1
|
Allsopp GL, Britto FA, Wright CR, Deldicque L. The Effects of Normobaric Hypoxia on the Acute Physiological Responses to Resistance Training: A Narrative Review. J Strength Cond Res 2024; 38:2001-2011. [PMID: 39178049 DOI: 10.1519/jsc.0000000000004909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
ABSTRACT Allsopp, GL, Britto, FA, Wright, CR, and Deldicque, L. The effects of normobaric hypoxia on the acute physiological responses to resistance training: a narrative review. J Strength Cond Res 38(11): 2001-2011, 2024-Athletes have used altitude training for many years as a strategy to improve endurance performance. The use of resistance training in simulated altitude (normobaric hypoxia) is a growing strategy that aims to improve the hypertrophy and strength adaptations to training. An increasing breadth of research has characterized the acute physiological responses to resistance training in hypoxia, often with the goal to elucidate the mechanisms by which hypoxia may improve the training adaptations. There is currently no consensus on the overall effectiveness of hypoxic resistance training for strength and hypertrophy adaptations, nor the underlying biochemical pathways involved. There are, however, numerous interesting physiological responses that are amplified by performing resistance training in hypoxia. These include potential changes to the energy system contribution to exercise and alterations to the level of metabolic stress, hormone and cytokine production, autonomic regulation, and other hypoxia-induced cellular pathways. This review describes the foundational exercise physiology underpinning the acute responses to resistance training in normobaric hypoxia, potential applications to clinical populations, including training considerations for athletic populations. The review also presents a summary of the ideal training parameters to promote metabolic stress and associated training adaptations. There are currently many gaps in our understanding of the physiological responses to hypoxic resistance training, partly caused by the infancy of the research field and diversity of hypoxic and training parameters.
Collapse
Affiliation(s)
- Giselle L Allsopp
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Victoria, Australia
| | | | - Craig R Wright
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Victoria, Australia
| | - Louise Deldicque
- Institute of Neuroscience, UC Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Jonson AM, Girard O, Walden TP, Marston KJ, Scott BR. Hypoxia Does Not Impair Resistance Exercise Performance or Amplify Post-Exercise Fatigue. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:235-242. [PMID: 37039734 DOI: 10.1080/02701367.2023.2193232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/08/2023] [Indexed: 05/21/2023]
Abstract
Purpose: To determine whether performing resistance exercise in hypoxia acutely reduces performance and increases markers of fatigue, and whether these responses are exaggerated if exercising at high versus low work rates (i.e., exercising to failure or volume matched non-failure). Methods: Following a within-subject design, 20 men completed two trials in hypoxia (13% oxygen) and two in normoxia (21% oxygen). The first session for hypoxic and normoxic conditions comprised six sets of bench press and shoulder press to failure (high work rate), while subsequent sessions involved the same volume distributed over 12 sets (low work rate). Physical performance (concentric velocity) and perceptual responses were measured during exercise and for 72 hr post-exercise. Neuromuscular performance (bench throw velocity) was assessed pre- and post-session. Results: Hypoxia did not affect physical performance, neuromuscular performance, and perceptual recovery when exercising at high or low work rates. Higher work rate exercise caused greater acute decrements in physical performance and post-exercise neuromuscular performance and increased perceived exertion and muscle soreness (p ≤ 0.006), irrespective of hypoxia. Conclusions: Hypoxia does not impact on resistance exercise performance or increase markers of physical and perceptual fatigue. Higher exercise work rates may impair physical performance, and exaggerate fatigue compared to low work rate exercise, irrespective of environmental condition. Practitioners can prescribe hypoxic resistance exercise without compromising physical performance or inducing greater levels of fatigue. For athletes who are required to train with high frequency, decreasing exercise work rate may reduce post-exercise markers of fatigue for the same training volume.
Collapse
|
3
|
Rial-Vázquez J, Nine I, Guerrero-Moreno JM, Rúa-Alonso M, Fariñas J, Márquez G, Giráldez-García MA, Méndez-Bouza KY, López-Pillado H, Coutado-Sánchez E, Losada-Rodríguez A, Iglesias-Soler E. Face Masks at the Gymnasium: Physiological Responses and Mechanical Performance Are Not Compromised by Wearing Surgical or Filtering Facepiece 2 Masks in Healthy Subjects. J Strength Cond Res 2023; 37:1404-1410. [PMID: 37347944 DOI: 10.1519/jsc.0000000000004401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
ABSTRACT Rial-Vázquez, J, Nine, I, Guerrero-Moreno, JM, Rúa-Alonso, M, Fariñas, J, Márquez, G, Giráldez-García, MA, Méndez-Bouza, KY, López-Pillado, H, Coutado-Sánchez, E, Losada-Rodríguez, A, and Iglesias-Soler, E. Face masks at the gym: physiological responses and mechanical performance are not compromised by wearing surgical or filtering facepiece 2 masks in healthy subjects. J Strength Cond Res 37(7): 1404-1410, 2023-This study explored the effects of wearing 2 types of face masks on mechanical performance and physiological responses during high-intensity resistance exercise. Twelve healthy men performed 3 workout protocols in a randomized order: wearing a surgical or filtering facepiece 2 (FFP2) mask or without a mask. Each workout consisted of 3 sets of 10 repetitions of bench press (BP) and parallel squat (SQ) with a 12 repetition maximum load, including 2 minutes of recovery between sets and exercises. Mechanical performance was evaluated through the mean propulsive velocity and the number of repetitions completed during each session. Physiological responses were the oxygen saturation (SpO2), blood lactate concentration, heart rate (HR), and HR variability. Perceived exertion was recorded after each set, and The Beck Anxiety Inventory scale was completed at the end of each workout. The number of repetitions completed and the session mean propulsive velocity {(BP [m·s-1]: surgical: 0.35 ± 0.05; FFP2: 0.36 ± 0.04; nonmask: 0.38 ± 0.06) and (SQ: surgical: 0.43 ± 0.05; FFP2: 0.40 ± 0.07; nonmask: 0.41 ± 0.05)} were similar between conditions (p > 0.05). Heart rate recorded during sessions was similar across conditions: surgical: 119 ± 14, FFP2: 117 ± 13, and nonmask: 118 ± 10 bpm (p = 0.919). Face masks had no effect on SpO2, blood lactate concentration, HR variability, perceived exertion, and anxiety values (p > 0.05). Face masks do not compromise strength performance, physiological parameters, and perceived comfort of young and healthy individuals during a high-intensity resistance training session.
Collapse
Affiliation(s)
- Jessica Rial-Vázquez
- Performance and Health Group, Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, A Coruña, Spain; and
| | - Iván Nine
- Performance and Health Group, Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, A Coruña, Spain; and
| | - Jose María Guerrero-Moreno
- Performance and Health Group, Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, A Coruña, Spain; and
| | - María Rúa-Alonso
- Performance and Health Group, Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, A Coruña, Spain; and
| | - Juan Fariñas
- Performance and Health Group, Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, A Coruña, Spain; and
| | - Gonzalo Márquez
- Faculty of Sports Sciences and Physical Education, University of A Coruna, A Coruña, Spain
| | - Manuel Avelino Giráldez-García
- Performance and Health Group, Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, A Coruña, Spain; and
| | | | - Hugo López-Pillado
- Faculty of Sports Sciences and Physical Education, University of A Coruna, A Coruña, Spain
| | - Etham Coutado-Sánchez
- Faculty of Sports Sciences and Physical Education, University of A Coruna, A Coruña, Spain
| | | | - Eliseo Iglesias-Soler
- Performance and Health Group, Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, A Coruña, Spain; and
| |
Collapse
|
4
|
Effects of High-Intensity Exercise on Physiological Indicators of Recovery Period by Wearing Face Masks of Elite Athletes. Healthcare (Basel) 2023; 11:healthcare11020268. [PMID: 36673636 PMCID: PMC9858813 DOI: 10.3390/healthcare11020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Athletes need to maintain the necessary physical conditioning for sports performance while wearing face masks to reduce the risk of virus transmission during training and competition during the COVID-19 situation. The quantitative and physiological effects of face masks on exercise capacity needs to be reported. The purpose of this study was to evaluate elite athletes to quantify, in detail, the effect of a KF94 face mask on changes in lactic acid during recovery after high-intensity aerobic exercise. Thirteen elite soft tennis athletes were recruited. A crossover design was used to examine the effects of using a disposable KF94 face mask compared with not masking during exercise. The participants completed a shuttle run test experiment two times during a 3-day period, including 5−10 min of warmup according to their personal preferences. The lactic acid concentration at 20 min of recovery after maximum exercise was 5.98 ± 1.53 mM/L without a mask and 7.61 ± 1.85 mM/L with a KF94 mask (p < 0.001). The maximum laps of shuttle run tests were 101.5 ± 22.5 laps without a mask and 94.2 ± 20.2 laps with a KF94 mask (p < 0.001). Intense exercise after wearing quarantine masks reduces the maximum aerobic exercise ability and decreases the ability to recover lactic acid.
Collapse
|
5
|
Benjanuvatra N, Bradbury D, Landers G, Goods PSR, Girard O. How does multi-set high-load resistance exercise impact neuromuscular function in normoxia and hypoxia? Eur J Sport Sci 2022:1-10. [PMID: 35770524 DOI: 10.1080/17461391.2022.2095929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study examined whether hypoxia during multi-set, high-load resistance exercise alters neuromuscular responses. Using a single-blinded (participants), randomised crossover design, eight resistance-trained males completed five sets of five repetitions of bench press at 80% of one repetition maximum in moderate normobaric hypoxia (inspiratory oxygen fraction = 0.145) and normoxia. Maximal isometric bench press trials were performed following the warm-up, after 10 min of altitude priming and 5 min post-session (outside, inside and outside the chamber, respectively). Force during pre-/post-session maximal voluntary isometric contractions and bar velocity during exercise sets were measured along with surface electromyographic (EMG) activity of the pectoralis major, anterior deltoid and lateral and medial triceps muscles. Two-way repeated measures ANOVA (condition×time) were used. A significant time effect (p = 0.048) was found for mean bar velocity, independent of condition (p = 0.423). During sets of the bench press exercise, surface EMG amplitude of all studied muscles remained unchanged (p > 0.187). During maximal isometric trials, there were no main effects of condition (p > 0.666) or time (p > 0.119), nor were there any significant condition×time interactions for peak or mean forces and surface EMG amplitudes (p > 0.297). Lower end-exercise blood oxygen saturation (90.9 ± 1.8 vs. 98.6 ± 0.6%; p < 0.001) and higher blood lactate concentration (5.8 ± 1.4 vs. 4.4 ± 1.6 mmol/L; p = 0.007) values occurred in hypoxia. Acute delivery of systemic normobaric hypoxia during multi-set, high-load resistance exercise increased metabolic stress. However, only subtle neuromuscular function adjustments occurred with and without hypoxic exposure either during maximal isometric bench press trials before versus after the session or during actual exercise sets.
Collapse
Affiliation(s)
- N Benjanuvatra
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia
| | - D Bradbury
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia
| | - G Landers
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia
| | - P S R Goods
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia.,Murdoch Applied Sports Science Laboratory, Murdoch University, WA, Australia, 6150.,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia, 6150
| | - O Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
6
|
Initial Maximum Push-Rim Propulsion and Sprint Performance in Elite Women's Wheelchair Basketball: Differences Between Players' Functional Classification. Int J Sports Physiol Perform 2022; 17:1187-1195. [PMID: 35649515 DOI: 10.1123/ijspp.2021-0469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/14/2022] [Accepted: 04/17/2022] [Indexed: 11/18/2022]
Abstract
The aim of the present study was to determine, for the first time in elite women's wheelchair basketball, the differences in the initial maximum push-rim propulsion (IMPRP), mechanical outputs, and sprint performance between A category (≤2.5 class) and B category (≥3 class) players. A secondary aim was to assess the association between IMPRP mechanical outputs and sprint performance to determine the influence of specific strength in the latter. Sixteen Spanish women's wheelchair basketball players participated in this study: A category (n = 9, International Wheelchair Basketball Federation [IWBF] classification range: 1-2.5 points) and B category (n = 7, IWBF classification range: 3-4.5 points). All the players undertook 2 tests: the IMPRP test to measure the strength variables and the 3-, 5-, and 12-m sprint test. B category players reported significantly better performance values in almost all the IMPRP variables and all the sprint distances than A category players. Large to very large significant correlations were observed among IMPRP absolute mechanical outputs (excepting mean power) and sprint performance (3, 5, and 12 m) for all the participants. When the group was divided according to categories A and B, the significant differences observed in the whole group decreased in both groups, although some relationships were large or very large. The IMPRP test and sprint test (3, 5, and 12 m) seemed to be sensitive to differentiate the level between the 2 functional categories. In addition, there was a high association between strength and sprint variables, which shows that greater strength could improve sprint capacity.
Collapse
|
7
|
Benavente C, Feriche B, Olcina G, Schoenfeld BJ, Camacho-Cardenosa A, Almeida F, Martínez-Guardado I, Timon R, Padial P. Inter-set rest configuration effect on acute physiological and performance-related responses to a resistance training session in terrestrial vs simulated hypoxia. PeerJ 2022; 10:e13469. [PMID: 35607454 PMCID: PMC9123884 DOI: 10.7717/peerj.13469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/29/2022] [Indexed: 01/14/2023] Open
Abstract
Background Metabolic stress is considered a key factor in the activation of hypertrophy mechanisms which seems to be potentiated under hypoxic conditions.This study aimed to analyze the combined effect of the type of acute hypoxia (terrestrial vs simulated) and of the inter-set rest configuration (60 vs 120 s) during a hypertrophic resistance training (RT) session on physiological, perceptual and muscle performance markers. Methods Sixteen active men were randomized into two groups based on the type of hypoxia (hypobaric hypoxia, HH: 2,320 m asl; vs normobaric hypoxia, NH: FiO2 of 15.9%). Each participant completed in a randomly counterbalanced order the same RT session in four separated occasions: two under normoxia and two under the corresponding hypoxia condition at each prescribed inter-set rest period. Volume-load (load × set × repetition) was calculated for each training session. Muscle oxygenation (SmO2) of the vastus lateralis was quantified during the back squat exercise. Heart rate (HR) was monitored during training and over the ensuing 30-min post-exercise period. Maximal blood lactate concentration (maxLac) and rating of perceived exertion (RPE) were determined after the exercise and at the end of the recovery period. Results Volume-load achieved was similar in all environmental conditions and inter-set rest period length did not appreciably affect it. Shorter inter-set rest periods displayed moderate increases in maxLac, HR and RPE responses in all conditions. Compared to HH, NH showed a moderate reduction in the inter-set rest-HR (ES > 0.80), maxLac (ES > 1.01) and SmO2 (ES > 0.79) at both rest intervals. Conclusions Results suggest that the reduction in inter-set rest intervals from 120 s to 60 s provide a more potent perceptual, cardiovascular and metabolic stimulus in all environmental conditions, which could maximize hypertrophic adaptations in longer periods of training. The abrupt exposure to a reduced FiO2 at NH seems to reduce the inter-set recovery capacity during a traditional hypertrophy RT session, at least during a single acute exposition. These results cannot be extrapolated to longer training periods.
Collapse
Affiliation(s)
- Cristina Benavente
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Belén Feriche
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Guillermo Olcina
- Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain
| | - Brad J. Schoenfeld
- Department of Health Sciences, CUNY Lehman College, New York, United States of America
| | | | - Filipa Almeida
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Ismael Martínez-Guardado
- Faculty of Education, BRABE Group, Department of Psychology. Faculty of Life and Nature Sciences, University of Nebrija, Madrid, Spain
| | - Rafael Timon
- Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain
| | - Paulino Padial
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
8
|
Effects of Resistance Training in Hypobaric vs. Normobaric Hypoxia on Circulating Ions and Hormones. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063436. [PMID: 35329124 PMCID: PMC8949299 DOI: 10.3390/ijerph19063436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 11/25/2022]
Abstract
Hypobaric hypoxia (HH) seems to lead to different responses compared to normobaric hypoxia (NH) during physical conditioning. The aim of the study was to analyze the hormonal and circulating ion responses after performing high-intensity resistance training with different inter-set rest under HH and NH condition. Sixteen male volunteers were randomly divided into two training groups. Each group completed two counterbalanced resistance training sessions (three sets × ten repetitions, remaining two repetitions in reserve), with both one- and two-minute inter-set rest, under HH and NH. Blood samples were obtained to determine hormones and circulating ions (Ca2+, Pi, and HCO3−) at baseline and after training sessions (5, 10, and 30 min). Resistance training with one-minute rest caused greater hormonal stress than with two-minute rest in cortisol and growth hormone, although the hypoxic environmental condition did not cause any significant alterations in these hormones. The short inter-set rest also caused greater alterations in HCO3− and Pi than the longer rest. Additionally, higher levels of Ca2+ and Pi, and lower levels of HCO3−, were observed after training in HH compared to NH. Metabolic and physiological responses after resistance training are mediated by inter-set rest intervals and hypoxic environmental condition. According to the alterations observed in the circulating ions, HH could cause greater muscular fatigue and metabolic stress than NH.
Collapse
|
9
|
Karayigit R, Eser MC, Sahin FN, Sari C, Sanchez-Gomez A, Dominguez R, Koz M. The Acute Effects of Normobaric Hypoxia on Strength, Muscular Endurance and Cognitive Function: Influence of Dose and Sex. BIOLOGY 2022; 11:biology11020309. [PMID: 35205175 PMCID: PMC8869765 DOI: 10.3390/biology11020309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 01/23/2023]
Abstract
The aim of this study was to examine the acute effects of different levels of hypoxia on maximal strength, muscular endurance, and cognitive function in males and females. In total, 13 males (mean ± SD: age, 23.6 ± 2.8 years; height, 176.6 ± 3.9 cm; body mass, 76.6 ± 2.1 kg) and 13 females (mean ± SD: age, 22.8 ± 1.4 years; height, 166.4 ± 1.9 cm; body mass, 61.6 ± 3.4 kg) volunteered for a randomized, double-blind, crossover study. Participants completed a one repetition strength and muscular endurance test (60% of one repetition maximum to failure) for squat and bench press following four conditions; (i) normoxia (900 m altitude; FiO2: 21%); (ii) low dose hypoxia (2000 m altitude; FiO2: 16%); (iii) moderate dose hypoxia (3000 m altitude; FiO2: 14%); and (iv) high dose hypoxia (4000 m altitude; FiO2: 12%). Heart rate, blood lactate, rating of perceived exertion, and cognitive function was also determined during each condition. The one repetition maximum squat (p = 0.33) and bench press (p = 0.68) did not differ between conditions or sexes. Furthermore, squat endurance did not differ between conditions (p = 0.34). There was a significant decrease in bench press endurance following moderate (p = 0.02; p = 0.04) and high (p = 0.01; p = 0.01) doses of hypoxia in both males and females compared to normoxia and low dose hypoxia, respectively. Cognitive function, ratings of perceived exertion, and lactate were also significantly different in high and moderate dose hypoxia conditions compared to normoxia (p < 0.05). Heart rate was not different between the conditions (p = 0.30). In conclusion, high and moderate doses of acute normobaric hypoxia decrease upper body muscular endurance and cognitive performance regardless of sex; however, lower body muscular endurance and maximal strength are not altered.
Collapse
Affiliation(s)
- Raci Karayigit
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey; (M.C.E.); (F.N.S.)
- Correspondence: ; Tel.: +90-312-600-0100
| | - Mustafa Can Eser
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey; (M.C.E.); (F.N.S.)
| | - Fatma Nese Sahin
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey; (M.C.E.); (F.N.S.)
| | - Cengizhan Sari
- Faculty of Sport Sciences, Muş Alparslan University, Muş 49001, Turkey;
| | - Angela Sanchez-Gomez
- Department of Nursing Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Córdoba, 14000 Córdoba, Spain;
| | - Raul Dominguez
- Departamento de Motricidad Humana y Rendimiento Deportivo, Universidad de Sevilla, 41013 Sevilla, Spain;
| | - Mitat Koz
- Physiotherapy and Rehabilitation Department, Faculty of Health Sciences, Eastern Mediterranean University, North Cyprus, Mersin, Famagusta 99628, Turkey;
| |
Collapse
|
10
|
Moberg M, Apró W, Horwath O, Hall G, Blackwood SJ, Katz A. Acute normobaric hypoxia blunts contraction-mediated mTORC1- and JNK-signaling in human skeletal muscle. Acta Physiol (Oxf) 2022; 234:e13771. [PMID: 34984845 PMCID: PMC9285439 DOI: 10.1111/apha.13771] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/28/2021] [Accepted: 01/01/2022] [Indexed: 12/26/2022]
Abstract
Aim Hypoxia has been shown to reduce resistance exercise‐induced stimulation of protein synthesis and long‐term gains in muscle mass. However, the mechanism whereby hypoxia exerts its effect is not clear. Here, we examine the effect of acute hypoxia on the activity of several signalling pathways involved in the regulation of muscle growth following a bout of resistance exercise. Methods Eight men performed two sessions of leg resistance exercise in normoxia or hypoxia (12% O2) in a randomized crossover fashion. Muscle biopsies were obtained at rest and 0, 90,180 minutes after exercise. Muscle analyses included levels of signalling proteins and metabolites associated with energy turnover. Results Exercise during normoxia induced a 5‐10‐fold increase of S6K1Thr389 phosphorylation throughout the recovery period, but hypoxia blunted the increases by ~50%. Phosphorylation of JNKThr183/Tyr185 and the JNK target SMAD2Ser245/250/255 was increased by 30‐ to 40‐fold immediately after the exercise in normoxia, but hypoxia blocked almost 70% of the activation. Throughout recovery, phosphorylation of JNK and SMAD2 remained elevated following the exercise in normoxia, but the effect of hypoxia was lost at 90‐180 minutes post‐exercise. Hypoxia had no effect on exercise‐induced Hippo or autophagy signalling and ubiquitin‐proteasome related protein levels. Nor did hypoxia alter the changes induced by exercise in high‐energy phosphates, glucose 6‐P, lactate or phosphorylation of AMPK or ACC. Conclusion We conclude that acute severe hypoxia inhibits resistance exercise‐induced mTORC1‐ and JNK signalling in human skeletal muscle, effects that do not appear to be mediated by changes in the degree of metabolic stress in the muscle.
Collapse
Affiliation(s)
- Marcus Moberg
- Åstrand Laboratory Department of Physiology, Nutrition and Biomechanics Swedish School of Sport and Health Sciences Stockholm Sweden
- Department of Physiology and Pharmacology Karolinska Institute Stockholm Sweden
| | - William Apró
- Åstrand Laboratory Department of Physiology, Nutrition and Biomechanics Swedish School of Sport and Health Sciences Stockholm Sweden
- Department of Clinical Science, Intervention and Technology Karolinska Institute Stockholm Sweden
| | - Oscar Horwath
- Åstrand Laboratory Department of Physiology, Nutrition and Biomechanics Swedish School of Sport and Health Sciences Stockholm Sweden
| | - Gerrit Hall
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Clinical Metabolomics Core Facility, Clinical Biochemistry Rigshospitalet Copenhagen Denmark
| | - Sarah Joan Blackwood
- Åstrand Laboratory Department of Physiology, Nutrition and Biomechanics Swedish School of Sport and Health Sciences Stockholm Sweden
| | - Abram Katz
- Åstrand Laboratory Department of Physiology, Nutrition and Biomechanics Swedish School of Sport and Health Sciences Stockholm Sweden
| |
Collapse
|
11
|
Girard O, Mariotti-Nesurini L, Malatesta D. Acute performance and physiological responses to upper-limb multi-set exercise to failure: Effects of external resistance and systemic hypoxia. Eur J Sport Sci 2021; 22:1877-1888. [PMID: 34736360 DOI: 10.1080/17461391.2021.2002951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study quantified performance and physiological responses during multi-set resistance exercise to failure at light versus moderate loads in normoxia and systemic hypoxia. On separate visits, fifteen resistance-trained adults performed barbell biceps curl exercise trials (6 sets to failure, 2 min rest between sets) in four separate randomised conditions; i.e. in normoxia at 380 m above sea level or systemic hypoxia at ∼3800 m simulated altitude (inspired oxygen fraction = 20.9% and 12.9%, respectively) combined with two different intensity levels (30% and 70% of 1 repetition maximal or 1RM). Muscle activation (root mean square value calculated from surface electromyography) and oxygenation (integrated-tissue saturation index derived from near-infrared spectroscopy) were monitored for the biceps brachii muscle. The total number of repetitions before failure at 30% 1RM (122 ± 5 vs. 131 ± 5; P = 0.021), but not 70% 1RM (39 ± 1 vs. 41 ± 2; P = 0.313), was lower in hypoxia compared to normoxia. Root mean square activity of the biceps brachii muscle was higher for 70% 1RM compared to 30% 1RM (P < 0.001), while the increase in muscle activation from the first to the last set (P < 0.001) occurred independently of altitude (P > 0.158). Deoxygenation and reoxygenation responses were higher under hypoxic versus normoxic conditions at 70% 1 RM (P = 0.013 and P = 0.015) but not 30% 1RM (P = 0.528 and P = 0.384). During upper-limb multi-set resistance exercise to failure, exposure to acute normobaric hypoxia negatively impacts performance at light, but not moderate, loads. Overall, external resistance has more profound effects on physiological strain than hypoxic exposure per se.Highlights The addition of acute systemic hypoxia negatively affects work performed at low, but not moderate, loads during upper-limb resistance exercise to failure.Hypoxic exposure, however, does not fundamentally alter muscle activation and oxygenation patterns.Muscle activation and oxygenation responses in turn are more largely influenced by load lifted.
Collapse
Affiliation(s)
- Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Australia
| | - Luca Mariotti-Nesurini
- Institute of Sport Sciences of the University of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Davide Malatesta
- Institute of Sport Sciences of the University of Lausanne, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Rosa BV, Rossi FE, Moura HPDSND, Santos AMDS, Véras-Silva AS, Ribeiro SLG, Nakamura FY, Pereira Dos Santos MA. Effects of FFP2/N95 face mask on low- and high-load resistance exercise performance in recreational weight lifters. Eur J Sport Sci 2021; 22:1326-1334. [PMID: 34365900 DOI: 10.1080/17461391.2021.1953613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
COVID-19 pandemic, has led to several countries adopting the use of masks in public spaces. Mask used during physical exercise it may induce early fatigue. However, despite the results with aerobic exercise, as far as we know, no studies have been carried out on wearing a mask during resistance exercise.This randomized, crossover study verified the acute effect of an FFP2/N95 face mask on moderate- and high-load upper body resistance exercise performance in recreational weight lifters.The FFP2/N95 face mask impacted performance, evaluated with bar velocity, in the high-intensity resistance bench press exercise until movement failure but decreased oxygen saturation and increased rate of perceived effort only in the moderate-intensity exercise.
Collapse
Affiliation(s)
- Bruno Viana Rosa
- Master's student in Science and Health, Immunometabolism of Skeletal Muscle and Exercise Research Group and Nucleus of Study in Physiology Applied to Performance and Health (NEFADS), Department of Physical Education, Federal University of Piaui (UFPI), Teresina-PI, Brazil
| | - Fabrício Eduardo Rossi
- Immunometabolism of Skeletal Muscle and Exercise Research Group, Department of Physical Education and Associate Professor at Graduation Program in Science and Health, Federal University of Piaui (UFPI), Teresina-PI, Brazil
| | - Helton Pereira Dos Santos Nunes de Moura
- Master's student in Science and Health and Immunometabolism of Skeletal Muscle and Exercise Research Group, Department of Physical Education, Federal University of Piaui (UFPI), Teresina-PI, Brazil
| | - Arilene Maria da Silva Santos
- Master's student in Science and Health and Immunometabolism of Skeletal Muscle and Exercise Research Group, Department of Physical Education, Federal University of Piaui (UFPI), Teresina-PI, Brazil
| | | | | | - Fabio Yuzo Nakamura
- Research Center in Sports Sciences, Health Sciences, and Human Development, University Institute of Maia, Maia, Portugal. . Associate Graduate Program in Physical Education Universidade de Pernambuco/Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Marcos Antonio Pereira Dos Santos
- Nucleus of Study in Physiology Applied to Performance and Health (NEFADS), Department of Biophysics and Physiology, Federal University of Piaui, Teresina-PI, Brazil
| |
Collapse
|
13
|
Hormonal and Inflammatory Responses to Hypertrophy-Oriented Resistance Training at Acute Moderate Altitude. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084233. [PMID: 33923577 PMCID: PMC8072638 DOI: 10.3390/ijerph18084233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 12/27/2022]
Abstract
This study investigated the effect of a traditional hypertrophy-oriented resistance training (RT) session at acute terrestrial hypoxia on inflammatory, hormonal, and the expression of miR-378 responses associated with muscular gains. In a counterbalanced fashion, 13 resistance trained males completed a hypertrophic RT session at both moderate-altitude (H; 2320 m asl) and under normoxic conditions (N; <700 m asl). Venous blood samples were taken before and throughout the 30 min post-exercise period for determination of cytokines (IL6, IL10, TNFα), hormones (growth hormone [GH], cortisol [C], testosterone), and miR-378. Both exercise conditions stimulated GH and C release, while miR-378, testosterone, and inflammatory responses remained near basal conditions. At H, the RT session produced a moderate to large but nonsignificant increase in the absolute peak values of the studied cytokines. miR-378 revealed a moderate association with GH (r = 0.65; p = 0.026 and r = −0.59; p = 0.051 in N and H, respectively) and C (r = 0.61; p = 0.035 and r = 0.75; p = 0.005 in N and H, respectively). The results suggest that a RT session at H does not differentially affect the hormonal, inflammatory, and miR-378 responses compared to N. However, the standardized mean difference detected values in the cytokines suggest an intensification of the inflammatory response in H that should be further investigated.
Collapse
|
14
|
Ramos-Campo DJ, Pérez-Piñero S, Muñoz-Carrillo JC, López-Román FJ, García-Sánchez E, Ávila-Gandía V. Acute Effects of Surgical and FFP2 Face Masks on Physiological Responses and Strength Performance in Persons with Sarcopenia. BIOLOGY 2021; 10:biology10030213. [PMID: 33799555 PMCID: PMC8001820 DOI: 10.3390/biology10030213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Study comparing the use of a surgical mask, FFP2 or none in people with sarcopenia during a resistance training session on strength performance, heart rate, heart rate variability, blood lactate concentration or rating of perceived effort. Abstract Due to COVID-19, wearing a face mask to reduce virus transmission is currently mandatory in some countries when participants practice exercise in sports centers. Therefore, the aim of the present study was to analyze the effect of wearing a surgical or FFP2 mask during a resistance training session. Fourteen people with sarcopenia (age: 59.40 ± 5.46 years; weight: 68.78 ± 8.31 kg; height: 163.84 ± 9.08 cm) that participated in the study performed three training sessions in a randomized order: 4 sets of 10 repetitions of a half-squat at 60% of the one-repetition maximum and 90 s of rest between set and were either (a) without a mask (NM), (b) wearing a surgical face mask (SM), and (c) wearing a FFP2 face mask (FFP2). We found that wearing face masks had no effect on strength performance (session mean propulsive velocity (m/s): WM: 0.396 ± 0.042; SM: 0.387 ± 0.037; and FFP2: 0.391 ± 0.042 (p = 0.918)). Additionally, no impact of wearing a mask was found on heart rate, heart rate variability, blood lactate concentration (WM: 4.17 ± 1.89; SM: 4.49 ± 2.07; and FFP2: 5.28 ± 2.45 mmol/L (p = 0.447)), or rating of perceived exertion. Wearing a surgical or FFP2 face mask during a resistance training session resulted in similar strength performance and physiological responses than the same exercise without a mask in persons with sarcopenia.
Collapse
Affiliation(s)
| | - Silvia Pérez-Piñero
- Department of Exercise Physiology, Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain; (J.C.M.-C.); (F.J.L.-R.); (V.Á.-G.)
- Correspondence:
| | - Juan Carlos Muñoz-Carrillo
- Department of Exercise Physiology, Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain; (J.C.M.-C.); (F.J.L.-R.); (V.Á.-G.)
| | - Francisco Javier López-Román
- Department of Exercise Physiology, Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain; (J.C.M.-C.); (F.J.L.-R.); (V.Á.-G.)
- Primary Care Research Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Esther García-Sánchez
- Fundación para la Formación e Invetigación Sanitarias de la Región de Murcia, 30003 Murcia, Spain;
| | - Vicente Ávila-Gandía
- Department of Exercise Physiology, Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain; (J.C.M.-C.); (F.J.L.-R.); (V.Á.-G.)
| |
Collapse
|
15
|
Resistance Training in Hypoxia as a New Therapeutic Modality for Sarcopenia-A Narrative Review. Life (Basel) 2021; 11:life11020106. [PMID: 33573198 PMCID: PMC7912455 DOI: 10.3390/life11020106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
Hypoxic training is believed to be generally useful for improving exercise performance in various athletes. Nowadays, exercise intervention in hypoxia is recognized as a new therapeutic modality for health promotion and disease prevention or treatment based on the lower mortality and prevalence of people living in high-altitude environments than those living in low-altitude environments. Recently, resistance training in hypoxia (RTH), a new therapeutic modality combining hypoxia and resistance exercise, has been attempted to improve muscle hypertrophy and muscle function. RTH is known to induce greater muscle size, lean mass, increased muscle strength and endurance, bodily function, and angiogenesis of skeletal muscles than traditional resistance exercise. Therefore, we examined previous studies to understand the clinical and physiological aspects of sarcopenia and RTH for muscular function and hypertrophy. However, few investigations have examined the combined effects of hypoxic stress and resistance exercise, and as such, it is difficult to make recommendations for implementing universal RTH programs for sarcopenia based on current understanding. It should also be acknowledged that a number of mechanisms proposed to facilitate the augmented response to RTH remain poorly understood, particularly the role of metabolic, hormonal, and intracellular signaling pathways. Further RTH intervention studies considering various exercise parameters (e.g., load, recovery time between sets, hypoxic dose, and intervention period) are strongly recommended to reinforce knowledge about the adaptational processes and the effects of this type of resistance training for sarcopenia in older people.
Collapse
|
16
|
Lockhart C, Scott BR, Thoseby B, Dascombe BJ. Acute Effects of Interset Rest Duration on Physiological and Perceptual Responses to Resistance Exercise in Hypoxia. J Strength Cond Res 2021; 34:2241-2249. [PMID: 30063554 DOI: 10.1519/jsc.0000000000002755] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lockhart, C, Scott, BR, Thoseby, B, and Dascombe, BJ. Acute effects of interset rest duration on physiological and perceptual responses to resistance exercise in hypoxia. J Strength Cond Res 34(8): 2241-2249, 2020-This study aimed to determine whether manipulating interset rest periods during resistance training in hypoxia impacts on physiological and perceptual responses to exercise. Twelve healthy males completed 1 repetition maximum (1RM) testing for the bilateral leg extension, before completing 4 separate randomized trials comprising 5 × 10 repetitions of leg extensions at 70% 1RM. Experimental trials were completed in both moderate hypoxia (FIO2 = 15%) and normoxia (FIO2 = 21%), using interset rest periods of both 60 and 180 seconds for each environmental condition. Near-infrared spectroscopy was used to quantify muscle oxygenation of vastus lateralis , and surface electromyography assessed the activation of vastus lateralis and medialis. Blood lactate concentration ([BLa]) and midthigh circumference were assessed before and immediately after each trial. Heart rate (HR) responses, blood oxygen saturation, and rating of perceived exertion (RPE) were also assessed after each set and the whole session RPE (sRPE). Perceived quadriceps soreness was reported before, immediately after, and at 24 and 48 hours after each trial. Muscle activation (sets 4-5), RPE (sets 3-5), and sRPE were significantly (p < 0.05) higher in the 60-second trials of the resistance exercise protocol. Significant increases (p < 0.01) were observed for [BLa] and midthigh circumference across sets within each condition. No significant main effect was observed for interset rest duration or environmental condition for muscle oxygenation, HR, or perceived quadriceps soreness. These findings indicate that performing resistance exercise in hypoxia or normoxia with shortened interset rest periods increases muscle activation and perceived exertion, without exacerbating muscle soreness.
Collapse
Affiliation(s)
- Catriona Lockhart
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, La Trobe University, Bundoora, Victoria, Australia.,La Trobe Sport and Exercise Medicine Research Center, La Trobe University, Bundoora, Victoria, Australia; and
| | - Brendan R Scott
- School of Psychology and Exercise Science, Murdoch University, Perth, Western Australia, Australia
| | - Bradley Thoseby
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, La Trobe University, Bundoora, Victoria, Australia.,La Trobe Sport and Exercise Medicine Research Center, La Trobe University, Bundoora, Victoria, Australia; and
| | - Ben J Dascombe
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, La Trobe University, Bundoora, Victoria, Australia.,La Trobe Sport and Exercise Medicine Research Center, La Trobe University, Bundoora, Victoria, Australia; and
| |
Collapse
|
17
|
Andreu-Caravaca L, Chung LH, Ramos-Campo DJ, Marín-Cascales E, Encarnación-Martínez A, Rubio-Arias JÁ. Neuromuscular and Mobility Responses to a Vibration Session in Hypoxia in Multiple Sclerosis. Int J Sports Med 2020; 42:307-313. [PMID: 33075829 DOI: 10.1055/a-1273-8304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this study was to investigate the acute effects of vibration training (WBVT) under hypoxic and normoxic conditions on the voluntary rate of force development (RFD), balance and muscle oxygen saturation (SMO2) in persons with Multiple Sclerosis (MS). 10 participants completed the study (30% males, 44.4±7.7 years, 164.3±8.9 cm, 65.2±11.1 kg, 2.5±1.3 Expanded Disability Status Scale, 24.1±4.0 kg.m-2 BMI). Maximal force, RFD during isometric knee extension, static balance with eyes open and closed and sit-to-stand test were evaluated before and immediately after one session of WBVT (12 60-s bout of vibration; frequency 35 Hz; amplitude 4 mm; 1-min rest intervals) under both normoxic and hypoxic conditions. In addition, SMO2 of the gastrocnemius lateralis was assessed during each condition. No changes were found in force, static balance and sit-to-stand test. Time-to-peak RFD increased in the left leg (p=0.02) and tended to increase in the right leg (p=0.06) after the hypoxic session. SMO2 resulted in significant increases from the initial to final intervals of the WBVT under both hypoxic and normoxic conditions (p<0.05). Increases in SMO2 during WBVT demonstrates muscle work that may contribute to the observed muscle adaptations in long-term WBVT programs without inducing decreases in neuromuscular activation, physical function and balance within a session.
Collapse
Affiliation(s)
- Luis Andreu-Caravaca
- International Chair of Sports Medicine, Universidad Católica San Antonio de Murcia, Murcia.,Faculty of Sport, Universidad Católica San Antonio de Murcia, Murcia
| | - Linda H Chung
- UCAM Research Center for High Performance Sport, Universidad Católica San Antonio de Murcia, Murcia
| | | | - Elena Marín-Cascales
- UCAM Research Center for High Performance Sport, Universidad Católica San Antonio de Murcia, Murcia
| | - Alberto Encarnación-Martínez
- Department of Physical Education and Sports, Research Group in Sport Biomechanics (GIBD), University of Valencia, Valencia
| | - Jacobo Á Rubio-Arias
- LFE Research Group, Department of Health and Human Performance, Universidad Politecnica de Madrid, Madrid
| |
Collapse
|
18
|
Sessional work-rate does not affect the magnitude to which simulated hypoxia can augment acute physiological responses during resistance exercise. Eur J Appl Physiol 2020; 120:2159-2169. [PMID: 32705392 DOI: 10.1007/s00421-020-04440-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To investigate whether performing resistance exercise in hypoxia augments physiological and perceptual responses, and if altering work-rate by performing repetitions to failure compared to sub-maximally increases the magnitude of these responses. METHODS Twenty male university students (minimum of 2 year resistance training experience) completed four sessions, two in hypoxia (fraction of inspired oxygen [FiO2] = 0.13), and two in normoxia (FiO2 = 0.21). For each condition, session one comprised three sets to failure of shoulder press and bench press (high work-rate session), while session two involved the same volume load, distributed over six sets (low work-rate session). Muscle oxygenation (triceps brachii), surface electromyographic activity (anterior deltoid, pectoralis major, and triceps brachii), heart rate (HR), and arterial blood oxygen saturation were recorded. Blood lactate concentration ([Bla-]) was recorded pre-exercise and 2 min after each exercise. Muscle thickness was measured pre- and post-exercise via ultrasound. RESULTS Muscle oxygenation values during sets and inter-set rest periods were lower in hypoxia vs normoxia (p = 0.001). Hypoxia caused greater [Bla-] during the shoulder press of failure sessions (p = 0.003) and both shoulder press (p = 0.048) and bench press (p = 0.005) of non-failure sessions. Hypoxia increased HR during non-failure sessions (p < 0.001). There was no effect of hypoxia on muscular swelling, surface electromyographic activity, perceived exertion, or number of repetitions performed. CONCLUSIONS Hypoxia augmented metabolite accumulation, but had no impact on any other physiological or perceptual response compared to the equivalent exercise in normoxia. Furthermore, the magnitude to which hypoxia increased the measured physiological responses was not influenced by sessional work-rate.
Collapse
|
19
|
Effects on performance of active and passive hypoxia as a re-warm-up routine before a 100-metre swimming time trial: a randomized crossover study. Biol Sport 2020; 37:113-119. [PMID: 32508378 PMCID: PMC7249803 DOI: 10.5114/biolsport.2020.93035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/20/2020] [Accepted: 01/25/2020] [Indexed: 11/17/2022] Open
Abstract
Passive and active hypoxia could be used as a tool during a transitional phase to maintain the effects of warm-up and optimize athletic performance. Our purpose was to evaluate and compare the effects of four different re-warm-up strategies, i.e. rest in normoxia (RN) at FiO2 = 20.9%, rest in hypoxia (RH) at FiO2 = 15%, active (5 minutes dryland-based exercise circuit) in normoxia (AN) and active in hypoxia (AH), during the transitional phase, on subsequent 100 m maximal swimming performance. Thirteen competitive swimmers (n = 7 males; n = 6 females; age: 15.1±2.1 years; height: 164.7±8.8 cm; weight: 58.1±9.7 kg; 100 m season’s best time 72.0±11.8 s) completed a 20-minute standardized in-water warm-up followed by a 30-minute randomized transitional phase and 100 m freestyle time trial. Compared to AH (73.4±6.2 s), 100 m swim time trials were significantly (p = 0.002; η2 = 0.766) slower in RN (75.7±6.7 s; p = 0.01), AN (75.2±6.7 s; p = 0.038) and RH (75.0±6.4 s; p = 0.009). Moreover, compared to AH (36.3±0.4ºC), tympanic temperature was significantly lower (p<0.001; η2 = 0.828) at the end of the transitional phase in passive conditions (RN: 35.9±0.6; p = 0.032; RH: 36.0±0.4; p = 0.05). In addition, countermovement jump height at the end of the transitional phase was significantly higher in active than in passive conditions (p = 0.001; η2 = 0.728). A dryland-based circuit under hypoxia could be useful to swimmers, once it has attenuated the decline in tympanic temperature during a 30-minute transitional phase after warm-up, improving 100 m swimming performance in young amateur swimmers.
Collapse
|
20
|
Guardado IM, Ureña BS, Cardenosa AC, Cardenosa MC, Camacho GO, Andrada RT. Effects of strength training under hypoxic conditions on muscle performance, body composition and haematological variables. Biol Sport 2020; 37:121-129. [PMID: 32508379 PMCID: PMC7249800 DOI: 10.5114/biolsport.2020.93037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/20/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
The addition of a hypoxic stimulus during resistance training is suggested to increase the metabolic responses, enhancing hypertrophy and muscle strength. The purpose of this study was to investigate the effects of resistance training performed at submaximal intensities combined with normobaric hypoxia on muscular performance, body composition and haematological parameters. Thirty-two untrained subjects participated in this study (weight: 74.68±12.89 kg; height: 175±0.08 cm; BMI: 24.28±3.80 kg/m2). They were randomized to two groups: hypoxia (FiO2 = 13%) or normoxia (FiO2 = 20.9%). The training programme lasted 7 weeks (3 d/w) and several muscle groups were exercised (3 sets x 65-80% 1RM to failure). Measurements were taken before, after the training and after a 3-week detraining period. Body composition and muscle mass were assessed through skinfolds and muscle girths. Muscle strength was evaluated by the 1RM estimated test. Finally, haemoglobin and haematocrit were taken from the antecubital vein. Both groups improved their strength performance and muscle perimeters, but the hypoxia group obtained a greater increase in muscle mass (hypoxia: +1.80% vs. normoxia: +0.38%; p<0.05) and decrease in fat mass (hypoxia: -6.83% vs. normoxia: +1.26%; p<0.05) compared to the normoxia group. Additionally, haematocrit values were also higher for the hypoxia group after the detraining period (hypoxia: +2.20% vs. normoxia: -2.22%; p<0.05). In conclusion, resistance training under hypoxic conditions could increase muscle mass and decrease fat mass more effectively than training performed in normoxia, but without contributing to greater muscle strength.
Collapse
Affiliation(s)
| | - Braulio Sánchez Ureña
- School of Human Movement Sciences and Quality of Life, National University of Costa Rica, Costa Rica
| | | | | | | | - Rafael Timón Andrada
- GAEDAF Research Group. Faculty of Sport Science, University of Extremadura, Spain
| |
Collapse
|
21
|
Ramos-Campo DJ, Malta J, Olcina G, Timón R, Raimundo A, Tomas-Carus P. Impact of Active and Passive Hypoxia as Re-Warm-Up Activities on Rugby Players' Performance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2971. [PMID: 32344728 PMCID: PMC7216200 DOI: 10.3390/ijerph17082971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 01/19/2023]
Abstract
The aim of this study was to analyse the effect of four types of re-warm-up (R-WU) activity, namely rest in normoxia (RN) at FiO2 = 20.9%, rest in hypoxia (RH) at FiO2 = 15%, activity (4 × 5 jumps/15 s) in normoxia (AN) and activity in hypoxia (AH) on physical performance. Ten elite male rugby players completed a 15-min warm-up followed by one of the 15-min randomized R-WU strategies. After R-WU, countermovement jump (CMJ), 20 m sprint and repeat sprint ability (RSA) tests were assessed. Compared to passive strategies (RN and RH), tympanic temperature was higher after active R-WU (AN and AH) (p = 0.016). Higher values of CMJ height (p = 0.037) and 20 m sprint (p = 0.02) were found in AH than in RN. In addition, mean RSA was lower (p = 0.008) in AH than in RN and RH. Blood lactate concentration was higher (p = 0.007) after RN and AN strategies than after AH. Muscle O2 saturation (p = 0.021) and total Hb (p = 0.042) were higher after AH than after the other three conditions and after RN, respectively. Therefore, an active R-WU under hypoxia could be useful to elite rugby players, once it had attenuated the decline in tympanic temperature during a 15-min period after warm-up, improving jump, sprint and RSA performance.
Collapse
Affiliation(s)
| | - João Malta
- Departamento de Desporto e Saúde, Escola de Ciências e Tecnologia, Universidade de Évora, 7000-645 Évora, Portugal; (J.M.); (A.R.); (P.T.-C.)
- Comprehensive Health Research Centre (CHRC), University of Évora, 7000-645 Évora, Portugal
| | - Guillermo Olcina
- Faculty of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain; (G.O.); (R.T.)
| | - Rafael Timón
- Faculty of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain; (G.O.); (R.T.)
| | - Armando Raimundo
- Departamento de Desporto e Saúde, Escola de Ciências e Tecnologia, Universidade de Évora, 7000-645 Évora, Portugal; (J.M.); (A.R.); (P.T.-C.)
- Comprehensive Health Research Centre (CHRC), University of Évora, 7000-645 Évora, Portugal
| | - Pablo Tomas-Carus
- Departamento de Desporto e Saúde, Escola de Ciências e Tecnologia, Universidade de Évora, 7000-645 Évora, Portugal; (J.M.); (A.R.); (P.T.-C.)
- Comprehensive Health Research Centre (CHRC), University of Évora, 7000-645 Évora, Portugal
| |
Collapse
|
22
|
Effects of an Acute Pilates Program under Hypoxic Conditions on Vascular Endothelial Function in Pilates Participants: A Randomized Crossover Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072584. [PMID: 32283854 PMCID: PMC7178013 DOI: 10.3390/ijerph17072584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022]
Abstract
This study aimed to compare the effects of an acute Pilates program under hypoxic vs. normoxic conditions on the metabolic, cardiac, and vascular functions of the participants. Ten healthy female Pilates experts completed a 50-min tubing Pilates program under normoxic conditions (N trial) and under 3000 m (inspired oxygen fraction = 14.5%) hypobaric hypoxia conditions (H trial) after a 30-min exposure in the respective environments on different days. Blood pressure, branchial ankle pulse wave velocity, and flow-mediated dilation (FMD) in the branchial artery were measured before and after the exercise. Metabolic parameters and cardiac function were assessed every minute during the exercise. Both trials showed a significant increase in FMD; however, the increase in FMD was significantly higher after the H trial than that after the N trial. Furthermore, FMD before exercise was significantly higher in the H trial than in the N trial. In terms of metabolic parameters, minute ventilation, carbon dioxide excretion, respiratory exchange ratio, and carbohydrate oxidation were significantly higher but fat oxidation was lower during the H trial than during the N trial. In terms of cardiac function, heart rate was significantly increased during the H trial than during the N trial. Our results suggested that, compared to that under normoxic conditions, Pilates exercise under hypoxic conditions led to greater metabolic and cardiac responses and also elicited an additive effect on vascular endothelial function.
Collapse
|
23
|
Camacho-Cardenosa M, Camacho-Cardenosa A, Tomas-Carus P, Olcina G, Timón R, Brazo-Sayavera J. Effects of whole-body vibration under hypoxic exposure on muscle mass and functional mobility in older adults. Aging Clin Exp Res 2020; 32:625-632. [PMID: 31236796 DOI: 10.1007/s40520-019-01246-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Ageing is accompanied by a loss of muscle mass and function, which are associated with decrease of functional capacity. Combination of WBV training with normobaric hypoxic exposure could augment the beneficial effects due to synergic effects of both treatments. AIMS The purpose of this study was to examine the effects of 36 sessions of the combined WBV training and normobaric hypoxic exposure on muscle mass and functional mobility in older adults. METHODS Nineteen elderly people were randomly assigned to a: vibration normoxic exposure group (NWBV; n = 10; 20.9% FiO2) and vibration hypoxic exposure group (HWBV; n = 9). Participants developed 36 sessions of WBV training along 18 weeks, which included 4 bouts of 30 s (12.6 Hz in frequency and 4 mm in amplitude) with 60 s of rest between bouts, inside a hypoxic chamber for the HWBV. The "Timed Up and Go Test" evaluated functional mobility. Percentages of lean mass were obtained with dual-energy X-ray absorptiometry. RESULTS Neither statistically significant within group variations nor statistically significant differences between both groups were detected to any parameter. DISCUSSION Baseline characteristics of population, training protocol and the level of hypoxia employed could cause different adaptations on muscle mass and function. CONCLUSIONS The combination of WBV training and hypoxic exposure did not cause any effect on either legs lean mass or functional mobility of older adults.
Collapse
|
24
|
Supplementation of Re-Esterified Docosahexaenoic and Eicosapentaenoic Acids Reduce Inflammatory and Muscle Damage Markers after Exercise in Endurance Athletes: A Randomized, Controlled Crossover Trial. Nutrients 2020; 12:nu12030719. [PMID: 32182747 PMCID: PMC7146268 DOI: 10.3390/nu12030719] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 01/18/2023] Open
Abstract
This study aimed to analyse the effect of 10 weeks of a highly concentrated docosahexaenoic acid (DHA) + eicosapentaenoic (EPA) supplementation (ratio 8:1) on strength deficit and inflammatory and muscle damage markers in athletes. Fifteen endurance athletes participated in the study. In a randomized, double-blinded cross-over controlled design, the athletes were supplemented with a re-esterified triglyceride containing 2.1 g/day of DHA + 240 mg/day of EPA or placebo for 10 weeks. After a 4-week wash out period, participants were supplemented with the opposite treatment. Before and after each supplementation period, participants performed one eccentric-induced muscle damage exercise training session (ECC). Before, post-exercise min and 24 and 48 h after exercise, muscle soreness, knee isokinetic strength and muscle damage and inflammatory markers were tested. No significant differences in strength deficit variables were found between the two conditions in any of the testing sessions. However, a significant effect was observed in IL1β (p= 0.011) and IL6 (p= 0.009), which showed significantly lower values after DHA consumption than after placebo ingestion. Moreover, a significant main effect was observed in CPK (p = 0.014) and LDH-5 (p = 0.05), in which significantly lower values were found after DHA + EPA consumption. In addition, there was a significant effect on muscle soreness (p = 0.049), lower values being obtained after DHA + EPA consumption. Ten weeks of re-esterified DHA + EPA promoted lower concentrations of inflammation and muscle damage markers and decreased muscle soreness but did not improve the strength deficit after an ECC in endurance athletes.
Collapse
|
25
|
Pérez A, Ramos-Campo DJ, Marín-Pagan C, Martínez-Noguera FJ, Chung LH, Alcaraz PE. Impact of Polarized Versus Threshold Training on Fat Metabolism and Neuromuscular Variables in Ultrarunners. Int J Sports Physiol Perform 2020; 15:375-382. [PMID: 31614330 DOI: 10.1123/ijspp.2019-0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE To compare the effects of 2 different intensity distribution training programs (threshold [THR] and polarized [POL]) on fat metabolism and neuromuscular variables. METHODS Twenty ultrarunners were allocated to POL (n = 11; age 40.6 [9.7] y, weight 73.5 [10.8] kg, VO2max 55.8 [4.9] mL·kg-1·min-1) or THR group (n = 9; age 36.8 [9.2] y, weight 75.5 [10.4] kg, VO2max 57.1 [5.2] mL·kg-1·min-1) and performed a 12-week training program that consisted of 5 running sessions, 2 strength sessions, and 1 day of full rest per week. Both groups performed similar total training duration and load but with different intensity distribution during running sessions. Resting metabolic rate, fat metabolism, isometric rate of force development (RFD; N·s-1) and maximal voluntary contraction in the knee extensor, and electromyographic amplitude were measured before and after each program. RESULTS A significant decrease in RFD0-100 ms (Δ -13.4%; P ≤ .001; effect size [ES] = 1.00), RFD0-200 ms (Δ -11.7%; P ≤ .001; ES = 1.4), and RFDpeak (Δ -18%; P ≤ .001; ES = 1.4) were observed in the POL group. In THR group, a significant increase in mean electromyographic amplitude (Δ 24.4%; P = .02; ES = 1.4) was observed. There were no significant differences between groups in any of the variables. CONCLUSIONS Similar adaptations in fat metabolism and neuromuscular performance can be achieved after 12 weeks of POL or THR intensity distribution. However, THR distribution appears to better maintain strength (RFD) and improve mean electromyographic amplitude. Nevertheless, the combination of both running and maximum strength training could influence on results because of the residual fatigue thus inducing suboptimal adaptations in the POL group.
Collapse
|
26
|
Feriche B, Schoenfeld BJ, Bonitch-Gongora J, de la Fuente B, Almeida F, Argüelles J, Benavente C, Padial P. Altitude-induced effects on muscular metabolic stress and hypertrophy-related factors after a resistance training session. Eur J Sport Sci 2019; 20:1083-1092. [PMID: 31699003 DOI: 10.1080/17461391.2019.1691270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study examined the acute effects of exposure to moderate altitude on factors associated with muscular adaptations following whole-body hypertrophy-oriented resistance training (R T) sessions. Thirteen resistance-trained males completed both counterbalanced standard hypertrophic R T sessions (3 sets × 10RM, 2 min rest) at moderate-altitude (H; 2320 m asl) and under normoxic conditions (N; <700 m asl). Participants rested 72 h between training sessions. Before and after the exercise session, blood samples were obtained for determination of metabolites and ions (lactate, inorganic phosphate, liquid carbon dioxide and calcium) and hormones (testosterone and growth hormone). Session-related performance and perception of effort (s-RPE) were also monitored. Results showed no meaningful differences in performance or s-RPE (8.5 ± 1.4 vs 8.6 ± 0.8 respectively for N and H; p = 0.603). All blood variables displayed statistically significant changes throughout the recovery period compared to basal levels (p < 0.05), except for the testosterone. However, no altitude effect was observed in maximal blood lactate, calcium or anabolic hormones (p > 0.05). The reduction observed in the liquid carbon dioxide concentration in H (21.11 ± 1.46 vs 16.19 ± 1.61 mmol·l-1) seems compatible with an increase in buffering capacity. Compared to N, inorganic phosphate displayed lower recovery values after the R T in H (2.89 ± 0.64 vs 2.23 ± 0.60 mg dl-1; p = 0.007). The results of this study do not support an accentuated effect of acute moderate terrestrial hypoxia on metabolic and hormonal factors linked to muscle growth during hypertrophic resistance training.
Collapse
Affiliation(s)
- Belen Feriche
- Faculty of Sport Sciences, Department of Physical Education and Sport, University of Granada, Granada, Spain
| | - Brad J Schoenfeld
- Department of Health Sciences, CUNY Lehman College, New York, NY, USA
| | - Juan Bonitch-Gongora
- Faculty of Sport Sciences, Department of Physical Education and Sport, University of Granada, Granada, Spain
| | - Blanca de la Fuente
- High performance Center of Sierra Nevada, Spanish Sport Council, Granada, Spain
| | - Filipa Almeida
- Faculty of Sport Sciences, Department of Physical Education and Sport, University of Granada, Granada, Spain
| | - Javier Argüelles
- High performance Center of Sierra Nevada, Spanish Sport Council, Granada, Spain
| | - Cristina Benavente
- Faculty of Sport Sciences, Department of Physical Education and Sport, University of Granada, Granada, Spain
| | - Paulino Padial
- Faculty of Sport Sciences, Department of Physical Education and Sport, University of Granada, Granada, Spain
| |
Collapse
|
27
|
Rodríguez-Zamora L, Padial P, Schoenfeld BJ, Feriche B. Mean Propulsive Velocity Is a Viable Method for Adjusting the Resistance-Training Load at Moderate Altitude. Front Sports Act Living 2019; 1:52. [PMID: 33344975 PMCID: PMC7739744 DOI: 10.3389/fspor.2019.00052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/10/2019] [Indexed: 01/26/2023] Open
Abstract
We examined the viability of using mean propulsive velocity (MPV) to adjust the load in the countermovement jump (CMJ) at moderate altitude. Twenty-four volunteers were assigned to a 4-week power-oriented resistance training (RT) program in either normoxia (N, 690 m) or intermittent hypobaric hypoxia (IH, 2,320 m). The load was adjusted to maintain execution velocity of CMJ at 1m·s-1 of MPV. Relative peak power output (Prel), and percentage of velocity loss throughout the sets (VL) were determined for each session. The internal load was measured by the rating of perceived exertion (RPE). The absolute load lifted was higher in IH compared to N (75.6 ± 8.4 vs. 58.5 ± 12.3 kg P < 0.001). However, similar relative increases for both groups were found when comparing the final values (IH: 8.2%, P = 0.007; N: 9.8%, P = 0.03) with no changes in VL between groups (P = 0.36). Post-study Prel improved significantly only in IH (+7% W·kg-1, P = 0.002). Mean RPE was greater in IH vs. N (6.8 ± 1.5 vs. 5.6 ± 2, P < 0.001). The MPV seems to be a viable method for adjusting external load during RT at moderate altitude. However, given that RT at moderate altitude increases RPE, it is prudent to monitor internal load when using the MPV to best determine the actual physiological stress of the session.
Collapse
Affiliation(s)
- Lara Rodríguez-Zamora
- Division of Sport Sciences, School of Health and Medical Sciences, Örebro University, Örebro, Sweden.,Environmental Physiology Group, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Paulino Padial
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | | | - Belén Feriche
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
28
|
Valenzuela PL, Sánchez-Martínez G, Torrontegi E, Vázquez-Carrión J, González M, Montalvo Z, Millet GP. Acute Responses to On-Court Repeated-Sprint Training Performed With Blood Flow Restriction Versus Systemic Hypoxia in Elite Badminton Athletes. Int J Sports Physiol Perform 2019; 14:1280-1287. [PMID: 30958054 DOI: 10.1123/ijspp.2018-0878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE Repeated-sprint training (RS) is commonly conducted in normoxia, but its completion with localized (blood-flow restriction [BFR]) or systemic hypoxia has been proven effective for performance enhancement. Yet, few studies have applied these types of RS sessions in racket sports. The authors aimed to determine the acute responses to these types of training in elite badminton players. METHODS Eight male elite badminton players participated in this randomized crossover study. They performed 3 on-court RS sessions, each consisting of 3 sets of 10 repetitions of 10-s badminton-specific movements in normoxia (RSN), systemic normobaric hypoxia (RSH, FiO2 = 14%), or with BFR (RS-BFR, 40% arterial occlusion pressure). Performance, perceptual (ie, rating of perceived exertion), and physiological (ie, pulse saturation, muscle oxygenation, blood lactate, creatine kinase, heart-rate variability) responses were measured after each set and up to 48 h postsession. RESULTS RS-BFR induced a greater performance impairment (lower distance and accelerations) and a higher local perceived exertion in the legs than RSN and RSH (P < .05), whereas greater overall fatigue was reported with RSH (P < .05). RSH induced a lower saturation (P < .001), but no differences were observed in muscle oxygenation between conditions. No differences in creatine kinase or heart-rate variability were observed at any time point (from baseline up to 48 h after the session). CONCLUSIONS RS-BFR-and, to a lower extent, RSH-resulted in impaired performance and a higher perceived strain than RSN. However, these 2 hypoxic methods do not seem to induce a long-lasting (post 24-48 h) physiological stress in elite badminton players.
Collapse
|
29
|
Ramos-Campo DJ, Martínez-Guardado I, Rubio-Arias JA, Freitas TT, Othalawa S, Andreu L, Timón R, Alcaraz PE. Muscle Architecture and Neuromuscular Changes After High-Resistance Circuit Training in Hypoxia. J Strength Cond Res 2019; 35:3035-3040. [PMID: 31524779 DOI: 10.1519/jsc.0000000000003275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ramos-Campo, DJ, Martínez-Guardado, I, Rubio-Arias, JA, Freitas, TT, Othalawa, S, Andreu, L, Timón, R, and Alcaraz, PE. Muscle architecture and neuromuscular changes after high-resistance circuit training in hypoxia. J Strength Cond Res XX(X): 000-000, 2019-This study aimed to analyze the effect of 8 weeks of high-resistance circuit (HRC) training in hypoxia on muscle architecture, strength, and neuromuscular variables. Twenty-eight resistance-trained subjects were assigned to a hypoxia (FiO2 = 15%; HG: n = 15; age: 24.6 ± 6.8 years; height: 177.4 ± 5.9 cm; and mass: 74.9 ± 11.5 kg) or normoxia group (FiO2 = 20.9%; NG: n = 13; age: 23.2 ± 5.2 years; height: 173.4 ± 6.2 cm; and mass: 69.4 ± 7.4 kg). Each training session consisted of 2 blocks of 3 exercises (block 1: bench press, leg extension, and front lat pulldown; block 2: deadlift, elbow flexion, and ankle extension). Each exercise was performed with a 6 repetition maximum load. Subjects exercised twice weekly and, before and after the training program, vastus lateralis muscle thickness and pennation angle, knee extensors electromyographic activity, maximum voluntary contraction (MVC), and rate of force development (RFD) and H-Reflex (Hmax), M-wave of the soleus muscle were assessed. Both training groups showed similar improvements in muscle thickness (effect size [ES] = HG: 0.23; NG: 0.41), pennation angle (ES = HG: 0.86; NG: 0.15), MVC (ES HG: 0.63; NG: 0.61), Hmax (ES = HG: 0.96; NG: 0.40), RFD at 200 milliseconds (ES = HG: 0.31; NG: 0.61) and peak RFD (ES = HG: 0.21; NG: 0.66). No significant between-group differences were found. In conclusion, similar morphological and neuromuscular adaptations can be achieved after 8 weeks of HRC training under hypoxic or normoxic conditions.
Collapse
Affiliation(s)
- Domingo J Ramos-Campo
- Sport Science Faculty, Catholic University of Murcia, Murcia, Spain.,UCAM Research Center for High Performance Sport, Murcia, Spain
| | | | - Jacobo A Rubio-Arias
- Sport Science Faculty, Catholic University of Murcia, Murcia, Spain.,UCAM Research Center for High Performance Sport, Murcia, Spain
| | - Tomás T Freitas
- UCAM Research Center for High Performance Sport, Murcia, Spain
| | | | - Luis Andreu
- UCAM Research Center for High Performance Sport, Murcia, Spain
| | - Rafael Timón
- Sport Science Faculty, University of Extremadura, Cáceres, Spain
| | - Pedro E Alcaraz
- Sport Science Faculty, Catholic University of Murcia, Murcia, Spain.,UCAM Research Center for High Performance Sport, Murcia, Spain
| |
Collapse
|
30
|
Girard O, Willis SJ, Purnelle M, Scott BR, Millet GP. Separate and combined effects of local and systemic hypoxia in resistance exercise. Eur J Appl Physiol 2019; 119:2313-2325. [PMID: 31468172 DOI: 10.1007/s00421-019-04217-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/21/2019] [Indexed: 12/31/2022]
Abstract
PURPOSES This study quantified performance, physiological, and perceptual responses during resistance exercise to task failure with blood flow restriction (BFR), in systemic hypoxia, and with these stimuli combined. METHODS Fourteen young men were tested for 1-repetition maximum (1RM) in the barbell biceps curl and lying triceps extension exercises. On separate visits, subjects performed exercise trials (4 sets to failure at 70% 1RM with 90 s between sets) in six separate randomized conditions, i.e., in normoxia or hypoxia (fraction of inspired oxygen = 20.9% and 12.9%, respectively) combined with three different levels of BFR (0%, 45%, or 60% of resting arterial occlusion pressure). Muscle activation and oxygenation were monitored via surface electromyography and near-infrared spectroscopy, respectively. Arterial oxygen saturation, heart rate, and perceptual responses were assessed following each set. RESULTS Compared to set 1, the number of repetitions before failure decreased in sets 2, 3, and 4 for both exercises (all P < 0.001), independently of the condition (P > 0.065). Arterial oxygen saturation was lower with systemic hypoxia (P < 0.001), but not BFR, while heart rate did not differ between conditions (P > 0.341). Muscle oxygenation and activation during exercise trials remained unaffected by the different conditions (all P ≥ 0.206). A significant main effect of time, but not condition, was observed for overall perceived discomfort, difficulty breathing, and limb discomfort (all P < 0.001). CONCLUSION Local and systemic hypoxic stimuli, or a combination of both, did not modify the fatigue-induced change in performance, trends of muscle activation or oxygenation, nor exercise-related sensations during a multi-set resistance exercise to task failure.
Collapse
Affiliation(s)
- Olivier Girard
- Murdoch Applied Sports Science (MASS) Laboratory, Murdoch University, Perth, Australia. .,Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Sarah J Willis
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Marin Purnelle
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Brendan R Scott
- Murdoch Applied Sports Science (MASS) Laboratory, Murdoch University, Perth, Australia
| | - Grégoire P Millet
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
31
|
Effectiveness of Reverse vs. Traditional Linear Training Periodization in Triathlon. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16152807. [PMID: 31390818 PMCID: PMC6696421 DOI: 10.3390/ijerph16152807] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022]
Abstract
The present research aimed to analyze the modification in performance, body composition, and autonomic modulation of reverse and traditional linear training periodization in amateur triathletes. We analyzed running and swimming performance, strength manifestation, body composition, and autonomic modulation before and after a traditional linear training periodization (four weeks of volume-based training plus four weeks of intensity-based training plus two-week tapering), a reverse linear training periodization (four weeks of intensity-based training plus four weeks of volume-based training plus two-week tapering), and a free training control physical active group (10-week free training) in 32 amateur athletes. Independently of the periodization model, the combination of two four-week mesocycles followed by a two-week taper is an efficiency strategy to avoid overreaching, obtaining an increase in parasympathetic modulation. Moreover, both types of training periodization proposed in this study do not modified body composition of amateur triathletes. Also, compared with traditional periodization, reverse periodization efficiently improves horizontal jump performance. Finally, reverse and traditional periodization were an effective strategy to improve running biomechanical, performance, and physiological variables, as well as efficient periodization strategies to improve swimming technical ability, aerobic, and anaerobic swimming performance.
Collapse
|
32
|
Ramos-Campo DJ, Girard O, Pérez A, Rubio-Arias JÁ. Additive stress of normobaric hypoxic conditioning to improve body mass loss and cardiometabolic markers in individuals with overweight or obesity: A systematic review and meta-analysis. Physiol Behav 2019; 207:28-40. [PMID: 31047948 DOI: 10.1016/j.physbeh.2019.04.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 02/07/2023]
Abstract
We performed a systematic review and meta-analysis to determine if hypoxic conditioning, compared to similar training near sea level, maximizes body mass loss and further improves cardiometabolic markers in overweight and obese individuals. A systematic search of PubMed, Web of Science and the Cochrane Library databases (up to January 2019) was performed. This analysis included randomized controlled trials with humans with overweight or obesity assessing the effects of HC on body mass loss or cardiometabolic markers. A subgroup analysis was performed to examine if HC effects differed between individuals with overweight or obesity. 13 articles (336 participants) qualified for inclusion. HC significantly decreased body mass (p = .01), fat mass (p = .04), waist/hip ratio (p < .001), waist (p < .001), LDL (p = .01), diastolic (p < .01) and systolic blood pressure (p < .01) with these effects not being larger than equivalent normoxic interventions. There were trends towards higher triglycerides decrement (p = .06) and higher muscle mass gain in hypoxic (p = .08) compared with normoxic condition. Also, the two BMI categories displayed no difference in the magnitude of the responses. Compared to normoxic equivalent, HC provides greater reductions in triglycerides and greater muscle growth, while body mass changes are similar. In addition, HC responses were essentially similar between individuals with overweight or obesity.
Collapse
Affiliation(s)
- Domingo J Ramos-Campo
- Department of Physical Activity and Sports Sciences, Faculty of Sports, UCAM, Catholic University San Antonio, Murcia, Spain.
| | - Olivier Girard
- Murdoch Applied Sport Science Laboratory, Murdoch University, Perth, Australia
| | - Andrés Pérez
- UCAM Research Centre for High Performance Sport, Catholic University San Antonio, Murcia, Spain
| | - Jacobo Á Rubio-Arias
- Department of Physical Activity and Sports Sciences, Faculty of Sports, UCAM, Catholic University San Antonio, Murcia, Spain
| |
Collapse
|
33
|
Camacho-Cardenosa M, Camacho-Cardenosa A, Brazo-Sayavera J, Olcina G, Tomas-Carus P, Timón R. Evaluation of 18-Week Whole-Body Vibration Training in Normobaric Hypoxia on Lower Extremity Muscle Strength in an Elderly Population. High Alt Med Biol 2019; 20:157-164. [PMID: 31021265 DOI: 10.1089/ham.2018.0129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Therapeutic benefits of hypoxic training have been suggested for clinical populations, such as elderly who could suffer loss of lower limb muscle strength and higher risk of falling. This study investigated the effects of 18 weeks of whole-body vibration (WBV) training in normobaric hypoxia on the strength parameters of an elderly population. Thirty-one healthy elderly participants were randomly assigned to a hypoxic whole-body vibration group (HWBV; n = 10), normoxic whole-body vibration group (NWBV; n = 11), or control group (n = 10). The experimental groups received the same vibration treatment in a hypoxia chamber (HWBV: 16.1% fraction of inspired oxygen [FiO2]; NWBV: 21.0% FiO2). Isokinetic leg muscle strength was evaluated using a Biodex System-3 isokinetic dynamometer. Body composition was obtained with dual-energy X-ray absorptiometry. There were no significant differences between groups in either strength or body composition parameters. The NWBV group showed statistically significant improvements in the maximal strength of knee extensors, with a small effect size (p = 0.004; d = 0.54). No significant differences were found in any variable of the HWBV group. The combination of WBV training and exposure to normobaric cyclic hypoxia carried out in the present study did not have an effect on strength parameters in healthy elderly subjects.
Collapse
Affiliation(s)
| | | | - Javier Brazo-Sayavera
- 2 Instituto Superior de Educación Física, Universidad de la República, Rivera, Uruguay.,3 Polo de Desarrollo Universitario EFISAL, Rivera, Uruguay
| | - Guillermo Olcina
- 1 Faculty of Sport Science, University of Extremadura, Caceres, Spain
| | - Pablo Tomas-Carus
- 4 Departamento de Desporto e Saúde, Escola de Cie^ncia e Tecnologia, Universidade de Évora, Évora, Portugal.,5 Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal
| | - Rafael Timón
- 1 Faculty of Sport Science, University of Extremadura, Caceres, Spain
| |
Collapse
|
34
|
García-Fresneda A, Carmona G, Padullés X, Nuell S, Padullés JM, Cadefau JA, Iturricastillo A. Initial Maximum Push-Rim Propulsion and Sprint Performance in Elite Wheelchair Rugby Players. J Strength Cond Res 2019; 33:857-865. [PMID: 30640300 DOI: 10.1519/jsc.0000000000003015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
García-Fresneda, A, Carmona, G, Padullés, X, Nuell, S, Padullés, JM, Cadefau, JA, and Iturricastillo, A. Initial maximum push-rim propulsion and sprint performance in elite wheelchair rugby players. J Strength Cond Res 33(3): 857-865, 2019-Wheelchair rugby (WR) is an increasingly popular Paralympic sport; however, the evidence base supporting the validity and reliability of field tests to assess the physical condition of WR players is in its infancy. Therefore, here, we aimed to evaluate the intrasession reliability of the initial maximum push-rim propulsion (IMPRP) test and the sprint test, and to determine the relationships between IMPRP mechanical outputs and sprint performance variables. We studied 16 Spanish WR players (aged 33 ± 9 years). The maximum single wheelchair push from a stationary position and the sprint performance (i.e., times for 3, 5, and 12 m, and the maximum velocity) of elite WR players were measured in this study. The intraclass correlation coefficient, coefficient of variation, and standard error of measurement for IMPRP variables were >0.85, <10.6%, and <16.76, respectively; the corresponding values for a linear sprint were >0.97, <3.50%, and <0.15. In relation to IMPRP mechanical outputs (i.e., acceleration, maximum acceleration, force, maximum force, power, and maximum power) and sprint performance (i.e., times for 3, 5, and 12 m, and the maximum velocity), significant and large associations were observed in the WR players (r ± confidence limit = -0.78 ± 0.17 to -0.90 ± 0.11; 0/0/100, most likely; R = 0.613-0.812; p < 0.001). These tests provide simple and reliable methods for obtaining accurate mechanical pushing capacities and sprint performances of WR competitors (the 61.4-80.1% variance in sprint performance was explained by the IMPRP variables). These relationships indicate a need to implement specific strength exercises in WR players with the aim of improving the IMPRP and therefore improving sprint capacity.
Collapse
Affiliation(s)
- Adrian García-Fresneda
- TecnoCampus, College of Health Sciences, University of Pompeu Fabra, Mataró-Maresme, Spain.,National Institute of Physical Education of Catalonia, Barcelona, Spain
| | - Gerard Carmona
- TecnoCampus, College of Health Sciences, University of Pompeu Fabra, Mataró-Maresme, Spain.,National Institute of Physical Education of Catalonia, Barcelona, Spain.,Sport Performance Department, FC Barcelona, Barcelona, Spain
| | - Xabier Padullés
- National Institute of Physical Education of Catalonia, Barcelona, Spain
| | - Sergi Nuell
- National Institute of Physical Education of Catalonia, Barcelona, Spain
| | - Josep M Padullés
- National Institute of Physical Education of Catalonia, Barcelona, Spain
| | - Joan A Cadefau
- National Institute of Physical Education of Catalonia, Barcelona, Spain
| | - Aitor Iturricastillo
- Faculty of Education and Sport, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain
| |
Collapse
|
35
|
Martínez-Guardado I, Sánchez-Ureña B, Olcina G, Camacho-Cardenosa A, Camacho-Cardenosa M, Timón R. Bench press performance during an intermittent hypoxic resistance training to muscle failure. J Sports Med Phys Fitness 2018; 59:1138-1143. [PMID: 30293408 DOI: 10.23736/s0022-4707.18.08940-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Resistance training performed under hypoxia conditions has been shown to cause major metabolic and hormonal responses. However, the influence of hypoxia on an acute session has been barely studied. The aim of this study was to evaluate the acute effects of an intermittent hypoxic resistance training (IHRT) to muscle failure on bench press performance. METHODS A randomized crossover design was performed, and 25 untrained men performed a resistance training under two different conditions: normoxia (FIO2=21%) and high-level hypoxia (FIO2=13%). Resistance training consisted of 3 sets of 75% 1RM to muscle failure, with a 2-minute rest between sets. Physical performance was assessed by quantifying total repetitions, concentric velocity and power variable during all sets. Arterial oxygen saturation, heart rate, rating of perceived exertion (RPE), capillary blood lactate and muscle soreness were also assessed after training. RESULTS Physical performance during bench press did not differ under hypoxic conditions (P>0.05). However, there were significant increases (P<0.05) of RPE (from 7.5±0.8 to 7.9±0.8) and blood lactate concentrations (from 5.5±1.2 to 6.2±1.5 mmol/L) in the hypoxia group. CONCLUSIONS These findings suggest that hypoxic resistance exercise does not affect exercise performance during bench press exercise. However, influence to perceived exercise intensity and blood lactate concentrations, suggesting that hypoxic resistance training may add substantially to the training dose experienced.
Collapse
Affiliation(s)
- Ismael Martínez-Guardado
- Department of Didactics of the Musical, Plastic and Corporal Expression, University of Extremadura, Cáceres, Spain -
| | - Braulio Sánchez-Ureña
- School of Human Movement Sciences and Quality of Life, National University of Costa Rica, Heredia, Costa Rica
| | - Guillermo Olcina
- Department of Didactics of the Musical, Plastic and Corporal Expression, University of Extremadura, Cáceres, Spain
| | - Alba Camacho-Cardenosa
- Department of Didactics of the Musical, Plastic and Corporal Expression, University of Extremadura, Cáceres, Spain
| | - Marta Camacho-Cardenosa
- Department of Didactics of the Musical, Plastic and Corporal Expression, University of Extremadura, Cáceres, Spain
| | - Rafael Timón
- Department of Didactics of the Musical, Plastic and Corporal Expression, University of Extremadura, Cáceres, Spain
| |
Collapse
|
36
|
Ramos-Campo DJ, Martínez-Guardado I, Olcina G, Marín-Pagán C, Martínez-Noguera FJ, Carlos-Vivas J, Alcaraz PE, Rubio JÁ. Effect of high-intensity resistance circuit-based training in hypoxia on aerobic performance and repeat sprint ability. Scand J Med Sci Sports 2018; 28:2135-2143. [PMID: 29791970 DOI: 10.1111/sms.13223] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2018] [Indexed: 11/28/2022]
Abstract
Recent acute studies have shown that high-intensity resistance circuit-based (HRC) training in hypoxia increases metabolic stress. However, no intervention studies have yet proven their effectiveness. This study aimed to analyze the effect of 8 weeks of HRC in hypoxia on aerobic performance, resting energy expenditure (REE), repeat sprint ability (RSA) and hematological variables. Twenty-eight subjects were assigned to hypoxia (FiO2 = 15%; HRChyp : n = 15; age: 24.6 ± 6.8 years; height: 177.4 ± 5.9 cm; weight: 74.9 ± 11.5 kg) and normoxia (FiO2 = 20.9%; HRCnorm : n = 13; age: 23.2 ± 5.2 years; height: 173.4 ± 6.2 cm; weight: 69.4 ± 7.4 kg) groups. Each training session consisted of two blocks of three exercises (Block 1: bench press, leg extension, front pull down; 2: deadlift, elbow flexion, ankle extension). Each exercise was performed at 6 repetitions maximum. Participants exercised twice weekly for 8 weeks and before and after the training program blood test, REE, RSA and treadmill running test were performed. Fatigue index in the RSA test was significantly decreased in the HRChyp (-0.9%; P < .01; ES = 2.75) but not in the HRCnorm . No changes were observed in REE and hematological variables. Absolute (4.5%; P = .014; ES = 0.42) and relative (5.2%; P = .008; ES = 0.43) maximal oxygen uptake (VO2 max), speed at VO2 max (4%; P = .010; ES = 0.25) and time to exhaustion (4.1%; P = .012; ES = 0.26) were significantly increased in HRChyp but not in the HRCnorm . No significant differences between groups were found. Compared with normoxic conditions, 8 weeks of HRC training under hypoxic conditions efficiently improves aerobic performance and RSA without changes in REE and red blood O2 -carrying capacity.
Collapse
Affiliation(s)
- D J Ramos-Campo
- Sport Science Faculty, Catholic University of Murcia, Murcia, Spain.,UCAM Research Center for High Performance Sport, Murcia, Spain
| | | | - G Olcina
- Sport Science Faculty, University of Extremadura, Cáceres, Spain
| | - C Marín-Pagán
- UCAM Research Center for High Performance Sport, Murcia, Spain
| | | | - J Carlos-Vivas
- UCAM Research Center for High Performance Sport, Murcia, Spain
| | - P E Alcaraz
- Sport Science Faculty, Catholic University of Murcia, Murcia, Spain.,UCAM Research Center for High Performance Sport, Murcia, Spain
| | - J Á Rubio
- Sport Science Faculty, Catholic University of Murcia, Murcia, Spain.,UCAM Research Center for High Performance Sport, Murcia, Spain
| |
Collapse
|
37
|
Mayo B, Miles C, Sims S, Driller M. The Effect of Resistance Training in a Hypoxic Chamber on Physical Performance in Elite Rugby Athletes. High Alt Med Biol 2018; 19:28-34. [DOI: 10.1089/ham.2017.0099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Brad Mayo
- Health, Sport and Human Performance, University of Waikato, Hamilton, New Zealand
- Bay of Plenty Rugby Union, Mount Maunganui, New Zealand
| | - Cory Miles
- Health, Sport and Human Performance, University of Waikato, Hamilton, New Zealand
| | - Stacy Sims
- Health, Sport and Human Performance, University of Waikato, Hamilton, New Zealand
| | - Matthew Driller
- Health, Sport and Human Performance, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
38
|
Scott BR, Slattery KM, Sculley DV, Dascombe BJ. Hypoxia During Resistance Exercise Does Not Affect Physical Performance, Perceptual Responses, or Neuromuscular Recovery. J Strength Cond Res 2017; 32:2174-2182. [PMID: 29239993 DOI: 10.1519/jsc.0000000000002304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Scott, BR, Slattery, KM, Sculley, DV, and Dascombe, BJ. Hypoxia during resistance exercise does not affect physical performance, perceptual responses, or neuromuscular recovery. J Strength Cond Res 32(8): 2174-2182, 2018-This study aimed to determine whether performing resistance exercise in hypoxia affects markers of physical performance, perceptual responses, and neuromuscular function. Fourteen male subjects (age: 24.6 ± 2.7 years; height: 179.7 ± 5.9 cm; body mass: 84.6 ± 11.6 kg) with >2 years resistance training experience performed moderate-load resistance exercise in 2 conditions: normoxia (FIO2 = 0.21) and hypoxia (FIO2 = 0.16). Resistance exercise comprised 3 sets of 10 repetitions of back squats and deadlifts at 60% of 1 repetition maximum (1RM), with 60 seconds inter-set rest. Physical performance was assessed by quantifying velocity and power variables during all repetitions. Perceptual ratings of perceived exertion, physical fatigue, muscle soreness, and overall well-being were obtained during and after exercise. Neuromuscular performance was assessed by vertical jump and isometric mid-thigh pull (IMTP) tasks for up to 48 hours after exercise. Although physical performance declined across sets, there were no differences between conditions. Similarly, perceived exertion and fatigue scores were not different between conditions. Muscle soreness increased from baseline at 24 and 48 hours after exercise in both conditions (p ≤ 0.001). Jump height and IMTP peak force were decreased from baseline immediately after exercise (p ≤ 0.026), but returned to preexercise values after 24 hours. These findings suggest that hypoxic resistance exercise does not affect exercise performance or perceived exercise intensity. In addition, neuromuscular recovery and perceptual markers of training stress were not affected by hypoxia, suggesting that hypoxic resistance training may not add substantially to the training dose experienced.
Collapse
Affiliation(s)
- Brendan R Scott
- School of Psychology and Exercise Science, Murdoch University, Perth, Western Australia, Australia
| | - Katie M Slattery
- New South Wales Institute of Sport, Sydney Olympic Park, Sydney, New South Wales, Australia
| | - Dean V Sculley
- Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Ourimbah, New South Wales, Australia.,Priority Research Center in Physical Activity and Nutrition, University of Newcastle, Callaghan, New South Wales, Australia
| | - Ben J Dascombe
- Department of Rehabilitation, Nutrition and Sport, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
39
|
Ramos-Campo DJ, Scott BR, Alcaraz PE, Rubio-Arias JA. The efficacy of resistance training in hypoxia to enhance strength and muscle growth: A systematic review and meta-analysis. Eur J Sport Sci 2017; 18:92-103. [PMID: 29045191 DOI: 10.1080/17461391.2017.1388850] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent studies have reported that resistance training in hypoxia (RTH) may augment muscle size and strength development. However, consensus on the effects of RTH via systematic review and meta-analysis is not yet available. This work aimed to systematically review studies which have investigated using RTH versus normoxic resistance training (NRT) to improve muscular size and strength, and to perform a meta-analysis to determine the effect of RTH on these adaptive parameters. Searches were conducted in PubMed, Web of Science and the Cochrane Library from database inception until 17 June 2017 for original articles assessing the effects of RTH on muscle size and strength versus NRT. The effects on outcomes were expressed as standardized mean differences (SMD). Nine studies (158 participants) reported on the effects of RTH versus NRT for muscle cross-sectional area (CSA) (n = 4) or strength (n = 6). RTH significantly increased CSA (SMD = 0.70, 95% confidence intervals (CI) 0.05, 1.35; p = .04) and strength (SMD = 1.88; 95% CI = 1.20, 2.56; p < .00001). However, RTH did not produce significant change in CSA (SMD = 0.24, 95% CI -0.19, 0.68, p = .27) or strength (SMD = 0.20; 95% CI = -0.27, 0.78; p = .23) when compared to NRT. Although RTH improved muscle size and strength, this protocol did not provide significant benefit over resistance training in normoxia. Nevertheless, this paper identified marked differences in methodologies for implementing RTH, and future research using standardized protocols is therefore warranted.
Collapse
Affiliation(s)
- Domingo J Ramos-Campo
- a Department of Physical Activity and Sport Science, Sport Science Faculty , Catholic University of Murcia , Murcia , Spain.,b UCAM Research Center for High Performance Sport , Murcia , Spain
| | - Brendan R Scott
- c School of Psychology and Exercise Science , Murdoch University , Perth , Australia
| | - Pedro E Alcaraz
- a Department of Physical Activity and Sport Science, Sport Science Faculty , Catholic University of Murcia , Murcia , Spain.,b UCAM Research Center for High Performance Sport , Murcia , Spain
| | - Jacobo A Rubio-Arias
- a Department of Physical Activity and Sport Science, Sport Science Faculty , Catholic University of Murcia , Murcia , Spain.,b UCAM Research Center for High Performance Sport , Murcia , Spain
| |
Collapse
|
40
|
Scott BR, Slattery KM, Sculley DV, Smith SM, Peiffer JJ, Dascombe BJ. Acute physiological and perceptual responses to high-load resistance exercise in hypoxia. Clin Physiol Funct Imaging 2017; 38:595-602. [DOI: 10.1111/cpf.12451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 06/13/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Brendan R. Scott
- School of Psychology and Exercise Science; Murdoch University; Perth WA Australia
| | - Katie M. Slattery
- New South Wales Institute of Sport; Sydney Olympic Park NSW Australia
| | - Dean V. Sculley
- Biomedical Sciences and Pharmacy; Faculty of Health and Medicine; University of Newcastle; Ourimbah NSW Australia
| | - Scott M. Smith
- Applied Sports Science and Exercise Testing Laboratory; Faculty of Science and Information Technology; University of Newcastle; Ourimbah NSW Australia
| | - Jeremiah J. Peiffer
- School of Psychology and Exercise Science; Murdoch University; Perth WA Australia
| | - Ben J. Dascombe
- Department of Rehabilitation, Nutrition and Sport; La Trobe University; Bundoora VIC Australia
| |
Collapse
|