1
|
Calle-Ciborro B, Santos FJ, Espin-Jaime T, Gomez-Martin A, Camello PJ, Camello-Almaraz C. Pharmacological inhibition reveals participation of the endocytic compartment in positive feedback IL-6 secretion in human skeletal myotubes. Eur J Pharmacol 2024; 984:177055. [PMID: 39395584 DOI: 10.1016/j.ejphar.2024.177055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
IL-6 is an important cytokine involved in metabolic, immunological, and cell-fate responses. It is released upon stimulation by skeletal muscle cells through partially characterized mechanisms. In some cell types, IL-6 has been reported to activate a positive feedback loop involving endocytic vesicles, but evidence is mostly based on transcription and signal transduction mechanisms and is very scarce in muscle cells. Our aim was to directly demonstrate the presence of positive feedback in the ATP-induced release of IL-6 into the supernatant of human skeletal muscle cultures. The total release (production) of IL-6 was reduced for higher volumes of supernatant, when the secreted IL-6 molecules are more diluted, and enhanced when the supernatant volume was lower. In addition, secretion was impaired both by tocilizumab, a blocker of human IL-6 receptors, and by the soluble form of the receptor. The secretion in response to ATP was also inhibited by treatment with the endocytosis inhibitor dynasore, and by disruption of the acidic gradient of the endocytic compartment using different methods (chloroquine, NH4Cl or monensin). IL-6 secretion was also impaired by NED-19, a specific inhibitor of the two pore channels receptor mediating Ca2+ release from the endolysosomal compartment. IL-6 and ATP increased IL-6 mRNA levels, an effect blocked by tocilizumab. Altogether, our results demonstrate that ATP-secreted IL-6 activates a positive loop based on IL-6 receptors, endocytosis, two pore channels and IL-6 transcription. Given the importance of muscle IL-6 as a systemic regulator and as an inflammatory mediator, our study can help to understand muscle pathophysiology.
Collapse
Affiliation(s)
- Blanca Calle-Ciborro
- Department of Physiology, Instituto de Biomarcadores Patológicos Moleculares y Metabólicos, Universidad de Extremadura, Cáceres, Spain
| | | | | | - Ana Gomez-Martin
- Dept. of Nursing, Facultad de Enfermeria y Terapia Ocupacional, Cáceres, Spain
| | - Pedro J Camello
- Department of Physiology, Instituto de Biomarcadores Patológicos Moleculares y Metabólicos, Universidad de Extremadura, Cáceres, Spain.
| | - Cristina Camello-Almaraz
- Department of Physiology, Instituto de Biomarcadores Patológicos Moleculares y Metabólicos, Universidad de Extremadura, Cáceres, Spain
| |
Collapse
|
2
|
Zabłocki K, Górecki DC. The Role of P2X7 Purinoceptors in the Pathogenesis and Treatment of Muscular Dystrophies. Int J Mol Sci 2023; 24:ijms24119434. [PMID: 37298386 DOI: 10.3390/ijms24119434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Muscular dystrophies are inherited neuromuscular diseases, resulting in progressive disability and often affecting life expectancy. The most severe, common types are Duchenne muscular dystrophy (DMD) and Limb-girdle sarcoglycanopathy, which cause advancing muscle weakness and wasting. These diseases share a common pathomechanism where, due to the loss of the anchoring dystrophin (DMD, dystrophinopathy) or due to mutations in sarcoglycan-encoding genes (LGMDR3 to LGMDR6), the α-sarcoglycan ecto-ATPase activity is lost. This disturbs important purinergic signaling: An acute muscle injury causes the release of large quantities of ATP, which acts as a damage-associated molecular pattern (DAMP). DAMPs trigger inflammation that clears dead tissues and initiates regeneration that eventually restores normal muscle function. However, in DMD and LGMD, the loss of ecto-ATPase activity, that normally curtails this extracellular ATP (eATP)-evoked stimulation, causes exceedingly high eATP levels. Thus, in dystrophic muscles, the acute inflammation becomes chronic and damaging. The very high eATP over-activates P2X7 purinoceptors, not only maintaining the inflammation but also tuning the potentially compensatory P2X7 up-regulation in dystrophic muscle cells into a cell-damaging mechanism exacerbating the pathology. Thus, the P2X7 receptor in dystrophic muscles is a specific therapeutic target. Accordingly, the P2X7 blockade alleviated dystrophic damage in mouse models of dystrophinopathy and sarcoglycanopathy. Therefore, the existing P2X7 blockers should be considered for the treatment of these highly debilitating diseases. This review aims to present the current understanding of the eATP-P2X7 purinoceptor axis in the pathogenesis and treatment of muscular dystrophies.
Collapse
Affiliation(s)
- Krzysztof Zabłocki
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Dariusz C Górecki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| |
Collapse
|
3
|
Aburto C, Galaz A, Bernier A, Sandoval PY, Holtheuer-Gallardo S, Ruminot I, Soto-Ojeda I, Hertenstein H, Schweizer JA, Schirmeier S, Pástor TP, Mardones GA, Barros LF, San Martín A. Single-Fluorophore Indicator to Explore Cellular and Sub-cellular Lactate Dynamics. ACS Sens 2022; 7:3278-3286. [PMID: 36306435 DOI: 10.1021/acssensors.2c00731] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lactate is an energy substrate and an intercellular signal, which can be monitored in intact cells with the genetically encoded FRET indicator Laconic. However, the structural complexity, need for sophisticated equipment, and relatively small fluorescent change limit the use of FRET indicators for subcellular targeting and development of high-throughput screening methodologies. Using the bacterial periplasmic binding protein TTHA0766 from Thermus thermophilus, we have now developed a single-fluorophore indicator for lactate, CanlonicSF. This indicator exhibits a maximal fluorescence change of 200% and a KD of ∼300 μM. The fluorescence is not affected by other monocarboxylates. The lactate indicator was not significantly affected by Ca2+ at the physiological concentrations prevailing in the cytosol, endoplasmic reticulum, and extracellular space, but was affected by Ca2+ in the low micromolar range. Targeting the indicator to the endoplasmic reticulum revealed for the first time sub-cellular lactate dynamics. Its improved lactate-induced fluorescence response permitted the development of a multiwell plate assay to screen for inhibitors of the monocarboxylate transporters MCTs, a pharmaceutical target for cancer and inflammation. The functionality of the indicator in living tissue was demonstrated in the brain of Drosophila melanogaster larvae. CanlonicSF is well suited to explore lactate dynamics with sub-cellular resolution in intact systems.
Collapse
Affiliation(s)
- Camila Aburto
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, Postal Code 5110466 Valdivia, Chile.,Universidad Austral de Chile, Isla Teja s/n, Postal Code 5110566 Valdivia, Chile
| | - Alex Galaz
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, Postal Code 5110466 Valdivia, Chile
| | - Angelo Bernier
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, Postal Code 5110466 Valdivia, Chile.,Universidad Austral de Chile, Isla Teja s/n, Postal Code 5110566 Valdivia, Chile
| | - Pamela Yohana Sandoval
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, Postal Code 5110466 Valdivia, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Postal Code 5110773 Valdivia, Chile
| | - Sebastián Holtheuer-Gallardo
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, Postal Code 5110466 Valdivia, Chile.,Universidad Austral de Chile, Isla Teja s/n, Postal Code 5110566 Valdivia, Chile
| | - Iván Ruminot
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, Postal Code 5110466 Valdivia, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Postal Code 5110773 Valdivia, Chile
| | - Ignacio Soto-Ojeda
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, Postal Code 5110466 Valdivia, Chile.,Universidad Austral de Chile, Isla Teja s/n, Postal Code 5110566 Valdivia, Chile
| | - Helen Hertenstein
- Department of Biology, Technische Universität Dresden, Postal Code 01062 Dresden, Germany
| | | | - Stefanie Schirmeier
- Department of Biology, Technische Universität Dresden, Postal Code 01062 Dresden, Germany
| | - Tammy Paulina Pástor
- Department of Physiology, School of Medicine, Universidad Austral de Chile, Isla Teja s/n, Postal Code 5110566 Valdivia, Chile
| | - Gonzalo Antonio Mardones
- Department of Physiology, School of Medicine, Universidad Austral de Chile, Isla Teja s/n, Postal Code 5110566 Valdivia, Chile
| | - Luis Felipe Barros
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, Postal Code 5110466 Valdivia, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Postal Code 5110773 Valdivia, Chile
| | - Alejandro San Martín
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, Postal Code 5110466 Valdivia, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Postal Code 5110773 Valdivia, Chile
| |
Collapse
|
4
|
Matta C, Fodor J, Csernoch L, Zákány R. Purinergic signalling-evoked intracellular Ca(2+) concentration changes in the regulation of chondrogenesis and skeletal muscle formation. Cell Calcium 2016; 59:108-16. [PMID: 26925979 DOI: 10.1016/j.ceca.2016.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/16/2015] [Accepted: 01/23/2016] [Indexed: 01/28/2023]
Abstract
It is now widely recognised that changes of the intracellular calcium concentration have deep impact on the differentiation of various non-excitable cells including the elements of the vertebrate skeleton. It has become evident that purinergic signalling is one of the most ancient cellular mechanisms that can cause such alterations in the intracellular Ca(2+)-homeostasis, which are precisely set either spatially or temporally. Purinergic signalling is believed to regulate intracellular Ca(2+)-concentration of developing cartilage and skeletal muscle cells and suggested to play roles in the modulation of various cellular functions. This idea is supported by the fact that pluripotent mesenchymal cells, chondroprogenitors or muscle precursors, as well as mature chondrocytes all are capable of releasing ectonucleotides, and express various types of purinoreceptors and ectonucleotidases. The presence of the basic components of purinergic signalling proves that cells of the chondrogenic lineage can utilise this mechanism for modulating their intracellular Ca(2+) concentration independently from the surrounding skeletal muscle and bone tissues, which are well known to release ectopurines during development and mechanical stress. In this review, we summarize accumulating experimental evidence supporting the importance of purinergic signalling in the regulation of chondrogenesis and during skeletal muscle formation.
Collapse
Affiliation(s)
- Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary; Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine and Science, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, United Kingdom
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary.
| |
Collapse
|
5
|
Phosphoinositides in Ca(2+) signaling and excitation-contraction coupling in skeletal muscle: an old player and newcomers. J Muscle Res Cell Motil 2015; 36:491-9. [PMID: 26377756 DOI: 10.1007/s10974-015-9422-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022]
Abstract
Since the postulate, 30 years ago, that phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P 2) as the precursor of inositol 1,4,5-trisphosphate (Ins(1,4,5)P 3) would be critical for skeletal muscle excitation-contraction (EC) coupling, the issue of whether phosphoinositides (PtdInsPs) may have something to do with Ca(2+) signaling in muscle raised limited interest, if any. In recent years however, the PtdInsP world has expanded considerably with new functions for PtdIns(4,5)P 2 but also with functions for the other members of the PtdInsP family. In this context, the discovery that genetic deficiency in a PtdInsP phosphatase has dramatic consequences on Ca(2+) homeostasis in skeletal muscle came unanticipated and opened up new perspectives in regards to how PtdInsPs modulate muscle Ca(2+) signaling under normal and disease conditions. This review intends to make an update of the established, the questioned, and the unknown regarding the role of PtdInsPs in skeletal muscle Ca(2+) homeostasis and EC coupling, with very specific emphasis given to Ca(2+) signals in differentiated skeletal muscle fibers.
Collapse
|
6
|
Abstract
Accumulating evidence now suggests that purinergic signalling exerts significant regulatory effects in the musculoskeletal system. In particular, it has emerged that extracellular nucleotides are key regulators of bone cell differentiation, survival and function. This review discusses our current understanding of the direct effects of purinergic signalling in bone, cartilage and muscle.
Collapse
Affiliation(s)
- Isabel R Orriss
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, United Kingdom.
| |
Collapse
|
7
|
Bustamante M, Fernández-Verdejo R, Jaimovich E, Buvinic S. Electrical stimulation induces IL-6 in skeletal muscle through extracellular ATP by activating Ca(2+) signals and an IL-6 autocrine loop. Am J Physiol Endocrinol Metab 2014; 306:E869-82. [PMID: 24518675 PMCID: PMC3989743 DOI: 10.1152/ajpendo.00450.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interleukin-6 (IL-6) is an important myokine that is highly expressed in skeletal muscle cells upon exercise. We assessed IL-6 expression in response to electrical stimulation (ES) or extracellular ATP as a known mediator of the excitation-transcription mechanism in skeletal muscle. We examined whether the canonical signaling cascade downstream of IL-6 (IL-6/JAK2/STAT3) also responds to muscle cell excitation, concluding that IL-6 influences its own expression through a positive loop. Either ES or exogenous ATP (100 μM) increased both IL-6 expression and p-STAT3 levels in rat myotubes, a process inhibited by 100 μM suramin and 2 U/ml apyrase. ATP also evoked IL-6 expression in both isolated skeletal fibers and extracts derived from whole FDB muscles. ATP increased IL-6 release up to 10-fold. STAT3 activation evoked by ATP was abolished by the JAK2 inhibitor HBC. Blockade of secreted IL-6 with a neutralizing antibody or preincubation with the STAT3 inhibitor VIII reduced STAT3 activation evoked by extracellular ATP by 70%. Inhibitor VIII also reduced by 70% IL-6 expression evoked by ATP, suggesting a positive IL-6 loop. In addition, ATP increased up to 60% the protein levels of SOCS3, a negative regulator of the IL-6 signaling pathway. On the other hand, intracellular calcium chelation or blockade of IP3-dependent calcium signals abolished STAT3 phosphorylation evoked by either extracellular ATP or ES. These results suggest that expression of IL-6 in stimulated skeletal muscle cells is mediated by extracellular ATP and nucleotide receptors, involving IP3-dependent calcium signals as an early step that triggers a positive IL-6 autocrine loop.
Collapse
Affiliation(s)
- Mario Bustamante
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile; and
| | | | | | | |
Collapse
|
8
|
Burnstock G, Arnett TR, Orriss IR. Purinergic signalling in the musculoskeletal system. Purinergic Signal 2013; 9:541-72. [PMID: 23943493 PMCID: PMC3889393 DOI: 10.1007/s11302-013-9381-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/12/2013] [Indexed: 12/11/2022] Open
Abstract
It is now widely recognised that extracellular nucleotides, signalling via purinergic receptors, participate in numerous biological processes in most tissues. It has become evident that extracellular nucleotides have significant regulatory effects in the musculoskeletal system. In early development, ATP released from motor nerves along with acetylcholine acts as a cotransmitter in neuromuscular transmission; in mature animals, ATP functions as a neuromodulator. Purinergic receptors expressed by skeletal muscle and satellite cells play important pathophysiological roles in their development or repair. In many cell types, expression of purinergic receptors is often dependent on differentiation. For example, sequential expression of P2X5, P2Y1 and P2X2 receptors occurs during muscle regeneration in the mdx model of muscular dystrophy. In bone and cartilage cells, the functional effects of purinergic signalling appear to be largely negative. ATP stimulates the formation and activation of osteoclasts, the bone-destroying cells. Another role appears to be as a potent local inhibitor of mineralisation. In osteoblasts, the bone-forming cells, ATP acts via P2 receptors to limit bone mineralisation by inhibiting alkaline phosphatase expression and activity. Extracellular ATP additionally exerts significant effects on mineralisation via its hydrolysis product, pyrophosphate. Evidence now suggests that purinergic signalling is potentially important in several bone and joint disorders including osteoporosis, rheumatoid arthritis and cancers. Strategies for future musculoskeletal therapies might involve modulation of purinergic receptor function or of the ecto-nucleotidases responsible for ATP breakdown or ATP transport inhibitors.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
9
|
Young CNJ, Sinadinos A, Gorecki DC. P2X receptor signaling in skeletal muscle health and disease. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/wmts.96] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Anthony Sinadinos
- School of Pharmacy and Biomedical Sciences; University of Portsmouth; Portsmouth PO1 2DT UK
| | - Dariusz C. Gorecki
- School of Pharmacy and Biomedical Sciences; University of Portsmouth; Portsmouth PO1 2DT UK
| |
Collapse
|
10
|
Osorio-Fuentealba C, Contreras-Ferrat AE, Altamirano F, Espinosa A, Li Q, Niu W, Lavandero S, Klip A, Jaimovich E. Electrical stimuli release ATP to increase GLUT4 translocation and glucose uptake via PI3Kγ-Akt-AS160 in skeletal muscle cells. Diabetes 2013; 62:1519-26. [PMID: 23274898 PMCID: PMC3636621 DOI: 10.2337/db12-1066] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Skeletal muscle glucose uptake in response to exercise is preserved in insulin-resistant conditions, but the signals involved are debated. ATP is released from skeletal muscle by contractile activity and can autocrinely signal through purinergic receptors, and we hypothesized it may influence glucose uptake. Electrical stimulation, ATP, and insulin each increased fluorescent 2-NBD-Glucose (2-NBDG) uptake in primary myotubes, but only electrical stimulation and ATP-dependent 2-NBDG uptake were inhibited by adenosine-phosphate phosphatase and by purinergic receptor blockade (suramin). Electrical stimulation transiently elevated extracellular ATP and caused Akt phosphorylation that was additive to insulin and inhibited by suramin. Exogenous ATP transiently activated Akt and, inhibiting phosphatidylinositol 3-kinase (PI3K) or Akt as well as dominant-negative Akt mutant, reduced ATP-dependent 2-NBDG uptake and Akt phosphorylation. ATP-dependent 2-NBDG uptake was also inhibited by the G protein βγ subunit-interacting peptide βark-ct and by the phosphatidylinositol 3-kinase-γ (PI3Kγ) inhibitor AS605240. ATP caused translocation of GLUT4myc-eGFP to the cell surface, mechanistically mediated by increased exocytosis involving AS160/Rab8A reduced by dominant-negative Akt or PI3Kγ kinase-dead mutants, and potentiated by myristoylated PI3Kγ. ATP stimulated 2-NBDG uptake in normal and insulin-resistant adult muscle fibers, resembling the reported effect of exercise. Hence, the ATP-induced pathway may be tapped to bypass insulin resistance.
Collapse
Affiliation(s)
- Cesar Osorio-Fuentealba
- Center for Molecular Studies of the Cell, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - Ariel E. Contreras-Ferrat
- Center for Molecular Studies of the Cell, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - Francisco Altamirano
- Center for Molecular Studies of the Cell, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - Alejandra Espinosa
- Center for Molecular Studies of the Cell, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
- School of Medical Technology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Qing Li
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Wenyan Niu
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Sergio Lavandero
- Center for Molecular Studies of the Cell, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
- Faculty of Pharmaceutical and Chemical Sciences, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Enrique Jaimovich
- Center for Molecular Studies of the Cell, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
- Corresponding author: Enrique Jaimovich,
| |
Collapse
|
11
|
Cea LA, Riquelme MA, Cisterna BA, Puebla C, Vega JL, Rovegno M, Sáez JC. Connexin- and pannexin-based channels in normal skeletal muscles and their possible role in muscle atrophy. J Membr Biol 2012; 245:423-36. [PMID: 22850938 DOI: 10.1007/s00232-012-9485-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/28/2012] [Indexed: 12/13/2022]
Abstract
Precursor cells of skeletal muscles express connexins 39, 43 and 45 and pannexin1. In these cells, most connexins form two types of membrane channels, gap junction channels and hemichannels, whereas pannexin1 forms only hemichannels. All these channels are low-resistance pathways permeable to ions and small molecules that coordinate developmental events. During late stages of skeletal muscle differentiation, myofibers become innervated and stop expressing connexins but still express pannexin1 hemichannels that are potential pathways for the ATP release required for potentiation of the contraction response. Adult injured muscles undergo regeneration, and connexins are reexpressed and form membrane channels. In vivo, connexin reexpression occurs in undifferentiated cells that form new myofibers, favoring the healing process of injured muscle. However, differentiated myofibers maintained in culture for 48 h or treated with proinflammatory cytokines for less than 3 h also reexpress connexins and only form functional hemichannels at the cell surface. We propose that opening of these hemichannels contributes to drastic changes in electrochemical gradients, including reduction of membrane potential, increases in intracellular free Ca(2+) concentration and release of diverse metabolites (e.g., NAD(+) and ATP) to the extracellular milieu, contributing to multiple metabolic and physiologic alterations that characterize muscles undergoing atrophy in several acquired and genetic human diseases. Consequently, inhibition of connexin hemichannels expressed by injured or denervated skeletal muscles might reduce or prevent deleterious changes triggered by conditions that promote muscle atrophy.
Collapse
Affiliation(s)
- Luis A Cea
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile,
| | | | | | | | | | | | | |
Collapse
|
12
|
Martin-Gil A, de Lara MJP, Crooke A, Santano C, Peral A, Pintor J. Silencing of P2Y(2) receptors reduces intraocular pressure in New Zealand rabbits. Br J Pharmacol 2012; 165:1163-72. [PMID: 21740413 DOI: 10.1111/j.1476-5381.2011.01586.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE P2 receptors are involved in the regulation of ocular physiological processes like intraocular pressure (IOP). In the present study, the involvement of P2Y(2) receptors in the hypertensive effect of nucleotides was investigated by use of antagonists and of a siRNA designed for the P2Y(2) receptor. EXPERIMENTAL APPROACH Agonists of the P2Y(2) receptor a as well as P2 antagonists were applied to eyes of New Zealand rabbits, and the changes in IOP were followed for up to 6 h. Cloning of the P2Y(2) receptor cDNA was done using a combination of degenerate reverse transcription PCR (RT-PCR) and rapid amplification of cDNA ends (RACE). siRNA was synthesized and tested by immunohistochemistry. KEY RESULTS Single doses of 2-thioUTP, UTP-γ-S and UTP increased IOP. This behaviour was concentration-dependent and partially antagonized by reactive blue 2. Silencing the P2Y(2) receptor was observed in the ciliary body by immunohistochemistry labelling, where a reduction in the immunofluorescence was observed. This reduction in the expression of the P2Y(2) receptor was concomitant with a reduction in IOP, which was measurable 24 h after treatment with the siRNA, maximal after 2 days, followed by a slow increase towards control values for the following 5 days. Application of the P2Y(2) agonists after pretreatment of the animals with this siRNA did not produce any change in IOP. CONCLUSIONS AND IMPLICATIONS P2Y(2) receptors increase IOP in New Zealand rabbits. The application of a siRNA for this receptor significantly reduced IOP, suggesting that this technology might be used for the treatment of glaucoma.
Collapse
Affiliation(s)
- Alba Martin-Gil
- Departamento de Bioquímica y Biología Molecular IV, E.U. Óptica, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Using antibodies against P2Y and P2X receptors in purinergic signaling research. Purinergic Signal 2011; 8:61-79. [PMID: 22086554 PMCID: PMC3265709 DOI: 10.1007/s11302-011-9278-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 10/13/2011] [Indexed: 01/07/2023] Open
Abstract
The broad expression pattern of the G protein-coupled P2Y receptors has demonstrated that these receptors are fundamental determinants in many physiological responses, including neuromodulation, vasodilation, inflammation, and cell migration. P2Y receptors couple either G(q) or G(i) upon activation, thereby activating different signaling pathways. Ionotropic ATP (P2X) receptors bind extracellular nucleotides, a signal which is transduced within the P2X protein complex into a cation channel opening, which usually leads to intracellular calcium concentration elevation. As such, this family of proteins initiates or shapes several cellular processes including synaptic transmission, gene expression, proliferation, migration, and apoptosis. The ever-growing range of applications for antibodies in the last 30 years attests to their major role in medicine and biological research. Antibodies have been used as therapeutic tools in cancer and inflammatory diseases, as diagnostic reagents (flow cytometry, ELISA, and immunohistochemistry, to name a few applications), and in widespread use in biological research, including Western blot, immunoprecipitation, and ELISPOT. In this article, we will showcase several of the advances that scientists around the world have achieved using the line of antibodies developed at Alomone Labs for P2Y and P2X receptors.
Collapse
|
14
|
García J. The calcium channel α2/δ1 subunit interacts with ATP5b in the plasma membrane of developing muscle cells. Am J Physiol Cell Physiol 2011; 301:C44-52. [PMID: 21490313 DOI: 10.1152/ajpcell.00405.2010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The α2/δ1 and α(1)1.1 subunits are present at a 1:1 ratio in the dihydropyridine receptor (DHPR) from adult skeletal muscle. In contrast, during early myotube development α2/δ1 is present at higher levels than α(1)1.1 and localizes at the ends of the cells, suggesting that α2/δ1 may have a role independent from DHPRs. We sought to identify binding partners of α2/δ1 at a period when levels of α(1)1.1 are low. Analysis of protein complexes in their native configuration established that α2/δ1 may be associating with ATP5b, a subunit of a mitochondrial ATP synthase complex. This interaction was confirmed with fluorescence resonance energy transfer and coimmunoprecipitation. The association of α2/δ1 and ATP5b occurs in intracellular membranes and at the plasma membrane, where they form a functional signaling complex capable of accelerating the rate of decline of calcium transients. The acceleration of decay was more evident when myotubes were stimulated with a train of pulses. Our data indicate that the α2/δ1 subunit is not only part of the DHPR but that it may interact with other cellular components in developing myotubes, such as the ATP5b in its atypical localization in the plasma membrane.
Collapse
Affiliation(s)
- Jesús García
- Dept. of Physiology and Biophysics, Univ. of Illinois at Chicago, 835 South Wolcott Ave., MC 901, Chicago, IL 60612, USA.
| |
Collapse
|
15
|
Bothrops snake myotoxins induce a large efflux of ATP and potassium with spreading of cell damage and pain. Proc Natl Acad Sci U S A 2010; 107:14140-5. [PMID: 20660736 DOI: 10.1073/pnas.1009128107] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Myotoxins play a major role in the pathogenesis of the envenomations caused by snake bites in large parts of the world where this is a very relevant public health problem. We show here that two myotoxins that are major constituents of the venom of Bothrops asper, a deadly snake present in Latin America, induce the release of large amounts of K(+) and ATP from skeletal muscle. We also show that the released ATP amplifies the effect of the myotoxins, acting as a "danger signal," which spreads and causes further damage by acting on purinergic receptors. In addition, the release of ATP and K(+) well accounts for the pain reaction characteristic of these envenomations. As Bothrops asper myotoxins are representative of a large family of snake myotoxins with phospholipase A(2) structure, these findings are expected to be of general significance for snake bite envenomation. Moreover, they suggest potential therapeutic approaches for limiting the extent of muscle tissue damage based on antipurinergic drugs.
Collapse
|
16
|
Buvinic S, Almarza G, Bustamante M, Casas M, López J, Riquelme M, Sáez JC, Huidobro-Toro JP, Jaimovich E. ATP released by electrical stimuli elicits calcium transients and gene expression in skeletal muscle. J Biol Chem 2009; 284:34490-505. [PMID: 19822518 DOI: 10.1074/jbc.m109.057315] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
ATP released from cells is known to activate plasma membrane P2X (ionotropic) or P2Y (metabotropic) receptors. In skeletal muscle cells, depolarizing stimuli induce both a fast calcium signal associated with contraction and a slow signal that regulates gene expression. Here we show that nucleotides released to the extracellular medium by electrical stimulation are partly involved in the fast component and are largely responsible for the slow signals. In rat skeletal myotubes, a tetanic stimulus (45 Hz, 400 1-ms pulses) rapidly increased extracellular levels of ATP, ADP, and AMP after 15 s to 3 min. Exogenous ATP induced an increase in intracellular free Ca(2+) concentration, with an EC(50) value of 7.8 +/- 3.1 microm. Exogenous ADP, UTP, and UDP also promoted calcium transients. Both fast and slow calcium signals evoked by tetanic stimulation were inhibited by either 100 mum suramin or 2 units/ml apyrase. Apyrase also reduced fast and slow calcium signals evoked by tetanus (45 Hz, 400 0.3-ms pulses) in isolated mouse adult skeletal fibers. A likely candidate for the ATP release pathway is the pannexin-1 hemichannel; its blockers inhibited both calcium transients and ATP release. The dihydropyridine receptor co-precipitated with both the P2Y(2) receptor and pannexin-1. As reported previously for electrical stimulation, 500 mum ATP significantly increased mRNA expression for both c-fos and interleukin 6. Our results suggest that nucleotides released during skeletal muscle activity through pannexin-1 hemichannels act through P2X and P2Y receptors to modulate both Ca(2+) homeostasis and muscle physiology.
Collapse
Affiliation(s)
- Sonja Buvinic
- Centro de Estudios Moleculares de la Célula, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Casilla 70005, Santiago 7, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Avdonin PV, Surkov KV, Sukhanova IF, Ruegg UT. Expression and functional role of the protein Orai-1 in skeletal myoblasts and myotubes. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2008. [DOI: 10.1134/s1990747808040107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Fodor J, Gönczi M, Sztretye M, Dienes B, Oláh T, Szabó L, Csoma E, Szentesi P, Szigeti GP, Marty I, Csernoch L. Altered expression of triadin 95 causes parallel changes in localized Ca2+ release events and global Ca2+ signals in skeletal muscle cells in culture. J Physiol 2008; 586:5803-18. [PMID: 18845610 DOI: 10.1113/jphysiol.2008.160457] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The 95 kDa triadin (Trisk 95), an integral protein of the sarcoplasmic reticular membrane in skeletal muscle, interacts with both the ryanodine receptor (RyR) and calsequestrin. While its role in the regulation of calcium homeostasis has been extensively studied, data are not available on whether the overexpression or the interference with the expression of Trisk 95 would affect calcium sparks the localized events of calcium release (LCRE). In the present study LCRE and calcium transients were studied using laser scanning confocal microscopy on C2C12 cells and on primary cultures of skeletal muscle. Liposome- or adenovirus-mediated Trisk 95 overexpression and shRNA interference with triadin translation were used to modify the level of the protein. Stable overexpression in C2C12 cells significantly decreased the amplitude and frequency of calcium sparks, and the frequency of embers. In line with these observations, depolarization-evoked calcium transients were also suppressed. Similarly, adenoviral transfection of Trisk 95 into cultured mouse skeletal muscle cells significantly decreased both the frequency and amplitude of spontaneous global calcium transients. Inhibition of endogenous triadin expression by RNA interference caused opposite effects. Primary cultures of rat skeletal muscle cells expressing endogenous Trisk 95 readily generated spontaneous calcium transients but rarely produced calcium sparks. Their transfection with specific shRNA sequence significantly reduced the triadin-specific immunoreactivity. Functional experiments on these cells revealed that while caffeine-evoked calcium transients were reduced, LCRE appeared with higher frequency. These results suggest that Trisk 95 negatively regulates RyR function by suppressing localized calcium release events and global calcium signals in cultured muscle cells.
Collapse
Affiliation(s)
- János Fodor
- Department of Physiology, University of Debrecen, P.O. Box 22, Hungary.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Deli T, Csernoch L. Extracellular ATP and cancer: an overview with special reference to P2 purinergic receptors. Pathol Oncol Res 2008; 14:219-31. [PMID: 18575829 DOI: 10.1007/s12253-008-9071-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 05/22/2008] [Indexed: 12/12/2022]
Abstract
Purinergic signal transduction mechanisms have been appreciated as a complex intercellular signalling network that plays an important regulatory role in both short- and long-term processes in practically every living cell. One of the most intriguing aspects of the field is the participation of ATP and other purine nucleotides in the determination of cell fate and the way they direct cells towards proliferation, differentiation or apoptosis, thereby possibly taking part in promoting or preventing malignant transformation. In this review, following a very brief introduction to the historical aspects of purinergic signalling and a concise overview of the structure of and signal transduction pathways coupled to P2 purinergic receptors, the current theories concerning the possible ways how extracellular ATP can alter the function of tumour cells and the effectiveness of anticancer therapies are discussed, including pharmacological, nutritional, vasoactive and 'anti-antioxidant' actions of the nucleotide. The effects of ATP on animals inoculated with human tumours and on patients with cancer are looked over next, and then an overview of the literature regarding the expression and presumed functions of P2 purinoceptors on tumour cells in vitro is presented, sorted out according to the relevant special clinical fields. The article is closed by reviewing the latest developments in the diagnostic use of P2 purinergic receptors as tumour markers and prognostic factors, while discussing some of the difficulties and pitfalls of the therapeutic use of ATP analogues.
Collapse
Affiliation(s)
- Tamás Deli
- Department of Physiology, Research Centre for Molecular Medicine, Medical and Health Science Centre, University of Debrecen, Debrecen, Hungary
| | | |
Collapse
|
20
|
Szigeti GP, Szappanos H, Deli T, Cseri J, Kovács L, Csernoch L. Differentiation-dependent alterations in the extracellular ATP-evoked calcium fluxes of cultured skeletal muscle cells from mice. Pflugers Arch 2006; 453:509-18. [PMID: 17021795 DOI: 10.1007/s00424-006-0145-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 07/28/2006] [Indexed: 10/24/2022]
Abstract
Although extracellular adenosine triphosphate (ATP) has been generally accepted as the regulator of cellular differentiation, the relative contribution of the various purinoreceptor subtypes to purinergic signalling at distinct stages of skeletal muscle differentiation is still poorly understood. Here we measured extracellular ATP-evoked changes in intracellular calcium concentration and surface membrane ionic currents (I (ATP)), calculated the calcium flux (FL) entering the myoplasmic space and compared these parameters at different stages of differentiation on cultured mouse myotubes. The ATP-evoked FL displayed an early peak and then declined to a steady level. With differentiation, the early peak became separated from the maintained component and was absent on mature myotubes. Repeated ATP applications caused desensitization of the response in both immature and differentiated myotubes, owing mainly to the reduction of the early peak of FL in the former and to a decline of both components in the latter group of cells. Depolarization of the cell or removal of external calcium suppressed the early peak. I (ATP) showed no inactivation, and its voltage dependence displayed strong inward rectification. The concentration dependence of I (ATP) can be fitted using a Hill equation, yielding an EC(50) of 56 microM. Results are consistent with the parallel activation of both P2X and P2Y receptors.
Collapse
Affiliation(s)
- Gyula Péter Szigeti
- Department of Physiology, Medical and Health Science Centre, University of Debrecen, P.O. Box 22, 98 Nagyerdei krt., Debrecen, 4012, Hungary
| | | | | | | | | | | |
Collapse
|