ridge, TN, United States
| | - Claire E Berryman
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States.,Oak Ridge Institute of Science and Education, Oak Ridge, TN, United States
| | - Robert W Kenefick
- Thermal Mountain and Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Allyson N Derosier
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States.,Oak Ridge Institute of Science and Education, Oak Ridge, TN, United States
| | - Lee M Margolis
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States.,Oak Ridge Institute of Science and Education, Oak Ridge, TN, United States
| | - Marques A Wilson
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Christopher T Carrigan
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Nancy E Murphy
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - John W Carbone
- Oak Ridge Institute of Science and Education, Oak Ridge, TN, United States.,School of Health Sciences, Eastern Michigan University, Ypsilanti, MI, United States
| | - Jennifer C Rood
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Stefan M Pasiakos
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| |
Collapse
|
22
|
Camacho-Cardenosa A, Camacho-Cardenosa M, Burtscher M, Martínez-Guardado I, Timon R, Brazo-Sayavera J, Olcina G. High-Intensity Interval Training in Normobaric Hypoxia Leads to Greater Body Fat Loss in Overweight/Obese Women than High-Intensity Interval Training in Normoxia. Front Physiol 2018; 9:60. [PMID: 29472870 PMCID: PMC5810257 DOI: 10.3389/fphys.2018.00060] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/18/2018] [Indexed: 12/14/2022] Open
Abstract
A moderate hypoxic stimulus is considered a promising therapeutic modality for several pathological states including obesity. There is scientific evidence suggesting that when hypoxia and physical activity are combined, they could provide benefits for the obese population. The aim of the present study was to investigate if exposure to hypoxia combined with two different protocols of high-intensity interval exercise in overweight/obese women was more effective compared with exercise in normoxia. Study participants included 82 overweight/obese women, who started a 12 week program of 36 sessions, and were randomly divided into four groups: (1) aerobic interval training in hypoxia (AitH; FiO2 = 17.2%; n = 13), (2) aerobic interval training in normoxia (AitN; n = 15), (3) sprint interval training in hypoxia (SitH; n = 15), and (4) sprint interval training in normoxia (SitN; n = 18). Body mass, body mass index, percentage of total fat mass, muscle mass, basal metabolic rate, fat, and carbohydrate oxidation, and fat and carbohydrate energy were assessed. Outcomes were measured at baseline (T1), after 18 training sessions (T2), 7 days after the last session (T3), and 4 weeks after the last session (T4). The fat mass in the SitH group was significantly reduced compared with the SitN group from T1 to T3 (p < 0.05) and from T1 to T4 (p < 0.05) and muscle mass increased significantly from T1 to T4 (p < 0.05). Fat mass in the AitH group decreased significantly (p < 0.01) and muscle mass increased (p = 0.022) compared with the AitN group from T1 to T4. All training groups showed a reduction in the percentage of fat mass, with a statistically significant reduction in the hypoxia groups (p < 0.05). Muscle mass increased significantly in the hypoxia groups (p < 0.05), especially at T4. While fat oxidation tended to increase and oxidation of carbohydrates tended to decrease in both hypoxia groups, the tendency was reversed in the normoxia groups. Thus, high-intensity interval training under normobaric intermittent hypoxia for 12 weeks in overweight/obese women seems to be promising for reducing body fat content with a concomitant increase in muscle mass.
Collapse
Affiliation(s)
| | | | - Martin Burtscher
- Medical Section, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | | | - Rafael Timon
- Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain
| | - Javier Brazo-Sayavera
- Instituto Superior de Educación Física, Universidad de la República, Montevideo, Uruguay
| | - Guillermo Olcina
- Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain
| |
Collapse
|
23
|
O'Hara JP, Woods DR, Mellor A, Boos C, Gallagher L, Tsakirides C, Arjomandkhah NC, Holdsworth DA, Cooke CB, Morrison DJ, Preston T, King RF. A comparison of substrate oxidation during prolonged exercise in men at terrestrial altitude and normobaric normoxia following the coingestion of 13C glucose and 13C fructose. Physiol Rep 2017; 5:5/1/e13101. [PMID: 28082428 PMCID: PMC5256160 DOI: 10.14814/phy2.13101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 11/30/2016] [Accepted: 11/29/2016] [Indexed: 01/14/2023] Open
Abstract
This study compared the effects of coingesting glucose and fructose on exogenous and endogenous substrate oxidation during prolonged exercise at altitude and sea level, in men. Seven male British military personnel completed two bouts of cycling at the same relative workload (55% Wmax) for 120 min on acute exposure to altitude (3375 m) and at sea level (~113 m). In each trial, participants ingested 1.2 g·min−1 of glucose (enriched with 13C glucose) and 0.6 g·min−1 of fructose (enriched with 13C fructose) directly before and every 15 min during exercise. Indirect calorimetry and isotope ratio mass spectrometry were used to calculate fat oxidation, total and exogenous carbohydrate oxidation, plasma glucose oxidation, and endogenous glucose oxidation derived from liver and muscle glycogen. Total carbohydrate oxidation during the exercise period was lower at altitude (157.7 ± 56.3 g) than sea level (286.5 ± 56.2 g, P = 0.006, ES = 2.28), whereas fat oxidation was higher at altitude (75.5 ± 26.8 g) than sea level (42.5 ± 21.3 g, P = 0.024, ES = 1.23). Peak exogenous carbohydrate oxidation was lower at altitude (1.13 ± 0.2 g·min−1) than sea level (1.42 ± 0.16 g·min−1, P = 0.034, ES = 1.33). There were no differences in rates, or absolute and relative contributions of plasma or liver glucose oxidation between conditions during the second hour of exercise. However, absolute and relative contributions of muscle glycogen during the second hour were lower at altitude (29.3 ± 28.9 g, 16.6 ± 15.2%) than sea level (78.7 ± 5.2 g (P = 0.008, ES = 1.71), 37.7 ± 13.0% (P = 0.016, ES = 1.45). Acute exposure to altitude reduces the reliance on muscle glycogen and increases fat oxidation during prolonged cycling in men compared with sea level.
Collapse
Affiliation(s)
- John P O'Hara
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom
| | - David R Woods
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom.,Royal Centre for Defence Medicine, Birmingham, United Kingdom.,Northumbria NHS Trust and Newcastle Trust, Newcastle, United Kingdom
| | - Adrian Mellor
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom.,Royal Centre for Defence Medicine, Birmingham, United Kingdom.,James Cook University Hospital, Middlesborough, United Kingdom
| | - Christopher Boos
- Department of Cardiology, Poole Hospital, Poole, Dorset, United Kingdom
| | - Liam Gallagher
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom
| | - Costas Tsakirides
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom
| | - Nicola C Arjomandkhah
- School of Social and Health Sciences, Leeds Trinity University, Leeds, United Kingdom
| | | | - Carlton B Cooke
- School of Social and Health Sciences, Leeds Trinity University, Leeds, United Kingdom
| | - Douglas J Morrison
- Scottish Universities Environmental Research Centre, Glasgow, United Kingdom
| | - Thomas Preston
- Scottish Universities Environmental Research Centre, Glasgow, United Kingdom
| | - Roderick Fgj King
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom
| |
Collapse
|
24
|
Kelly LP, Basset FA. Acute Normobaric Hypoxia Increases Post-exercise Lipid Oxidation in Healthy Males. Front Physiol 2017; 8:293. [PMID: 28567018 PMCID: PMC5434119 DOI: 10.3389/fphys.2017.00293] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 04/24/2017] [Indexed: 11/18/2022] Open
Abstract
The primary objective of the current study was to determine the effect of moderate normobaric hypoxia exposure during constant load cycling on post-exercise energy metabolism recorded in normoxia. Indirect calorimetry was used to examine whole body substrate oxidation before, during, 40–60 min post, and 22 h after performing 60 min of cycling exercise at two different fractions of inspired oxygen (FIO2): (i) FIO2 = 0.2091 (normoxia) and (ii) FIO2 = 0.15 (hypoxia). Seven active healthy male participants (26 ± 4 years of age) completed both experimental trials in randomized order with a 7-day washout period to avoid carryover effects between conditions. Resting energy expenditure was initially elevated following cycling exercise in normoxia and hypoxia (Δ 0.14 ± 0.05, kcal min−1, p = 0.037; Δ 0.19 ± 0.03 kcal min−1, p < 0.001, respectively), but returned to baseline levels the next morning in both conditions. Although, the same absolute workload was used in both environmental conditions (157 ± 10 W), a shift in resting substrate oxidation occurred after exercise performed in hypoxia while post-exercise measurements were similar to baseline after cycling exercise in normoxia. The additional metabolic stress of hypoxia exposure was sufficient to increase the rate of lipid oxidation (Δ 42 ± 11 mg min−1, p = 0.019) and tended to suppress carbohydrate oxidation (Δ −55 ± 26 mg min−1, p = 0.076) 40–60 min post-exercise. This shift in substrate oxidation persisted the next morning, where lipid oxidation remained elevated (Δ 9 ± 3 mg min−1, p = 0.0357) and carbohydrate oxidation was suppressed (Δ −22 ± 6 mg min−1, p = 0.019). In conclusion, prior exercise performed under moderate normobaric hypoxia alters post-exercise energy metabolism. This is an important consideration when evaluating the metabolic consequences of hypoxia exposure during prolonged exercise, and future studies should evaluate its role in the beneficial effects of intermittent hypoxia training observed in persons with obesity and insulin resistance.
Collapse
Affiliation(s)
- Liam P Kelly
- Faculty of Medicine, Memorial University of NewfoundlandSt. John's, NL, Canada.,School of Human Kinetics and Recreation, Memorial University of NewfoundlandSt. John's, NL, Canada
| | - Fabien A Basset
- School of Human Kinetics and Recreation, Memorial University of NewfoundlandSt. John's, NL, Canada
| |
Collapse
|
25
|
Malgoyre A, Chabert C, Tonini J, Koulmann N, Bigard X, Sanchez H. Alterations to mitochondrial fatty-acid use in skeletal muscle after chronic exposure to hypoxia depend on metabolic phenotype. J Appl Physiol (1985) 2017; 122:666-674. [DOI: 10.1152/japplphysiol.00090.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 01/01/2023] Open
Abstract
We investigated the effects of chronic hypoxia on the maximal use of and sensitivity of mitochondria to different substrates in rat slow-oxidative (soleus, SOL) and fast-glycolytic (extensor digitorum longus, EDL) muscles. We studied mitochondrial respiration in situ in permeabilized myofibers, using pyruvate, octanoate, palmitoyl-carnitine (PC), or palmitoyl-coenzyme A (PCoA). The hypophagia induced by hypoxia may also alter metabolism. Therefore, we used a group of pair-fed rats (reproducing the same caloric restriction, as observed in hypoxic animals), in addition to the normoxic control fed ad libitum. The resting respiratory exchange ratio decreased after 21 days of exposure to hypobaric hypoxia (simulated elevation of 5,500 m). The respiration supported by pyruvate and octanoate were unaffected. In contrast, the maximal oxidative respiratory rate for PCoA, the transport of which depends on carnitine palmitoyltransferase 1 (CPT-1), decreased in the rapid-glycolytic EDL and increased in the slow-oxidative SOL, although hypoxia improved affinity for this substrate in both muscle types. PC and PCoA were oxidized similarly in normoxic EDL, whereas chronic hypoxia limited transport at the CPT-1 step in this muscle. The effects of hypoxia were mediated by caloric restriction in the SOL and by hypoxia itself in the EDL. We conclude that improvements in mitochondrial affinity for PCoA, a physiological long-chain fatty acid, would facilitate fatty-acid use at rest after chronic hypoxia independently of quantitative alterations of mitochondria. Conversely, decreasing the maximal oxidation of PCoA in fast-glycolytic muscles would limit fatty-acid use during exercise. NEW & NOTEWORTHY Affinity for low concentrations of long-chain fatty acids (LCFA) in mitochondria skeletal muscles increases after chronic hypoxia. Combined with a lower respiratory exchange ratio, this suggests facility for fatty acid utilization at rest. This fuel preference is related to caloric restriction in oxidative muscle and to hypoxia in glycolytic one. In contrast, maximal oxidation for LCFA is decreased by chronic hypoxia in glycolytic muscle and can explain glucose dependence at exercise.
Collapse
Affiliation(s)
- Alexandra Malgoyre
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Clovis Chabert
- Laboratoire de Bioénergétique Fondamentale et Appliquée, Université Joseph Fourier and Institut National de la Santé et de la Recherche Médicale U1055, Grenoble France
| | - Julia Tonini
- Centre de Recherche du Service de Santé des Armées, La Tronche, La Tronche, France; and
| | - Nathalie Koulmann
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
- Ecole du Val de Grâce, Paris, France
| | - Xavier Bigard
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
- Ecole du Val de Grâce, Paris, France
| | - Hervé Sanchez
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| |
Collapse
|
26
|
Matu J, Deighton K, Ispoglou T, Duckworth L. The effect of moderate versus severe simulated altitude on appetite, gut hormones, energy intake and substrate oxidation in men. Appetite 2017; 113:284-292. [PMID: 28257941 DOI: 10.1016/j.appet.2017.02.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 11/17/2022]
Abstract
Acute exposure to high altitude (>3500 m) is associated with marked changes in appetite regulation and substrate oxidation but the effects of lower altitudes are unclear. This study examined appetite, gut hormone, energy intake and substrate oxidation responses to breakfast ingestion and exercise at simulated moderate and severe altitudes compared with sea-level. Twelve healthy males (mean ± SD; age 30 ± 9years, body mass index 24.4 ± 2.7 kg·m-2) completed in a randomised crossover order three, 305 min experimental trials at a simulated altitude of 0 m, 2150 m (∼15.8% O2) and 4300 m (∼11.7% O2) in a normobaric chamber. Participants entered the chamber at 8am following a 12 h fast. A standardised breakfast was consumed inside the chamber at 1 h. One hour after breakfast, participants performed a 60 min treadmill walk at 50% of relative V˙O2max. An ad-libitum buffet meal was consumed 1.5 h after exercise. Blood samples were collected prior to altitude exposure and at 60, 135, 195, 240 and 285 min. No trial based differences were observed in any appetite related measure before exercise. Post-exercise area under the curve values for acylated ghrelin, pancreatic polypeptide and composite appetite score were lower (all P < 0.05) at 4300 m compared with sea-level and 2150 m. There were no differences in glucagon-like peptide-1 between conditions (P = 0.895). Mean energy intake was lower at 4300 m (3728 ± 3179 kJ) compared with sea-level (7358 ± 1789 kJ; P = 0.007) and 2150 m (7390 ± 1226 kJ; P = 0.004). Proportional reliance on carbohydrate as a fuel was higher (P = 0.01) before breakfast but lower during (P = 0.02) and after exercise (P = 0.01) at 4300 m compared with sea-level. This study suggests that altitude-induced anorexia and a subsequent reduction in energy intake occurs after exercise during exposure to severe but not moderate simulated altitude. Acylated ghrelin concentrations may contribute to this effect.
Collapse
Affiliation(s)
- Jamie Matu
- Institute for Sport Physical Activity & Leisure, Leeds Beckett University, Leeds, United Kingdom.
| | - Kevin Deighton
- Institute for Sport Physical Activity & Leisure, Leeds Beckett University, Leeds, United Kingdom
| | - Theocharis Ispoglou
- Institute for Sport Physical Activity & Leisure, Leeds Beckett University, Leeds, United Kingdom
| | - Lauren Duckworth
- Institute for Sport Physical Activity & Leisure, Leeds Beckett University, Leeds, United Kingdom
| |
Collapse
|
27
|
Julià-Sánchez S, Álvarez-Herms J, Gatterer H, Burtscher M, Pagès T, Viscor G. Salivary pH increases after jump exercises in hypoxia. Sci Sports 2014. [DOI: 10.1016/j.scispo.2013.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Morishima T, Mori A, Sasaki H, Goto K. Impact of exercise and moderate hypoxia on glycemic regulation and substrate oxidation pattern. PLoS One 2014; 9:e108629. [PMID: 25329405 PMCID: PMC4199615 DOI: 10.1371/journal.pone.0108629] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/15/2014] [Indexed: 01/06/2023] Open
Abstract
Objective We examined metabolic and endocrine responses during rest and exercise in moderate hypoxia over a 7.5 h time courses during daytime. Methods Eight sedentary, overweight men (28.6±0.8 kg/m2) completed four experimental trials: a rest trial in normoxia (FiO2 = 20.9%, NOR-Rest), an exercise trial in normoxia (NOR-Ex), a rest trial in hypoxia (FiO2 = 15.0%, HYP-Rest), and an exercise trial in hypoxia (HYP-Ex). Experimental trials were performed from 8:00 to 15:30 in an environmental chamber. Blood and respiratory gas samples were collected over 7.5 h. In the exercise trials, subjects performed 30 min of pedaling exercise at 60% of VO2max at 8:00, 10:30, and 13:00, and rested during the remaining period in each environment. Standard meals were provided at 8:30, 11:00, and 13:30. Results The areas under the curves for blood glucose and serum insulin concentrations over 7.5 h did not differ among the four trials. At baseline, %carbohydrate contribution was significantly higher in the hypoxic trials than in the normoxic trials (P<0.05). Although exercise promoted carbohydrate oxidation in the NOR-Ex and HYP-Ex trials, %carbohydrate contribution during each exercise and post-exercise period were significantly higher in the HYP-Ex trial than in the NOR-Ex trial (P<0.05). Conclusion Three sessions of 30 min exercise (60% of VO2max) in moderate hypoxia over 7.5 h did not attenuate postprandial glucose and insulin responses in young, overweight men. However, carbohydrate oxidation was significantly enhanced when the exercise was conducted in moderate hypoxia.
Collapse
Affiliation(s)
- Takuma Morishima
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Ayaka Mori
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Hiroto Sasaki
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Kazushige Goto
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
- * E-mail:
| |
Collapse
|
29
|
Successive exposure to moderate hypoxia does not affect glucose metabolism and substrate oxidation in young healthy men. SPRINGERPLUS 2014; 3:370. [PMID: 25089253 PMCID: PMC4117865 DOI: 10.1186/2193-1801-3-370] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/03/2014] [Indexed: 12/03/2022]
Abstract
Introduction Exposure to hypoxia has been suggested to acutely alter glucose regulation. However, the effects of successive exposure to moderate hypoxia on postprandial glucose regulation and substrate oxidation pattern after multiple meals have not been elucidated. Purpose We examined the effects of successive exposure to moderate hypoxia on metabolic responses and substrate oxidation pattern. Methods Eight healthy men (21.0 ± 0.6 yrs, 173 ± 2.3 cm, 70.6 ± 5.0 kg, 23.4 ± 1.1 kg/m2) completed two experimental trials on separate days: a rest trial under normoxic conditions (FiO2 = 20.9%) and a rest trial under hypoxic conditions (FiO2 = 15.0%). Experimental trials were performed over 7 h in an environmental chamber. Blood and respiratory gas samples were collected over 7 h. Standard meals were provided 1 h (745 kcal) and 4 h (731 kcal) after entering the chamber. Results Although each meal significantly increased blood glucose and serum insulin concentrations (P < 0.05), these responses did not differ significantly between the trials. There were no significant differences in areas under the curves for glucose or insulin concentrations over 7 h between the trials. No significant differences were observed in blood lactate, serum cortisol, free fatty acid, or glycerol concentrations over 7 h between the trials. The oxygen consumption (
) and carbon dioxide production (
) 3 h after entering the chamber were significantly higher in the hypoxic trial than in the normoxic trial (P < 0.05). However, the differences did not affect respiratory exchange ratio (RER). The average values of
,
, and RER did not differ between the trials. Conclusion Seven hours of moderate hypoxia did not alter postprandial glucose responses or substrate oxidation in young healthy men.
Collapse
|
30
|
Caris AV, Lira FS, de Mello MT, Oyama LM, dos Santos RVT. Carbohydrate and glutamine supplementation modulates the Th1/Th2 balance after exercise performed at a simulated altitude of 4500 m. Nutrition 2014; 30:1331-6. [PMID: 25280408 DOI: 10.1016/j.nut.2014.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 01/24/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the effect of carbohydrate or glutamine supplementation, or a combination of the two, on the immune system and inflammatory parameters after exercise in simulated hypoxic conditions at 4500 m. METHODS Nine men underwent three sessions of exercise at 70% VO2peak until exhaustion as follows: 1) hypoxia with a placebo; 2) hypoxia with 8% maltodextrin (200 mL/20 min) during exercise and for 2 h after; and 3) hypoxia after 6 d of glutamine supplementation (20 g/d) and supplementation with 8% maltodextrin (200 mL/20 min) during exercise and for 2 h after. All procedures were randomized and double blind. Blood was collected at rest, immediately before exercise, after the completion of exercise, and 2 h after recovery. Glutamine, cortisol, cytokines, glucose, heat shock protein-70, and erythropoietin were measured in serum, and the cytokine production from lymphocytes was measured. RESULTS Erythropoietin and interleukin (IL)-6 increased after exercise in the hypoxia group compared with baseline. IL-6 was higher in the hypoxia group than pre-exercise after exercise and after 2 h recovery. Cortisol did not change, whereas glucose was elevated post-exercise in the three groups compared with baseline and pre-exercise. Glutamine increased in the hypoxia + carbohydrate + glutamine group after exercise compared with baseline. Heat shock protein-70 increased post-exercise compared with baseline and pre-exercise and after recovery compared with pre-exercise, in the hypoxia + carbohydrate group. No difference was observed in IL-2 and IL-6 production from lymphocytes. IL-4 was reduced in the supplemented groups. CONCLUSION Carbohydrate or glutamine supplementation shifts the T helper (Th)1/Th2 balance toward Th1 responses after exercise at a simulated altitude of 4500 m. The nutritional strategies increased in IL-6, suggesting an important anti-inflammatory effect.
Collapse
Affiliation(s)
- Aline V Caris
- Department of Physiology, Federal University of São Paulo, Brazil; Postgraduate Nutrition, Federal University of São Paulo, Brazil
| | - Fábio S Lira
- Department of Physiology, Federal University of São Paulo, Brazil; Department of Psychobiology, Federal University of São Paulo, Brazil; Department of Physical Education, State University of São Paulo, Brazil
| | - Marco T de Mello
- Department of Physiology, Federal University of São Paulo, Brazil; Department of Psychobiology, Federal University of São Paulo, Brazil
| | - Lila M Oyama
- Department of Physiology, Federal University of São Paulo, Brazil; Postgraduate Nutrition, Federal University of São Paulo, Brazil
| | - Ronaldo V T dos Santos
- Department of Psychobiology, Federal University of São Paulo, Brazil; Department of Bioscience, Federal University of São Paulo, Brazil.
| |
Collapse
|
31
|
Effects of a high-carbohydrate versus high-protein meal on acute responses to hypoxia at rest and exercise. Eur J Appl Physiol 2012; 113:691-702. [DOI: 10.1007/s00421-012-2472-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 07/28/2012] [Indexed: 12/21/2022]
|
32
|
The Impact of 32 Days' Exposure to Hypobaric Hypoxia on Physiological Cost of Sub-Maximal Work Performed at the Sea Level. BALTIC JOURNAL OF HEALTH AND PHYSICAL ACTIVITY 2011. [DOI: 10.2478/v10131-011-0002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Katayama K, Goto K, Ishida K, Ogita F. Substrate utilization during exercise and recovery at moderate altitude. Metabolism 2010; 59:959-66. [PMID: 20036404 DOI: 10.1016/j.metabol.2009.10.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/09/2009] [Accepted: 10/19/2009] [Indexed: 12/17/2022]
Abstract
Recent studies have shown that exercise training at moderate altitude or in moderate hypoxia improved glycemic parameters. From these data, it has been supposed that endurance exercise in moderate hypoxia affects substrate utilization and that exposure to moderate hypoxia in combination with exercise may be utilized as part of metabolic or diabetes prevention program. However, the influence of exercise at moderate hypoxia on circulating metabolites and hormones in terms of substrate utilization is unclear. The purpose of this study was to elucidate the influence of exercise in moderate hypoxia on substrate utilization. We determined cardiorespiratory, metabolic, and hormonal parameters during exercise and postexercise recovery at a simulated moderate altitude of 2000 m, and then we compared these variables with values obtained at sea level. Seven men participated in this study; subjects reported to the laboratory on 4 occasions. Two maximal exercise tests were performed to estimate peak oxygen uptake at the simulated 2000-m altitude and sea level on different days. Afterward, submaximal exercise tests were carried out at a simulated altitude of 2000 m or sea level, separated by 1 week. Subjects performed submaximal exercise at the same relative exercise intensity (50% peak oxygen uptake) at a simulated altitude of 2000 m and at sea level for 30 minutes. The tests were performed in random order, and subjects were blinded to the respective altitudes. Venous blood samples and expired gases were obtained before, during exercise (15 and 30 minutes), and during postexercise recovery periods (15, 30, 45, and 60 minutes). The respiratory exchange ratio during exercise and recovery at moderate altitude was greater than at sea level. The epinephrine and norepinephrine concentrations during exercise and recovery were higher (P < .05) at moderate altitude than at sea level. Free fatty acids and glycerol concentrations during recovery were lower (P < .05) at moderate altitude than at sea level. These results suggest that carbohydrate utilization is increased during exercise and postexercise recovery period in moderate hypoxia as compared with normoxia. It is also suggested that moderate hypoxia influences the changes in circulating metabolites and hormones in terms of substrate metabolism during exercise and the recovery.
Collapse
Affiliation(s)
- Keisho Katayama
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan.
| | | | | | | |
Collapse
|
34
|
Hamlin MJ, Marshall HC, Hellemans J, Ainslie PN, Anglem N. Effect of intermittent hypoxic training on 20 km time trial and 30 s anaerobic performance. Scand J Med Sci Sports 2009; 20:651-61. [PMID: 19793215 DOI: 10.1111/j.1600-0838.2009.00946.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study aimed to verify whether the "live low, train high" approach is beneficial for endurance and/or anaerobic cycling performance. Sixteen well-trained athletes completed 90 min of endurance training (60-70% of heart rate reserve), followed by two 30-s all-out sprints (Wingate test), daily, for 10 consecutive days. Nine subjects [intermittent hypoxic training (IHT) group] trained with an F(I)O(2) set to produce arterial oxygen saturations of approximately 88-82%, while seven subjects (placebo group) trained while breathing a normal gas mixture (F(I)O(2)=0.21). Four performance tests were conducted at sea level including a familiarization and baseline trial, followed by repeat trials at 2 and 9 days post-intervention. Relative to the placebo group, the mean power during the 30-s Wingate test increased by 3.0% (95% confidence limits, CL +/- 3.5%) 2 days, and 1.7% (+/- 3.8%) 9 days post-IHT. Changes in other performance variables (30 s peak power, 20 km mean power and 20 km oxygen cost) were unclear. During the time trial, the IHT participants' blood lactate concentration, respiratory exchange ratio, and SpO(2), relative to the placebo group, was substantially increased at 2 days post-intervention. The addition of IHT to the normal training program of well-trained athletes produced worthwhile gains in 30 s sprint performance possibly through enhanced glycolysis.
Collapse
Affiliation(s)
- M J Hamlin
- Social Sciences Tourism & Recreation Group, Environment, Society and Design Division, Lincoln University, Canterbury, New Zealand.
| | | | | | | | | |
Collapse
|
35
|
Sahlin K, Harris RC. Control of lipid oxidation during exercise: role of energy state and mitochondrial factors. Acta Physiol (Oxf) 2008; 194:283-91. [PMID: 18557841 DOI: 10.1111/j.1748-1716.2008.01879.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Despite considerable progress during recent years our understanding of how lipid oxidation (LOx) is controlled during exercise remains incomplete. This review focuses on the role of mitochondria and energy state in the control of LOx. LOx increases in parallel with increased energy demand up to an exercise intensity of about 50-60% of VO(2max) after which the contribution of lipid decreases. The switch from lipid to carbohydrate (CHO) is of energetic advantage due to the increased ATP/O(2) yield. In the low-intensity domain (<50%VO(2max)) a moderate reduction in energy state will stimulate both LOx and CHO oxidation and relative fuel utilization is mainly controlled by substrate availability and the capacity of the metabolic pathways. In the high-intensity domain (>60%VO(2max)) there is a pronounced decrease in energy state, which will stimulate glycolysis in excess of the substrate requirements of the oxidative processes. This will lead to acidosis, reduced levels of free Coenzyme A (CoASH) and reduced levels of free carnitine. Acidosis and reduced carnitine may limit the carnitine-mediated transfer of long-chain fatty acids (LCFA) into mitochondria and may thus explain the observed reduction in LOx during high-intensity exercise. Another potential mechanism, suggested in this review, is that Acyl-CoA synthetase (ACS), an initial step in LCFA catabolism, functions as a regulator of LOx. ACS activity is suggested to be under control of CoASH and energy state. Furthermore, evidence exists that additional control points exist beyond mitochondrial FA influx. The nature and site of this control remain to be investigated.
Collapse
Affiliation(s)
- K Sahlin
- GIH, The Swedish School of Sport and Health Sciences, Astrands Laboratory, Stockholm, Sweden.
| | | |
Collapse
|