1
|
Niu Z, Goto T. Effects of individual characteristics and local body functions on sweating response: A review. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:2185-2204. [PMID: 39141136 PMCID: PMC11519300 DOI: 10.1007/s00484-024-02758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/29/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
In this study, we conducted a literature review to deepen our understanding of the sweating response of the thermoregulatory system, focusing on the influence of individual characteristics and local body functions. Among the factors related to individual characteristics, improvement in aerobic fitness had a positive effect on the sweating response, whereas aging exerted an inhibitory effect. Short-term artificial acclimation and seasonal heat acclimatization promoted sweating, whereas long-term geographical acclimatization suppressed sweating. Male exhibited higher sweat rates than female when the metabolic heat production was high. Individuals with smaller surface area-to-mass ratios tended to have higher sweat rates than those with larger ratios. Regarding local body functions, sweat distribution in the resting state showed high regional sweat rates in the lower limbs and torso, with higher values in the lower limbs when in the supine position and higher values in the torso when in the seated position. During exercise, the regional sweat rates was high in the torso, whereas the limbs exhibited relatively low sweat rates. These differences in sweat distribution stem from the thermoregulatory potential of each body region, which aims to efficiently regulate body temperature. Local effects have only been examined in the thigh and forearm, with temperature coefficient Q10 ranging from 2 to 5. Only the forehead showed significantly high thermosensitivity among all body regions.
Collapse
Affiliation(s)
- Zhuoxi Niu
- Department of Architecture and Building Science, Tohoku University, Sendai, Japan.
| | - Tomonobu Goto
- Department of Architecture and Building Science, Tohoku University, Sendai, Japan
| |
Collapse
|
2
|
Topham TH, Smallcombe JW, Brown HA, Clark B, Woodward AP, Telford RD, Jay O, Périard JD. Biological sex does not independently influence core temperature change and sweating of children exercising in uncompensable heat stress. J Appl Physiol (1985) 2024; 136:1440-1449. [PMID: 38660730 DOI: 10.1152/japplphysiol.00877.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/03/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024] Open
Abstract
The purpose of this study was to investigate the influence of biological sex, independent of differences in aerobic fitness and body fatness, on the change in gastrointestinal temperature (ΔTgi) and whole body sweat rate (WBSR) of children exercising under uncompensable heat stress. Seventeen boys (means ± SD; 13.7 ± 1.3 yr) and 18 girls (13.7 ± 1.4 yr) walked for 45 min at a fixed rate of metabolic heat production per kg body mass (8 W·kg-1) in 40°C and 30% relative humidity. Sex and peak oxygen consumption (V̇o2peak) were entered into a Bayesian hierarchical general additive model (HGAM) for Tgi. Sex, V̇o2peak, and the evaporative requirement for heat balance (Ereq) were entered into a Bayesian hierarchical linear regression for WBSR. For 26 (12 M and 14 F) of the 35 children with measured body composition, body fat percentage was entered in a separate HGAM and hierarchical linear regression for Tgi and WBSR, respectively. Conditional on sex-specific mean V̇o2peak, ΔTgi was 1.00°C [90% credible intervals (Crl): 0.84, 1.16] for boys and 1.17°C [1.01, 1.33] for girls, with a difference of 0.17°C [-0.39, 0.06]. When sex differences in V̇o2peak were accounted for, the difference in ΔTgi between boys and girls was 0.01°C [-0.25, 0.22]. The difference in WBSR between boys and girls was 0.03 L·h-1 [-0.02, 0.07], when isolated from differences in Ereq. The difference in ΔTgi between boys and girls was -0.10°C [-0.38, 0.17] when sex differences in body fat (%) were accounted for. Biological sex did not independently influence the ΔTgi and WBSR of children exercising under uncompensable heat stress.NEW & NOTEWORTHY Limited studies have investigated the thermoregulatory responses of boys and girls exercising under uncompensable heat stress. Boys and girls often differ in physiological characteristics other than biological sex, such as aerobic fitness and body fat percentage, which may confound interpretations. We investigated the influence of biological sex on exercise thermoregulation in children, independent of differences in aerobic fitness and body fatness.
Collapse
Affiliation(s)
- Thomas H Topham
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, Australian Capital Territory, Australia
| | - James W Smallcombe
- Faculty of Medicine and Health, Heat and Health Research Incubator, The University of Sydney, Sydney, New South Wales, Australia
| | - Harry A Brown
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Brad Clark
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Andrew P Woodward
- Faculty of Health, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Richard D Telford
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Ollie Jay
- Faculty of Medicine and Health, Heat and Health Research Incubator, The University of Sydney, Sydney, New South Wales, Australia
| | - Julien D Périard
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, Australian Capital Territory, Australia
| |
Collapse
|
3
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 2: physiological measurements. Eur J Appl Physiol 2023; 123:2587-2685. [PMID: 37796291 DOI: 10.1007/s00421-023-05284-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/14/2023] [Indexed: 10/06/2023]
Abstract
In this, the second of four historical reviews on human thermoregulation during exercise, we examine the research techniques developed by our forebears. We emphasise calorimetry and thermometry, and measurements of vasomotor and sudomotor function. Since its first human use (1899), direct calorimetry has provided the foundation for modern respirometric methods for quantifying metabolic rate, and remains the most precise index of whole-body heat exchange and storage. Its alternative, biophysical modelling, relies upon many, often dubious assumptions. Thermometry, used for >300 y to assess deep-body temperatures, provides only an instantaneous snapshot of the thermal status of tissues in contact with any thermometer. Seemingly unbeknownst to some, thermal time delays at some surrogate sites preclude valid measurements during non-steady state conditions. To assess cutaneous blood flow, immersion plethysmography was introduced (1875), followed by strain-gauge plethysmography (1949) and then laser-Doppler velocimetry (1964). Those techniques allow only local flow measurements, which may not reflect whole-body blood flows. Sudomotor function has been estimated from body-mass losses since the 1600s, but using mass losses to assess evaporation rates requires precise measures of non-evaporated sweat, which are rarely obtained. Hygrometric methods provide data for local sweat rates, but not local evaporation rates, and most local sweat rates cannot be extrapolated to reflect whole-body sweating. The objective of these methodological overviews and critiques is to provide a deeper understanding of how modern measurement techniques were developed, their underlying assumptions, and the strengths and weaknesses of the measurements used for humans exercising and working in thermally challenging conditions.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- College of Human Ecology, Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Greenfield AM, Alba BK, Giersch GEW, Seeley AD. Sex differences in thermal sensitivity and perception: Implications for behavioral and autonomic thermoregulation. Physiol Behav 2023; 263:114126. [PMID: 36787810 DOI: 10.1016/j.physbeh.2023.114126] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Temperature sensitive receptors in the skin and deep body enable the detection of the external and internal environment, including the perception of thermal stimuli. Changes in heat balance require autonomic (e.g., sweating) and behavioral (e.g., seeking shade) thermoeffector initiation to maintain thermal homeostasis. Sex differences in body morphology can largely, but not entirely, account for divergent responses in thermoeffector and perceptual responses to environmental stress between men and women. Thus, it has been suggested that innate differences in thermosensation may exist between men and women. Our goal in this review is to summarize the existing literature that investigates localized and whole-body cold and heat exposure pertaining to sex differences in thermal sensitivity and perception, and the interplay between autonomic and behavioral thermoeffector responses. Overall, it appears that local differences in thermal sensitivity and perception are minimized, yet still apparent, when morphological characteristics are well-controlled. Sex differences in the early vasomotor response to environmental stress and subsequent changes in blood flow likely contribute to the heightened thermal awareness observed in women. However, the contribution of thermoreceptors to observed sex differences in thermal perception and thermoeffector function is unclear, as human studies investigating these questions have not been performed.
Collapse
Affiliation(s)
- Andrew M Greenfield
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States of America; Oak Ridge Institute for Science and Education, Belcamp, MD, United States of America.
| | - Billie K Alba
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| | - Gabrielle E W Giersch
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| | - Afton D Seeley
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| |
Collapse
|
5
|
Maeda Y, Okawara H, Sawada T, Nakashima D, Nagahara J, Fujitsuka H, Ikeda K, Hoshino S, Kobari Y, Katsumata Y, Nakamura M, Nagura T. Implications of the Onset of Sweating on the Sweat Lactate Threshold. SENSORS (BASEL, SWITZERLAND) 2023; 23:3378. [PMID: 37050438 PMCID: PMC10098635 DOI: 10.3390/s23073378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
The relationship between the onset of sweating (OS) and sweat lactate threshold (sLT) assessed using a novel sweat lactate sensor remains unclear. We aimed to investigate the implications of the OS on the sLT. Forty healthy men performed an incremental cycling test. We monitored the sweat lactate, blood lactate, and local sweating rates to determine the sLT, blood LT (bLT), and OS. We defined participants with the OS during the warm-up just before the incremental test as the early perspiration (EP) group and the others as the regular perspiration (RP) group. Pearson's correlation coefficient analysis revealed that the OS was poorly correlated with the sLT, particularly in the EP group (EP group, r = 0.12; RP group, r = 0.56). Conversely, even in the EP group, the sLT was strongly correlated with the bLT (r = 0.74); this was also the case in the RP group (r = 0.61). Bland-Altman plots showed no bias between the mean sLT and bLT (mean difference: 19.3 s). Finally, in five cases with a later OS than bLT, the sLT tended to deviate from the bLT (mean difference, 106.8 s). The sLT is a noninvasive and continuous alternative to the bLT, independent of an early OS, although a late OS may negatively affect the sLT.
Collapse
Affiliation(s)
- Yuta Maeda
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Hiroki Okawara
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Tomonori Sawada
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Daisuke Nakashima
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Joji Nagahara
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Haruki Fujitsuka
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Kaito Ikeda
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Sosuke Hoshino
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Yusuke Kobari
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Yoshinori Katsumata
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
- Institute for Integrated Sports Medicine, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Takeo Nagura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
- Department of Clinical Biomechanics, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| |
Collapse
|
6
|
Zampoli M, Verstraete J, Nguyen-Khoa T, Sermet-Gaudelus I, Zar HJ, Gonska T, Morrow BM. β-adrenergic sweat test in children with inconclusive cystic fibrosis diagnosis: Do we need new reference ranges? Pediatr Pulmonol 2023; 58:187-196. [PMID: 36193559 PMCID: PMC10092537 DOI: 10.1002/ppul.26179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/18/2022] [Accepted: 10/02/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Investigating inconclusive cystic fibrosis (CF) diagnosis in children is difficult without advanced cystic fibrosis transmembrane conductance regulator (CFTR) function tests. This study investigated the utility of beta (β)-adrenergic sweat test to exclude CF in participants with inconclusive diagnosis (CF suspects) in South Africa. METHODS β-adrenergic sweat test and sweat chloride tests (SCT) were performed simultaneously in CF suspects and adult controls (healthy, CFTR heterozygotes and CF). Cholinergic and β-adrenergic induced sweat rate was measured by evaporimetry (transepithelial water loss [TEWL]: g H2 O/m2 /h) following intradermal injections. Next-generation sequencing of CFTR was performed in CF suspects. CF diagnosis was defined by genotype. RESULTS Thirty-seven controls (10 healthy, 14 CF, 13 CFTR heterozygotes) and 32 CF suspects (26 children; 6 adults) were enrolled. Six were excluded from formal analyses due to β-adrenergic sweat test failure. In adults, evaporimetry was superior to SCT for diagnosis of CF with β-adrenergic:cholinergic ratio TEWL ≤ 0.05 achieving 100% sensitivity and specificity. Twenty-two CF suspect children (age range: 3.4-15.6 years) completed β-adrenergic sweat testing of which none had CF confirmed by genotyping: β-adrenergic:cholinergic ratio > 0.05 successfully excluded CF in all but one child who was CFTR heterozygous. Median peak β-adrenergic TEWL and β-adrenergic:cholinergic ratio in CFTR negative and CFTR heterozygous children was significantly lower than adult controls. CONCLUSION β-adrenergic sweat test is more accurate than SCT for excluding CF in children with inconclusive diagnosis. Established reference ranges for β-adrenergic sweat test may not be suitable for children due to lower β-adrenergic sweat secretion compared to adults.
Collapse
Affiliation(s)
- Marco Zampoli
- Department of Pediatrics and Child Health, University of Cape Town, Cape Town, South Africa.,South African MRC Unit for Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Janine Verstraete
- Department of Pediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Thao Nguyen-Khoa
- Laboratories of Biochemistry and Newborn screening, Necker-Enfants Malades Hospital Assistance Publique-Hôpitaux de Paris, Paris, France.,Centre de Référence Maladies Rares Mucoviscidose et Maladies apparentées. Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris Descartes University, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1151, Institut Necker Enfants Malades, Paris, France
| | - Isabelle Sermet-Gaudelus
- Centre de Référence Maladies Rares Mucoviscidose et Maladies apparentées. Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris Descartes University, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1151, Institut Necker Enfants Malades, Paris, France.,European Respiratory Network for Rare Diseases of the Lung
| | - Heather J Zar
- Department of Pediatrics and Child Health, University of Cape Town, Cape Town, South Africa.,South African MRC Unit for Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Tanja Gonska
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, University of Toronto, and The Program of Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brenda M Morrow
- Department of Pediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
7
|
Peel JS, McNarry MA, Heffernan SM, Nevola VR, Kilduff LP, Waldron M. Measurement of thermal sweating at rest and steady-state exercise in healthy adults: Inter-day reliability and relationships with components of partitional calorimetry. PLoS One 2022; 17:e0278652. [PMID: 36455061 PMCID: PMC9714830 DOI: 10.1371/journal.pone.0278652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Inter-day reliability of sweat measurements, including the absorbent patch and modified iodine-paper techniques, at rest and exercise were evaluated. We further evaluated the effect of iodine paper size and the method of establishing sweat gland activation (sweat gland counting or surface area covered) on reliability. Furthermore, the relationships between all measurement techniques and metabolic heat production [Ḣprod] and evaporative requirement for heat balance [Ėreq] were determined. METHOD Twelve participants were assessed for whole-body sweat loss (WBSL), local sweat rate (LSR; absorbent patch) and sweat gland activation (SGA; iodine-paper) during rest and sub-maximal cycling at ~200, ~250 and ~300 W/m2 Ḣprod in the heat. Variations in iodine paper (1 x 1 cm-9 x 9 cm) were used to quantify SGA by counting sweat glands or surface area covered. The 'optimal' area of SGA was also determined based on the highest density of recruited glands. RESULTS All measures of the sweating response were positively related with Ḣprod and Ėreq (r = 0.53-0.84), with the 9 x 9 cm and 6 x 6 cm iodine paper sizes being the strongest (r = 0.66-0.84) for SGA. Superior inter-day reliability was found for all measures during exercise (CV% = 6-33.2) compared to rest (CV% = 33.5-77.9). The iodine-paper technique was most reliable at 9 x 9 cm (CV% = 15.9) or when the 1 x 1 cm (CV% = 17.6) and 3 x 3 cm (CV% = 15.5) optimal SGA was determined, particularly when measuring the sweat gland number. SIGNIFICANCE WBSL, LSR and SGA measurement techniques are sufficiently reliable to detect changes in thermal sweating typically reported. We recommend 9 x 9 cm paper sizes or 1 x 1 cm-3 x 3 cm optimal areas, using either gland counting or surface area to determine SGA.
Collapse
Affiliation(s)
- Jennifer S. Peel
- Faculty of Science and Engineering, A-STEM Centre, Swansea University, Swansea, United Kingdom
- * E-mail:
| | - Melitta A. McNarry
- Faculty of Science and Engineering, A-STEM Centre, Swansea University, Swansea, United Kingdom
| | - Shane M. Heffernan
- Faculty of Science and Engineering, A-STEM Centre, Swansea University, Swansea, United Kingdom
| | - Venturino R. Nevola
- Faculty of Science and Engineering, A-STEM Centre, Swansea University, Swansea, United Kingdom
- Defence Science and Technology Laboratory (Dstl), Fareham, Hampshire, United Kingdom
| | - Liam P. Kilduff
- Faculty of Science and Engineering, A-STEM Centre, Swansea University, Swansea, United Kingdom
- Welsh Institute of Performance Science, Swansea University, Swansea, United Kingdom
| | - Mark Waldron
- Faculty of Science and Engineering, A-STEM Centre, Swansea University, Swansea, United Kingdom
- Welsh Institute of Performance Science, Swansea University, Swansea, United Kingdom
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
8
|
Cramer MN, Gagnon D, Laitano O, Crandall CG. Human temperature regulation under heat stress in health, disease, and injury. Physiol Rev 2022; 102:1907-1989. [PMID: 35679471 PMCID: PMC9394784 DOI: 10.1152/physrev.00047.2021] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/10/2022] [Accepted: 05/28/2022] [Indexed: 12/30/2022] Open
Abstract
The human body constantly exchanges heat with the environment. Temperature regulation is a homeostatic feedback control system that ensures deep body temperature is maintained within narrow limits despite wide variations in environmental conditions and activity-related elevations in metabolic heat production. Extensive research has been performed to study the physiological regulation of deep body temperature. This review focuses on healthy and disordered human temperature regulation during heat stress. Central to this discussion is the notion that various morphological features, intrinsic factors, diseases, and injuries independently and interactively influence deep body temperature during exercise and/or exposure to hot ambient temperatures. The first sections review fundamental aspects of the human heat stress response, including the biophysical principles governing heat balance and the autonomic control of heat loss thermoeffectors. Next, we discuss the effects of different intrinsic factors (morphology, heat adaptation, biological sex, and age), diseases (neurological, cardiovascular, metabolic, and genetic), and injuries (spinal cord injury, deep burns, and heat stroke), with emphasis on the mechanisms by which these factors enhance or disturb the regulation of deep body temperature during heat stress. We conclude with key unanswered questions in this field of research.
Collapse
Affiliation(s)
- Matthew N Cramer
- Defence Research and Development Canada-Toronto Research Centre, Toronto, Ontario, Canada
| | - Daniel Gagnon
- Montreal Heart Institute and School of Kinesiology and Exercise Science, Université de Montréal, Montréal, Quebec, Canada
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
9
|
Notley SR, Akerman AP, Friesen BJ, Poirier MP, McCourt E, Flouris A, Kenny GP. Heat tolerance and the validity of occupational heat exposure limits in women during moderate-intensity work. Appl Physiol Nutr Metab 2022; 47:711-724. [PMID: 35259026 DOI: 10.1139/apnm-2022-0003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To mitigate excessive rises in core temperature (>1°C) in non heat-acclimatized workers, the American Conference of Governmental Industrial Hygienists (ACGIH) provide heat stress limits (Action Limit Values; ALV), defined by the wet-bulb globe temperature (WBGT) and a worker's metabolic rate. However, since these limits are based on data from men, their suitability for women remains unclear. We therefore assessed core temperature and heart rate in men (n=19; body surface area-to-mass ratio: 250 (SD 17) cm2/kg) and women (n=15; body surface area-to-mass ratio: 268 (SD 24) cm2/kg) aged 18-45 years during 180-min walking at a moderate metabolic rate (200 W/m2) in WBGTs below (16 and 24°C) and above (28 and 32°C) ACGIH ALV. Sex did not significantly influence (i) rises in core temperature, irrespective of WBGT, (ii) the proportion of participants with rises in core temperature >1°C in environments below ACGIH limits, and (iii) work duration before rises in core temperature exceeded 1°C or volitional termination in environments above ACGIH limits. Although further studies are needed, these findings indicate that for the purpose of mitigating rises in core temperature exceeding recommended limits (>1°C), ACGIH guidelines have comparable effectiveness in non heat-acclimatized men and women when working at a moderate metabolic rate. Novelty points • Sex did not appreciably influence thermal strain nor the proportion of participants with core temperatures exceeding recommended limits. • Sex did not significantly influence tolerance to uncompensable heat stress • Despite originating from data obtained in only men, current occupational heat stress guidance offered comparable effectiveness in men and women.
Collapse
Affiliation(s)
| | | | - Brian J Friesen
- University of Ottawa, Human Kinetics, Ottawa, Ontario, Canada;
| | - Martin P Poirier
- University of Ottawa, School of Human Kinetics, Faculty of Health Sciences, Ottawa, Ontario, Canada;
| | | | - Andreas Flouris
- FAME Laboratory, Institute of Human Performance and Rehabilitation, Centre for Research and Technology Thessaly, Trikala, Thessaly, Greece.,Department of Research and Technology Development, Biomnic Ltd., Trikala, Thessaly, Greece;
| | - Glen P Kenny
- University of Ottawa, 6363, Ottawa, Canada, K1N 6N5.,Ottawa Hospital Research Institute, 10055, Ottawa, Canada, K1Y 4E9;
| |
Collapse
|
10
|
Li S, Hart K, Norton N, Ryan CA, Guglani L, Prausnitz MR. Administration of pilocarpine by microneedle patch as a novel method for cystic fibrosis sweat testing. Bioeng Transl Med 2021; 6:e10222. [PMID: 34589599 PMCID: PMC8459588 DOI: 10.1002/btm2.10222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 01/18/2023] Open
Abstract
The sweat test is the gold standard for the diagnosis of cystic fibrosis (CF). The test utilizes iontophoresis to administer pilocarpine to the skin to induce sweating for measurement of chloride concentration in sweat. However, the sweat test procedure needs to be conducted in an accredited lab with dedicated instrumentation, and it can lead to inadequate sweat samples being collected in newborn babies and young children due to variable sweat production with pilocarpine iontophoresis. We tested the feasibility of using microneedle (MN) patches as an alternative to iontophoresis to administer pilocarpine to induce sweating. Pilocarpine-loaded MN patches were developed. Both MN patches and iontophoresis were applied on horses to induce sweating. The sweat was collected to compare the sweat volume and chloride concentration. The patches contained an array of 100 MNs measuring 600 μm long that were made of water-soluble materials encapsulating pilocarpine nitrate. When manually pressed to the skin, the MN patches delivered >0.5 mg/cm2 pilocarpine, which was double that administered by iontophoresis. When administered to horses, MN patches generated the same volume of sweat when normalized to drug dose and more sweat when normalized to skin area compared to iontophoresis using a commercial device. Moreover, both MN patches and iontophoresis generated sweat with comparable chloride concentration. These results suggest that administration of pilocarpine by MN patches may provide a simpler and more-accessible alternative to iontophoresis for performing a sweat test for the diagnosis of CF.
Collapse
Affiliation(s)
- Song Li
- School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Kelsey Hart
- Department of Large Animal MedicineUniversity of Georgia College of Veterinary MedicineAthensGeorgiaUSA
| | - Natalie Norton
- Department of Large Animal MedicineUniversity of Georgia College of Veterinary MedicineAthensGeorgiaUSA
| | - Clare A. Ryan
- Department of Large Animal MedicineUniversity of Georgia College of Veterinary MedicineAthensGeorgiaUSA
| | - Lokesh Guglani
- Center for Cystic Fibrosis and Airways Disease ResearchEmory University Department of Pediatrics and Children's Healthcare of AtlantaAtlantaGeorgiaUSA
| | - Mark R. Prausnitz
- School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
11
|
Wickham KA, McCarthy DG, Spriet LL, Cheung SS. Sex differences in the physiological responses to exercise-induced dehydration: consequences and mechanisms. J Appl Physiol (1985) 2021; 131:504-510. [PMID: 34197234 DOI: 10.1152/japplphysiol.00266.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Physiological strain during exercise is increased by mild dehydration (∼1%-3% body mass loss). This response may be sex-dependent, but there are no direct comparative data in this regard. This review aimed to develop a framework for future research by exploring the potential impact of sex on thermoregulatory and cardiac strain associated with exercise-induced dehydration. Sex-based comparisons were achieved by comparing trends from studies that implemented similar experimental protocols but recruited males and females separately. This revealed a higher core temperature (Tc) in response to exercise-induced dehydration in both sexes; however, it seemingly occurred at a lower percent body mass loss in females. Although less clear, similar trends existed for cardiac strain. The average female may have a lower body water volume per body mass compared with males, and therefore the same percent body mass loss between the sexes may represent a larger portion of total body water in females potentially posing a greater physiological strain. In addition, the rate at which Tc increases at exercise onset might be faster in females and induce a greater thermoregulatory challenge earlier into exercise. The Tc response at exercise onset is associated with lower sweating rates in females, which is commonly attributed to sex differences in metabolic heat production. However, a reduced sweat gland sensitivity to stimuli, lower fluid output per sweat gland, and sex hormones promoting fluid retention in females may also contribute. In conclusion, the limited evidence suggests that sex-based differences exist in thermoregulatory and cardiac strain associated with exercise-induced dehydration, and this warrants future investigations.
Collapse
Affiliation(s)
- K A Wickham
- Environmental Ergonomics Lab, Brock University, St. Catharines, Ontario, Canada
| | - D G McCarthy
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - L L Spriet
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - S S Cheung
- Environmental Ergonomics Lab, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
12
|
Okamoto Y, Amano T. Effects of sex and menstrual cycle on sweating during isometric handgrip exercise and postexercise forearm occlusion. Exp Physiol 2021; 106:1508-1523. [PMID: 33899281 DOI: 10.1113/ep089464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/20/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do sex and menstrual cycle modulate sweating during isometric handgrip exercise and muscle metaboreceptor stimulation? What is the main finding and its importance? Sex modulates sweating during isometric handgrip exercise, as indicated by the lower sweat output per gland in women than in men, but not during muscle metaboreceptor stimulation. Sweat output per gland during isometric handgrip exercise and muscle metaboreceptor stimulation were lower in the mid-luteal phase than in the early follicular phase in women. Cholinergic sweat gland sensitivity might explain, in part, the individual variation of the response. Our results provide new insights regarding sex- and menstrual cycle-related modulation of the sweating response. ABSTRACT We investigated whether sex and menstrual cycle could modulate sweating during isometric handgrip (IH) exercise and muscle metaboreceptor stimulation. Twelve young, healthy women in the early follicular (EF) and mid-luteal (ML) phases and 14 men underwent two experimental sessions consisting of a 1.5 min IH exercise at 25 and 50% of maximal voluntary contraction (MVC) in a hot environment (35°C, relative humidity 50%) followed by 2 min forearm occlusion to stimulate muscle metaboreceptors. Sweat rates, the number of activated sweat glands and the sweat output per gland (SGO) on the forearm and chest were assessed. Pilocarpine-induced sweating was also assessed via transdermal iontophoresis to compare the responses with those of IH exercise and muscle metaboreceptor stimulation, based on correlation analysis. Sweat rates on the forearm and chest during IH exercise and muscle metaboreceptor stimulation did not differ between men and women in either menstrual cycle phase (all P ≥ 0.144). However, women in both phases showed lower SGO on the forearm and/or chest compared with men during IH exercise at 50% of MVC, with no differences in muscle metaboreceptor stimulation. Women in the ML phase had a lower forearm sweat rate during IH exercise at 50% of MVC (P = 0.015) and SGO during exercise and muscle metaboreceptor stimulation (main effect, both P ≤ 0.003) compared with those in the EF phase. Overall, sweat rate and SGO during IH exercise and muscle metaboreceptor stimulation were correlated with pilocarpine-induced responses (all P ≤ 0.064, r ≥ 0.303). We showed that sex and menstrual cycle modulate sudomotor activity during IH exercise and/or muscle metaboreceptor stimulation. Cholinergic sweat gland sensitivity might explain, in part, the individual variation of the response.
Collapse
Affiliation(s)
- Yumi Okamoto
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| |
Collapse
|
13
|
Amano T, Fujii N, Kenny GP, Nishiyasu T, Inoue Y, Kondo N. The relative contribution of α- and β-adrenergic sweating during heat exposure and the influence of sex and training status. Exp Dermatol 2020; 29:1216-1224. [PMID: 33015872 DOI: 10.1111/exd.14208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/14/2020] [Accepted: 09/27/2020] [Indexed: 02/04/2023]
Abstract
While human eccrine sweat glands respond to adrenergic agonists, there remains a paucity of information on the factors modulating this response. Thus, we assessed the relative contribution of α- and β-adrenergic sweating during a heat exposure and as a function of individual factors of sex and training status. α- and β-adrenergic sweating was assessed in forty-eight healthy young men (n = 35) and women (n = 13) including endurance-trained (n = 12) and untrained men (n = 12) under non-heat exposure (temperate, 25°C; n = 17) and heat exposure (hot, 35°C; n = 48) conditions using transdermal iontophoresis of phenylephrine (α-adrenergic agonist) and salbutamol (β-adrenergic agonist) on the ventral forearm, respectively. Adrenergic sweating was also measured after iontophoretic administration of atropine (muscarinic receptor antagonist) or saline (control) to evaluate how changes in muscarinic receptor activity modulate the adrenergic response to a heat exposure (n = 12). α- and β-adrenergic sweating was augmented in hot compared with temperate conditions (both P ≤ .014), albeit the relative increase was greater in β (~5.4-fold)- as compared to α (~1.5-fold)-adrenergic-mediated sweating response. However, both α- and β-adrenergic sweating was abolished by atropinization (P = .001). Endurance-trained men showed an augmentation in α- (P = .043) but not β (P = .960)-adrenergic sweating as compared to untrained men. Finally, a greater α- and β-adrenergic sweating response (both P ≤ .001) was measured in habitually active men than in women. We show that heat exposure augments α-and β-adrenergic sweating differently via mechanisms associated with altered muscarinic receptor activity. Sex and training status modulate this response.
Collapse
Affiliation(s)
- Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Yoshimitsu Inoue
- Laboratory for Human Performance Research, Osaka International University, Osaka, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| |
Collapse
|
14
|
Reduction of focal sweating by lipid nanoparticle-delivered myricetin. Sci Rep 2020; 10:13132. [PMID: 32753614 PMCID: PMC7403431 DOI: 10.1038/s41598-020-69985-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022] Open
Abstract
Myricetin—a flavonoid capable of inhibiting the SNARE complex formation in neurons—reduces focal sweating after skin-application when delivers as encapsulated in lipid nanoparticles (M-LNPs). The stability of M-LNP enables efficient delivery of myricetin to sudomotor nerves located underneath sweat glands through transappendageal pathways while free myricetin just remained on the skin. Furthermore, release of myricetin from M-LNP is accelerated through lipase-/esterase-induced lipolysis in the skin-appendages, enabling uptake of myricetin by the surrounding cells. The amount of sweat is reduced by 55% after application of M-LNP (0.8 mg kg−1) on the mouse footpad. This is comparable to that of subcutaneously injected anticholinergic agents [0.25 mg kg−1 glycopyrrolate; 0.8 U kg−1 botulinum neurotoxin-A-type (BoNT/A)]. M-LNP neither shows a distal effect after skin-application nor induced cellular/ocular toxicity. In conclusion, M-LNP is an efficient skin-applicable antiperspirant. SNARE-inhibitory small molecules with suitable delivery systems have the potential to replace many BoNT/A interventions for which self-applications are preferred.
Collapse
|
15
|
Park TH, Lee JB, Lee HJ, Yun B. Sex-related differences in sudomotor function in healthy early twenties focused on activated sweat gland density. CHINESE J PHYSIOL 2020; 63:1-6. [PMID: 32056980 DOI: 10.4103/cjp.cjp_46_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The purpose of this study was to quantitatively assess the difference in sudomotor function between healthy males and females in their early twenties by measuring skin surface area and activated sweat gland density (ASGD). The quantitative sudomotor axon reflex test (QSART), a method for evaluating autonomic nervous system activity, was used for quantification. In QSART, the sweat glands are activated directly or indirectly by the subcutaneous application of neurotransmitters, such as acetylcholine, through iontophoresis. This series of mechanisms is called the sudomotor axon reflex. After recording age, height, weight, and several measurements of the forearm, QSART was performed on 101 healthy controls aged 21-26 years to measure ASGD. The mean temperature and humidity on the measurement days were 11.4°C and 58.1% on May 3, 2018, and 14.7°C and 70.3% on May 10, 2018. The result of independent sample t-test showed higher ASGD in women (P < 0.05). The body surface area and the surface area of the forearms were higher in men (P < 0.001), but the number of activated sweat glands was not significantly different according to sex. The activated sweat gland counts of the body and forearms were analyzed through linear regression by age for males and females. Except for the activated sweat gland count of the male body, the analysis showed a tendency to decrease with increasing age but was not statistically significant in any case (P > 0.05). Showing insufficient coefficient of determination (R2), multiple regression analyses with sex and ages did not correct this insignificance between age and activated sweat gland count.
Collapse
Affiliation(s)
- Tae-Hwan Park
- College of Medicine, Soonchunhyang University, 366-1 Ssangyong-dong, Cheonan 31151, Republic of Korea
| | - Jeong-Beom Lee
- Department of Physiology, College of Medicine, Soonchunhyang University, 366-1 Ssangyong-dong, Cheonan 31151, Republic of Korea
| | - Hye-Jin Lee
- Department of Physiology, College of Medicine, Soonchunhyang University, 366-1 Ssangyong-dong, Cheonan 31151, Republic of Korea
| | - Bahda Yun
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
16
|
Ling L, Liu Y, Sun Y, Cai Y, Jiang Y, Chen L, He L, Xue J. Distribution characteristics of sweat gland nerve fibres in normal humans identified by acetylcholinesterase histochemical staining. Clin Neurol Neurosurg 2019; 189:105620. [PMID: 31812030 DOI: 10.1016/j.clineuro.2019.105620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To quantitatively analyze distribution characteristics of sweat gland nerve fibres (SGNF) in normal Chinese individuals for obtaining a reference for early diagnosis of peripheral neuropathy. PATIENTS AND METHODS Skin biopsy samples were collected from 192 normal Chinese individuals and divided into six, four and two groups according to anatomic sites, age and gender, respectively. SGNF morphology was observed and SGNF density (SGNFD) was determined. RESULTS There was a significant difference in SGNFD among different anatomic sites, age and gender. A degressive tendency was observed from proximal to distal anatomic sites. SGNFD was the lowest in subjects in the 21-40-year-old age group, but was the highest in subjects in the >61-year-old age group. Overall, SGNFD fluctuated with age. SGNFD in males was significantly higher than that in females. CONCLUSIONS Distribution characteristics of SGNF in normal individuals may serve as a reference for early diagnosis of nerve fibre damage.
Collapse
Affiliation(s)
- Li Ling
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei, China
| | - Yongdan Liu
- Department of Neurology, Hospital of Heilongjiang Province, Harbin, 150036, Heilongjiang, China
| | - Yifei Sun
- Hebei University, Baoding, 071000, Hebei, China
| | - Yun Cai
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei, China
| | - Ye Jiang
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei, China
| | - Longjian Chen
- Department of Neurology, Hebei University, Baoding, 071000, Hebei, China
| | - Long He
- Department of Neurology, Hebei University, Baoding, 071000, Hebei, China
| | - Jinwei Xue
- Department of Orthopedics, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei, China.
| |
Collapse
|
17
|
Abstract
In humans, sweating is the most powerful autonomic thermoeffector. The evaporation of sweat provides by far the greatest potential for heat loss and it represents the only means of heat loss when air temperature exceeds skin temperature. Sweat production results from the integration of afferent neural information from peripheral and central thermoreceptors which leads to an increase in skin sympathetic nerve activity. At the neuroglandular junction, acetylcholine is released and binds to muscarinic receptors which stimulate the secretion of a primary fluid by the secretory coil of eccrine glands. The primary fluid subsequently travels through a duct where ions are reabsorbed. The end result is the expulsion of hypotonic sweat on to the skin surface. Sweating increases in proportion with the intensity of the thermal challenge in an attempt of the body to attain heat balance and maintain a stable internal body temperature. The control of sweating can be modified by biophysical factors, heat acclimation, dehydration, and nonthermal factors. The purpose of this article is to review the role of sweating as a heat loss thermoeffector in humans.
Collapse
|
18
|
Kirby A, Berry C, West R. Antibiotic consumption and Enterobacteriaceae skin colonization in hospitalized adults. J Hosp Infect 2017; 95:65-68. [DOI: 10.1016/j.jhin.2016.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/13/2016] [Indexed: 11/17/2022]
|
19
|
Madeira LG, Passos RL, Souza JFD, Rezende NA, Rodrigues LOC. Autonomic thermoregulatory dysfunction in neurofibromatosis type 1. ARQUIVOS DE NEURO-PSIQUIATRIA 2016; 74:796-802. [PMID: 27759804 DOI: 10.1590/0004-282x20160122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/20/2016] [Indexed: 11/22/2022]
Abstract
Objective Neurofibromatosis type 1 (NF1) causes neural and cutaneous disorders and reduced exercise capacity. Exercise/heat exposure increasing internal temperature must be compensated by eccrine sweat function and warmed skin vasodilation. We suspected NF1 could adversely affect eccrine sweat function and/or vascular thermoregulatory responses (VTR). Methods The eccrine sweat function and VTR of 25 NF1 volunteers (14 males, 11 females; 16-57 years old) were compared with 23 non-NF1 controls matched by sex, age, height and weight (CG). Sweating was induced by 1) pilocarpine 1% iontophoresis (PILO); and 2) by passive heating (HEAT) via the lower third of the legs being immersed in 42°C water for one hour. Previously established eccrine sweat function and VTR protocols were used. Results The NF1 group showed: a) lower sweat rate than the CG group during PILO; b) a smaller diastolic pressure decrease; and c) higher tympanic temperatures than controls during HEAT (p < 0.05). Conclusion Reduced sweating and vascular thermoregulatory responses suggest autonomic dysfunction in NF1 individuals.
Collapse
Affiliation(s)
- Luciana G Madeira
- Universidade Federal de Minas Gerais, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Programa de Pós Graduação em Ciências do Esporte, Belo Horizonte MG, Brasil
| | - Renata Lf Passos
- Universidade Federal de Minas Gerais, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Programa de Pós Graduação em Ciências do Esporte, Belo Horizonte MG, Brasil
| | - Juliana F de Souza
- Universidade Federal de Minas Gerais, Hospital das Clínicas, Centro de Referência em Neurofibromatoses, Belo Horizonte MG, Brasil
| | - Nilton A Rezende
- Universidade Federal de Minas Gerais, Hospital das Clínicas, Centro de Referência em Neurofibromatoses, Belo Horizonte MG, Brasil
| | - Luiz O C Rodrigues
- Universidade Federal de Minas Gerais, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Programa de Pós Graduação em Ciências do Esporte, Belo Horizonte MG, Brasil.,Universidade Federal de Minas Gerais, Hospital das Clínicas, Centro de Referência em Neurofibromatoses, Belo Horizonte MG, Brasil
| |
Collapse
|
20
|
Machado-Moreira CA, Barry RJ, Vosselman MJ, Ruest RM, Taylor NAS. Temporal and thermal variations in site-specific thermoregulatory sudomotor thresholds: precursor versus discharged sweat production. Psychophysiology 2014; 52:117-23. [PMID: 25048252 DOI: 10.1111/psyp.12292] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/18/2014] [Indexed: 11/29/2022]
Abstract
Temporal and thermal differences between the initiation of precursor, eccrine sweat and its surface discharge were investigated during passive heating. Sudomotor activity was evaluated using electrodermal (precursor) and ventilated sweat capsule measurements (dorsal fingers, dorsal hand, forehead, forearm). Passive heating significantly elevated auditory canal (0.5 degrees C) and mean body temperatures (0.9 degrees C). At each site, the precursor sudomotor thresholds occurred at a lower mean body temperature (P < .05), with an average elevation of 0.35 degrees C (SD 0.04). However, discharged thresholds were delayed until this temperature had risen 0.53 degrees C (SD 0.04), producing significant phase delays across sites (mean: 4.1 min [SD 0.5]; P < .05). It is concluded that precise sudomotor threshold determinations require methods that respond to sweat accumulating within the secretory coil, and not discharged secretions, reinforcing the importance of electrodermal techniques.
Collapse
|
21
|
Taylor NA, Machado-Moreira CA. Regional variations in transepidermal water loss, eccrine sweat gland density, sweat secretion rates and electrolyte composition in resting and exercising humans. EXTREME PHYSIOLOGY & MEDICINE 2013; 2:4. [PMID: 23849497 PMCID: PMC3710196 DOI: 10.1186/2046-7648-2-4] [Citation(s) in RCA: 270] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 12/06/2012] [Indexed: 11/10/2022]
Abstract
Literature from the past 168 years has been filtered to provide a unified summary of the regional distribution of cutaneous water and electrolyte losses. The former occurs via transepidermal water vapour diffusion and secretion from the eccrine sweat glands. Daily insensible water losses for a standardised individual (surface area 1.8 m2) will be 0.6-2.3 L, with the hands (80-160 g.h-1) and feet (50-150 g.h-1) losing the most, the head and neck losing intermediate amounts (40-75 g.h-1) and all remaining sites losing 15-60 g.h-1. Whilst sweat gland densities vary widely across the skin surface, this same individual would possess some 2.03 million functional glands, with the highest density on the volar surfaces of the fingers (530 glands.cm-2) and the lowest on the upper lip (16 glands.cm-2). During passive heating that results in a resting whole-body sweat rate of approximately 0.4 L.min-1, the forehead (0.99 mg.cm-2.min-1), dorsal fingers (0.62 mg.cm-2.min-1) and upper back (0.59 mg.cm-2.min-1) would display the highest sweat flows, whilst the medial thighs and anterior legs will secrete the least (both 0.12 mg.cm-2.min-1). Since sweat glands selectively reabsorb electrolytes, the sodium and chloride composition of discharged sweat varies with secretion rate. Across whole-body sweat rates from 0.72 to 3.65 mg.cm-2.min-1, sodium losses of 26.5-49.7 mmol.L-1 could be expected, with the corresponding chloride loss being 26.8-36.7 mmol.L-1. Nevertheless, there can be threefold differences in electrolyte losses across skin regions. When exercising in the heat, local sweat rates increase dramatically, with regional glandular flows becoming more homogeneous. However, intra-regional evaporative potential remains proportional to each local surface area. Thus, there is little evidence that regional sudomotor variations reflect an hierarchical distribution of sweating either at rest or during exercise.
Collapse
Affiliation(s)
- Nigel As Taylor
- Centre for Human and Applied Physiology, School of Health Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
| | | |
Collapse
|
22
|
Gagnon D, Crandall CG, Kenny GP. Sex differences in postsynaptic sweating and cutaneous vasodilation. J Appl Physiol (1985) 2012; 114:394-401. [PMID: 23154992 DOI: 10.1152/japplphysiol.00877.2012] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The current study aimed to determine whether a peripheral modulation of sweating contributes to the lower sudomotor thermosensitivity previously observed in females during exercise. We examined dose-response relationships in 12 males and 12 females to incremental doses of acetylcholine (ACh) and methylcholine (MCh) for sweating (ventilated capsule), as well as to ACh and sodium nitroprusside (SNP) for cutaneous vasodilation (laser-Doppler). All drugs were infused using intradermal microdialysis. On a separate day, potential sex differences in the onset threshold and/or thermosensitivity of heat loss responses were assessed during progressive increases in mean body temperature elicited by passive heating. Increases in sweating as a function of increasing concentration of ACh (P = 0.008) and MCh (P = 0.046) significantly differed between males and females. Although the concentration eliciting 50% of the maximal sweating response did not differ between sexes for either agonist (P > 0.1), maximum values were lower in females in response to ACh (0.34 ± 0.12 vs. 0.59 ± 0.19 mg·min(-1)·cm(-2), P = 0.04) and MCh (0.48 ± 0.12 vs. 0.78 ± 0.26 mg·min(-1)·cm(-2), P = 0.05). This observation was paralleled by a lower thermosensitivity of sudomotor activity in females during passive heating (1.29 ± 0.34 vs. 1.83 ± 0.33 mg·min(-1)·cm(-2)·°C(-1), P = 0.03), with no significant differences in the change in mean body temperature at which onset of sweating occurred (0.85 ± 0.19 vs. 0.67 ± 0.13°C, P = 0.10). No sex differences in cutaneous vasodilation were observed in response to ACh and SNP, as well as during passive heating (all P > 0.1). These findings provide direct evidence for a peripheral modulation of sudomotor activity in females. In contrast, sex does not modulate cutaneous vasodilation.
Collapse
Affiliation(s)
- Daniel Gagnon
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | | | | |
Collapse
|
23
|
Gagnon D, Kenny GP. Does sex have an independent effect on thermoeffector responses during exercise in the heat? J Physiol 2012; 590:5963-73. [PMID: 23045336 DOI: 10.1113/jphysiol.2012.240739] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although a number of studies have examined potential differences in temperature regulation between males and females during heat stress, conclusions have remained limited as to whether reported differences are due to confounding physical characteristics or to actual differences in the physiological variables of temperature regulation. Recent observations suggest that sex differences in temperature regulation, particularly in sudomotor activity, go beyond those associated with physical characteristics. Females have recently been shown to have a lower sudomotor activity, as well as a lower thermosensitivity of the response compared to males during exercise performed at a fixed rate of metabolic heat production. Furthermore, sex differences in local and whole-body sudomotor activity are only evident above a certain combination of environmental conditions and rate of metabolic heat production. In contrast, both the onset threshold and thermosensitivity of cutaneous vasodilatation are similar between males and females. In theory, differences in the thermosensitivity of sudomotor activity could be related to either a central (neural activity/integration) and/or peripheral (effector organ) modulation of temperature regulation. Based on recent findings, sex differences in sudomotor activity appear to be mediated peripherally, although a central modulation has yet to be conclusively ruled out. Here we present a brief yet comprehensive review of the current state of knowledge pertaining to sex differences in temperature regulation during exercise in the heat.
Collapse
Affiliation(s)
- Daniel Gagnon
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | | |
Collapse
|
24
|
Gagnon D, Kenny GP. Sex differences in thermoeffector responses during exercise at fixed requirements for heat loss. J Appl Physiol (1985) 2012; 113:746-57. [PMID: 22797311 DOI: 10.1152/japplphysiol.00637.2012] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To assess potential mechanisms responsible for the lower sudomotor thermosensitivity in women during exercise, we examined sex differences in sudomotor function and skin blood flow (SkBF) during exercise performed at progressive increases in the requirement for heat loss. Eight men and eight women cycled at rates of metabolic heat production of 200, 250, and 300 W/m(2) of body surface area, with each rate being performed sequentially for 30 min. The protocol was performed in a direct calorimeter to measure evaporative heat loss (EHL) and in a thermal chamber to measure local sweat rate (LSR) (ventilated capsule), SkBF (laser-Doppler), sweat gland activation (modified iodine-paper technique), and sweat gland output (SGO) on the back, chest, and forearm. Despite a similar requirement for heat loss between the sexes, significantly lower increases in EHL and LSR were observed in women (P ≤ 0.001). Sex differences in EHL and LSR were not consistently observed during the first and second exercise periods, whereas EHL (348 ± 13 vs. 307 ± 9 W/m(2)) and LSR on the back (1.61 ± 0.07 vs. 1.20 ± 0.09 mg · min(-1) · cm(-2)), chest (1.33 ± 0.06 vs. 1.08 ± 0.09 mg · min(-1) · cm(-2)), and forearm (1.53 ± 0.07 vs. 1.20 ± 0.06 mg · min(-1) · cm(-2), men vs. women) became significantly greater in men during the last exercise period (P < 0.05). At each site, differences in LSR were solely due to a greater SGO in men, as opposed to differences in sweat gland activation. In contrast, no sex differences in SkBF were observed throughout the exercise period. The present study demonstrates that sex differences in sudomotor function are only evidenced beyond a certain requirement for heat loss, solely through differences in SGO. In contrast, the lower EHL and LSR in women are not paralleled by a lower SkBF response.
Collapse
Affiliation(s)
- Daniel Gagnon
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
25
|
Gagnon D, Kenny GP. Sex modulates whole-body sudomotor thermosensitivity during exercise. J Physiol 2011; 589:6205-17. [PMID: 22005684 PMCID: PMC3286696 DOI: 10.1113/jphysiol.2011.219220] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 10/12/2011] [Indexed: 11/08/2022] Open
Abstract
It is unclear whether true physiological differences exist in temperature regulation between males and females during exercise, independently of differences in physical characteristics and metabolic heat production. Therefore, we examined differences in the onset threshold and thermosensitivity of whole-body sudomotor activity and cutaneous vascular conductance between males and females matched for body mass and surface area. Nine males and nine females performed 90 min of exercise at each of the following intensities in a warm/dry environment: 50% of maximum oxygen consumption (V(O(2)max)) and at a fixed rate of metabolic heat production equal to 500 W. Evaporative heat loss (EHL, direct calorimetry) and cutaneous vascular conductance (CVC, laser-Doppler) were measured continuously. Mean body temperature was calculated from the measurements of oesophageal and mean skin temperatures. During exercise at 50% V(O(2)max), a lower rate of sudomotor activity was observed in females (385 ± 12 vs. 512 ± 24 W, P < 0.001). However, irrespective of sex, individual EHL values were strongly associated with metabolic heat production (R(2) = 0.82, P < 0.001). Nonetheless, a lower rate of EHL was observed in females when exercise was performed at 500 W of metabolic heat production (419 ± 7 vs. 454 ± 11 W, P = 0.032). Furthermore, a lower increase in EHL per increase in mean body temperature was observed in females (553 ± 77 vs. 795 ± 85 W °C(-1), P = 0.051), with no differences in the onset threshold (36.77 ± 0.06 vs. 36.61 ± 0.11°C, P = 0.242). In contrast, no differences were observed in CVC. Collectively, these findings demonstrate that females have a lower thermosensitivity of the whole-body sudomotor response compared to males during exercise in the heat performed at a fixed rate of metabolic heat production.
Collapse
Affiliation(s)
- Daniel Gagnon
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
26
|
Eijsvogels TMH, Scholten RR, van Duijnhoven NTL, Thijssen DHJ, Hopman MTE. Sex difference in fluid balance responses during prolonged exercise. Scand J Med Sci Sports 2011; 23:198-206. [PMID: 22092671 DOI: 10.1111/j.1600-0838.2011.01371.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2011] [Indexed: 01/14/2023]
Abstract
Maintaining a proper fluid balance is important during exercise as athletes are prone to develop dehydration during exercise. Although several factors may regulate the fluid balance, little is known about the role of sex during prolonged moderate-intensity exercise. Therefore, we compared body mass changes and fluid balance parameters in men vs women in a large heterogeneous group of participants during prolonged exercise. Ninety-eight volunteers walked 30-50 km at a self-selected pace. Exercise duration (8 h, 32 min) and intensity (69% HRmax) were comparable between groups. Men demonstrated a significantly larger change in body mass than women (-1.6% vs -0.9%, respectively, P < 0.001) and a higher incidence of dehydration (defined as ≥ 2% body mass loss) compared with women (34% vs 12%, respectively, odds ratio = 4.2, 95% CI = 1.1-16.7). Changes in blood sodium levels were significantly different between men (+1.5 mmol/L) and women (-0.4 mmol/L), while 27% of the men vs 0% of the women showed postexercise hypernatremia (sodium levels ≥ 145 mmol/L). Moreover, men demonstrated a significantly lower fluid intake (2.9 mL/kg/h) and higher fluid loss (5.0 mL/kg/h) compared with women (3.7 and 4.8 mL/kg/h, respectively). Taken together, our data suggest that men and women demonstrate different changes in fluid balance in response to a similar bout of exercise.
Collapse
Affiliation(s)
- T M H Eijsvogels
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Abstract
BACKGROUND For some endocrine and nutritional biomarkers, for example, cortisol and vitamin B(12), significant associations between 24-hour renal analyte excretion and the respective 24-hour urine volume (U-Vol) have been reported. Therefore, our objective was to investigate whether 24-hour U-Vol (a marker of fluid intake) is also a relevant influencing factor of absolute daily iodine excretion. METHODS Urinary iodine excretion rates were measured in repeatedly collected 24-hour urine samples of (i) 9 healthy women participating in a controlled diet experiment with constant iodine intake and (ii) 204 healthy free-living adolescents (aged 13-18 years) who performed the respective urine collection during 2003-2008. Associations between U-Vol (L) and renal iodine excretion (μg/24 h) were investigated cross sectionally (multiple linear regression model, PROC GLM) and longitudinally (repeated-measures regression models, PROC MIXED). The major iodine sources in the adolescent's diet (iodized salt, milk, fish, eggs, and meat) were controlled for. RESULTS Urinary iodine excretion was significantly associated with 24-hour U-Vol in all performed fully adjusted regression models. A 1-L increase of U-Vol predicted an additional 15.0 μg/day (adolescents, 95% confidence interval: [9.8, 20.0], p < 0.0001) and 16.5 μg/day (women, 95% confidence interval: [9.2, 23.7], p = 0.0002) increase in iodine excretion. The longitudinal analysis in adolescents revealed a stronger relation of iodine excretion with U-Vol in girls than in boys (β = 17.1 vs. β = 10.5). CONCLUSION A high fluid consumption, and thus a high U-Vol, could lead to an additional renal iodine loss that obviously cannot be compensated by the iodine contents of non-milk-based beverages, reported to amount to ∼4 μg/L, on average. For specific research questions using the biomarker 24-hour urinary iodine excretion, U-Vol should therefore be considered as a potential confounder.
Collapse
Affiliation(s)
- Simone A Johner
- Research Institute of Child Nutrition (FKE), Dortmund, Germany.
| | | | | |
Collapse
|