1
|
Prins PJ, Noakes TD, Buga A, D’Agostino DP, Volek JS, Buxton JD, Heckman K, Jones DW, Tobias NE, Grose HM, Jenkins AK, Jancay KT, Koutnik AP. Low and high carbohydrate isocaloric diets on performance, fat oxidation, glucose and cardiometabolic health in middle age males. Front Nutr 2023; 10:1084021. [PMID: 36845048 PMCID: PMC9946985 DOI: 10.3389/fnut.2023.1084021] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
High carbohydrate, low fat (HCLF) diets have been the predominant nutrition strategy for athletic performance, but recent evidence following multi-week habituation has challenged the superiority of HCLF over low carbohydrate, high fat (LCHF) diets, along with growing interest in the potential health and disease implications of dietary choice. Highly trained competitive middle-aged athletes underwent two 31-day isocaloric diets (HCLF or LCHF) in a randomized, counterbalanced, and crossover design while controlling calories and training load. Performance, body composition, substrate oxidation, cardiometabolic, and 31-day minute-by-minute glucose (CGM) biomarkers were assessed. We demonstrated: (i) equivalent high-intensity performance (@∼85%VO2max), fasting insulin, hsCRP, and HbA1c without significant body composition changes across groups; (ii) record high peak fat oxidation rates (LCHF:1.58 ± 0.33g/min @ 86.40 ± 6.24%VO2max; 30% subjects > 1.85 g/min); (iii) higher total, LDL, and HDL cholesterol on LCHF; (iv) reduced glucose mean/median and variability on LCHF. We also found that the 31-day mean glucose on HCLF predicted 31-day glucose reductions on LCHF, and the 31-day glucose reduction on LCHF predicted LCHF peak fat oxidation rates. Interestingly, 30% of athletes had 31-day mean, median and fasting glucose > 100 mg/dL on HCLF (range: 111.68-115.19 mg/dL; consistent with pre-diabetes), also had the largest glycemic and fat oxidation response to carbohydrate restriction. These results: (i) challenge whether higher carbohydrate intake is superior for athletic performance, even during shorter-duration, higher-intensity exercise; (ii) demonstrate that lower carbohydrate intake may be a therapeutic strategy to independently improve glycemic control, particularly in those at risk for diabetes; (iii) demonstrate a unique relationship between continuous glycemic parameters and systemic metabolism.
Collapse
Affiliation(s)
- Philip J. Prins
- Department of Exercise Science, Grove City College, Grove City, PA, United States
| | - Timothy D. Noakes
- Department of Medical and Wellness Science, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Alex Buga
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Dominic P. D’Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | - Jeff S. Volek
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Jeffrey D. Buxton
- Department of Exercise Science, Grove City College, Grove City, PA, United States
| | - Kara Heckman
- Nebraska Methodist Health System, Omaha, NE, United States
| | - Dalton W. Jones
- Department of Exercise Science, Grove City College, Grove City, PA, United States
| | - Naomi E. Tobias
- Department of Exercise Science, Grove City College, Grove City, PA, United States
| | - Holly M. Grose
- Department of Exercise Science, Grove City College, Grove City, PA, United States
| | - Anna K. Jenkins
- Department of Exercise Science, Grove City College, Grove City, PA, United States
| | - Kelli T. Jancay
- Department of Exercise Science, Grove City College, Grove City, PA, United States
| | - Andrew P. Koutnik
- Human Healthspan, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, FL, United States
| |
Collapse
|
2
|
Bordonie NC, Saunders MJ, de Zevallos JO, Kurti SP, Luden ND, Crance JH, Baur DA. Dietary nitrate supplementation enhances heavy load carriage performance in military cadets. Eur J Appl Physiol 2023; 123:91-102. [PMID: 36175576 DOI: 10.1007/s00421-022-05056-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE To determine the effects of dietary nitrate (NO3-) supplementation on physiological responses, cognitive function, and performance during heavy load carriage in military cadets. METHODS Ten healthy males (81.0 ± 6.5 kg; 180.0 ± 4.5 cm; 56.2 ± 3.7 ml·kg·min-1 VO2max) consumed 140 mL·d-1 of beetroot juice (BRJ; 12.8 mmol NO3-) or placebo (PL) for six d preceding an exercise trial, which consisted of 45 min of load carriage (55% body mass) at 4.83 km·h-1 and 1.5% grade, followed by a 1.6-km time-trial (TT) at 4% grade. Gas exchange, heart rate, and perceptual responses were assessed during constant-load exercise and the TT. Cognitive function was assessed immediately prior to, during, and post-exercise via the psychomotor vigilance test (PVT). RESULTS Post-TT HR (188 ± 7.1 vs. 185 ± 7.4; d = 0.40; p = 0.03), mean tidal volume (2.15 ± 0.27 vs. 2.04 ± 0.23; p = 0.02; d = 0.47), and performance (770.9 ± 78.2 s vs. 809.8 ± 61.4 s; p = 0.03; d = 0.63) were increased during the TT with BRJ versus PL. There were no effects of BRJ on constant-load gas exchange or perceptual responses, and cognitive function was unchanged at all time points. CONCLUSION BRJ supplementation improves heavy load carriage performance in military cadets possibly as a result of attenuated respiratory muscle fatigue, rather than enhanced exercise economy.
Collapse
Affiliation(s)
- Nicholas C Bordonie
- Department of Kinesiology, James Madison University, Harrisonburg, VA, 22807, USA
| | - Michael J Saunders
- Department of Kinesiology, James Madison University, Harrisonburg, VA, 22807, USA
| | - Joaquin Ortiz de Zevallos
- Department of Kinesiology, School of Health and Human Development, University of Virginia, Charlottesville, VA, 22904, USA
| | - Stephanie P Kurti
- Department of Kinesiology, James Madison University, Harrisonburg, VA, 22807, USA
| | - Nicholas D Luden
- Department of Kinesiology, James Madison University, Harrisonburg, VA, 22807, USA
| | - Jenny H Crance
- Infirmary, Virginia Military Institute, Lexington, VA, 24450, USA
| | - Daniel A Baur
- Department of Human Performance and Wellness, Virginia Military Institute, 208 Cormack Hall, Lexington, VA, 24450, USA.
| |
Collapse
|
3
|
Effects of acute nitrate supplementation against placebo on the physical performance of athletes in a time trial test: Systematic review and meta-analysis. Sci Sports 2022. [DOI: 10.1016/j.scispo.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Wong TH, Sim A, Burns SF. The effects of nitrate ingestion on high-intensity endurance time-trial performance: A systematic review and meta-analysis. J Exerc Sci Fit 2022; 20:305-316. [PMID: 35892115 PMCID: PMC9287610 DOI: 10.1016/j.jesf.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/30/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022] Open
Abstract
Background/Objective Dietary nitrate ingestion extends endurance capacity, but data supporting endurance time-trial performance are unclear. This systematic review and meta-analysis evaluated the evidence for dietary nitrate supplementation to improve high-intensity endurance time-trial performance over 5-30 min on the premise that nitrate may alleviate peripheral fatigue over shorter durations. Methods A systematic literature search and data extraction was carried out following PRISMA guidelines and the PICOS framework within five databases: PubMed, ProQuest, ScienceDirect, Scopus and SPORTDiscus. Search terms used were: (nitrate OR nitrite OR beetroot) AND (high intensity OR all out) AND (time trial or total work done) AND performance. Results Twenty-four studies were included. Fifteen studies applied an acute supplementation strategy (4.1 mmol-15.2 mmol serving on one day), eight chronic supplementation (4.0 mmol-13.0 mmol per day over 3-15 days), and one applied both acute and chronic supplementation (8.0 mmol on one day and over 15 days). Standardised mean difference for time-trial ranging from 5 to 30 min showed an overall trivial effect in favour of nitrate (Hedges'g = 0.15, 95% CI -0.00 to 0.31, Z = 1.95, p = 0.05). Subgroup analysis revealed a small, borderline effect in favour of chronic nitrate intervention (Hedges'g = 0.30, 95% CI -0.00 to 0.59, Z = 1.94, p = 0.05), and a non-significant effect for acute nitrate intervention (Hedges'g = 0.10, 95% CI -0.08 to 0.28, Z = 1.11, p = 0.27). Conclusion Chronic nitrate supplementation improves time-trial performance ranging from 5 to 30 min.
Collapse
Affiliation(s)
- Tak Hiong Wong
- Physical Education and Sports Science, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, 637616, Singapore
| | - Alexiaa Sim
- Physical Education and Sports Science, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, 637616, Singapore
| | - Stephen F. Burns
- Physical Education and Sports Science, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, 637616, Singapore
| |
Collapse
|
5
|
Shannon OM, Allen JD, Bescos R, Burke L, Clifford T, Easton C, Gonzalez JT, Jones AM, Jonvik KL, Larsen FJ, Peeling P, Piknova B, Siervo M, Vanhatalo A, McGawley K, Porcelli S. Dietary Inorganic Nitrate as an Ergogenic Aid: An Expert Consensus Derived via the Modified Delphi Technique. Sports Med 2022; 52:2537-2558. [PMID: 35604567 PMCID: PMC9474378 DOI: 10.1007/s40279-022-01701-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2022] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Dietary inorganic nitrate is a popular nutritional supplement, which increases nitric oxide bioavailability and may improve exercise performance. Despite over a decade of research into the effects of dietary nitrate supplementation during exercise there is currently no expert consensus on how, when and for whom this compound could be recommended as an ergogenic aid. Moreover, there is no consensus on the safe administration of dietary nitrate as an ergogenic aid. This study aimed to address these research gaps. METHODS The modified Delphi technique was used to establish the views of 12 expert panel members on the use of dietary nitrate as an ergogenic aid. Over three iterative rounds (two via questionnaire and one via videoconferencing), the expert panel members voted on 222 statements relating to dietary nitrate as an ergogenic aid. Consensus was reached when > 80% of the panel provided the same answer (i.e. yes or no). Statements for which > 80% of the panel cast a vote of insufficient evidence were categorised as such and removed from further voting. These statements were subsequently used to identify directions for future research. RESULTS The 12 panel members contributed to voting in all three rounds. A total of 39 statements (17.6%) reached consensus across the three rounds (20 yes, 19 no). In round one, 21 statements reached consensus (11 yes, 10 no). In round two, seven further statements reached consensus (4 yes, 3 no). In round three, an additional 11 statements reached consensus (5 yes, 6 no). The panel agreed that there was insufficient evidence for 134 (60.4%) of the statements, and were unable to agree on the outcome of the remaining statements. CONCLUSIONS This study provides information on the current expert consensus on dietary nitrate, which may be of value to athletes, coaches, practitioners and researchers. The effects of dietary nitrate appear to be diminished in individuals with a higher aerobic fitness (peak oxygen consumption [V̇O2peak] > 60 ml/kg/min), and therefore, aerobic fitness should be taken into account when considering use of dietary nitrate as an ergogenic aid. It is recommended that athletes looking to benefit from dietary nitrate supplementation should consume 8-16 mmol nitrate acutely or 4-16 mmol/day nitrate chronically (with the final dose ingested 2-4 h pre-exercise) to maximise ergogenic effects, taking into consideration that, from a safety perspective, athletes may be best advised to increase their intake of nitrate via vegetables and vegetable juices. Acute nitrate supplementation up to ~ 16 mmol is believed to be safe, although the safety of chronic nitrate supplementation requires further investigation. The expert panel agreed that there was insufficient evidence for most of the appraised statements, highlighting the need for future research in this area.
Collapse
Affiliation(s)
- Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK.
| | - Jason D Allen
- Department of Kinesiology, School of Education and Human Development and Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Raul Bescos
- School of Health Professions, Faculty of Health, Plymouth Institute of Health and Care Research (PIHR), University of Plymouth, Plymouth, UK
| | - Louise Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Chris Easton
- Institute for Clinical Exercise and Health Sciences, University of the West of Scotland, Blantyre, UK
| | - Javier T Gonzalez
- Department for Health, University of Bath, Bath, UK
- Centre for Nutrition and Exercise Metabolism, University of Bath, Bath, UK
| | - Andrew M Jones
- Sport and Health Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, UK
| | - Kristin L Jonvik
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Filip J Larsen
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Peter Peeling
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, WA, Australia
| | | | - Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Anni Vanhatalo
- Sport and Health Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, UK
| | - Kerry McGawley
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Simone Porcelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
6
|
Wynne AG, Affourtit C. Nitrite lowers the oxygen cost of ATP supply in cultured skeletal muscle cells by stimulating the rate of glycolytic ATP synthesis. PLoS One 2022; 17:e0266905. [PMID: 35939418 PMCID: PMC9359526 DOI: 10.1371/journal.pone.0266905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
Dietary nitrate lowers the oxygen cost of human exercise. This effect has been suggested to result from stimulation of coupling efficiency of skeletal muscle oxidative phosphorylation by reduced nitrate derivatives. In this paper, we report the acute effects of sodium nitrite on the bioenergetic behaviour of cultured rat (L6) myocytes. At odds with improved efficiency of mitochondrial ATP synthesis, extracellular flux analysis reveals that a ½-hour exposure to NaNO2 (0.1–5 μM) does not affect mitochondrial coupling efficiency in static myoblasts or in spontaneously contracting myotubes. Unexpectedly, NaNO2 stimulates the rate of glycolytic ATP production in both myoblasts and myotubes. Increased ATP supply through glycolysis does not emerge at the expense of oxidative phosphorylation, which means that NaNO2 acutely increases the rate of overall myocellular ATP synthesis, significantly so in myoblasts and tending towards significance in contractile myotubes. Notably, NaNO2 exposure shifts myocytes to a more glycolytic bioenergetic phenotype. Mitochondrial oxygen consumption does not decrease after NaNO2 exposure, and non-mitochondrial respiration tends to drop. When total ATP synthesis rates are expressed in relation to total cellular oxygen consumption rates, it thus transpires that NaNO2 lowers the oxygen cost of ATP supply in cultured L6 myocytes.
Collapse
Affiliation(s)
- Anthony G. Wynne
- School of Biomedical Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Charles Affourtit
- School of Biomedical Sciences, University of Plymouth, Plymouth, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Jurado-Castro JM, Campos-Perez J, Ranchal-Sanchez A, Durán-López N, Domínguez R. Acute Effects of Beetroot Juice Supplements on Lower-Body Strength in Female Athletes: Double-Blind Crossover Randomized Trial. Sports Health 2022; 14:812-821. [PMID: 35603411 DOI: 10.1177/19417381221083590] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Beetroot juice (BRJ) is used as an ergogenic aid, but no previous study has analyzed the effect this supplement has on the production of explosive force and muscular endurance in physically active women. HYPOTHESIS BRJ improves explosive force and muscular endurance in the lower limbs of physically active women. STUDY DESIGN Randomized double-blind crossover study. LEVEL OF EVIDENCE Level 3. METHODS Fourteen physically active women performed a countermovement jump (CMJ) test, a back squat test for assessing velocity and power at 50% and 75% of one-repetition maximum (1RM), and the number of repetitions on a muscular endurance test consisting of 3 sets at 75% of 1RM in a resistance training protocol comprising 3 exercises (back squat, leg press, and leg extension). The participants performed the test in 2 sessions, 150 minutes after ingesting 70 mL of either BRJ (400 mg of nitrate) or a placebo (PLA). RESULTS A greater maximum height was achieved in the CMJ after consuming BRJ compared with a PLA (P = 0.04; effect size (ES) = 0.34). After a BRJ supplement at 50% 1RM, a higher mean velocity [+6.7%; P = 0.03; (ES) = 0.39 (-0.40 to 1.17)], peak velocity (+6%; P = 0.04; ES = 0.39 [-0.40 to 1.17]), mean power (+7.3%; P = 0.02; ES = 0.30 [-0.48 to 1.08]) and peak power (+6%; P = 0.04; ES = 0.20 [-0.59 to 0.98]) were attained in the back squat test. In the muscular endurance test, BRJ increased performance compared with the PLA (P < 0.00; ηp2 = 0.651). CONCLUSION BRJ supplements exert an ergogenic effect on the ability to produce explosive force and muscular endurance in the lower limbs in physically active women. CLINICAL RELEVANCE If physically active women took a BRJ supplement 120 minutes before resistance training their performance could be enhanced.
Collapse
Affiliation(s)
- Jose Manuel Jurado-Castro
- Metabolism and Investigation Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain.,Escuela Universitaria de Osuna (Centro Adscrito a la Universidad de Sevilla), Osuna, Spain
| | - Julian Campos-Perez
- Department of Food Science and Technology, Rabanales University Campus, University of Cordoba, Córdoba, Spain
| | - Antonio Ranchal-Sanchez
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Cordoba, Córdoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, University of Cordoba, Spain
| | - Natalia Durán-López
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Cordoba, Córdoba, Spain
| | - Raúl Domínguez
- Departamento de Motricidad Humana y Rendimiento Deportivo, Universidad de Sevilla, Sevilla, Spain.,Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, Lavras, Brazil
| |
Collapse
|
8
|
d'Unienville NMA, Blake HT, Coates AM, Hill AM, Nelson MJ, Buckley JD. Effect of food sources of nitrate, polyphenols, L-arginine and L-citrulline on endurance exercise performance: a systematic review and meta-analysis of randomised controlled trials. J Int Soc Sports Nutr 2021; 18:76. [PMID: 34965876 PMCID: PMC8715640 DOI: 10.1186/s12970-021-00472-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Increasing nitric oxide bioavailability may induce physiological effects that enhance endurance exercise performance. This review sought to evaluate the performance effects of consuming foods containing compounds that may promote nitric oxide bioavailability. METHODS Scopus, Web of Science, Ovid Medline, EMBASE and SportDiscus were searched, with included studies assessing endurance performance following consumption of foods containing nitrate, L-arginine, L-citrulline or polyphenols. Random effects meta-analysis was conducted, with subgroup analyses performed based on food sources, sex, fitness, performance test type and supplementation protocol (e.g. duration). RESULTS One hundred and eighteen studies were included in the meta-analysis, which encompassed 59 polyphenol studies, 56 nitrate studies and three L-citrulline studies. No effect on exercise performance following consumption of foods rich in L-citrulline was identified (SMD=-0.03, p=0.24). Trivial but significant benefits were demonstrated for consumption of nitrate and polyphenol-rich foods (SMD=0.15 and 0.17, respectively, p<0.001), including performance in time-trial, time-to-exhaustion and intermittent-type tests, and following both acute and multiple-day supplementation, but no effect of nitrate or polyphenol consumption was found in females. Among nitrate-rich foods, beneficial effects were seen for beetroot, but not red spinach or Swiss chard and rhubarb. For polyphenol-rich foods, benefits were found for grape, (nitrate-depleted) beetroot, French maritime pine, Montmorency cherry and pomegranate, while no significant effects were evident for New Zealand blackcurrant, cocoa, ginseng, green tea or raisins. Considerable heterogeneity between polyphenol studies may reflect food-specific effects or differences in study designs and subject characteristics. Well-trained males (V̇O2max ≥65 ml.kg.min-1) exhibited small, significant benefits following polyphenol, but not nitrate consumption. CONCLUSION Foods rich in polyphenols and nitrate provide trivial benefits for endurance exercise performance, although these effects may be food dependent. Highly trained endurance athletes do not appear to benefit from consuming nitrate-rich foods but may benefit from polyphenol consumption. Further research into food sources, dosage and supplementation duration to optimise the ergogenic response to polyphenol consumption is warranted. Further studies should evaluate whether differential sex-based responses to nitrate and polyphenol consumption are attributable to physiological differences or sample size limitations. OTHER The review protocol was registered on the Open Science Framework ( https://osf.io/u7nsj ) and no funding was provided.
Collapse
Affiliation(s)
- Noah M A d'Unienville
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia. Noah.D'
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia. Noah.D'
| | - Henry T Blake
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| | - Alison M Coates
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| | - Alison M Hill
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Maximillian J Nelson
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| | - Jonathan D Buckley
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| |
Collapse
|
9
|
Burgos J, Viribay A, Fernández-Lázaro D, Calleja-González J, González-Santos J, Mielgo-Ayuso J. Combined Effects of Citrulline Plus Nitrate-Rich Beetroot Extract Co-Supplementation on Maximal and Endurance-Strength and Aerobic Power in Trained Male Triathletes: A Randomized Double-Blind, Placebo-Controlled Trial. Nutrients 2021; 14:40. [PMID: 35010917 PMCID: PMC8746866 DOI: 10.3390/nu14010040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022] Open
Abstract
Citrulline (CIT) and nitrate-rich beetroot extract (BR) are ergogenic aids and nitric oxide (NO) precursors. In addition, both supplements seem to have other actions at the level of muscle metabolism that can benefit strength and aerobic power performance. Both supplements have been studied in numerous investigations in isolation. However, scientific evidence combining both supplements is scarce, and to the best of the authors' knowledge, there is no current study of endurance athletes. Therefore, the main purpose of this study was to determine the effect of 9 weeks of CIT plus BR supplementation on maximal and endurance-strength performance and aerobic power in male triathletes. This study was a randomized double-blind, placebo-controlled trial where participants (n = 32) were randomized into four different groups: placebo group (PLG; n = 8), CIT plus BR group (CIT- BRG; 3 g/kg/day of CIT plus 3 mg/kg/day of nitrates (NO3-); n = 8), CIT group (CITG; 3 g/kg/day; n = 8) and BR group (BRG; 3 mg/kg/day of NO3-; n = 8). Before (T1) and after 9 weeks (T2), four physical condition tests were carried out in order to assess sport performance: the horizontal jump test (HJUMP), handgrip dynamometer test, 1-min abdominal tests (1-MAT) and finally, the Cooper test. Although, no significant interactions (time × supplementation groups) were found for the strength tests (p > 0.05), the CIT- BRG supplementation presented a trend on HJUMP and 1-MAT tests confirmed by significant increase between two study moments in CIT-BRG. Likewise, CIT-BRG presented significant interactions in the aerobic power test confirmed by this group's improve estimated VO2max during the study with respect to the other study groups (p = 0.002; η2p = 0.418). In summary, supplementing with 3 g/day of CIT and 2.1 g/day of BR (300 mg/day of NO3-) for 9 weeks could increase maximal and endurance strength. Furthermore, when compared to CIT or BR supplementation alone, this combination improved performance in tests related to aerobic power.
Collapse
Affiliation(s)
- José Burgos
- Department of Nursing and Physiotherapy, University of León, 24071 León, Spain
- Burgos Nutrition, Physiology, Nutrition and Sport, 26007 Logroño, Spain;
| | - Aitor Viribay
- Glut4Science, Physiology, Nutrition and Sport, 01004 Vitoria-Gasteiz, Spain;
| | - Diego Fernández-Lázaro
- Department of Cellular Biology, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42003 Soria, Spain;
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Julio Calleja-González
- Department of Physical Education and Sport, Faculty of Education and Sport, University of the Basque Country, 01007 Vitoria, Spain;
| | - Josefa González-Santos
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain;
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain;
| |
Collapse
|
10
|
Broeder CE, Flores V, Julian B, Wojan F, Tauber R, Schubert L, Salacinski A, Ivy JL. Nitric oxide enhancement supplement containing beet nitrite and nitrate benefits high intensity cycle interval training. Curr Res Physiol 2021; 4:183-191. [PMID: 34746837 PMCID: PMC8562140 DOI: 10.1016/j.crphys.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 11/25/2022] Open
Abstract
This study investigated the effects of a beet nitric oxide enhancing (NOE) supplement comprised of nitrite and nitrate on cycling performance indices in trained cyclists. METHODS Subjects completed a lactate threshold test and a high-intensity interval (HIIT) protocol at 50% above functional threshold power with or without oral NOE supplement. RESULTS NOE supplementation enhanced lactate threshold by 7.2% (Placebo = 191.6 ± 37.3 W, NOE = 205.3 ± 39.9; p = 0.01; Effect Size (ES) = 0.40). During the HIIT protocol, NOE supplementation improved time to exhaustion 18% (Placebo = 1251 ± 562s, NOE = 1474 ± 504s; p = 0.02; ES = 0.42) and total energy expended 22.3% (Placebo = 251 ± 48.6 kJ, NOE = 306.6 ± 55.2 kJ; p = 0.01; ES = 1.079). NOE supplementation increased the intervals completed (Placebo = 7.00 ± 2.5, NOE = 8.14 ± 2.4; p = 0.03; ES = 0.42) and distance cycled (Placebo = 10.9 ± 4.0 km, NOE = 13.5 ± 3.9 km; p = 0.01; ES = 0.65). Also, target power was achieved at a higher cadence during the HIIT work and rest periods (p = 0.02), which enhanced muscle oxygen saturation (SmO2) recovery. Time-to-fatigue was negatively correlated with the degree of SmO2, desaturation during the HIIT work interval segment (r = -0.67; p 0.008), while both SmO2 desaturation and the SmO2 starting work segment saturation level correlated with a cyclist's kJ expended (SmO2 desaturation: r = -0.51, p = 0.06; SmO2 starting saturation: r = 0.59, p = 0.03). CONCLUSION NOE supplementation containing beet nitrite and nitrate enhanced submaximal (lactate threshold) and HIIT maximal effort work. The NOE supplementation resulted in a cyclist riding at higher cadence rates with lower absolute torque values at the same power during both the work and rest periods, which in-turn delayed over-all fatigue and improved total work output.
Collapse
Affiliation(s)
- Craig E Broeder
- Exercising Nutritionally, LLC, United States.,Northern Illinois University, United States
| | | | - Bill Julian
- Exercising Nutritionally, LLC, United States
| | - Frank Wojan
- Exercising Nutritionally, LLC, United States.,University of Texas at Austin, United States
| | | | | | - Amanda Salacinski
- Exercising Nutritionally, LLC, United States.,Westfield State University, United States
| | - John L Ivy
- University of Texas at Austin, United States
| |
Collapse
|
11
|
Nyberg M, Christensen PM, Blackwell JR, Hostrup M, Jones AM, Bangsbo J. Nitrate-rich beetroot juice ingestion reduces skeletal muscle O 2 uptake and blood flow during exercise in sedentary men. J Physiol 2021; 599:5203-5214. [PMID: 34587650 DOI: 10.1113/jp281995] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022] Open
Abstract
Dietary nitrate supplementation has been shown to reduce pulmonary O2 uptake during submaximal exercise and enhance exercise performance. However, the effects of nitrate supplementation on local metabolic and haemodynamic regulation in contracting human skeletal muscle remain unclear. To address this, eight healthy young male sedentary subjects were assigned in a randomized, double-blind, crossover design to receive nitrate-rich beetroot juice (NO3, 9 mmol) and placebo (PLA) 2.5 h prior to the completion of a double-step knee-extensor exercise protocol that included a transition from unloaded to moderate-intensity exercise (MOD) followed immediately by a transition to intense exercise (HIGH). Compared with PLA, NO3 increased plasma levels of nitrate and nitrite. During MOD, leg V ̇ O 2 and leg blood flow (LBF) were reduced to a similar extent (∼9%-15%) in NO3. During HIGH, leg V ̇ O 2 was reduced by ∼6%-10% and LBF by ∼5%-9% (did not reach significance) in NO3. Leg V ̇ O 2 kinetics was markedly faster in the transition from passive to MOD compared with the transition from MOD to HIGH both in NO3 and PLA with no difference between PLA and NO3. In NO3, a reduction in nitrate and nitrite concentration was detected between arterial and venous samples. No difference in the time to exhaustion was observed between conditions. In conclusion, elevation of plasma nitrate and nitrate reduces leg skeletal muscle V ̇ O 2 and blood flow during exercise. However, nitrate supplementation does not enhance muscle V ̇ O 2 kinetics during exercise, nor does it improve time to exhaustion when exercising with a small muscle mass. KEY POINTS: Dietary nitrate supplementation has been shown to reduce systemic O2 uptake during exercise and improve exercise performance. The effects of nitrate supplementation on local metabolism and blood flow regulation in contracting human skeletal muscle remain unclear. By using leg exercise engaging a small muscle mass, we show that O2 uptake and blood flow are similarly reduced in contracting skeletal muscle of humans during exercise. Despite slower V ̇ O 2 kinetics in the transition from moderate to intense exercise, no effects of nitrate supplementation were observed for V ̇ O 2 kinetics and time to exhaustion. Nitrate and nitrite concentrations are reduced across the exercising leg, suggesting that these ions are extracted from the arterial blood by contracting skeletal muscle.
Collapse
Affiliation(s)
- Michael Nyberg
- Department of Nutrition, Exercise and Sports, Integrative Physiology Section, Cardiovascular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter M Christensen
- Department of Nutrition, Exercise and Sports, Integrative Physiology Section, Cardiovascular Physiology, University of Copenhagen, Copenhagen, Denmark.,Team Danmark (Danish Elite Sports Organization), Copenhagen, Denmark
| | - Jamie R Blackwell
- Department of Sport and Health Sciences, University of Exeter St Luke's Campus, Exeter, UK
| | - Morten Hostrup
- Department of Nutrition, Exercise and Sports, Integrative Physiology Section, Cardiovascular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Andrew M Jones
- Department of Sport and Health Sciences, University of Exeter St Luke's Campus, Exeter, UK
| | - Jens Bangsbo
- Department of Nutrition, Exercise and Sports, Integrative Physiology Section, Cardiovascular Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Miraftabi H, Avazpoor Z, Berjisian E, Sarshin A, Rezaei S, Domínguez R, Reale R, Franchini E, Samanipour MH, Koozehchian MS, Willems MET, Rafiei R, Naderi A. Effects of Beetroot Juice Supplementation on Cognitive Function, Aerobic and Anaerobic Performances of Trained Male Taekwondo Athletes: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910202. [PMID: 34639501 PMCID: PMC8507686 DOI: 10.3390/ijerph181910202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022]
Abstract
Studies have shown that nitrate (NO3−)-rich beetroot juice (BJ) supplementation improves endurance and high-intensity intermittent exercise. The dose–response effects on taekwondo following BJ supplementation are yet to be determined. This study aimed to investigate two acute doses of 400 mg of NO3− (BJ-400) and 800 mg of NO3− (BJ-800) on taekwondo-specific performance and cognitive function tests compared with a placebo (PL) and control (CON) conditions. Eight trained male taekwondo athletes (age: 20 ± 4 years, height: 180 ± 2 cm, body mass: 64.8 ± 4.0 kg) completed four experimental trials using a randomized, double-blind placebo-controlled design: BJ-400, BJ-800, PL, and CON. Participants consumed two doses of BJ-400 and BJ-800 or nitrate-depleted PL at 2.5 h prior to performing the Multiple Frequency Speed of Kick Test (FSKT). Countermovement jump (CMJ) was performed before the (FSKT) and PSTT, whereas cognitive function was assessed (via the Stroop test) before and after supplementation and 10 min following PSTT. Blood lactate was collected before the CMJ tests immediately and 3 min after the FSKT and PSST; rating of perceived exertion (RPE) was recorded during and after both specific taekwondo tests. No significant differences (p > 0.05), with moderate and large effect sizes, between conditions were observed for PSTT and FSKT performances. In addition, blood lactate, RPE, heart rate, and CMJ height were not significantly different among conditions (p > 0.05). However, after the PSTT test, cognitive function was higher in BJ-400 compared to other treatments (p < 0.05). It was concluded that acute intake of 400 and 800 mg of NO3− rich BJ reported a moderate to large effect size in anaerobic and aerobic; however, no statistical differences were found in taekwondo-specific performance.
Collapse
Affiliation(s)
- Hossein Miraftabi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Tehran University, Tehran 1417935840, Iran; (H.M.); (Z.A.); (E.B.); (R.R.)
| | - Zahra Avazpoor
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Tehran University, Tehran 1417935840, Iran; (H.M.); (Z.A.); (E.B.); (R.R.)
| | - Erfan Berjisian
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Tehran University, Tehran 1417935840, Iran; (H.M.); (Z.A.); (E.B.); (R.R.)
| | - Amir Sarshin
- Clinical Care and Health Promotion Research Center, Karaj Branch, Islamic Azad University, Karaj 3149968111, Iran;
| | - Sajjad Rezaei
- Department of Physical Education & Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran 1411713116, Iran;
| | - Raúl Domínguez
- Departamento de Motricidad Humana y Rendimiento Deportivo, Faculty of Education Sciences, Universidad de Sevilla, 41018 Sevilla, Spain;
- Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, Lavras 37200-000, Brazil
| | - Reid Reale
- USA.UFC Performance Institute, Shanghai 200072, China;
| | - Emerson Franchini
- School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, Brazil;
| | | | - Majid S. Koozehchian
- Department of Kinesiology, Jacksonville State University, Jacksonville, AL 36265, USA;
| | - Mark E. T. Willems
- Institute of Sport, Nursing and Allied Health, College Lane, University of Chichester, Chichester PO19 6PE, UK;
| | - Ramin Rafiei
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Tehran University, Tehran 1417935840, Iran; (H.M.); (Z.A.); (E.B.); (R.R.)
| | - Alireza Naderi
- Department of Sport Physiology, Boroujerd Branch, Islamic Azad University, Boroujerd 6915136111, Iran
- Correspondence: ; Tel.: +98-91-0448-6440
| |
Collapse
|
13
|
Macuh M, Knap B. Effects of Nitrate Supplementation on Exercise Performance in Humans: A Narrative Review. Nutrients 2021; 13:3183. [PMID: 34579061 PMCID: PMC8465461 DOI: 10.3390/nu13093183] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/04/2021] [Accepted: 09/10/2021] [Indexed: 12/20/2022] Open
Abstract
Nitrates have become increasingly popular for their potential role as an ergogenic aid. The purpose of this article was to review the current scientific evidence of nitrate supplementation on human performance. The current recommendation of nitrate supplementation is discussed, as well as possible health complications associated with nitrate intake for athletes, and dietary strategies of covering nitrate needs through sufficient intake of nitrate-rich foods alone are presented. Pubmed, Scopus, and Web of Science were searched for articles on the effects of nitrate supplementation in humans. Nitrates are an effective ergogenic aid when taken acutely or chronically in the range of ~5-16.8 mmol (~300-1041 mg) 2-3 h before exercise and primarily in the case of exercise duration of ~10-17 min in less trained individuals (VO2max < 65 mL/kg/min). Nitrate needs are most likely meet by ingesting approximately 250-500 g of leafy and root vegetables per day; however, dietary supplements might represent a more convenient and accurate way of covering an athlete's nitrate needs. Athletes should refrain from mouthwash usage when nitrate supplementation benefits are desired. Future research should focus on the potential beneficial effects of nitrate supplementation on brain function, possible negative impacts of chronic nitrate supplementation through different nitrate sources, and the effectiveness of nitrate supplementation on strength and high-intensity intermittent exercise.
Collapse
Affiliation(s)
- Matjaž Macuh
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana; Jamnikarjeva 10, 1000 Ljubljana, Slovenia
| | - Bojan Knap
- Department of Nephrology, University Medical Centre Ljubljana, Zaloška 7, 1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, Korytkova ulica 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
14
|
The Mediterranean dietary pattern for optimising health and performance in competitive athletes: a narrative review. Br J Nutr 2021; 128:1285-1298. [PMID: 34420536 DOI: 10.1017/s0007114521003202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nutrition plays a key role in training for, and competing in, competitive sport, and is essential for reducing risk of injury and illness, recovering and adapting between bouts of activity, and enhancing performance. Consumption of a Mediterranean diet (MedDiet) has been demonstrated to reduce risk of various non-communicable diseases and increase longevity. Following the key principles of a MedDiet could also represent a useful framework for good nutrition in competitive athletes under most circumstances, with potential benefits for health and performance parameters. In this review, we discuss the potential effects of a MedDiet, or individual foods and compounds readily available in this dietary pattern, on oxidative stress and inflammation, injury and illness risk, vascular and cognitive function, and exercise performance in competitive athletes. We also highlight potential modifications which could be made to the MedDiet (whilst otherwise adhering to the key principles of this dietary pattern) in accordance with contemporary sports nutrition practices, to maximise health and performance effects. In addition, we discuss potential directions for future research.
Collapse
|
15
|
Shannon OM, Easton C, Shepherd AI, Siervo M, Bailey SJ, Clifford T. Dietary nitrate and population health: a narrative review of the translational potential of existing laboratory studies. BMC Sports Sci Med Rehabil 2021; 13:65. [PMID: 34099037 PMCID: PMC8186051 DOI: 10.1186/s13102-021-00292-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dietary inorganic nitrate (NO3-) is a polyatomic ion, which is present in large quantities in green leafy vegetables and beetroot, and has attracted considerable attention in recent years as a potential health-promoting dietary compound. Numerous small, well-controlled laboratory studies have reported beneficial health effects of inorganic NO3- consumption on blood pressure, endothelial function, cerebrovascular blood flow, cognitive function, and exercise performance. Translating the findings from small laboratory studies into 'real-world' applications requires careful consideration. MAIN BODY This article provides a brief overview of the existing empirical evidence basis for the purported health-promoting effects of dietary NO3- consumption. Key areas for future research are then proposed to evaluate whether promising findings observed in small animal and human laboratory studies can effectively translate into clinically relevant improvements in population health. These proposals include: 1) conducting large-scale, longer duration trials with hard clinical endpoints (e.g. cardiovascular disease incidence); 2) exploring the feasibility and acceptability of different strategies to facilitate a prolonged increase in dietary NO3- intake; 3) exploitation of existing cohort studies to explore associations between NO3- intake and health outcomes, a research approach allowing larger samples sizes and longer duration follow up than is feasible in randomised controlled trials; 4) identifying factors which might account for individual differences in the response to inorganic NO3- (e.g. sex, genetics, habitual diet) and could assist with targeted/personalised nutritional interventions; 5) exploring the influence of oral health and medication on the therapeutic potential of NO3- supplementation; and 6) examining potential risk of adverse events with long term high- NO3- diets. CONCLUSION The salutary effects of dietary NO3- are well established in small, well-controlled laboratory studies. Much less is known about the feasibility and efficacy of long-term dietary NO3- enrichment for promoting health, and the factors which might explain the variable responsiveness to dietary NO3- supplementation between individuals. Future research focussing on the translation of laboratory data will provide valuable insight into the potential applications of dietary NO3- supplementation to improve population health.
Collapse
Affiliation(s)
- Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Chris Easton
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Blantyre, Scotland, UK
| | - Anthony I Shepherd
- School of Sport, Health & Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| |
Collapse
|
16
|
Arazi H, Eghbali E. Possible Effects of Beetroot Supplementation on Physical Performance Through Metabolic, Neuroendocrine, and Antioxidant Mechanisms: A Narrative Review of the Literature. Front Nutr 2021; 8:660150. [PMID: 34055855 PMCID: PMC8155490 DOI: 10.3389/fnut.2021.660150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
Athletes often seek to use dietary supplements to increase performance during exercise. Among various supplements, much attention has been paid to beetroot in recent years. Beetroot is a source of carbohydrates, fiber, protein, minerals, and vitamins; also, it is a natural source of nitrate and associated with improved sports performance. Nitrates can the modification of skeletal muscle contractile proteins or calcium handling after translation. The time to reach the peak plasma nitrate is between 1 and 3 h after consumption of a single dose of nitrate. Nitrate is metabolized by conversion to nitrite and subsequently nitric oxide. Beetroot can have various effects on athletic performance through nitric oxide. Nitric oxide is an intracellular and extracellular messenger for regulating certain cellular functions and causes vasodilation of blood vessels and increases blood flow. Nitric oxide seems to be effective in improving athletic performance by increasing oxygen, glucose, and other nutrients for better muscle fueling. Nitric oxide plays the main role in anabolic hormones, modulates the release of several neurotransmitters and the major mediators of stress involved in the acute hypothalamic-pituitary-adrenal response to exercise. Beetroot is an important source of compounds such as ascorbic acid, carotenoids, phenolic acids, flavonoids, betaline, and highly active phenolics and has high antioxidant properties. Beetroot supplement provides an important source of dietary polyphenols and due to the many health benefits. Phytochemicals of Beetroot through signaling pathways inhibit inflammatory diseases. In this study, the mechanisms responsible for these effects were examined and the research in this regard was reviewed.
Collapse
Affiliation(s)
- Hamid Arazi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| | - Ehsan Eghbali
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
17
|
Brandenburg JP, Giles LV. Blueberry supplementation reduces the blood lactate response to running in normobaric hypoxia but has no effect on performance in recreational runners. J Int Soc Sports Nutr 2021; 18:26. [PMID: 33781280 PMCID: PMC8008513 DOI: 10.1186/s12970-021-00423-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/12/2021] [Indexed: 11/10/2022] Open
Abstract
Background Blueberries are concentrated with anthocyanins possessing antioxidant properties. As these properties counter fatigue, blueberry supplementation may improve performance and recovery, particularly in hypoxia, where oxidative stress is elevated. Methods This study examined the effects of blueberry supplementation on running performance, physiological responses, and recovery in normobaric hypoxia. Eleven experienced runners completed a 30-minute time-trial (TT) in normobaric hypoxia (%O2 = 15.5 %) on separate days after supplementation with four days of blueberries (BLU) or four days of placebo (PLA). Heart rate (HR), oxygen saturation (SaO2) and ratings of perceived exertion (RPE) were monitored during the TT. Blood lactate and fraction of exhaled nitric oxide (FENO) were assessed pre-TT, post-TT, and during recovery. Results No significant differences were observed in the distance run during the TT, HR, SaO2, and RPE. The post-TT increase in blood lactate was significantly lower in BLU than PLA (p = 0.036). Pre-TT and post-TT FENO did not differ between conditions. Blood lactate recovery following the TT was similar between conditions. Conclusions Four days of blueberry supplementation did not alter running performance or cardiovascular and perceptual responses in normobaric hypoxia. Supplementation lowered the blood lactate response to running, however, the significance of this finding is uncertain given the absence of an ergogenic effect.
Collapse
Affiliation(s)
- Jason P Brandenburg
- Department of Kinesiology, School of Kinesiology, University of the Fraser Valley, 45190 Caen Avenue, BC, V2R 0N3, Chilliwack, Canada.
| | - Luisa V Giles
- Department of Kinesiology, School of Kinesiology, University of the Fraser Valley, 45190 Caen Avenue, BC, V2R 0N3, Chilliwack, Canada
| |
Collapse
|
18
|
Senefeld JW, Wiggins CC, Regimbal RJ, Dominelli PB, Baker SE, Joyner MJ. Ergogenic Effect of Nitrate Supplementation: A Systematic Review and Meta-analysis. Med Sci Sports Exerc 2021; 52:2250-2261. [PMID: 32936597 PMCID: PMC7494956 DOI: 10.1249/mss.0000000000002363] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supplemental digital content is available in the text. Although over 100 studies and reviews have examined the ergogenic effects of dietary nitrate (NO3−) supplementation in young, healthy men and women, it is unclear if participant and environmental factors modulate the well-described ergogenic effects—particularly relevant factors include biological sex, aerobic fitness, and fraction of inspired oxygen (FiO2) during exercise. To address this limitation, the literature was systematically reviewed for randomized, crossover, placebo-controlled studies reporting exercise performance outcome metrics with NO3− supplementation in young, healthy adults. Of the 2033 articles identified, 80 were eligible for inclusion in the meta-analysis. Random-effects meta-analysis demonstrated that exercise performance improved with NO3− supplementation compared with placebo (d = 0.174; 95% confidence interval (CI), 0.120–0.229; P < 0.001). Subgroup analyses conducted on biological sex, aerobic fitness, and FiO2 demonstrated that the ergogenic effect of NO3− supplementation was as follows: 1) not observed in studies with only women (n = 6; d = 0.116; 95% CI, −0.126 to 0.358; P = 0.347), 2) not observed in well-trained endurance athletes (≥65 mL·kg−1·min−1; n = 26; d = 0.021; 95% CI, −0.103 to 0.144; P = 0.745), and 3) not modulated by FiO2 (hypoxia vs normoxia). Together, the meta-analyses demonstrated a clear ergogenic effect of NO3− supplementation in recreationally active, young, healthy men across different exercise paradigms and NO3− supplementation parameters; however, the effect size of NO3− supplementation was objectively small (d = 0.174). NO3− supplementation has more limited utility as an ergogenic aid in participants with excellent aerobic fitness that have optimized other training parameters. Mechanistic research and studies incorporating a wide variety of subjects (e.g., women) are needed to advance the study of NO3− supplementation; however, additional descriptive studies of young, healthy men may have limited utility.
Collapse
Affiliation(s)
- Jonathon W Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Chad C Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Riley J Regimbal
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | | | - Sarah E Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
19
|
Influence of Sex and Acute Beetroot Juice Supplementation on 2 KM Running Performance. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11030977] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Purpose: To assess the effect of acute nitrate-rich (BJ) and nitrate-depleted (PL) beetroot juice ingestion on 2 km running performance in amateur runners, and to what extent the ergogenic effect of BJ supplementation would be influenced by the sex of the participants; Methods: Twenty-four amateur long-distance runners (14 males and 10 females) performed a 2 km time trial (TT) on an outdoor athletics track 2.5 h after ingesting either 140 mL of BJ (~12.8 mmol NO3−) or PL. After the tests, blood [lactate] and ratings of perceived exertion (RPE) related to the leg muscles (RPEmuscular), cardiovascular system (RPEcardio) and general overall RPE (RPEgeneral) were assessed; Results: Compared to PL, BJ supplementation improved 2 km TT performance in both males (p < 0.05) with no supplement × sex interaction effect (p > 0.05). This improvement in 2 km running performance was a function of improved performance in the second 1 km split time in both males and females (p < 0.05). Supplementation with BJ did not alter post-exercise blood [lactate] (p > 0.05) but lowered RPEgeneral (p < 0.05); Conclusions: acute BJ supplementation improves 2 km running performance in amateur runners by enhancing performance over the second half of the TT and lowering RPEgeneral by a comparable magnitude in males and females.
Collapse
|
20
|
Influence of Dietary Nitrate Supplementation on High-Intensity Intermittent Running Performance at Different Doses of Normobaric Hypoxia in Endurance-Trained Males. Int J Sport Nutr Exerc Metab 2020; 31:1-8. [PMID: 33260146 DOI: 10.1123/ijsnem.2020-0198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 11/18/2022]
Abstract
This study investigated whether supplementation with nitrate-rich beetroot juice (BR) can improve high-intensity intermittent running performance in trained males in normoxia and different doses of normobaric hypoxia. Eight endurance-trained males (V˙O2peak, 62 ± 6 ml·kg-1·min-1) completed repeated 90 s intervals at 110% of peak treadmill velocity, from an initial step incremental test, interspersed by 60 s of passive recovery until exhaustion (Tlim). Participants completed the first three experimental trials during days 3, 5, and 7 of BR or nitrate-depleted beetroot juice (PLA) supplementation and completed the remaining experimental visits on the alternative supplement following at least 7 days of washout. The fraction of inspired oxygen during visits 1-3 was either 0.209, 0.182, or 0.157, equivalent to an altitude of 0, 1,200, and 2,400 m, respectively, and this order was replicated on visits 4-6. Arterial oxygen saturation declined dose dependently as fraction of inspired oxygen was lowered (p < .05). Plasma nitrite concentration was higher pre- and postexercise after BR compared with PLA supplementation (p < .05). There was no difference in Tlim between PLA and BR at 0 m (445 [324, 508] and 410 [368, 548] s); 1,200 m (341 [270, 390] and 332 [314, 356] s); or 2,400 m (233 [177, 373] and 251 [221, 323] s) (median and [interquartile range]; p > .05). The findings from this study suggest that short-term BR supplementation does not improve high-intensity intermittent running performance in endurance-trained males in normoxia or at doses of normobaric hypoxia that correspond to altitudes at which athletes typically train while on altitude training camps.
Collapse
|
21
|
Capper TE, Houghton D, Stewart CJ, Blain AP, McMahon N, Siervo M, West DJ, Stevenson EJ. Whole beetroot consumption reduces systolic blood pressure and modulates diversity and composition of the gut microbiota in older participants. NFS JOURNAL 2020. [DOI: 10.1016/j.nfs.2020.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Engan H, Patrician A, Lodin-Sundström A, Johansson H, Melin M, Schagatay E. Spleen contraction and Hb elevation after dietary nitrate intake. J Appl Physiol (1985) 2020; 129:1324-1329. [PMID: 33031018 DOI: 10.1152/japplphysiol.00236.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ingestion of dietary nitrate ([Formula: see text]) is associated with improved exercise tolerance and reduced oxygen (O2) cost of exercise, ascribed to enhanced mitochondrial efficiency, muscle contractile function, or other factors. Nitrate ingestion has also been found to attenuate the reduction in arterial oxygen saturation ([Formula: see text]) during apnea and to prolong apneic duration. The spleen serves as a dynamic blood pool expelling erythrocytes into the circulation during apnea, and [Formula: see text] and nitric oxide donors may induce vasoactive effects in the mesenteric and splanchnic circulation. Our aim was to investigate the effect of ingestion of concentrated organic [Formula: see text]-rich beetroot juice (BR) on spleen volume and spleen contraction during apnea, and the resulting hemoglobin (Hb) concentration. Eight volunteers performed two apneas of submaximal and maximal duration during prone rest ∼2.5 h after ingesting 70 mL of BR (∼5 mmol [Formula: see text]) or placebo (PL; ∼0.003 mmol [Formula: see text]), on separate days in weighted order. Heart rate and [Formula: see text] were monitored continuously and spleen diameters were measured every minute for triaxial volume calculation. Capillary Hb samples were collected at baseline and after the maximal apnea. Baseline spleen volume was reduced by 66 mL after BR ingestion (22.9%; P = 0.026) and Hb was elevated (+3.0%; P = 0.015). During apneas, spleen contraction and Hb increase were similar between BR and PL conditions (NS). The study shows that dietary [Formula: see text]reduces spleen volume at rest, resulting in increased Hb. This spleen-induced Hb elevation following [Formula: see text] ingestions represents a novel mechanism that could enhance performance in conditions involving exercise, apnea, and hypoxia.NEW & NOTEWORTHY This is the first study to examine changes of spleen volume and circulating Hb following dietary [Formula: see text] supplementation. After dietary [Formula: see text] ingestion, the spleen volume at rest was reduced and Hb was elevated. The spleen contains a dynamic red blood cell reservoir, which can be mobilized and facilitate oxygen transport during various types of physiological stress. This study has revealed an additional, previously unexplored mechanism possibly contributing to the ergogenic effects of dietary [Formula: see text].
Collapse
Affiliation(s)
- Harald Engan
- Environmental Physiology Group, Department of Health Sciences, Mid Sweden University, Östersund, Sweden.,Unicare Rehabilitation Norway, Oslo, Norway
| | - Alexander Patrician
- Environmental Physiology Group, Department of Health Sciences, Mid Sweden University, Östersund, Sweden.,Centre for Heart, Lung & Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Angelica Lodin-Sundström
- Environmental Physiology Group, Department of Health Sciences, Mid Sweden University, Östersund, Sweden.,Department of Nursing Sciences, Mid Sweden University, Sundsvall, Sweden
| | - Hampus Johansson
- Environmental Physiology Group, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Maja Melin
- Environmental Physiology Group, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Erika Schagatay
- Environmental Physiology Group, Department of Health Sciences, Mid Sweden University, Östersund, Sweden.,Swedish Winter Sports Research Centre, Mid Sweden University, Östersund, Sweden
| |
Collapse
|
23
|
Effects of Dietary Nitrates on Time Trial Performance in Athletes with Different Training Status: Systematic Review. Nutrients 2020; 12:nu12092734. [PMID: 32911636 PMCID: PMC7551808 DOI: 10.3390/nu12092734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
Much research has been done in sports nutrition in recent years as the demand for performance-enhancing substances increases. Higher intake of nitrates from the diet can increase the bioavailability of nitric oxide (NO) via the nitrate-nitrite-NO pathway. Nevertheless, the increased availability of NO does not always lead to improved performance in some individuals. This review aims to evaluate the relationship between the athlete's training status and the change in time trial performance after increased dietary nitrate intake. Articles indexed by Scopus and PubMed published from 2015 to 2019 were reviewed. Thirteen articles met the eligibility criteria: clinical trial studies on healthy participants with different training status (according to VO2max), conducting time trial tests after dietary nitrate supplementation. The PRISMA guidelines were followed to process the review. We found a statistically significant relationship between VO2max and ergogenicity in time trial performance using one-way ANOVA (p = 0.001) in less-trained athletes (VO2 < 55 mL/kg/min). A strong positive correlation was observed in experimental situations using a chronic supplementation protocol but not in acute protocol situations. In the context of our results and recent histological observations of muscle fibres, there might be a fibre-type specific role in nitric oxide production and, therefore, supplement of ergogenicity.
Collapse
|
24
|
Abstract
Over the last decade, there has been a growing interest in the utility of nitrate (NO3-) supplementation to improve exercise-related performance. After consumption, dietary NO3- can be reduced to nitric oxide, a free radical gas involved in numerous physiological actions including blood vessel vasodilation, mitochondrial respiration, and skeletal muscle contractile function. Emerging evidence indicates that dietary NO3- supplementation has a small but nevertheless significant beneficial effect on endurance performance through the combined effects of enhanced tissue oxygenation and metabolic efficiency in active skeletal muscle. There is further evidence to suggest that dietary NO3- exerts a direct influence on contractile mechanisms within the skeletal muscle through alterations in calcium availability and sensitivity. Response heterogeneity and sizeable variability in the nitrate content of beetroot juice products influence the effectiveness of dietary NO3- for exercise performance, and so dosing and product quality, as well as training history, sex, and individual-specific characteristics, should be considered.
Collapse
|
25
|
Ranchal-Sanchez A, Diaz-Bernier VM, De La Florida-Villagran CA, Llorente-Cantarero FJ, Campos-Perez J, Jurado-Castro JM. Acute Effects of Beetroot Juice Supplements on Resistance Training: A Randomized Double-Blind Crossover. Nutrients 2020; 12:E1912. [PMID: 32605284 PMCID: PMC7401280 DOI: 10.3390/nu12071912] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 11/16/2022] Open
Abstract
The ingestion of beetroot juice (BJ) has been associated with improvements in physical performance in endurance sports, however the literature on resistance training (RT) is scarce. The aim of this study was to investigate the acute effects of BJ compared to a placebo (PLA) on muscular endurance and movement concentric velocity during RT. Twelve healthy men performed an incremental RT test (back squat and bench press) with three sets, at 60%, 70%, and 80% of their repetition maximum (1-RM). Movement velocity variables, total number of repetitions performed until concentric failure, blood lactate, and ratings of perceived effort post-training were measured. A higher number of repetitions were recorded with BJ compared to those with PLA (13.8 ± 14.4; p < 0.01; effect size (ES) = 0.6). Differences were found at 60% 1-RM (9 ± 10; p < 0.05; ES = 0.61) and 70% 1-RM (3.1 ± 4.8; p < 0.05; ES = 0.49), however, no differences were found at 80% 1-RM (1.7 ± 1; p = 0.12; ES = 0.41). A greater number of repetitions was performed in back squat (13.4 ± 13; p < 0.01; ES = 0.77), but no differences were observed in bench press (0.4 ± 5.1; p = 0.785; ES = 0.03). No differences were found for the rest of the variables (p > 0.05). Acute supplementation of BJ improved muscular endurance performance in RT.
Collapse
Affiliation(s)
- Antonio Ranchal-Sanchez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Córdoba, Spain;
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Cordoba, 14071 Córdoba, Spain; (V.M.D.-B.); (C.A.D.L.F.-V.)
| | - Victor Manuel Diaz-Bernier
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Cordoba, 14071 Córdoba, Spain; (V.M.D.-B.); (C.A.D.L.F.-V.)
| | | | - Francisco Jesus Llorente-Cantarero
- Department of Specific Didactics, Faculty of Education, University of Cordoba, 14071 Córdoba, Spain;
- CIBEROBN, (Physiopathology of Obesity and Nutrition) Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Julian Campos-Perez
- Department of Food Science and Technology, Rabanales University Campus, University of Cordoba, 14071 Córdoba, Spain;
| | - Jose Manuel Jurado-Castro
- Metabolism and Investigation Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Córdoba, Spain
| |
Collapse
|
26
|
Lorenzo Calvo J, Alorda-Capo F, Pareja-Galeano H, Jiménez SL. Influence of Nitrate Supplementation on Endurance Cyclic Sports Performance: A Systematic Review. Nutrients 2020; 12:nu12061796. [PMID: 32560317 PMCID: PMC7353291 DOI: 10.3390/nu12061796] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022] Open
Abstract
Endurance can be defined as the capacity to maintain one’s velocity or power output for the longest possible time. Maintaining such activity can lead to the onset of fatigue. Dietary nitrate supplementation produces an ergogenic effect due to the improvement of mitochondrial oxygen efficiency through a reduction in the oxygen cost of exercise that increases vasodilation and blood flow to the skeletal muscle in recreationally active subjects. However, the effects of dietary nitrate supplementation on well-trained endurance athletes remain unclear; such supplementation could affect more performance areas. In the present study, a systematic review of the literature was conducted to clarify the use and effects of nitrate as a dietary supplement in endurance athletes trained in cyclic sports (repetitive movement sports). A systematic search was carried out following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines in the databases of SCOPUS, Web of Science (WOS), Medline (PubMed), and Sport Discus from 1 January 2010 to 30 November 2019. Twenty-seven studies were included in the study. The methodological quality of the articles was assessed using the McMaster Critical Review Form. Statistically significant ergogenic results were obtained in 8 (29.63%) of the 27 studies investigated, with significant results obtained for cardiorespiratory parameters and performance measures. Improvement in exercise tolerance was obtained, which could help with exhaustion over time, while the improvement in exercise economics was not as clear. Additionally, the dose necessary for this ergogenic effect seems to have a direct relationship with the physical condition of the athlete. The acute dose is around 6–12.4 mmol/day of nitrate administered 2–3 h before the activity, with the same amount given as a chronic dose over 6–15 days. Further studies are required to understand the factors that affect the potential ergogenic impacts of nitrate on athletic performance among endurance athletes.
Collapse
Affiliation(s)
- Jorge Lorenzo Calvo
- Sport Department, Facultad de Ciencias de la Actividad Física y del Deporte, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Correspondence: (J.L.C.); (S.L.J.); Tel.: +34-670-723-696 (S.L.J.)
| | - Francesca Alorda-Capo
- Faculty of Sport Sciences, Universidad Europea De Madrid, 28670 Madrid, Spain; (F.A.-C.); (H.P.-G.)
| | - Helios Pareja-Galeano
- Faculty of Sport Sciences, Universidad Europea De Madrid, 28670 Madrid, Spain; (F.A.-C.); (H.P.-G.)
| | - Sergio L. Jiménez
- Faculty of Sport Sciences, Universidad Europea De Madrid, 28670 Madrid, Spain; (F.A.-C.); (H.P.-G.)
- Correspondence: (J.L.C.); (S.L.J.); Tel.: +34-670-723-696 (S.L.J.)
| |
Collapse
|
27
|
No Differences Between Beetroot Juice and Placebo on Competitive 5-km Running Performance: A Double-Blind, Placebo-Controlled Trial. Int J Sport Nutr Exerc Metab 2020; 30:295-300. [PMID: 32470923 DOI: 10.1123/ijsnem.2020-0034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 11/18/2022]
Abstract
The authors examine the effect of an acute dose of beetroot juice on endurance running performance in "real-world" competitive settings. In total, 70 recreational runners (mean ± SD: age = 33.3 ± 12.3 years, training history = 11.9 ± 8.1 years, and hours per week training = 5.9 ± 3.5) completed a quasi-randomized, double-blind, placebo-controlled study of 5-km competitive time trials. Participants performed four trials separated by 1 week in the order of prebaseline, two experimental, and one postbaseline. Experimental trials consisted of the administration of 70-ml nitrate-rich beetroot juice (containing ∼4.1 mmol of nitrate, Beet It Sport®) or nitrate-depleted placebo (containing ∼0.04 mmol of nitrate, Beet It Sport®) 2.5 hr prior to time trials. Time to complete 5 km was recorded for each trial. No differences were shown between pre- and postbaseline (p = .128, coefficient variation = 2.66%). The average of these two trials is therefore used as baseline. Compared with baseline, participants ran faster with beetroot juice (mean differences = 22.2 ± 5.0 s, p < .001, d = 0.08) and placebo (22.9 ± 4.5 s, p < .001, d = 0.09). No differences in times were shown between beetroot juice and placebo (0.8 ± 5.7 s, p < .875, d = 0.00). These results indicate that an acute dose of beetroot juice does not improve competitive 5-km time-trial performance in recreational runners compared with placebo.
Collapse
|
28
|
Zamani H, de Joode MEJR, Hossein IJ, Henckens NFT, Guggeis MA, Berends JE, de Kok TMCM, van Breda SGJ. The benefits and risks of beetroot juice consumption: a systematic review. Crit Rev Food Sci Nutr 2020; 61:788-804. [PMID: 32292042 DOI: 10.1080/10408398.2020.1746629] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Beetroot juice (BRJ) has become increasingly popular amongst athletes aiming to improve sport performances. BRJ contains high concentrations of nitrate, which can be converted into nitric oxide (NO) after consumption. NO has various functions in the human body, including a vasodilatory effect, which reduces blood pressure and increases oxygen- and nutrient delivery to various organs. These effects indicate that BRJ may have relevant applications in prevention and treatment of cardiovascular disease. Furthermore, the consumption of BRJ also has an impact on oxygen delivery to skeletal muscles, muscle efficiency, tolerance and endurance and may thus have a positive impact on sports performances. Aside from the beneficial aspects of BRJ consumption, there may also be potential health risks. Drinking BRJ may easily increase nitrate intake above the acceptable daily intake, which is known to stimulate the endogenous formation of N-nitroso compounds (NOC's), a class of compounds that is known to be carcinogenic and that may also induce several other adverse effects. Compared to studies on the beneficial effects, the amount of data and literature on the negative effects of BRJ is rather limited, and should be increased in order to perform a balanced risk assessment.
Collapse
Affiliation(s)
- H Zamani
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - M E J R de Joode
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - I J Hossein
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - N F T Henckens
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - M A Guggeis
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - J E Berends
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - T M C M de Kok
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - S G J van Breda
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
29
|
Gholami F, Rahmani L, Amirnezhad F, Cheraghi K. High doses of sodium nitrate prior to exhaustive exercise increases plasma peroxynitrite levels in well-trained subjects: randomized, double-blinded, crossover study. Appl Physiol Nutr Metab 2019; 44:1305-1310. [DOI: 10.1139/apnm-2018-0816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The aim of this study was to investigate the effect of different doses of pre-workout sodium nitrate supplementation on nitric oxide, peroxynitrite levels, and performance parameters. Ten well-trained male subjects participated in a randomized, double-blinded, crossover study. They ingested 8, 16, and 24 mmol sodium nitrate or placebo (NaCl) dissolved in water at 2.5 h before an incremental exercise test. Respiratory gases (oxygen consumption, carbon dioxide production, respiratory exchange ratio) were measured throughout the exercise trials and 3 blood samples (pre-ingestion, 2.5 h post-ingestion and postexercise) were taken to analyze nitrate/nitrite (NOx) and peroxynitrite levels. Data were analyzed using repeated-measures ANOVA at significance level of P < 0.05. NOx levels significantly increased following sodium nitrate ingestion compared with placebo (placebo: 40.86 ± 10.7 μmol/L, 8 mmol: 203.69 ± 25.1 μmol/L, 16 mmol: 289.41 ± 30.1 μmol/L, and 24 mmol: 300.95 ± 42.4 μmol/L, respectively) (P = 0.0001). However, this did not induce any significant change in oxygen consumption (P = 0.351), blood lactate concentration (P = 0.245), and time-to-exhaustion (P = 0.147). Peroxynitrite levels were similar compared with placebo when participants ingested 8 and 16 mmol of inorganic nitrate but a significant increase was observed after exercise at maximal intensity when participants were supplemented with 24 mmol (mean = 14.60 ± 1.3 μmol/L, P = 0.001). Pre-workout ingestion of high dose of sodium nitrate (24 mmol) induced peroxynitrate formation, a marker of oxidative stress. Caution must be taken regarding administration of higher doses before benefits or adverse effects are established in this population.
Collapse
Affiliation(s)
- Farhad Gholami
- Faculty of Sport Sciences, Shahrood University of Technology, Shahrood, Iran
- Faculty of Sport Sciences, Shahrood University of Technology, Shahrood, Iran
| | - Leila Rahmani
- Faculty of Sport Sciences, Shahrood University of Technology, Shahrood, Iran
- Faculty of Sport Sciences, Shahrood University of Technology, Shahrood, Iran
| | - Fatemeh Amirnezhad
- Faculty of Sport Sciences, Shahrood University of Technology, Shahrood, Iran
- Faculty of Sport Sciences, Shahrood University of Technology, Shahrood, Iran
| | - Khadijeh Cheraghi
- Faculty of Sport Sciences, Shahrood University of Technology, Shahrood, Iran
- Faculty of Sport Sciences, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
30
|
Shannon OM, Grisotto G, Babateen A, McGrattan A, Brandt K, Mathers JC, Siervo M. Knowledge and beliefs about dietary inorganic nitrate among UK-based nutrition professionals: Development and application of the KINDS online questionnaire. BMJ Open 2019; 9:e030719. [PMID: 31676652 PMCID: PMC6830619 DOI: 10.1136/bmjopen-2019-030719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/29/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To examine knowledge and beliefs about the biological roles of dietary inorganic nitrate in UK-based nutrition professionals, and to explore potential differences by participants' education level. SETTING An online questionnaire was administered to UK-based nutrition professionals, exploring knowledge and/or beliefs across five areas: (1) health and performance effects of nitrate; (2) current and recommended intake values for nitrate; (3) dietary sources of nitrate; (4) methods of evaluating nitrate intake and (5) nitrate metabolism. PARTICIPANTS One hundred and twenty-five nutrition professionals. PRIMARY OUTCOME Knowledge and beliefs about inorganic nitrate. RESULTS Most nutrition professionals taking part in the survey had previously heard of inorganic nitrate (71%) and perceived it to be primarily beneficial (51%). The majority believed that nitrate consumption can improve sports performance (59%) and reduce blood pressure (54%), but were unsure about effects on cognitive function (71%), kidney function (80%) and cancer risk (70%). Knowledge of dietary sources of nitrate and factors affecting its content in food were generally good (41%-79% of participants providing correct answers). However, most participants were unsure of the average population intake (65%) and the acceptable daily intake (64%) of nitrate. Most participants (65%) recognised at least one compound (ie, nitric oxide or nitrosamines) that is derived from dietary nitrate in the body. Knowledge of nitrate, quantified by a 23-point index created by summing correct responses, was greater in individuals with a PhD (p=0.01; median (IQR)=13 (9-17)) and tended to be better in respondents with a masters degree (p=0.054; 13 (8-15)) compared with undergraduate-level qualifications (10 (2-14)). CONCLUSIONS UK-based nutrition professionals demonstrated mixed knowledge about the physiology of dietary nitrate, which was better in participants with higher education. More efficient dissemination of current knowledge about inorganic nitrate and its effects on health to nutrition professionals will support them to make more informed recommendations about consumption of this compound.
Collapse
Affiliation(s)
- Oliver M Shannon
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Giorgia Grisotto
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Abrar Babateen
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Andrea McGrattan
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Kirsten Brandt
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - John C Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Mario Siervo
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
- School of Life Sciences, The University of Nottingham Medical School, University of Nottingham, Nottingham, UK
| |
Collapse
|
31
|
Effect of Beetroot Juice Supplementation on Mood, Perceived Exertion, and Performance During a 30-Second Wingate Test. Int J Sports Physiol Perform 2019; 15:243-248. [PMID: 31172827 DOI: 10.1123/ijspp.2019-0149] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/26/2019] [Accepted: 05/08/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE Dietary supplementation with inorganic nitrate (NO3-) can enhance high-intensity exercise performance by improving skeletal muscle contractility and metabolism, but the extent to which this might be linked to altered psychophysiological processes is presently unclear. The purpose of this study was to assess the effects of NO3--rich beetroot juice (BJ) supplementation on profile of mood states, ratings of perceived exertion (RPE), and performance in a 30-second Wingate cycle test. METHODS In a double-blind, randomized, cross-over study, 15 subjects completed 2 laboratory sessions after ingesting NO3--rich or NO3--depleted (placebo) BJ. Participants initially completed the profile of mood states questionnaire. Subsequently, participants completed a warm-up followed by a 30-second all-out Wingate cycling test. After the Wingate test, participants immediately indicated the RPE of their leg muscles (RPEmuscular), cardiovascular system (RPEcardio), and general RPE (RPEgeneral). RESULTS Compared with the placebo condition, supplementation with BJ increased peak power output (Wpeak) (+4.4%, 11.5 [0.7] vs 11.1 [1.0] W·kg-1; P = .039) and lowered the time taken to reach Wpeak (7.3 [0.9] vs 8.7 [1.5] s; P = .002) during the Wingate test. The profile of mood states score linked to tension was increased prior to the Wingate test (4.8 [3.0] vs 3.4 [2.4]; P = .040), and RPEmuscular was lowered immediately following the Wingate test (17.7 [1.6] vs 18.3 [1.0]; P = .031), after BJ compared with placebo ingestion. CONCLUSIONS Acute BJ supplementation improved pre-exercise tension, 30-second Wingate test performance, and lowered postexercise RPEmuscular.
Collapse
|
32
|
Wylie LJ, Park JW, Vanhatalo A, Kadach S, Black MI, Stoyanov Z, Schechter AN, Jones AM, Piknova B. Human skeletal muscle nitrate store: influence of dietary nitrate supplementation and exercise. J Physiol 2019; 597:5565-5576. [PMID: 31350908 PMCID: PMC9358602 DOI: 10.1113/jp278076] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/22/2019] [Indexed: 12/18/2022] Open
Abstract
Rodent skeletal muscle contains a large store of nitrate that can be augmented by the consumption of dietary nitrate. This muscle nitrate reservoir has been found to be an important source of nitrite and nitric oxide (NO) via its reduction by tissue xanthine oxidoreductase. To explore if this pathway is also active in human skeletal muscle during exercise, and if it is sensitive to local nitrate availability, we assessed exercise-induced changes in muscle nitrate and nitrite concentrations in young healthy humans, under baseline conditions and following dietary nitrate consumption. We found that baseline nitrate and nitrite concentrations were far higher in muscle than in plasma (~4-fold and ~29-fold, respectively), and that the consumption of a single bolus of dietary nitrate (12.8 mmol) significantly elevated nitrate concentration in both plasma (~19-fold) and muscle (~5-fold). Consistent with these observations, and with previous suggestions of active muscle nitrate transport, we present western blot data to show significant expression of the active nitrate/nitrite transporter sialin in human skeletal muscle. Furthermore, we report an exercise-induced reduction in human muscle nitrate concentration (by ~39%), but only in the presence of an increased muscle nitrate store. Our results indicate that human skeletal muscle nitrate stores are sensitive to dietary nitrate intake and may contribute to NO generation during exercise. Together, these findings suggest that skeletal muscle plays an important role in the transport, storage and metabolism of nitrate in humans.
Collapse
Affiliation(s)
- Lee J. Wylie
- Sport and Health SciencesCollege of Life and Environmental SciencesSt Luke's CampusUniversity of Exeter Exeter EX1 2LU UK
| | - Ji Won Park
- Molecular Medicine BranchNIDDKNational Institutes of Health Bethesda MD 20892–1822 USA
| | - Anni Vanhatalo
- Sport and Health SciencesCollege of Life and Environmental SciencesSt Luke's CampusUniversity of Exeter Exeter EX1 2LU UK
| | - Stefan Kadach
- Sport and Health SciencesCollege of Life and Environmental SciencesSt Luke's CampusUniversity of Exeter Exeter EX1 2LU UK
| | - Matthew I. Black
- Sport and Health SciencesCollege of Life and Environmental SciencesSt Luke's CampusUniversity of Exeter Exeter EX1 2LU UK
| | - Zdravko Stoyanov
- Sport and Health SciencesCollege of Life and Environmental SciencesSt Luke's CampusUniversity of Exeter Exeter EX1 2LU UK
| | - Alan N. Schechter
- Molecular Medicine BranchNIDDKNational Institutes of Health Bethesda MD 20892–1822 USA
| | - Andrew M. Jones
- Sport and Health SciencesCollege of Life and Environmental SciencesSt Luke's CampusUniversity of Exeter Exeter EX1 2LU UK
| | - Barbora Piknova
- Molecular Medicine BranchNIDDKNational Institutes of Health Bethesda MD 20892–1822 USA
| |
Collapse
|
33
|
d'Unienville NMA, Hill AM, Coates AM, Yandell C, Nelson MJ, Buckley JD. Effects of almond, dried grape and dried cranberry consumption on endurance exercise performance, recovery and psychomotor speed: protocol of a randomised controlled trial. BMJ Open Sport Exerc Med 2019; 5:e000560. [PMID: 31548903 PMCID: PMC6733316 DOI: 10.1136/bmjsem-2019-000560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 01/17/2023] Open
Abstract
Background Foods rich in nutrients, such as nitrate, nitrite, L-arginine and polyphenols, can promote the synthesis of nitric oxide (NO), which may induce ergogenic effects on endurance exercise performance. Thus, consuming foods rich in these components, such as almonds, dried grapes and dried cranberries (AGC), may improve athletic performance. Additionally, the antioxidant properties of these foods may reduce oxidative damage induced by intense exercise, thus improving recovery and reducing fatigue from strenuous physical training. Improvements in NO synthesis may also promote cerebral blood flow, which may improve cognitive function. Methods and analysis Ninety-six trained male cyclists or triathletes will be randomised to consume ~2550 kJ of either a mixture of AGC or a comparator snack food (oat bar) for 4 weeks during an overreaching endurance training protocol comprised of a 2-week heavy training phase, followed by a 2-week taper. The primary outcome is endurance exercise performance (5 min time-trial performance) and secondary outcomes include markers of NO synthesis (plasma and urinary nitrites and nitrates), muscle damage (serum creatine kinase and lactate dehydrogenase), oxidative stress (F2-isoprostanes), endurance exercise function (exercise efficiency, submaximal oxygen consumption and substrate utilisation), markers of internal training load (subjective well-being, rating of perceived exertion, maximal rate of heart rate increase and peak heart rate) and psychomotor speed (choice reaction time). Conclusion This study will evaluate whether consuming AGC improves endurance exercise performance, recovery and psychomotor speed across an endurance training programme, and evaluate the mechanisms responsible for any improvement. Trial registration number ACTRN12618000360213.
Collapse
Affiliation(s)
- Noah M A d'Unienville
- School of Health Science, University of South Australia, Adelaide, South Australia, Australia
| | - Alison M Hill
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Alison M Coates
- School of Health Science, University of South Australia, Adelaide, South Australia, Australia
| | - Catherine Yandell
- School of Health Science, University of South Australia, Adelaide, South Australia, Australia
| | - Maximillian J Nelson
- School of Health Science, University of South Australia, Adelaide, South Australia, Australia
| | - Jonathan D Buckley
- School of Health Science, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
34
|
Influence of Equimolar Doses of Beetroot Juice and Sodium Nitrate on Time Trial Performance in Handcycling. Nutrients 2019; 11:nu11071642. [PMID: 31323779 PMCID: PMC6683039 DOI: 10.3390/nu11071642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
This study aimed to investigate the influence of a single dose of either beetroot juice (BR) or sodium nitrate (NIT) on performance in a 10 km handcycling time trial (TT) in able-bodied individuals and paracyclists. In total, 14 able-bodied individuals [mean ± SD; age: 28 ± 7 years, height: 183 ± 5 cm, body mass (BM): 82 ± 9 kg, peak oxygen consumption (VO2peak): 33.9 ± 4.2 mL/min/kg] and eight paracyclists (age: 40 ± 11 years, height: 176 ± 9cm, BM: 65 ± 9 kg, VO2peak: 38.6 ± 10.5 mL/min/kg) participated in the study. All participants had to perform three TT on different days, receiving either 6 mmol nitrate as BR or NIT or water as a placebo. Time-to-complete the TT, power output (PO), as well as oxygen uptake (VO2) were measured. No significant differences in time-to-complete the TT were found between the three interventions in able-bodied individuals (p = 0.80) or in paracyclists (p = 0.61). Furthermore, VO2 was not significantly changed after the ingestion of BR or NIT in either group (p < 0.05). The PO to VO2 ratio was significantly higher in some kilometers of the TT in able-bodied individuals (p < 0.05). The ingestion of BR or NIT did not increase handcycling performance in able-bodied individuals or in paracyclists.
Collapse
|
35
|
Nitrate Supplementation Combined with a Running Training Program Improved Time-Trial Performance in Recreationally Trained Runners. Sports (Basel) 2019; 7:sports7050120. [PMID: 31117193 PMCID: PMC6571712 DOI: 10.3390/sports7050120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 11/30/2022] Open
Abstract
Our purpose was to verify the effects of inorganic nitrate combined to a short training program on 10-km running time-trial (TT) performance, maximum and average power on a Wingate test, and lactate concentration ([La−]) in recreational runners. Sixteen healthy participants were divided randomly into two groups: Nitrate (n = 8) and placebo (n = 8). The experimental group ingested 750 mg/day (~12 mmol) of nitrate plus 5 g of resistant starch, and the control group ingested 6 g of resistant starch, for 30 days. All variables were assessed at baseline and weekly over 30 days. Training took place 3x/week. The time on a 10-km TT decreased significantly (p < 0.001) in all timepoints compared to baseline in both groups, but only the nitrate group was faster in week 2 compared to 1. There was a significant group × time interaction (p < 0.001) with lower [La] in the nitrate group at week 2 (p = 0.032), week 3 (p = 0.002), and week 4 (p = 0.003). There was a significant group time interaction (p = 0.028) for Wingate average power and a main effect of time for maximum power (p < 0.001) and [La−] for the 60-s Wingate test. In conclusion, nitrate ingestion during a four-week running program improved 10-km TT performance and kept blood [La−] steady when compared to placebo in recreational runners.
Collapse
|
36
|
Nitrate supplementation improves physical performance specifically in non-athletes during prolonged open-ended tests: a systematic review and meta-analysis. Br J Nutr 2019; 119:636-657. [PMID: 29553034 DOI: 10.1017/s0007114518000132] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nitrate (NO3 -) is an ergogenic nutritional supplement that is widely used to improve physical performance. However, the effectiveness of NO3 - supplementation has not been systematically investigated in individuals with different physical fitness levels. The present study analysed whether different fitness levels (non-athletes v. athletes or classification of performance levels), duration of the test used to measure performance (short v. long duration) and the test protocol (time trials v. open-ended tests v. graded-exercise tests) influence the effects of NO3 - supplementation on performance. This systematic review and meta-analysis was conducted and reported according to the guidelines outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement. A systematic search of electronic databases, including PubMed, Web of Science, SPORTDiscus and ProQuest, was performed in August 2017. On the basis of the search and inclusion criteria, fifty-four and fifty-three placebo-controlled studies evaluating the effects of NO3 - supplementation on performance in humans were included in the systematic review and meta-analysis, respectively. NO3 - supplementation was ergogenic in non-athletes (mean effect size (ES) 0·25; 95 % CI 0·11, 0·38), particularly in evaluations of performance using long-duration open-ended tests (ES 0·47; 95 % CI 0·23, 0·71). In contrast, NO3 - supplementation did not enhance the performance of athletes (ES 0·04; 95 % CI -0·05, 0·15). After objectively classifying the participants into different performance levels, the frequency of trials showing ergogenic effects in individuals classified at lower levels was higher than that in individuals classified at higher levels. Thus, the present study indicates that dietary NO3 - supplementation improves physical performance in non-athletes, particularly during long-duration open-ended tests.
Collapse
|
37
|
Contemporary Nutrition Strategies to Optimize Performance in Distance Runners and Race Walkers. Int J Sport Nutr Exerc Metab 2019; 29:117-129. [PMID: 30747558 DOI: 10.1123/ijsnem.2019-0004] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Distance events in Athletics include cross country, 10,000-m track race, half-marathon and marathon road races, and 20- and 50-km race walking events over different terrain and environmental conditions. Race times for elite performers span ∼26 min to >4 hr, with key factors for success being a high aerobic power, the ability to exercise at a large fraction of this power, and high running/walking economy. Nutrition-related contributors include body mass and anthropometry, capacity to use fuels, particularly carbohydrate (CHO) to produce adenosine triphosphate economically over the duration of the event, and maintenance of reasonable hydration status in the face of sweat losses induced by exercise intensity and the environment. Race nutrition strategies include CHO-rich eating in the hours per days prior to the event to store glycogen in amounts sufficient for event fuel needs, and in some cases, in-race consumption of CHO and fluid to offset event losses. Beneficial CHO intakes range from small amounts, including mouth rinsing, in the case of shorter events to high rates of intake (75-90 g/hr) in the longest races. A personalized and practiced race nutrition plan should balance the benefits of fluid and CHO consumed within practical opportunities, against the time, cost, and risk of gut discomfort. In hot environments, prerace hyperhydration or cooling strategies may provide a small but useful offset to the accrued thermal challenge and fluid deficit. Sports foods (drinks, gels, etc.) may assist in meeting training/race nutrition plans, with caffeine, and, perhaps nitrate being used as evidence-based performance supplements.
Collapse
|
38
|
Mosher SL, Gough LA, Deb S, Saunders B, Mc Naughton LR, Brown DR, Sparks S. High dose Nitrate ingestion does not improve 40 km cycling time trial performance in trained cyclists. Res Sports Med 2019; 28:138-146. [DOI: 10.1080/15438627.2019.1586707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- S. L. Mosher
- Sports Performance and Nutrition Group, Edge Hill University, Ormskirk, UK
| | - L. A. Gough
- School of Health Sciences, Birmingham City University, Birmingham, UK
| | - S. Deb
- Department of Life Science, Westminster University, London, United Kingdom
| | - B. Saunders
- Applied Physiology & Nutrition Research Group, Universidade de São Paulo, São Paulo, Brazil
| | - L. R. Mc Naughton
- Sports Performance and Nutrition Group, Edge Hill University, Ormskirk, UK
| | - D. R. Brown
- Sports Performance and Nutrition Group, Edge Hill University, Ormskirk, UK
| | - S.A Sparks
- Sports Performance and Nutrition Group, Edge Hill University, Ormskirk, UK
| |
Collapse
|
39
|
de Castro TF, de Assis Manoel F, Figueiredo DH, Figueiredo DH, Machado FA. Effects of chronic beetroot juice supplementation on maximum oxygen uptake, velocity associated with maximum oxygen uptake, and peak velocity in recreational runners: a double-blinded, randomized and crossover study. Eur J Appl Physiol 2019; 119:1043-1053. [DOI: 10.1007/s00421-019-04094-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/06/2019] [Indexed: 12/17/2022]
|
40
|
Contemporary Nutrition Interventions to Optimize Performance in Middle-Distance Runners. Int J Sport Nutr Exerc Metab 2019; 29:106-116. [PMID: 30299184 DOI: 10.1123/ijsnem.2018-0241] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Middle-distance runners utilize the full continuum of energy systems throughout training, and given the infinite competition tactical scenarios, this event group is highly complex from a performance intervention point of view. However, this complexity results in numerous potential periodized nutrition interventions to optimize middle-distance training adaptation and competition performance. Middle-distance race intensity is extreme, with 800- to 5,000-m races being at ∼95% to 130% of VO2max. Accordingly, elite middle-distance runners have primarily Type IIa/IIx fiber morphology and rely almost exclusively on carbohydrate (primarily muscle glycogen) metabolic pathways for producing adenosine triphosphate. Consequently, the principle nutritional interventions that should be emphasized are those that optimize muscle glycogen contents to support high glycolytic flux (resulting in very high lactate values, of >20 mmol/L in some athletes) with appropriate buffering capabilities, while optimizing power to weight ratios, all in a macro- and microperiodized manner. From youth to elite level, middle-distance athletes have arduous racing schedules (10-25 races/year), coupled with excessive global travel, which can take a physical and emotional toll. Accordingly, proactive and integrated nutrition planning can have a profound recovery effect over a long race season, as well as optimizing recovery during rounds of championship racing. Finally, with evidence-based implementation and an appropriate risk/reward assessment, several ergogenic aids may have an adaptive and/or performance-enhancing effect in the middle-distance athlete. Given that elite middle-distance athletes undertake ∼400 to 800 training sessions with 10-25 races/year, there are countless opportunities to implement various periodized acute and chronic nutrition-based interventions to optimize performance.
Collapse
|
41
|
de Castro TF, Manoel FDA, Figueiredo DH, Figueiredo DH, Machado FA. Effect of beetroot juice supplementation on 10-km performance in recreational runners. Appl Physiol Nutr Metab 2019; 44:90-94. [DOI: 10.1139/apnm-2018-0277] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to investigate the effects of chronic beetroot juice (BRJ) supplementation on 10-km running performance in recreational runners. In a double-blind, placebo-controlled, crossover-designed study, 14 male recreational runners (age, 27.8 ± 3.4 years) performed three 10-km running tests, at baseline and under the conditions of BRJ supplementation and placebo (PLA). Supplementation was administered for 3 days, and on the days of the assessments, the ingestion occurred 2 h before the test and consisted of a dose of 420 mL of BRJ in natura (8.4 mmol inorganic nitrate (NO3−)·day−1) or PLA with depleted NO3− (0.01 mmol NO3−·day−1). The mean velocity (MV) was calculated, and the following variables were determined: maximal heart rate, maximal rating of perceived exertion, blood glucose concentration (analyzed before and after the test), and lactate peak. There was no main effect between conditions regarding 10-km running time performance (BRJ: 50.1 ± 5.3 min; PLA: 51.0 ± 5.1 min; P = 0.391) and total MV (BRJ: 12.1 ± 1.3 km·h−1; PLA: 11.9 ± 1.2 km·h−1; P = 0.321) or in the other analyzed variables. The time to complete the first half of the test (5 km) was statistically lower in the BRJ group than in the PLA group (P = 0.027). In conclusion, chronic supplementation with BRJ increased MV in the first half of the test and improved the final test times of 10 of the 14 runners, although we did not find a statistically significant difference in the performance of the 10-km run.
Collapse
Affiliation(s)
- Talitha Fernandes de Castro
- Post-graduate Program of Physiological Sciences, Department of Physiological Sciences, State University of Maringá, 87020-900 Maringá-PR, Brazil
| | - Francisco de Assis Manoel
- Associate Post-graduate Program in Physical Education UEM/UEL, Department of Physical Education, State University of Maringá, 87020-900 Maringá-PR, Brazil
| | - Diogo Hilgemberg Figueiredo
- Associate Post-graduate Program in Physical Education UEM/UEL, Department of Physical Education, State University of Maringá, 87020-900 Maringá-PR, Brazil
| | - Diego Hilgemberg Figueiredo
- Associate Post-graduate Program in Physical Education UEM/UEL, Department of Physical Education, State University of Maringá, 87020-900 Maringá-PR, Brazil
| | - Fabiana Andrade Machado
- Post-graduate Program of Physiological Sciences, Department of Physiological Sciences, State University of Maringá, 87020-900 Maringá-PR, Brazil
- Associate Post-graduate Program in Physical Education UEM/UEL, Department of Physical Education, State University of Maringá, 87020-900 Maringá-PR, Brazil
| |
Collapse
|
42
|
Casazza GA, Tovar AP, Richardson CE, Cortez AN, Davis BA. Energy Availability, Macronutrient Intake, and Nutritional Supplementation for Improving Exercise Performance in Endurance Athletes. Curr Sports Med Rep 2018; 17:215-223. [PMID: 29889151 DOI: 10.1249/jsr.0000000000000494] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Endurance athletes use nutritional guidelines and supplements to improve exercise performance and recovery. However, use is not always based on scientific evidence of improved performance, which type of athlete would benefit most, or the optimal dose and timing of a particular supplement. Health professionals that give advice to athletes need to target their recommendations on the energy systems and muscle fiber types used for the athlete's sporting event, the goal of the training block, the time of the competitive season, and the characteristics and food preferences of the individual athlete. This review aims to summarize the most current research findings on the optimal calorie, carbohydrate, and protein intake for athlete health, performance, and recovery. We also summarized new findings on fluid intake and the optimal dose and timing of beetroot and caffeine supplementation on time trial performance in endurance athletes.
Collapse
Affiliation(s)
- Gretchen A Casazza
- Sports Performance Laboratory, University of California Davis Sports Medicine Program, Sacramento, CA
| | - Ashley P Tovar
- Sports Performance Laboratory, University of California Davis Sports Medicine Program, Sacramento, CA
| | - Christine E Richardson
- Sports Performance Laboratory, University of California Davis Sports Medicine Program, Sacramento, CA
| | - Angela N Cortez
- Physical Medicine and Rehabilitation, University of California, Davis, Medical Center, Sacramento, CA
| | - Brian A Davis
- Physical Medicine and Rehabilitation, University of California, Davis, Medical Center, Sacramento, CA
| |
Collapse
|
43
|
Oskarsson J, McGawley K. No individual or combined effects of caffeine and beetroot-juice supplementation during submaximal or maximal running. Appl Physiol Nutr Metab 2018; 43:697-703. [DOI: 10.1139/apnm-2017-0547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Dietary supplements such as caffeine and beetroot juice are used by athletes in an attempt to optimize performance and therefore gain an advantage in competition. The aim of this study was to investigate the individual and combined effects of caffeine and beetroot-juice supplementation during submaximal and maximal treadmill running. Seven males (maximal oxygen uptake: 59.0 ± 2.9 mL·kg–1·min–1) and 2 females (maximal oxygen uptake: 53.1 ± 11.4 mL·kg–1·min–1) performed a preliminary trial followed by 4 experimental test sessions. Each test session consisted of two 5-min submaximal running bouts (at ∼70% and 80% of maximal oxygen uptake) and a maximal 1-km time trial (TT) in a laboratory. Participants ingested 70 mL of concentrated beetroot juice containing either 7.3 mmol of nitrate (BR) or no nitrate (PBR) 2.5 h prior to each test session, then either caffeine (C) at 4.8 ± 0.4 (4.3–5.6) mg/kg of body mass or a caffeine placebo (PC) 45 min before each test session. The 4 test sessions (BR-C, BR-PC, PBR-C, and PBR-PC) were presented in a counterbalanced and double-blind manner. No significant differences were identified between the 4 interventions regarding relative oxygen uptake, running economy, respiratory exchange ratio, heart rate (HR), or rating of perceived exertion (RPE) at the 2 submaximal intensities (P > 0.05). Moreover, there were no significant differences in performance, maximum HR, peak blood lactate concentration, or RPE during the maximal TT when comparing the interventions (P > 0.05). In conclusion, no beneficial effects of supplementing with typical doses of caffeine, beetroot juice, or a combination of the two were observed for physiological, perceptual, or performance responses during submaximal or maximal treadmill running exercise.
Collapse
Affiliation(s)
- Johanna Oskarsson
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, 831 25 Östersund, Sweden
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, 831 25 Östersund, Sweden
| | - Kerry McGawley
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, 831 25 Östersund, Sweden
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, 831 25 Östersund, Sweden
| |
Collapse
|
44
|
Tan R, Wylie LJ, Thompson C, Blackwell JR, Bailey SJ, Vanhatalo A, Jones AM. Beetroot juice ingestion during prolonged moderate-intensity exercise attenuates progressive rise in O2 uptake. J Appl Physiol (1985) 2018; 124:1254-1263. [DOI: 10.1152/japplphysiol.01006.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nitrate-rich beetroot juice (BR) supplementation has been shown to increase biomarkers of nitric oxide availability with implications for the physiological responses to exercise. We hypothesized that BR supplementation before and during prolonged moderate-intensity exercise would maintain an elevated plasma nitrite concentration ([[Formula: see text]]), attenuate the expected progressive increase in V̇o2 over time, and improve performance in a subsequent time trial (TT). In a double-blind, randomized, crossover design, 12 men completed 2 h of moderate-intensity cycle exercise followed by a 100-kJ TT in three conditions: 1) BR before and 1 h into exercise (BR + BR); 2) BR before and placebo (PL) 1 h into exercise (BR + PL); and 3) PL before and 1 h into exercise (PL + PL). During the 2-h moderate-intensity exercise bout, plasma [[Formula: see text]] declined by ~17% in BR + PL but increased by ~8% in BR + BR such that, at 2 h, plasma [[Formula: see text]] was greater in BR + BR than both BR + PL and PL + PL ( P < 0.05). V̇o2 was not different among conditions over the first 90 min of exercise but was lower at 120 min in BR + BR (1.73 ± 0.24 l/min) compared with BR + PL (1.80 ± 0.21 l/min; P = 0.08) and PL + PL (1.83 ± 0.27 l/min; P < 0.01). The decline in muscle glycogen concentration over the 2-h exercise bout was attenuated in BR + BR (~28% decline) compared with BR + PL (~44% decline) and PL + PL (~44% decline; n = 9, P < 0.05). TT performance was not different among conditions ( P > 0.05). BR supplementation before and during prolonged moderate-intensity exercise attenuated the progressive rise in V̇o2 over time and appeared to reduce muscle glycogen depletion but did not enhance subsequent TT performance. NEW & NOTEWORTHY We show for the first time that ingestion of nitrate during exercise preserves elevated plasma [nitrite] and negates the progressive rise in O2 uptake during prolonged moderate-intensity exercise.
Collapse
Affiliation(s)
- Rachel Tan
- Sports and Health Sciences, College of Life and Environmental Sciences, St. Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Lee J. Wylie
- Sports and Health Sciences, College of Life and Environmental Sciences, St. Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Christopher Thompson
- Sports and Health Sciences, College of Life and Environmental Sciences, St. Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Jamie R. Blackwell
- Sports and Health Sciences, College of Life and Environmental Sciences, St. Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Stephen J. Bailey
- Sports and Health Sciences, College of Life and Environmental Sciences, St. Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Anni Vanhatalo
- Sports and Health Sciences, College of Life and Environmental Sciences, St. Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Andrew M. Jones
- Sports and Health Sciences, College of Life and Environmental Sciences, St. Luke’s Campus, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
45
|
Nybäck L, Glännerud C, Larsson G, Weitzberg E, Shannon OM, McGawley K. Physiological and performance effects of nitrate supplementation during roller-skiing in normoxia and normobaric hypoxia. Nitric Oxide 2017; 70:1-8. [DOI: 10.1016/j.niox.2017.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 11/29/2022]
|
46
|
Deley G, Guillemet D, Allaert FA, Babault N. An Acute Dose of Specific Grape and Apple Polyphenols Improves Endurance Performance: A Randomized, Crossover, Double-Blind versus Placebo Controlled Study. Nutrients 2017; 9:nu9080917. [PMID: 28829368 PMCID: PMC5579710 DOI: 10.3390/nu9080917] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 12/20/2022] Open
Abstract
Polyphenols are thought to be an interesting ergogenic aid for exercise and recovery. However, most studies regarding the effects of polyphenols investigated several days of supplementations. The present work aimed to study the effects of an acute intake of grape and apple polyphenols on the capacity to maintain intense exercise, here named endurance performance. Forty-eight physically active men (31 ± 6 years) were included in this study. During the two testing sessions, volunteers completed an endurance test at a high percentage of their maximal aerobic power and time to exhaustion was measured. Respiratory and pain parameters were also monitored. The preceding evening and 1 h before testing, volunteers had to absorb either 500 mg of polyphenols or placebo according to randomization. In comparison with the placebo, the mean duration of the maximal endurance test was significantly increased with polyphenols (+9.7% ± 6.0%, p < 0.05). The maximal perceived exertion was reached later with polyphenols (+12.8% ± 6.8%, p < 0.05). Practically, the present study showed the beneficial effects of grape and apple polyphenols for athletes looking for endurance performance improvements. The specifically designed profile of polyphenols appeared to enhance the capacity to maintain intensive efforts and delay perceived exertion.
Collapse
Affiliation(s)
- Gaëlle Deley
- CAPS, U1093 INSERM, Université de Bourgogne-Franche-Comté, Faculté des Sciences du Sport, F-21000 Dijon, France.
- Centre d'Expertise de la Performance, U1093 INSERM, Université de Bourgogne-Franche-Comté, Faculté des Sciences du Sport, F-21000 Dijon, France.
| | | | | | - Nicolas Babault
- CAPS, U1093 INSERM, Université de Bourgogne-Franche-Comté, Faculté des Sciences du Sport, F-21000 Dijon, France.
- Centre d'Expertise de la Performance, U1093 INSERM, Université de Bourgogne-Franche-Comté, Faculté des Sciences du Sport, F-21000 Dijon, France.
| |
Collapse
|
47
|
Collins PB, Earnest CP, Dalton RL, Sowinski RJ, Grubic TJ, Favot CJ, Coletta AM, Rasmussen C, Greenwood M, Kreider RB. Short-Term Effects of a Ready-to-Drink Pre-Workout Beverage on Exercise Performance and Recovery. Nutrients 2017; 9:nu9080823. [PMID: 28763003 PMCID: PMC5579616 DOI: 10.3390/nu9080823] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 01/07/2023] Open
Abstract
In a double-blind, randomized and crossover manner, 25 resistance-trained participants ingested a placebo (PLA) beverage containing 12 g of dextrose and a beverage (RTD) containing caffeine (200 mg), β-alanine (2.1 g), arginine nitrate (1.3 g), niacin (65 mg), folic acid (325 mcg), and Vitamin B12 (45 mcg) for 7-days, separated by a 7-10-day. On day 1 and 6, participants donated a fasting blood sample and completed a side-effects questionnaire (SEQ), hemodynamic challenge test, 1-RM and muscular endurance tests (3 × 10 repetitions at 70% of 1-RM with the last set to failure on the bench press (BP) and leg press (LP)) followed by ingesting the assigned beverage. After 15 min, participants repeated the hemodynamic test, 1-RM tests, and performed a repetition to fatigue (RtF) test at 70% of 1-RM, followed by completing the SEQ. On day 2 and 7, participants donated a fasting blood sample, completed the SEQ, ingested the assigned beverage, rested 30 min, and performed a 4 km cycling time-trial (TT). Data were analyzed by univariate, multivariate, and repeated measures general linear models (GLM), adjusted for gender and relative caffeine intake. Data are presented as mean change (95% CI). An overall multivariate time × treatment interaction was observed on strength performance variables (p = 0.01). Acute RTD ingestion better maintained LP 1-RM (PLA: -0.285 (-0.49, -0.08); RTD: 0.23 (-0.50, 0.18) kg/kgFFM, p = 0.30); increased LP RtF (PLA: -2.60 (-6.8, 1.6); RTD: 4.00 (-0.2, 8.2) repetitions, p = 0.031); increased BP lifting volume (PLA: 0.001 (-0.13, 0.16); RTD: 0.03 (0.02, 0.04) kg/kgFFM, p = 0.007); and, increased total lifting volume (PLA: -13.12 (-36.9, 10.5); RTD: 21.06 (-2.7, 44.8) kg/kgFFM, p = 0.046). Short-term RTD ingestion maintained baseline LP 1-RM (PLA: -0.412 (-0.08, -0.07); RTD: 0.16 (-0.50, 0.18) kg/kgFFM, p = 0.30); LP RtF (PLA: 0.12 (-3.0, 3.2); RTD: 3.6 (0.5, 6.7) repetitions, p = 0.116); and, LP lifting volume (PLA: 3.64 (-8.8, 16.1); RTD: 16.25 (3.8, 28.7) kg/kgFFM, p = 0.157) to a greater degree than PLA. No significant differences were observed between treatments in cycling TT performance, hemodynamic assessment, fasting blood panels, or self-reported side effects.
Collapse
Affiliation(s)
- Patrick B Collins
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA.
| | - Conrad P Earnest
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA.
- Nutrabolt, Bryan, 3891 S. Traditions Drive, Bryan, TX 77807, USA.
| | - Ryan L Dalton
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA.
| | - Ryan J Sowinski
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA.
| | - Tyler J Grubic
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA.
| | - Christopher J Favot
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA.
| | - Adriana M Coletta
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA.
| | - Christopher Rasmussen
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA.
| | - Mike Greenwood
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA.
| | - Richard B Kreider
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
48
|
Shannon OM, Duckworth L, Barlow MJ, Deighton K, Matu J, Williams EL, Woods D, Xie L, Stephan BCM, Siervo M, O'Hara JP. Effects of Dietary Nitrate Supplementation on Physiological Responses, Cognitive Function, and Exercise Performance at Moderate and Very-High Simulated Altitude. Front Physiol 2017. [PMID: 28649204 PMCID: PMC5465306 DOI: 10.3389/fphys.2017.00401] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose: Nitric oxide (NO) bioavailability is reduced during acute altitude exposure, contributing toward the decline in physiological and cognitive function in this environment. This study evaluated the effects of nitrate (NO3−) supplementation on NO bioavailability, physiological and cognitive function, and exercise performance at moderate and very-high simulated altitude. Methods:Ten males (mean (SD): V˙O2max: 60.9 (10.1) ml·kg−1·min−1) rested and performed exercise twice at moderate (~14.0% O2; ~3,000 m) and twice at very-high (~11.7% O2; ~4,300 m) simulated altitude. Participants ingested either 140 ml concentrated NO3−-rich (BRJ; ~12.5 mmol NO3−) or NO3−-deplete (PLA; 0.01 mmol NO3−) beetroot juice 2 h before each trial. Participants rested for 45 min in normobaric hypoxia prior to completing an exercise task. Exercise comprised a 45 min walk at 30% V˙O2max and a 3 km time-trial (TT), both conducted on a treadmill at a 10% gradient whilst carrying a 10 kg backpack to simulate altitude hiking. Plasma nitrite concentration ([NO2−]), peripheral oxygen saturation (SpO2), pulmonary oxygen uptake (V˙O2), muscle and cerebral oxygenation, and cognitive function were measured throughout. Results: Pre-exercise plasma [NO2−] was significantly elevated in BRJ compared with PLA (p = 0.001). Pulmonary V˙O2 was reduced (p = 0.020), and SpO2 was elevated (p = 0.005) during steady-state exercise in BRJ compared with PLA, with similar effects at both altitudes. BRJ supplementation enhanced 3 km TT performance relative to PLA by 3.8% [1,653.9 (261.3) vs. 1718.7 (213.0) s] and 4.2% [1,809.8 (262.0) vs. 1,889.1 (203.9) s] at 3,000 and 4,300 m, respectively (p = 0.019). Oxygenation of the gastrocnemius was elevated during the TT consequent to BRJ (p = 0.011). The number of false alarms during the Rapid Visual Information Processing Task tended to be lower with BRJ compared with PLA prior to altitude exposure (p = 0.056). Performance in all other cognitive tasks did not differ significantly between BRJ and PLA at any measurement point (p ≥ 0.141). Conclusion: This study suggests that BRJ improves physiological function and exercise performance, but not cognitive function, at simulated moderate and very-high altitude.
Collapse
Affiliation(s)
- Oliver M Shannon
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett UniversityLeeds, United Kingdom
| | - Lauren Duckworth
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett UniversityLeeds, United Kingdom
| | - Matthew J Barlow
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett UniversityLeeds, United Kingdom
| | - Kevin Deighton
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett UniversityLeeds, United Kingdom
| | - Jamie Matu
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett UniversityLeeds, United Kingdom
| | - Emily L Williams
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett UniversityLeeds, United Kingdom
| | - David Woods
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett UniversityLeeds, United Kingdom.,Defence Medical Services, Royal Centre for Defence MedicineBirmingham, United Kingdom
| | - Long Xie
- Institute for Ageing and Health, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - Blossom C M Stephan
- Institute for Ageing and Health, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - Mario Siervo
- Institute for Ageing and Health, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - John P O'Hara
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett UniversityLeeds, United Kingdom
| |
Collapse
|
49
|
Di Luigi L, Sansone M, Sansone A, Ceci R, Duranti G, Borrione P, Crescioli C, Sgrò P, Sabatini S. Phosphodiesterase Type 5 Inhibitors, Sport and Doping. Curr Sports Med Rep 2017; 16:443-447. [DOI: 10.1249/jsr.0000000000000422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|