1
|
Yeh HI, Sutcliffe KJ, Sheppard DN, Hwang TC. CFTR Modulators: From Mechanism to Targeted Therapeutics. Handb Exp Pharmacol 2024; 283:219-247. [PMID: 35972584 DOI: 10.1007/164_2022_597] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
People with cystic fibrosis (CF) suffer from a multi-organ disorder caused by loss-of-function variants in the gene encoding the epithelial anion channel cystic fibrosis transmembrane conductance regulator (CFTR). Tremendous progress has been made in both basic and clinical sciences over the past three decades since the identification of the CFTR gene. Over 90% of people with CF now have access to therapies targeting dysfunctional CFTR. This success was made possible by numerous studies in the field that incrementally paved the way for the development of small molecules known as CFTR modulators. The advent of CFTR modulators transformed this life-threatening illness into a treatable disease by directly binding to the CFTR protein and correcting defects induced by pathogenic variants. In this chapter, we trace the trajectory of structural and functional studies that brought CF therapies from bench to bedside, with an emphasis on mechanistic understanding of CFTR modulators.
Collapse
Affiliation(s)
- Han-I Yeh
- Department of Pharmacology, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Katy J Sutcliffe
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Tzyh-Chang Hwang
- Department of Pharmacology, National Yang Ming Chiao Tung University, Taipei City, Taiwan.
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
2
|
Arreola J, Pérez-Cornejo P, Segura-Covarrubias G, Corral-Fernández N, León-Aparicio D, Guzmán-Hernández ML. Function and Regulation of the Calcium-Activated Chloride Channel Anoctamin 1 (TMEM16A). Handb Exp Pharmacol 2024; 283:101-151. [PMID: 35768554 DOI: 10.1007/164_2022_592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Various human tissues express the calcium-activated chloride channel Anoctamin 1 (ANO1), also known as TMEM16A. ANO1 allows the passive chloride flux that controls different physiological functions ranging from muscle contraction, fluid and hormone secretion, gastrointestinal motility, and electrical excitability. Overexpression of ANO1 is associated with pathological conditions such as hypertension and cancer. The molecular cloning of ANO1 has led to a surge in structural, functional, and physiological studies of the channel in several tissues. ANO1 is a homodimer channel harboring two pores - one in each monomer - that work independently. Each pore is activated by voltage-dependent binding of two intracellular calcium ions to a high-affinity-binding site. In addition, the binding of phosphatidylinositol 4,5-bisphosphate to sites scattered throughout the cytosolic side of the protein aids the calcium activation process. Furthermore, many pharmacological studies have established ANO1 as a target of promising compounds that could treat several illnesses. This chapter describes our current understanding of the physiological roles of ANO1 and its regulation under physiological conditions as well as new pharmacological compounds with potential therapeutic applications.
Collapse
Affiliation(s)
- Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Guadalupe Segura-Covarrubias
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Nancy Corral-Fernández
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Daniel León-Aparicio
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | |
Collapse
|
3
|
Noel S, Servel N, Hatton A, Golec A, Rodrat M, Ng DRS, Li H, Pranke I, Hinzpeter A, Edelman A, Sheppard DN, Sermet-Gaudelus I. Correlating genotype with phenotype using CFTR-mediated whole-cell Cl - currents in human nasal epithelial cells. J Physiol 2021; 600:1515-1531. [PMID: 34761808 DOI: 10.1113/jp282143] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Dysfunction of the epithelial anion channel cystic fibrosis transmembrane conductance regulator (CFTR) causes a wide spectrum of disease, including cystic fibrosis (CF) and CFTR-related diseases (CFTR-RDs). Here, we investigate genotype-phenotype-CFTR function relationships using human nasal epithelial (hNE) cells from a small cohort of non-CF subjects and individuals with CF and CFTR-RDs and genotypes associated with either residual or minimal CFTR function using electrophysiological techniques. Collected hNE cells were either studied directly with the whole-cell patch-clamp technique or grown as primary cultures at an air-liquid interface after conditional reprogramming. The properties of cAMP-activated whole-cell Cl- currents in freshly isolated hNE cells identified them as CFTR-mediated. Their magnitude varied between hNE cells from individuals within the same genotype and decreased in the rank order: non-CF > CFTR residual function > CFTR minimal function. CFTR-mediated whole-cell Cl- currents in hNE cells isolated from fully differentiated primary cultures were identical to those in freshly isolated hNE cells in both magnitude and behaviour, demonstrating that conditional reprogramming culture is without effect on CFTR expression and function. For the cohort of subjects studied, CFTR-mediated whole-cell Cl- currents in hNE cells correlated well with CFTR-mediated transepithelial Cl- currents measured in vitro with the Ussing chamber technique, but not with those determined in vivo with the nasal potential difference assay. Nevertheless, they did correlate with the sweat Cl- concentration of study subjects. Thus, this study highlights the complexity of genotype-phenotype-CFTR function relationships, but emphasises the value of conditionally reprogrammed hNE cells in CFTR research and therapeutic testing. KEY POINTS: The genetic disease cystic fibrosis is caused by pathogenic variants in the cystic fibrosis transmembrane conductance regulator (CFTR), an ion channel, which controls anion flow across epithelia lining ducts and tubes in the body. This study investigated CFTR function in nasal epithelial cells from people with cystic fibrosis and CFTR variants with a range of disease severity. CFTR function varied widely in nasal epithelial cells depending on the identity of CFTR variants, but was unaffected by conditional reprogramming culture, a cell culture technique used to grow large numbers of patient-derived cells. Assessment of CFTR function in vitro in nasal epithelial cells and epithelia, and in vivo in the nasal epithelium and sweat gland highlights the complexity of genotype-phenotype-CFTR function relationships.
Collapse
Affiliation(s)
- Sabrina Noel
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - Nathalie Servel
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - Aurélie Hatton
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - Anita Golec
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - Mayuree Rodrat
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK.,Center of Research and Development for Biomedical Instrumentation, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Demi R S Ng
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Hongyu Li
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Iwona Pranke
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - Alexandre Hinzpeter
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - Aleksander Edelman
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Isabelle Sermet-Gaudelus
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France.,Centre de Référence Maladies Rares, Mucoviscidose et Maladies Apparentées, Hôpital Necker-Enfants Malades, Paris, France.,European Reference Network on rare respiratory diseases, Frankfurt, Germany
| |
Collapse
|
4
|
Hosotani S, Yamauchi S, Kobayashi H, Fuji S, Koya S, Shimazaki KI, Takemiya A. A BLUS1 kinase signal and a decrease in intercellular CO2 concentration are necessary for stomatal opening in response to blue light. THE PLANT CELL 2021; 33:1813-1827. [PMID: 33665670 PMCID: PMC8254492 DOI: 10.1093/plcell/koab067] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/20/2021] [Indexed: 05/20/2023]
Abstract
Light-induced stomatal opening stimulates CO2 uptake and transpiration in plants. Weak blue light under strong red light effectively induces stomatal opening. Blue light-dependent stomatal opening initiates light perception by phototropins, and the signal is transmitted to a plasma membrane H+-ATPase in guard cells via BLUE LIGHT SIGNALING 1 (BLUS1) kinase. However, it is unclear how BLUS1 transmits the signal to H+-ATPase. Here, we characterized BLUS1 signaling in Arabidopsis thaliana, and showed that the BLUS1 C-terminus acts as an auto-inhibitory domain and that phototropin-mediated Ser-348 phosphorylation within the domain removes auto-inhibition. C-Terminal truncation and phospho-mimic Ser-348 mutation caused H+-ATPase activation in the dark, but did not elicit stomatal opening. Unexpectedly, the plants exhibited stomatal opening under strong red light and stomatal closure under weak blue light. A decrease in intercellular CO2 concentration via red light-driven photosynthesis together with H+-ATPase activation caused stomatal opening. Furthermore, phototropins caused H+-ATPase dephosphorylation in guard cells expressing constitutive signaling variants of BLUS1 in response to blue light, possibly for fine-tuning stomatal opening. Overall, our findings provide mechanistic insights into the blue light regulation of stomatal opening.
Collapse
Affiliation(s)
- Sakurako Hosotani
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Shota Yamauchi
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Haruki Kobayashi
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Saashia Fuji
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Shigekazu Koya
- Department of Biology, Kyushu University, Fukuoka 819-0395, Japan
| | | | - Atsushi Takemiya
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan
- Author for correspondence:
| |
Collapse
|
5
|
Csanády L, Vergani P, Gadsby DC. STRUCTURE, GATING, AND REGULATION OF THE CFTR ANION CHANNEL. Physiol Rev 2019; 99:707-738. [PMID: 30516439 DOI: 10.1152/physrev.00007.2018] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) belongs to the ATP binding cassette (ABC) transporter superfamily but functions as an anion channel crucial for salt and water transport across epithelial cells. CFTR dysfunction, because of mutations, causes cystic fibrosis (CF). The anion-selective pore of the CFTR protein is formed by its two transmembrane domains (TMDs) and regulated by its cytosolic domains: two nucleotide binding domains (NBDs) and a regulatory (R) domain. Channel activation requires phosphorylation of the R domain by cAMP-dependent protein kinase (PKA), and pore opening and closing (gating) of phosphorylated channels is driven by ATP binding and hydrolysis at the NBDs. This review summarizes available information on structure and mechanism of the CFTR protein, with a particular focus on atomic-level insight gained from recent cryo-electron microscopic structures and on the molecular mechanisms of channel gating and its regulation. The pharmacological mechanisms of small molecules targeting CFTR's ion channel function, aimed at treating patients suffering from CF and other diseases, are briefly discussed.
Collapse
Affiliation(s)
- László Csanády
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| | - Paola Vergani
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| | - David C Gadsby
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| |
Collapse
|
6
|
Okada Y, Okada T, Sato-Numata K, Islam MR, Ando-Akatsuka Y, Numata T, Kubo M, Shimizu T, Kurbannazarova RS, Marunaka Y, Sabirov RZ. Cell Volume-Activated and Volume-Correlated Anion Channels in Mammalian Cells: Their Biophysical, Molecular, and Pharmacological Properties. Pharmacol Rev 2019; 71:49-88. [PMID: 30573636 DOI: 10.1124/pr.118.015917] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
There are a number of mammalian anion channel types associated with cell volume changes. These channel types are classified into two groups: volume-activated anion channels (VAACs) and volume-correlated anion channels (VCACs). VAACs can be directly activated by cell swelling and include the volume-sensitive outwardly rectifying anion channel (VSOR), which is also called the volume-regulated anion channel; the maxi-anion channel (MAC or Maxi-Cl); and the voltage-gated anion channel, chloride channel (ClC)-2. VCACs can be facultatively implicated in, although not directly activated by, cell volume changes and include the cAMP-activated cystic fibrosis transmembrane conductance regulator (CFTR) anion channel, the Ca2+-activated Cl- channel (CaCC), and the acid-sensitive (or acid-stimulated) outwardly rectifying anion channel. This article describes the phenotypical properties and activation mechanisms of both groups of anion channels, including accumulating pieces of information on the basis of recent molecular understanding. To that end, this review also highlights the molecular identities of both anion channel groups; in addition to the molecular identities of ClC-2 and CFTR, those of CaCC, VSOR, and Maxi-Cl were recently identified by applying genome-wide approaches. In the last section of this review, the most up-to-date information on the pharmacological properties of both anion channel groups, especially their half-maximal inhibitory concentrations (IC50 values) and voltage-dependent blocking, is summarized particularly from the standpoint of pharmacological distinctions among them. Future physiologic and pharmacological studies are definitely warranted for therapeutic targeting of dysfunction of VAACs and VCACs.
Collapse
Affiliation(s)
- Yasunobu Okada
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Toshiaki Okada
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Kaori Sato-Numata
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Md Rafiqul Islam
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Yuhko Ando-Akatsuka
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Tomohiro Numata
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Machiko Kubo
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Takahiro Shimizu
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Ranohon S Kurbannazarova
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Yoshinori Marunaka
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Ravshan Z Sabirov
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| |
Collapse
|
7
|
Harasztosi C, Gummer AW. The chloride-channel blocker 9-anthracenecarboxylic acid reduces the nonlinear capacitance of prestin-associated charge movement. Eur J Neurosci 2016; 43:1062-74. [PMID: 26869218 PMCID: PMC5111741 DOI: 10.1111/ejn.13209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 02/01/2023]
Abstract
The basis of the extraordinary sensitivity and frequency selectivity of the cochlea is a chloride-sensitive protein called prestin which can produce an electromechanical response and which resides in the basolateral plasma membrane of outer hair cells (OHCs). The compound 9-anthracenecarboxylic acid (9-AC), an inhibitor of chloride channels, has been found to reduce the electromechanical response of the cochlea and the OHC mechanical impedance. To elucidate these 9-AC effects, the functional electromechanical status of prestin was assayed by measuring the nonlinear capacitance of OHCs from the guinea-pig cochlea and of prestin-transfected human embryonic kidney 293 (HEK 293) cells. Extracellular application of 9-AC caused reversible, dose-dependent and chloride-sensitive reduction in OHC nonlinear charge transfer, Qmax . Prestin-transfected cells also showed reversible reduction in Qmax . For OHCs, intracellular 9-AC application as well as reduced intracellular pH had no detectable effect on the reduction in Qmax by extracellularly applied 9-AC. In the prestin-transfected cells, cytosolic application of 9-AC approximately halved the blocking efficacy of extracellularly applied 9-AC. OHC inside-out patches presented the whole-cell blocking characteristics. Disruption of the cytoskeleton by preventing actin polymerization with latrunculin A or by decoupling of spectrin from actin with diamide did not affect the 9-AC-evoked reduction in Qmax . We conclude that 9-AC acts on the electromechanical transducer principally by interaction with prestin rather than acting via the cytoskeleton, chloride channels or pH. The 9-AC block presents characteristics in common with salicylate, but is almost an order of magnitude faster. 9-AC provides a new tool for elucidating the molecular dynamics of prestin function.
Collapse
Affiliation(s)
- Csaba Harasztosi
- Section of Physiological Acoustics and Communication, Faculty of Medicine, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Anthony W Gummer
- Section of Physiological Acoustics and Communication, Faculty of Medicine, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
8
|
Ta CM, Adomaviciene A, Rorsman NJG, Garnett H, Tammaro P. Mechanism of allosteric activation of TMEM16A/ANO1 channels by a commonly used chloride channel blocker. Br J Pharmacol 2016; 173:511-28. [PMID: 26562072 PMCID: PMC4728427 DOI: 10.1111/bph.13381] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/15/2015] [Accepted: 10/29/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Calcium-activated chloride channels (CaCCs) play varied physiological roles and constitute potential therapeutic targets for conditions such as asthma and hypertension. TMEM16A encodes a CaCC. CaCC pharmacology is restricted to compounds with relatively low potency and poorly defined selectivity. Anthracene-9-carboxylic acid (A9C), an inhibitor of various chloride channel types, exhibits complex effects on native CaCCs and cloned TMEM16A channels providing both activation and inhibition. The mechanisms underlying these effects are not fully defined. EXPERIMENTAL APPROACH Patch-clamp electrophysiology in conjunction with concentration jump experiments was employed to define the mode of interaction of A9C with TMEM16A channels. KEY RESULTS In the presence of high intracellular Ca(2+) , A9C inhibited TMEM16A currents in a voltage-dependent manner by entering the channel from the outside. A9C activation, revealed in the presence of submaximal intracellular Ca(2+) concentrations, was also voltage-dependent. The electric distance of A9C inhibiting and activating binding site was ~0.6 in each case. Inhibition occurred according to an open-channel block mechanism. Activation was due to a dramatic leftward shift in the steady-state activation curve and slowed deactivation kinetics. Extracellular A9C competed with extracellular Cl(-) , suggesting that A9C binds deep in the channel's pore to exert both inhibiting and activating effects. CONCLUSIONS AND IMPLICATIONS A9C is an open TMEM16A channel blocker and gating modifier. These effects require A9C to bind to a region within the pore that is accessible from the extracellular side of the membrane. These data will aid the future drug design of compounds that selectively activate or inhibit TMEM16A channels.
Collapse
Affiliation(s)
- Chau M Ta
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Aiste Adomaviciene
- Department of Pharmacology, University of Oxford, Oxford, UK.,Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Nils J G Rorsman
- Department of Pharmacology, University of Oxford, Oxford, UK.,OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK
| | - Hannah Garnett
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Paolo Tammaro
- Department of Pharmacology, University of Oxford, Oxford, UK.,OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Cherian OL, Menini A, Boccaccio A. Multiple effects of anthracene-9-carboxylic acid on the TMEM16B/anoctamin2 calcium-activated chloride channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1005-13. [PMID: 25620774 DOI: 10.1016/j.bbamem.2015.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/04/2015] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
Ca(2+)-activated Cl(-) currents (CaCCs) play important roles in many physiological processes. Recent studies have shown that TMEM16A/anoctamin1 and TMEM16B/anoctamin2 constitute CaCCs in several cell types. Here we have investigated for the first time the extracellular effects of the Cl(-) channel blocker anthracene-9-carboxylic acid (A9C) and of its non-charged analogue anthracene-9-methanol (A9M) on TMEM16B expressed in HEK 293T cells, using the whole-cell patch-clamp technique. A9C caused a voltage-dependent block of outward currents and inhibited a larger fraction of the current as depolarization increased, whereas the non-charged A9M produced a small, not voltage dependent block of outward currents. A similar voltage-dependent block by A9C was measured both when TMEM16B was activated by 1.5 and 13μM Ca(2+). However, in the presence of 1.5μM Ca(2+) (but not in 13μM Ca(2+)), A9C also induced a strong potentiation of tail currents measured at -100mV after depolarizing voltages, as well as a prolongation of the deactivation kinetics. On the contrary, A9M did not produce potentiation of tail currents, showing that the negative charge is required for potentiation. Our results provide the first evidence that A9C has multiple effects on TMEM16B and that the negative charge of A9C is necessary both for voltage-dependent block and for potentiation. Future studies are required to identify the molecular mechanisms underlying these complex effects of A9C on TMEM16B. Understanding these mechanisms will contribute to the elucidation of the structure and functional properties of TMEM16B channels.
Collapse
Affiliation(s)
- O Lijo Cherian
- Neurobiology Group, SISSA, International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy
| | - Anna Menini
- Neurobiology Group, SISSA, International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy
| | - Anna Boccaccio
- Istituto di Biofisica, CNR, Via De Marini 6, 16149 Genova, Italy.
| |
Collapse
|
10
|
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is unique among ion channels in that after its phosphorylation by protein kinase A (PKA), its ATP-dependent gating violates microscopic reversibility caused by the intimate involvement of ATP hydrolysis in controlling channel closure. Recent studies suggest a gating model featuring an energetic coupling between opening and closing of the gate in CFTR's transmembrane domains and association and dissociation of its two nucleotide-binding domains (NBDs). We found that permeant ions such as nitrate can increase the open probability (Po) of wild-type (WT) CFTR by increasing the opening rate and decreasing the closing rate. Nearly identical effects were seen with a construct in which activity does not require phosphorylation of the regulatory domain, indicating that nitrate primarily affects ATP-dependent gating steps rather than PKA-dependent phosphorylation. Surprisingly, the effects of nitrate on CFTR gating are remarkably similar to those of VX-770 (N-(2,4-Di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide), a potent CFTR potentiator used in clinics. These include effects on single-channel kinetics of WT CFTR, deceleration of the nonhydrolytic closing rate, and potentiation of the Po of the disease-associated mutant G551D. In addition, both VX-770 and nitrate increased the activity of a CFTR construct lacking NBD2 (ΔNBD2), indicating that these gating effects are independent of NBD dimerization. Nonetheless, whereas VX-770 is equally effective when applied from either side of the membrane, nitrate potentiates gating mainly from the cytoplasmic side, implicating a common mechanism for gating modulation mediated through two separate sites of action.
Collapse
Affiliation(s)
- Han-I Yeh
- Physician-Scientist Program, School of Medicine, National Yang-Ming University, Taipei, 112 Taiwan Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211
| | - Jiunn-Tyng Yeh
- Physician-Scientist Program, School of Medicine, National Yang-Ming University, Taipei, 112 Taiwan Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211
| | - Tzyh-Chang Hwang
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211 Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211
| |
Collapse
|
11
|
Csanády L, Töröcsik B. Catalyst-like modulation of transition states for CFTR channel opening and closing: new stimulation strategy exploits nonequilibrium gating. ACTA ACUST UNITED AC 2014; 143:269-87. [PMID: 24420771 PMCID: PMC4001772 DOI: 10.1085/jgp.201311089] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two gating transition states determine open probability of CFTR (the chloride channel mutated in cystic fibrosis), defining strategic targets for therapeutic intervention. Cystic fibrosis transmembrane conductance regulator (CFTR) is the chloride ion channel mutated in cystic fibrosis (CF) patients. It is an ATP-binding cassette protein, and its resulting cyclic nonequilibrium gating mechanism sets it apart from most other ion channels. The most common CF mutation (ΔF508) impairs folding of CFTR but also channel gating, reducing open probability (Po). This gating defect must be addressed to effectively treat CF. Combining single-channel and macroscopic current measurements in inside-out patches, we show here that the two effects of 5-nitro-2-(3-phenylpropylamino)benzoate (NPPB) on CFTR, pore block and gating stimulation, are independent, suggesting action at distinct sites. Furthermore, detailed kinetic analysis revealed that NPPB potently increases Po, also of ΔF508 CFTR, by affecting the stability of gating transition states. This finding is unexpected, because for most ion channels, which gate at equilibrium, altering transition-state stabilities has no effect on Po; rather, agonists usually stimulate by stabilizing open states. Our results highlight how for CFTR, because of its unique cyclic mechanism, gating transition states determine Po and offer strategic targets for potentiator compounds to achieve maximal efficacy.
Collapse
Affiliation(s)
- László Csanády
- Department of Medical Biochemistry and 2 MTA-SE Ion Channel Research Group, Semmelweis University, Budapest H-1094, Hungary
| | | |
Collapse
|
12
|
CFTR chloride channel as a molecular target of anthraquinone compounds in herbal laxatives. Acta Pharmacol Sin 2011; 32:834-9. [PMID: 21602836 DOI: 10.1038/aps.2011.46] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
AIM To clarify whether CFTR is a molecular target of intestinal fluid secretion caused by the anthraquinone compounds from laxative herbal plants. METHODS A cell-based fluorescent assay to measure I(-) influx through CFTR chloride channel. A short-circuit current assay to measure transcellular Cl(-) current across single layer FRT cells and freshly isolated colon mucosa. A closed loop experiment to measure colon fluid secretion in vivo. RESULTS Anthraquinone compounds rhein, aloe-emodin and 1,8-dihydroxyanthraquinone (DHAN) stimulated I(-) influx through CFTR chloride channel in a dose-dependent manner in the presence of physiological concentration of cAMP. In the short-circuit current assay, the three compound enhanced Cl(-) currents in epithelia formed by CFTR-expressing FRT cells with EC(50) values of 73 ± 1.4, 56 ± 1.7, and 50 ± 0.5 μmol/L, respectively, and Rhein also enhanced Cl(-) current in freshly isolated rat colonic mucosa with a similar potency. These effects were completely reversed by the CFTR selective blocker CFTR(inh)-172. In in vivo closed loop experiments, rhein 2 mmol/L stimulated colonic fluid accumulation that was largely blocked by CFTR(inh)-172. The anthraquinone compounds did not elevate cAMP level in cultured FRT cells and rat colonic mucosa, suggesting a direct effect on CFTR activity. CONCLUSION Natural anthraquinone compounds in vegetable laxative drugs are CFTR potentiators that stimulated colonic chloride and fluid secretion. Thus CFTR chloride channel is a molecular target of vegetable laxative drugs.
Collapse
|
13
|
Torres ML, Ortega F, Cuaranta I, González J, Sanchez-Armass S. Anionic selectivity sequence of the Cl(-)-H+ symporter in the synaptosomal preparation from rat brain cortex. Neurochem Res 2008; 33:1574-81. [PMID: 18404376 DOI: 10.1007/s11064-008-9685-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 03/25/2008] [Indexed: 10/22/2022]
Abstract
The Na(+)/H(+) exchanger has been the only unequivocally demonstrated H(+)-transport mechanism in the synaptosomal preparation. We had previously suggested that a Cl(-)-H(+) symporter (in its acidifying mode) is involved in cytosolic pH regulation in the synaptosomal preparation. Supporting this suggestion, we now show that: (1) when synaptosomes are transferred from PSS to either gluconate or sulfate solutions, the Fura-2 ratio remains stable instead of increasing as it does in 50 mM K solution. This indicates that these anions do not promote a plasma membrane depolarization. (2) Based in the recovery rate from the cytosolic alkalinization, the anionic selectivity of the Cl(-)-H(+) symporter is NO(3)(-) > Br(-) > Cl(-) >> I(-) = isethionate = sulfate = methanesulfonate = gluconate. (3) PCMB 10 muM inhibits the gluconate-dependent alkalinization by 30 +/- 6%. (4) Neither Niflumic acid, 9AC, Bumetanide nor CCCP inhibits the recovery from the cytosolic alkalinization.
Collapse
Affiliation(s)
- M L Torres
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad Autónoma de San Luis Potosi, Av. V. Carranza 2405, San Luis Potosi, S.L.P., 78210, Mexico
| | | | | | | | | |
Collapse
|
14
|
Abstract
CLC-0 and cystic fibrosis transmembrane conductance regulator (CFTR) Cl−channels play important roles in Cl−transport across cell membranes. These two proteins belong to, respectively, the CLC and ABC transport protein families whose members encompass both ion channels and transporters. Defective function of members in these two protein families causes various hereditary human diseases. Ion channels and transporters were traditionally viewed as distinct entities in membrane transport physiology, but recent discoveries have blurred the line between these two classes of membrane transport proteins. CLC-0 and CFTR can be considered operationally as ligand-gated channels, though binding of the activating ligands appears to be coupled to an irreversible gating cycle driven by an input of free energy. High-resolution crystallographic structures of bacterial CLC proteins and ABC transporters have led us to a better understanding of the gating properties for CLC and CFTR Cl−channels. Furthermore, the joined force between structural and functional studies of these two protein families has offered a unique opportunity to peek into the evolutionary link between ion channels and transporters. A promising byproduct of this exercise is a deeper mechanistic insight into how different transport proteins work at a fundamental level.
Collapse
|