1
|
Kundu A, Ghosh P, Bishayi B. Vitexin along with verapamil downregulates efflux pump P-glycoprotein in macrophages and potentiate M1 to M2 switching via TLR4-NF-κB-TNFR2 pathway in lipopolysaccharide treated mice. Immunobiology 2024; 229:152767. [PMID: 38103391 DOI: 10.1016/j.imbio.2023.152767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023]
Abstract
The lipopolysaccharide, a microbial toxin, is one of the major causative agents of sepsis. P-gp expression and its functions are altered during inflammation. LPS has been known to impair the functions of P-gp, an efflux transporter. But the effect of LPS on P-gp expression in murine peritoneal macrophages is poorly understood. Molecular docking studies reveal that vitexin is a potent substrate and verapamil a potent inhibitor of P-gp. In the present experimental study, the curative potential of vitexin as a fruit component and verapamil treated as a control inhibitor of P-gp was examined in a murine LPS sepsis model. The effects of vitexin and verapamil on P-gp expression in macrophages correlating with changes in macrophage polarization and associated functional responses during LPS induced sepsis were studied. Peritoneal macrophages of LPS (10 mg/kg body weight) challenged mice exhibited elevated levels of H2O2, superoxide, and NO in parallel with lower antioxidant activity. LPS treatment increased P-gp expression through increased TLR4/expression. However, LPS challenged mice treated with vitexin (5 mg/kg body weight) + verapamil (5 mg/kg body weight) showed higher anti-oxidant enzyme activity (SOD, CAT and GRx) resulting in reduced oxidative stress. This combination treatment also elevated TNFR2, concomitant with down-regulation of TLR4, NF-κB and P-gp expression in murine peritoneal macrophages, resulting in a switch from M1 to M2 polarisation of macrophages and reduced inflammatory responses. In conclusion, combined vitexin and verapamil treatment could be used as a promising therapy to regulate P-gp expression and protection against LPS mediated sepsis and inflammatory damages.
Collapse
Affiliation(s)
- Ayantika Kundu
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Pratiti Ghosh
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.
| |
Collapse
|
2
|
Pan PH, Wang YY, Lin SY, Liao SL, Chen YF, Huang WC, Chen CJ, Chen WY. Plumbagin ameliorates bile duct ligation-induced cholestatic liver injury in rats. Biomed Pharmacother 2022; 151:113133. [PMID: 35594710 DOI: 10.1016/j.biopha.2022.113133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/04/2022] [Accepted: 05/15/2022] [Indexed: 11/17/2022] Open
Abstract
Plumbagin, a natural bicyclic naphthoquinone, has diverse pharmacological properties and biological benefits against a number of disorders, including liver disease. Though plumbagin's hepatoprotective potential attracts attention, currently no experimental evidence exists on its effectiveness against cholestatic liver injury. The present study investigated its hepatoprotection in the rat model of extrahepatic cholestasis using Bile Duct Ligation (BDL). We found that daily plumbagin supplementation protected the liver from cholestatic damage. Hepatoprotective actions of plumbagin were accompanied by reduction of Transforming Growth Factor β1 (TGF-β1)/Smad, High Mobility Group Box-1 (HMGB1)/Toll-Like Receptor-4 (TLR4), Hypoxia-Inducible Factor-1α (HIF-1α), Aryl Hydrocarbon Receptor (AhR), Heat Shock Protein 90 (HSP90), caveolin-1, NF-κB/AP-1, Dynamin Related Protein-1 (Drp1), malondialdehyde level, Interleukin-1β (IL-1β), p62/SQSTM1, and caspase 3 as well as increase of Farnesoid X Receptor (FXR), bile acid efflux transporters, glutathione, LC3-II, Beclin1, and nuclear NF-E2-Related Factor-2 (Nrf2) and Transcription Factor EB (TFEB). The activation of nuclear Nrf2 caused by plumbagin correlated well with the improvement in bile acid retention, liver histology, serum biochemical, ductular reaction, mitochondrial dysfunction, oxidative stress, inflammation, apoptosis, impaired autophagy, and fibrosis, involving interplay of multiple intracellular signaling pathways. Plumbagin is likely a candidate drug to protect the liver from cholestatic damages. Despite the promising findings from this study, translational implication of plumbagin on cholestatic liver injury warrants further investigation.
Collapse
Affiliation(s)
- Pin-Ho Pan
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan; Department of Pediatrics, Tungs' Taichung MetroHarbor Hospital, Taichung City 435, Taiwan.
| | - Ya-Yu Wang
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan.
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City 407, Taiwan; Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei City 112, Taiwan.
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan.
| | - Yu-Fang Chen
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung City 840, Taiwan.
| | - Wei-Chi Huang
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan.
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan.
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan.
| |
Collapse
|
3
|
Genderen AMV, G Valverde M, Capendale PE, Kersten V, Sendino Garví E, Schuurmans CCL, Ruelas M, Soeiro JT, Tang G, Janssen MJ, Jansen J, Mihăilă SM, Vermonden T, Zhang YS, Masereeuw R. Co-axial Printing of Convoluted Proximal Tubule for Kidney Disease Modeling. Biofabrication 2022; 14. [PMID: 35700695 DOI: 10.1088/1758-5090/ac7895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/14/2022] [Indexed: 11/11/2022]
Abstract
Despite the increasing incidence of kidney-related diseases, we are still far from understanding the underlying mechanisms of these diseases and their progression. This lack of understanding is partly because of a poor replication of the diseases in vitro, limited to planar culture. Advancing towards three-dimensional models, hereby we propose coaxial printing to obtain microfibers containing a helical hollow microchannel. These recapitulate the architecture of the proximal tubule (PT), an important nephron segment often affected in kidney disorders. A stable gelatin/alginate-based ink was formulated to allow printability while maintaining structural properties. Fine tuning of the composition, printing temperature and extrusion rate allowed for optimal ink viscosity that led to coiling of the microfiber's inner channel. The printed microfibers exhibited prolonged structural stability (42 days) and cytocompatibility in culture. Healthy conditionally immortalized PT epithelial cells and a knockout cell model for cystinosis (CTNS-/-) were seeded to mimic two genotypes of PT. Upon culturing for 14 days, engineered PT showed homogenous cytoskeleton organization as indicated by staining for filamentous actin, barrier-formation and polarization with apical marker α-tubulin and basolateral marker Na+/K+-ATPase. Cell viability was slightly decreased upon prolonged culturing for 14 days, which was more pronounced inCTNS-/-microfibers. Finally, cystinosis cells showed reduced apical transport activity in the microfibers compared to healthy PT epithelial cells when looking at breast cancer resistance protein and multidrug resistance-associated protein 4. Engineered PT incorporated in a custom-designed microfluidic chip allowed to assess leak-tightness of the epithelium, which appeared less tight in cystinosis PT compared to healthy PT, in agreement with its in vivo phenotype. While we are still on the verge of patient-oriented medicine, this system holds great promise for further research in establishing advanced in vitro disease models.
Collapse
Affiliation(s)
- Anne Metje van Genderen
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Marta G Valverde
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Pamela E Capendale
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Valerie Kersten
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Elena Sendino Garví
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Carl C L Schuurmans
- Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Marina Ruelas
- Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts, 02139, UNITED STATES
| | - Joana T Soeiro
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Guosheng Tang
- Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts, 02139, UNITED STATES
| | - Manoe J Janssen
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Jitske Jansen
- Pathology and Pediatric Nephrology, Radboud University Medical Center, -, Nijmegen, 6525 GA, NETHERLANDS
| | - Silvia M Mihăilă
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Tina Vermonden
- Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Universiteit Utrecht, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Y Shrike Zhang
- Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts, 02139, UNITED STATES
| | - Rosalinde Masereeuw
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| |
Collapse
|
4
|
Ahmed Juvale II, Abdul Hamid AA, Abd Halim KB, Che Has AT. P-glycoprotein: new insights into structure, physiological function, regulation and alterations in disease. Heliyon 2022; 8:e09777. [PMID: 35789865 PMCID: PMC9249865 DOI: 10.1016/j.heliyon.2022.e09777] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/04/2022] [Accepted: 06/17/2022] [Indexed: 01/01/2023] Open
Abstract
The multidrug resistance phenomenon presents a major threat to the pharmaceutical industry. This resistance is a common occurrence in several diseases and is mediated by multidrug transporters that actively pump substances out of the cell and away from their target regions. The most well-known multidrug transporter is the P-glycoprotein transporter. The binding sites within P-glycoprotein can accommodate a variety of compounds with diverse structures. Hence, numerous drugs are P-glycoprotein substrates, with new ones being identified every day. For many years, the mechanisms of action of P-glycoprotein have been shrouded in mystery, and scientists have only recently been able to elucidate certain structural and functional aspects of this protein. Although P-glycoprotein is highly implicated in multidrug resistant diseases, this transporter also performs various physiological roles in the human body and is expressed in several tissues, including the brain, kidneys, liver, gastrointestinal tract, testis, and placenta. The expression levels of P-glycoprotein are regulated by different enzymes, inflammatory mediators and transcription factors; alterations in which can result in the generation of a disease phenotype. This review details the discovery, the recently proposed structure and the regulatory functions of P-glycoprotein, as well as the crucial role it plays in health and disease.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kota Bharu, 16150, Kelantan, Malaysia
| | - Azzmer Azzar Abdul Hamid
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Khairul Bariyyah Abd Halim
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kota Bharu, 16150, Kelantan, Malaysia
| |
Collapse
|
5
|
Han C, Zheng J, Wang F, Lu Q, Chen Q, Hu A, Visentin M, Kullak-Ublick GA, Gai Z, Chu L. The Role of NF-kB in the Downregulation of Organic Cation Transporter 2 Expression and Renal Cation Secretion in Kidney Disease. Front Med (Lausanne) 2022; 8:800421. [PMID: 35059420 PMCID: PMC8763702 DOI: 10.3389/fmed.2021.800421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Organic cation transporter 2 (OCT2), encoded by the SLC22A2 gene, is the main cation transporter on the basolateral membrane of proximal tubular cells. OCT2 facilitates the entry step of the vectorial transport of most cations from the peritubular space into the urine. OCT2 downregulation in kidney disease models is apparent, yet not clear from a mechanistic vantage point. The aim of this study was to explore the role of inflammation, a common thread in kidney disease, and NF-kB in OCT2 modulation and tubular secretion. Among the OCTs, OCT2 was found consistently downregulated in the kidney of rats with chronic kidney disease (CKD) or acute kidney injury (AKI) and in patients diagnosed with CKD, and it was associated with the upregulation of TNFα renal expression. Exposure to TNFα reduced the expression and function of OCT2 in primary renal proximal tubule epithelial cells (RPTEC). Silencing or pharmacological inhibition of NF-kB rescued the expression of OCT2 in the presence of TNFα, indicating that OCT2 repression was NF-kB-dependent. In silico prediction coupled to gene reporter assay demonstrated the presence of at least one functional NF-kB cis-element upstream the transcription starting site of the SLC22A2 gene. Acute inflammation triggered by lipopolysaccharide injection induced TNFα expression and the downregulation of OCT2 in rat kidney. The inflammation did reduce the active secretion of the cation Rhodamine 123, with no impairment of the glomerular filtration. In conclusion, the NF-kB pathway plays a major role in the transcriptional regulation of OCT2 and, in turn, in the overall renal secretory capacity.
Collapse
Affiliation(s)
- Chao Han
- Department of Nephrology, Tengzhou Central People's Hospital, Zaozhuang, China
| | - Juan Zheng
- Department of Joint Laboratory for Translational Medicine Research, Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| | - Fengyi Wang
- Department of Urology, Tengzhou Central People's Hospital, Zaozhuang, China
| | - Qingyang Lu
- Department of Pathology, Liaocheng People's Hospital, Liaocheng, China
| | - Qingfa Chen
- Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| | - Ankang Hu
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou, China
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Chu
- Department of Urology, The Affiliated Tengzhou Hospital of Xuzhou Medical University, Zaozhuang, China.,Department of Urology, Affiliated Tengzhou Hospital of Jining Medical University, Zaozhuang, China
| |
Collapse
|
6
|
Saib S, Delavenne X. Inflammation Induces Changes in the Functional Expression of P-gp, BCRP, and MRP2: An Overview of Different Models and Consequences for Drug Disposition. Pharmaceutics 2021; 13:pharmaceutics13101544. [PMID: 34683838 PMCID: PMC8539483 DOI: 10.3390/pharmaceutics13101544] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/22/2022] Open
Abstract
The ATP-binding cassette (ABC) transporters play a key role in drug pharmacokinetics. These membrane transporters expressed within physiological barriers can be a source of pharmacokinetic variability. Changes in ABC transporter expression and functionality may consequently affect the disposition of substrate drugs, resulting in different drug exposure. Inflammation, present in several acute and chronic diseases, has been identified as a source of modulation in drug transporter expression leading to variability in drug response. Its regulation may be particularly dangerous for drugs with a narrow therapeutic index. In this context, numerous in vitro and in vivo models have shown up- or downregulation in the expression and functionality of ABC transporters under inflammatory conditions. Nevertheless, the existence of contradictory data and the lack of standardization for the models used have led to a less conclusive interpretation of these data.
Collapse
Affiliation(s)
- Sonia Saib
- INSERM U1059, Dysfonction Vasculaire et de l’Hémostase, 42270 Saint-Priest-En-Jarez, France;
- Faculté de Médecine, Université Jean Monnet, 42023 Saint-Etienne, France
- Correspondence: ; Tel.: +33-477-42-1443
| | - Xavier Delavenne
- INSERM U1059, Dysfonction Vasculaire et de l’Hémostase, 42270 Saint-Priest-En-Jarez, France;
- Laboratoire de Pharmacologie Toxicologie Gaz du Sang, CHU de Saint-Etienne, 42000 Saint-Etienne, France
| |
Collapse
|
7
|
Heybeli C, Oktan MA, Arda HU, Yildiz S, Unlu M, Cavdar C, Sifil A, Celik A, Sarioglu S, Camsari T. Renal tubular P-glycoprotein expression is reduced in plasma cell disorders. Kidney Res Clin Pract 2019; 38:186-195. [PMID: 30970392 PMCID: PMC6577216 DOI: 10.23876/j.krcp.18.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/19/2019] [Accepted: 03/05/2019] [Indexed: 11/04/2022] Open
Abstract
Background P-glycoprotein (P-gp) transports many chemicals that vary greatly in their structure and function. It is normally expressed in renal proximal tubular cells. We hypothesized that P-gp expression influences light chain excretion. Therefore, we investigated whether renal tubular P-gp expression is altered in patients with plasma cell disorders. Methods We evaluated renal biopsy specimens from patients with plasma cell disorders (n = 16) and primary focal segmental glomerulosclerosis (the control group, n = 17). Biopsies were stained with an anti-P-gp antibody. Loss of P-gp expression was determined semi-quantitatively. Groups were compared for loss of P-gp expression, and clinical variables. Results P-gp expression loss was more severe in patients with plasma cell disorders than it was in those with glomerulonephritis (P = 0.021). In contrast, clinical and histological parameters including serum creatinine, level of urinary protein excretion, and interstitial fibrosis/tubular atrophy grade were not significantly different between the groups. P-gp expression loss increased with age in patients with plasma cell disorders (P = 0.071). This expression loss was not associated with serum creatinine, the level of urinary protein excretion or the interstitial fibrosis/tubular atrophy grade. There was no significant association between the severity of P-gp expression loss with the types and serum levels of light chains, isotypes and serum immunoglobulin levels. Conclusion Renal tubular P-gp expression is significantly down-regulated in patients with plasma cell disorders characterized by nephrotic range proteinuria. Additional studies are needed to determine whether reintroduction of renal tubular P-gp expression would mitigate the proximal tubular injury that is caused by free-light chains.
Collapse
Affiliation(s)
- Cihan Heybeli
- Division of Nephrology, Department of Internal Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Mehmet Asi Oktan
- Division of Nephrology, Department of Internal Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Hayri Ustun Arda
- Division of Nephrology, Department of Internal Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Serkan Yildiz
- Division of Nephrology, Department of Internal Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Mehtat Unlu
- Department of Pathology, Dokuz Eylül University, Izmir, Turkey
| | - Caner Cavdar
- Division of Nephrology, Department of Internal Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Aykut Sifil
- Division of Nephrology, Department of Internal Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Ali Celik
- Division of Nephrology, Department of Internal Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Sulen Sarioglu
- Department of Pathology, Dokuz Eylül University, Izmir, Turkey
| | - Taner Camsari
- Division of Nephrology, Department of Internal Medicine, Dokuz Eylül University, Izmir, Turkey
| |
Collapse
|
8
|
Physiological and pathophysiological factors affecting the expression and activity of the drug transporter MRP2 in intestine. Impact on its function as membrane barrier. Pharmacol Res 2016; 109:32-44. [DOI: 10.1016/j.phrs.2016.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/15/2016] [Accepted: 04/17/2016] [Indexed: 12/15/2022]
|
9
|
Uremic Toxins Induce ET-1 Release by Human Proximal Tubule Cells, which Regulates Organic Cation Uptake Time-Dependently. Cells 2015; 4:234-52. [PMID: 26132391 PMCID: PMC4588034 DOI: 10.3390/cells4030234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/12/2015] [Accepted: 06/19/2015] [Indexed: 12/21/2022] Open
Abstract
In renal failure, the systemic accumulation of uremic waste products is strongly associated with the development of a chronic inflammatory state. Here, the effect of cationic uremic toxins on the release of inflammatory cytokines and endothelin-1 (ET-1) was investigated in conditionally immortalized proximal tubule epithelial cells (ciPTEC). Additionally, we examined the effects of ET-1 on the cellular uptake mediated by organic cation transporters (OCTs). Exposure of ciPTEC to cationic uremic toxins initiated production of the inflammatory cytokines IL-6 (117 ± 3%, p < 0.001), IL-8 (122 ± 3%, p < 0.001), and ET-1 (134 ± 5%, p < 0.001). This was accompanied by a down-regulation of OCT mediated 4-(4-(dimethylamino)styryl)-N-methylpyridinium-iodide (ASP+) uptake in ciPTEC at 30 min (23 ± 4%, p < 0.001), which restored within 60 min of incubation. Exposure to ET-1 for 24 h increased the ASP+ uptake significantly (20 ± 5%, p < 0.001). These effects could be blocked by BQ-788, indicating activation of an ET-B-receptor-mediated signaling pathway. Downstream the receptor, iNOS inhibition by (N(G)‐monomethyl‐l‐arginine) l-NMMA acetate or aminoguanidine, as well as protein kinase C activation, ameliorated the short-term effects. These results indicate that uremia results in the release of cytokines and ET-1 from human proximal tubule cells, in vitro. Furthermore, ET-1 exposure was found to regulate proximal tubular OCT transport activity in a differential, time-dependent, fashion.
Collapse
|
10
|
Oh SW, Han KH, Han SY. Associations between renal hyperfiltration and serum alkaline phosphatase. PLoS One 2015; 10:e0122921. [PMID: 25853240 PMCID: PMC4390244 DOI: 10.1371/journal.pone.0122921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/20/2015] [Indexed: 11/24/2022] Open
Abstract
Renal hyperfiltration, which is associated with renal injury, occurs in diabetic or obese individuals. Serum alkaline phosphatase (ALP) level is also elevated in patients with diabetes (DM) or metabolic syndrome (MS), and increased urinary excretion of ALP has been demonstrated in patients who have hyperfiltration and tubular damage. However, little was investigated about the association between hyperfiltration and serum ALP level. A retrospective observational study of the 21,308 adults in the Korea National Health and Nutrition Examination Survey IV-V databases (2008–2011) was performed. Renal hyperfiltration was defined as exceeding the age- and sex-specific 97.5th percentile. We divided participants into 4 groups according to their estimated glomerular filtration rate (eGFR): >120, 90–119, 60–89, and <60 mL/min/1.73 m2. The participants with eGFR >120 mL/min/1.73 m2 showed the highest risk for MS, in the highest ALP quartiles (3.848, 95% CI, 1.876–7.892), compared to the lowest quartile. Similarly, the highest risk for DM, in the highest ALP quartiles, was observed in participants with eGFR >120 ml/min/1.73 m2 (2.166, 95% CI, 1.084–4.329). ALP quartiles were significantly associated with albuminuria in participants with eGFR ≥ 60 ml/min/1.73m2. The highest ALP quartile had a 1.631-fold risk elevation for albuminuria with adjustment of age and sex. (95% CI, 1.158-2.297, P = 0.005). After adjustment, the highest ALP quartile had a 1.624-fold risk elevation, for renal hyperfiltration (95% CI, 1.204–2.192, P = 0.002). In addition, hyperfiltration was significantly associated with hemoglobin, triglyceride, white blood cell count, DM, smoking, and alcohol consumption (P<0.05). The relationship between serum ALP and metabolic disorders is stronger in participants with an upper-normal range of eGFR. Higher ALP levels are significantly associated with renal hyperfiltration in Korean general population.
Collapse
Affiliation(s)
- Se Won Oh
- Division of Nephrology, Department of Internal Medicine, Ilsan-Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Kum Hyun Han
- Division of Nephrology, Department of Internal Medicine, Ilsan-Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Sang Youb Han
- Division of Nephrology, Department of Internal Medicine, Ilsan-Paik Hospital, Inje University College of Medicine, Goyang, Korea
- * E-mail:
| |
Collapse
|
11
|
Kadova Z, Dolezelova E, Cermanova J, Hroch M, Laho T, Muchova L, Staud F, Vitek L, Mokry J, Chladek J, Havlinova Z, Holecek M, Micuda S. IL-1 receptor blockade alleviates endotoxin-mediated impairment of renal drug excretory functions in rats. Am J Physiol Renal Physiol 2015; 308:F388-99. [DOI: 10.1152/ajprenal.00266.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of our study was to investigate whether two potent anti-inflammatory agents, dexamethasone and anakinra, an IL-1 receptor antagonist, may influence acute kidney injury (AKI) and associated drug excretory functions during endotoxemia (LPS) in rats. Ten hours after LPS administration, untreated endotoxemic rats developed typical symptoms of AKI, with reduced GFR, impaired tubular excretion of urea and sodium, and decreased urinary excretion of azithromycin, an anionic substrate for multidrug resistance-transporting proteins. Administration of both immunosuppressants attenuated the inflammatory response, liver damage, AKI, and increased renal clearance of azithromycin mainly by restoration of GFR, without significant influence on its tubular secretion. The lack of such an effect was related to the differential effect of both agents on the renal expression of individual drug transporters. Only dexamethasone increased the urinary clearance of bile acids, in accordance with the reduction of the apical transporter (Asbt) for their tubular reabsorption. In summary, our data demonstrated the potency of both agents used for the prevention of AKI, imposed by endotoxins, and for the restoration of renal drug elimination, mainly by the improvement of GFR. The influence of both drugs on altered tubular functions and the expression of drug transporters was differential, emphasizing the necessity of knowledge of transporting pathways for individual drugs applied during sepsis. The effect of anakinra suggests a significant contribution of IL-1 signaling to the pathogenesis of LPS-induced AKI.
Collapse
Affiliation(s)
- Zuzana Kadova
- Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
- Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Dolezelova
- Department of Biological and Medical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jolana Cermanova
- Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Milos Hroch
- Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
- Department of Medical Biochemistry, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Tomas Laho
- Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Lucie Muchova
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic; and
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic; and
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Jaroslav Mokry
- Department of Histology and Embryology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jaroslav Chladek
- Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Zuzana Havlinova
- Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Milan Holecek
- Department of Physiology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
12
|
Migliaccio O, Castellano I, Romano G, Palumbo A. Stress response to cadmium and manganese in Paracentrotus lividus developing embryos is mediated by nitric oxide. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 156:125-134. [PMID: 25181703 DOI: 10.1016/j.aquatox.2014.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/08/2014] [Accepted: 08/12/2014] [Indexed: 06/03/2023]
Abstract
Increasing concentrations of contaminants, often resulting from anthropogenic activities, have been reported to occur in the marine environment and affect marine organisms. Among these, the metal ions cadmium and manganese have been shown to induce developmental delay and abnormalities, mainly reflecting skeleton elongation perturbation, in the sea urchin Paracentrotus lividus, an established model for toxicological studies. Here, we provide evidence that the physiological messenger nitric oxide (NO), formed by l-arginine oxidation by NO synthase (NOS), mediates the stress response induced by cadmium and manganese in sea urchins. When NO levels were lowered by inhibiting NOS, the proportion of abnormal plutei increased. Quantitative expression of a panel of 19 genes involved in stress response, skeletogenesis, detoxification and multidrug efflux processes was followed at different developmental stages and under different conditions: metals alone, metals in the presence of NOS inhibitor, NO donor and NOS inhibitor alone. These data allowed the identification of different classes of genes whose metal-induced transcriptional expression was directly or indirectly mediated by NO. These results open new perspectives on the role of NO as a sensor of different stress agents in sea urchin developing embryos.
Collapse
Affiliation(s)
- Oriana Migliaccio
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Immacolata Castellano
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Giovanna Romano
- Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Anna Palumbo
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| |
Collapse
|
13
|
Peters E, Heemskerk S, Masereeuw R, Pickkers P. Alkaline phosphatase: a possible treatment for sepsis-associated acute kidney injury in critically ill patients. Am J Kidney Dis 2014; 63:1038-48. [PMID: 24462020 DOI: 10.1053/j.ajkd.2013.11.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 11/18/2013] [Indexed: 02/06/2023]
Abstract
Acute kidney injury (AKI) is a common disease in the intensive care unit and accounts for high morbidity and mortality. Sepsis, the predominant cause of AKI in this setting, involves a complex pathogenesis in which renal inflammation and hypoxia are believed to play an important role. A new therapy should be aimed at targeting both these processes, and the enzyme alkaline phosphatase, with its dual mode of action, might be a promising candidate. First, alkaline phosphatase is able to reduce inflammation through dephosphorylation and thereby detoxification of endotoxin (lipopolysaccharide), which is an important mediator of sepsis. Second, adenosine triphosphate, released during cellular stress caused by inflammation and hypoxia, has detrimental effects but can be converted by alkaline phosphatase into adenosine with anti-inflammatory and tissue-protective effects. These postulated beneficial effects of alkaline phosphatase have been confirmed in animal experiments and two phase 2a clinical trials showing that kidney function improved in critically ill patients with sepsis-associated AKI. Because renal inflammation and hypoxia also are observed commonly in AKI induced by other causes, it would be of interest to investigate the therapeutic effect of alkaline phosphatase in these nephropathies as well.
Collapse
Affiliation(s)
- Esther Peters
- Department of Intensive Care Medicine, Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pharmacology and Toxicology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Suzanne Heemskerk
- Department of Intensive Care Medicine, Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pharmacology and Toxicology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rosalinde Masereeuw
- Department of Pharmacology and Toxicology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
14
|
Cressman AM, Petrovic V, Piquette-Miller M. Inflammation-mediated changes in drug transporter expression/activity: implications for therapeutic drug response. Expert Rev Clin Pharmacol 2014; 5:69-89. [DOI: 10.1586/ecp.11.66] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Wever KE, Masereeuw R, Wagener FA, Verweij VG, Peters JG, Pertijs JC, Van der Vliet JA, Warlé MC, Rongen GA. Humoral signalling compounds in remote ischaemic preconditioning of the kidney, a role for the opioid receptor. Nephrol Dial Transplant 2013; 28:1721-32. [DOI: 10.1093/ndt/gfs601] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Masereeuw R, Russel FGM. Regulatory pathways for ATP-binding cassette transport proteins in kidney proximal tubules. AAPS JOURNAL 2012; 14:883-94. [PMID: 22961390 DOI: 10.1208/s12248-012-9404-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 08/15/2012] [Indexed: 01/24/2023]
Abstract
The ATP-binding cassette transport proteins (ABC transporters) represent important determinants of drug excretion. Protective or excretory tissues where these transporters mediate substrate efflux include the kidney proximal tubule. Regulation of the transport proteins in this tissue requires elaborate signaling pathways, including genetic, epigenetic, nuclear receptor mediated, posttranscriptional gene regulation involving microRNAs, and non-genomic (kinases) pathways triggered by hormones and/or growth factors. This review discusses current knowledge on regulatory pathways for ABC transporters in kidney proximal tubules, with a main focus on P-glycoprotein, multidrug resistance proteins 2 and 4, and breast cancer resistance protein. Insight in these processes is of importance because variations in transporter activity due to certain (disease) conditions could lead to significant changes in drug efficacy or toxicity.
Collapse
Affiliation(s)
- Rosalinde Masereeuw
- Department of Pharmacology and Toxicology (149), Nijmegen Centre for Molecular Life Sciences/Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500, HB, Nijmegen, The Netherlands.
| | | |
Collapse
|
17
|
Duan R, Hu N, Liu HY, Li J, Guo HF, Liu C, Liu L, Liu XD. Biphasic regulation of P-glycoprotein function and expression by NO donors in Caco-2 cells. Acta Pharmacol Sin 2012; 33:767-74. [PMID: 22543702 DOI: 10.1038/aps.2012.25] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AIM To investigate the effects of nitric oxide (NO) donors on the function and expression of P-glycoprotein (P-gp) in Caco-2 cells. METHODS Caco-2 cells were exposed to NO donors for designated times. P-gp function and expression were assessed using Rhodamine123 uptake assay and Western blotting, respectively. Intracellular reactive oxygen species (iROS) and intracellular reactive nitrogen species (iRNS) levels were measured using ROS and RNS assay kits, respectively. RESULTS Exposure of Caco-2 cells to 0.1 or 2 mmol/L of sodium nitroprusside (SNP) affected the function and expression of P-gp in concentration- and time-dependent manners. A short-term (4 h) exposure reduced P-gp function and expression accompanied with significantly increased levels of iROS and iRNS. In contrast, a long-term (24 h) exposure stimulated the P-gp function and expression. The stimulatory effects of 2 mmol/L SNP was less profound as compared to those caused by 0.1 mmol/L SNP. The other NO donors SIN-1 and SNAP showed similar effects. Neither the NO scavenger PTIO (2 mmol/L) nor soluble guanylate cyclase inhibitor ODQ (50 μmol/L) reversed the SNP-induced alteration of P-gp function. On the other hand, free radical scavengers ascorbate, glutathione and uric acid (2 mmol/L for each), PKC inhibitor chelerythrine (5 μmol/L), PI3K/Akt inhibitor wortmannin (1 μmol/L) and p38 MAPK inhibitor SB203580 (10 μmol/L) reversed the upregulation of P-gp function by the long-term exposure to SNP, but these agents had no effect on the impaired P-gp function following the short-term exposure to SNP. CONCLUSION NO donors time-dependently regulate P-gp function and expression in Caco-2 cells: short-term exposure impairs P-gp function and expression, whereas long-term exposure stimulates P-gp function and expression. The regulation occurs via a NO-independent mechanism.
Collapse
|
18
|
Zhang Y, Li C, Sun X, Kuang X, Ruan X. High glucose decreases expression and activity of p-glycoprotein in cultured human retinal pigment epithelium possibly through iNOS induction. PLoS One 2012; 7:e31631. [PMID: 22363694 PMCID: PMC3281955 DOI: 10.1371/journal.pone.0031631] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 01/14/2012] [Indexed: 11/12/2022] Open
Abstract
Inhibition of p-glycoprotein under hyperglycemic conditions has been reported in various barrier tissues including blood-brain barrier, intestine, and kidney, and has been linked to significant clinical complications. However, whether this is also true for the outer blood-retinal barrier constituted by retinal pigment epithelium, or has a role in pathogenesis of diabetic retinopathy is not yet clear. In this study, using cultured human retinal pigment epithelium cell line D407, we found that high glucose exposure induced a significant decrease in p-glycoprotein expression both at mRNA and at protein levels, accompanied by an attenuated p-glycoprotein activity determined by intracellular rhodamine 123 retention. In marked contrast, the expressions of both mRNA and protein levels of inducible nitrate oxide synthase (iNOS) increased, and were accompanied by increased extracellular nitrate/nitrite production by Griess reaction. In addition, mRNA levels of nuclear receptors revealed a decreased expression of pregnane X receptor after the exposure of high glucose. However, the subsequent alterations in production of nitrate/nitrite, functional expression of p-glycoprotein, and mRNA levels of pregnane X receptor were partially blocked when pretreated with S,S′-1,3-phenylene-bis(1,2-ethanediyl)-bis-isothiourea•2HBr (PBITU), a selective iNOS inhibitor. Moreover, the effects of PBITU were antagonized with the addition of L-arginine, a substrate for NO synthesis. Our in vitro results suggest for the first time that iNOS induction plays a novel role in decreased p-glycoprotein expression and transport function at the human outer blood-retinal barrier under hyperglycemic conditions and further support the concept of inhibiting iNOS pathway as a therapeutic strategy for diabetic retinopathy.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Cell Line
- Cells, Cultured
- Enzyme Induction/drug effects
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation/drug effects
- Glucose/pharmacology
- Humans
- Nitric Oxide/biosynthesis
- Nitric Oxide Synthase Type II/antagonists & inhibitors
- Nitric Oxide Synthase Type II/biosynthesis
- Nitric Oxide Synthase Type II/genetics
- Pregnane X Receptor
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Retinal Pigment Epithelium/cytology
- Retinal Pigment Epithelium/drug effects
- Retinal Pigment Epithelium/enzymology
Collapse
Affiliation(s)
- Yuehong Zhang
- Departments of Ophthalmology, and Anesthesiology, First Municipal People's Hospital of Guangzhou, Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
| | - Chunmei Li
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xuerong Sun
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xielan Kuang
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiangcai Ruan
- Departments of Ophthalmology, and Anesthesiology, First Municipal People's Hospital of Guangzhou, Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
- * E-mail:
| |
Collapse
|
19
|
Schneider R, Meusel M, Betz B, Kersten M, Möller-Ehrlich K, Wanner C, Koepsell H, Sauvant C. Nitric oxide-induced regulation of renal organic cation transport after renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2011; 301:F997-F1004. [DOI: 10.1152/ajprenal.00264.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Renal organic cation transporters are downregulated by nitric oxide (NO) in rat endotoxemia. NO generated by inducible NO synthase (iNOS) is substantially increased in the renal cortex after renal ischemia-reperfusion (I/R) injury. Therefore, we investigated the effects of iNOS-specific NO inhibition on the expression of the organic cation transporters rOct1 and rOct2 (Slc22a1 and Slc22a2, respectively) after I/R injury both in vivo and in vitro. In vivo, N6-(1-iminoethyl)-l-lysine (l-NIL) completely inhibited NO generation after I/R injury. Moreover, l-NIL abolished the ischemia-induced downregulation of rOct1 and rOct2 as determined by qPCR and Western blotting. Functional evidence was obtained by measuring the fractional excretion (FE) of the endogenous organic cation serotonin. Concordant with the expression of the rate-limiting organic cation transporter, the FE of serotonin decreased after I/R injury and was totally abolished by l-NIL. In vitro, ischemia downregulated both rOct1 and rOct2, which were also abolished by l-NIL; the same was true for the uptake of the organic cation MPP. We showed that renal I/R injury downregulates rOct1 and rOct2, which is most probably mediated via NO. In principle, this may be an autocrine effect of proximal tubular epithelial cells. We conclude that rOct1, or rOct1 and rOct2 limit the rate of the renal excretion of serotonin.
Collapse
Affiliation(s)
- R. Schneider
- Medizinische Klinik und Poliklinik I, Abt. Nephrologie, Universitätsklinikum Würzburg and
| | - M. Meusel
- Medizinische Klinik und Poliklinik I, Abt. Nephrologie, Universitätsklinikum Würzburg and
| | - B. Betz
- Medizinische Klinik und Poliklinik I, Abt. Nephrologie, Universitätsklinikum Würzburg and
| | - M. Kersten
- Medizinische Klinik und Poliklinik I, Abt. Nephrologie, Universitätsklinikum Würzburg and
| | - K. Möller-Ehrlich
- Medizinische Klinik und Poliklinik I, Abt. Nephrologie, Universitätsklinikum Würzburg and
| | - C. Wanner
- Medizinische Klinik und Poliklinik I, Abt. Nephrologie, Universitätsklinikum Würzburg and
| | - H. Koepsell
- Institut für Anatomie und Zell Biologie, Bay. Julius-Maximilians Universität, Würzburg; and
| | - C. Sauvant
- Klinik für Anästhesie und Operative Intensivmedizin, Universitätsklinikum Halle (Saale), Germany
| |
Collapse
|
20
|
Tissue-specific alterations in expression and function of P-glycoprotein in streptozotocin-induced diabetic rats. Acta Pharmacol Sin 2011; 32:956-66. [PMID: 21685928 DOI: 10.1038/aps.2011.33] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AIM To investigate the changes of expression and function of P-glycoprotein (P-GP) in cerebral cortex, hippocampus, liver, intestinal mucosa and kidney of streptozocin-induced diabetic rats. METHODS Diabetic rats were prepared via a single dose of streptozocin (65 mg/kg, ip). Abcb1/P-GP mRNA and protein expression levels in tissues were evaluated using quantitative real time polymerase chain reaction (QRT-PCR) analysis and Western blot, respectively. P-GP function was investigated via measuring tissue-to-plasma concentration ratios and body fluid excretion percentages of rhodamine 123. RESULTS In 5- and 8-week diabetic rats, Abcb1a mRNA levels were significantly decreased in cerebral cortices and intestinal mucosa, but dramatically increased in hippocampus and kidney. In liver, the level was increased in 5-week diabetic rats, and decreased in 8-week diabetic rats. Abcb1b mRNA levels were increased in cerebral cortex, hippocampus and kidney, but reduced in liver and intestinal mucosa in the diabetic rats. Western blot results were in accordance with the alterations of Abcb1a mRNA levels in most tissues examined. P-GP activity was markedly decreased in most tissues of diabetic rats, except kidney tissues. CONCLUSION Alterations in the expression and function of Abcb1/P-GP under diabetic conditions are tissue specific, Abcb1 specific and diabetic duration-dependent.
Collapse
|
21
|
Prevoo B, Miller DS, van de Water FM, Wever KE, Russel FGM, Flik G, Masereeuw R. Rapid, nongenomic stimulation of multidrug resistance protein 2 (Mrp2) activity by glucocorticoids in renal proximal tubule. J Pharmacol Exp Ther 2011; 338:362-71. [PMID: 21515814 DOI: 10.1124/jpet.111.179689] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In renal proximal tubule, multidrug resistance protein 2 (Mrp2) actively transports many organic anions into urine, including drugs and metabolic wastes. Upon exposure to nephrotoxicants or during endotoxemia, both Mrp2 activity and expression are up-regulated. This may result from induced de novo synthesis of Mrp2 or post-transcriptional events involving specific signaling pathways. Here, we investigated glucocorticoid signaling to Mrp2 in killifish renal proximal tubules, a model system in which transport activity can be measured using a fluorescent substrate and confocal imaging. Exposure of tubules to dexamethasone rapidly increased Mrp2-mediated fluorescein methotrexate transport. Other glucocorticoid receptor (GR) ligands, cortisol and triamcinolone acetonide, also stimulated Mrp2-mediated transport. The GR antagonist, mifepristone 17β-hydroxy-11β-[4-dimethylamino phenyl]-17α-[1-propynyl]estra-4,9-dien-3-one (RU486), abolished stimulation by all three ligands, whereas the mineralocorticoid receptor antagonist, spironolactone, was ineffective. Consistent with action through a nongenomic mechanism, dexamethasone stimulation of Mrp2-mediated transport was insensitive to cycloheximide and actinomycin D, and immunohistochemistry revealed no alterations in Mrp2 expression at the luminal membrane. (9S-(9α,10β,12α))-2,3,9,10,11,12-hexahydro-10-hydroxy-10-(methoxycarbonyl)-9-methyl-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocin-1-one (K252a), an inhibitor of the tyrosine receptor kinase subfamily, reduced the dexamethasone effect, as did the specific hepatocyte growth factor receptor (c-Met) tyrosine kinase inhibitor, (2R)-1-[[5-[(Z)-[5-[[(2,6-dichlorophenyl)methyl]sulfonyl]-1,2-dihydro-2-oxo-3H-indol-3-ylidene]methyl]-2,4-dimethyl-1H-pyrrol-3-yl]carbonyl]-2-(1-pyrrolidinylmethyl)pyrrolidine (PHA-665752). Hepatocyte growth factor (HGF), an endogenous ligand for c-Met, stimulated Mrp2-mediated transport. This effect was reversed by PHA-665752 but not by RU486. Inhibition of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK 1/2) also abolished the effects of dexamethasone and HGF. Our results disclose a novel mechanism by which glucocorticoids acting through GR, c-Met, and MEK1/2 cause rapid, nongenomic stimulation of Mrp2-mediated transport in renal proximal tubules. This up-regulation may be nephroprotective, enhancing efflux of metabolic wastes and toxicants during cell and tissue stress.
Collapse
Affiliation(s)
- Brigitte Prevoo
- Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre/Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
22
|
Takizawa Y, Kishimoto H, Kitazato T, Tomita M, Hayashi M. Effects of nitric oxide on mucosal barrier dysfunction during early phase of intestinal ischemia/reperfusion. Eur J Pharm Sci 2011; 42:246-52. [DOI: 10.1016/j.ejps.2010.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 10/26/2010] [Accepted: 11/26/2010] [Indexed: 10/18/2022]
|
23
|
Stieger B. The role of the sodium-taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation. Handb Exp Pharmacol 2011:205-59. [PMID: 21103971 DOI: 10.1007/978-3-642-14541-4_5] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bile formation is an important function of the liver. Bile salts are a major constituent of bile and are secreted by hepatocytes into bile and delivered into the small intestine, where they assist in fat digestion. In the small intestine, bile salts are almost quantitatively reclaimed and transported back via the portal circulation to the liver. In the liver, hepatocytes take up bile salts and secrete them again into bile for ongoing enterohepatic circulation. Uptake of bile salts into hepatocytes occurs largely in a sodium-dependent manner by the sodium taurocholate cotransporting polypeptide NTCP. The transport properties of NTCP have been extensively characterized. It is an electrogenic member of the solute carrier family of transporters (SLC10A1) and transports predominantly bile salts and sulfated compounds, but is also able to mediate transport of additional substrates, such as thyroid hormones, drugs and toxins. It is highly regulated under physiologic and pathophysiologic conditions. Regulation of NTCP copes with changes of bile salt load to hepatocytes and prevents entry of cytotoxic bile salts during liver disease. Canalicular export of bile salts is mediated by the ATP-binding cassette transporter bile salt export pump BSEP (ABCB11). BSEP constitutes the rate limiting step of hepatocellular bile salt transport and drives enterohepatic circulation of bile salts. It is extensively regulated to keep intracellular bile salt levels low under normal and pathophysiologic situations. Mutations in the BSEP gene lead to severe progressive familial intrahepatic cholestasis. The substrates of BSEP are practically restricted to bile salts and their metabolites. It is, however, subject to inhibition by endogenous metabolites or by drugs. A sustained inhibition will lead to acquired cholestasis, which can end in liver injury.
Collapse
Affiliation(s)
- Bruno Stieger
- Division of Clinical Pharmacology and Toxicology, University Hospital, 8091, Zurich, Switzerland.
| |
Collapse
|
24
|
Lee JH, Kim JH, Kim YI. Anti-inflammatory Effect of Benincasae Semen Herbal-acupuncture at KI10 on nephritis in rats. J Pharmacopuncture 2010. [DOI: 10.3831/kpi.2010.13.1.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
25
|
Seo GY, Lee SW, Park SJ, Kim SC, Sohn IC, Hwang SY, Ahn SH. Biological Activities of Hominis Placenta Herbal Acupuncture prepared by Hydrochloric Acid Hydrolysis. J Pharmacopuncture 2010. [DOI: 10.3831/kpi.2010.13.2.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
26
|
Yu KH, Maeng HJ, Chung SJ. Functional Implications of Transporters Under Nitrosative Stress Conditions. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2010. [DOI: 10.4333/kps.2010.40.3.139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Huls M, Schoeber JPH, Verfaillie CM, Luttun A, Ulloa-Montoya F, Menke AL, van Bolderen LR, Woestenenk RM, Merkx GFM, Wetzels JFM, Russel FGM, Masereeuw R. Deficiency of either P-glycoprotein or breast cancer resistance protein protect against acute kidney injury. Cell Transplant 2010; 19:1195-208. [PMID: 20977831 DOI: 10.3727/096368910x504478] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The kidney has a high capacity to regenerate after ischemic injury via several mechanisms, one of which involves bone marrow-derived (stem) cells. The ATP binding cassette transporters, P-glycoprotein and breast cancer resistance protein, are determinants for the enriched stem and progenitor cell fraction in bone marrow. Because they are upregulated after acute kidney injury, we hypothesized that both efflux pumps may play a role in protecting against renal injury. Surprisingly, transporter-deficient mice were protected against ischemia-induced renal injury. To further study this, bone marrow from irradiated wild-type mice was reconstituted by bone marrow from wild-type, P-glycoprotein- or breast cancer resistance protein-deficient mice. Four weeks later, kidney injury was induced and its function evaluated. Significantly more bone marrow-derived cells were detected in kidneys grafted with transporter-deficient bone marrow. A gender mismatch study suggested that cell fusion of resident tubular cells with bone marrow cells was unlikely. Renal function analyses indicated an absence of renal damage following ischemia-reperfusion in animals transplanted with transporter-deficient bone marrow. When wild-type bone marrow was transplanted in breast cancer resistance protein-deficient mice this protection is lost. Furthermore, we demonstrate that transporter-deficient bone marrow contained significantly more monocytes, granulocytes, and early outgrowth endothelial progenitor cells.
Collapse
Affiliation(s)
- Miriam Huls
- Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Brcakova E, Fuksa L, Cermanova J, Kolouchova G, Hroch M, Hirsova P, Martinkova J, Staud F, Micuda S. Alteration of methotrexate biliary and renal elimination during extrahepatic and intrahepatic cholestasis in rats. Biol Pharm Bull 2010; 32:1978-85. [PMID: 19952415 DOI: 10.1248/bpb.32.1978] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Methotrexate (MTX), an important anticancer and immunosuppressive agent, has been suggested for the treatment of primary biliary cirrhosis. However, the drug's pharmacodynamics and toxicity is dependent on its concentrations in plasma which in turn are directly related to MTX's elimination in the liver and kidney. Therefore, the aim of this study was to evaluate changes in MTX biliary and renal excretion during either intrahepatic or obstructive cholestasis in rats. The steady state pharmacokinetic parameters of MTX were evaluated in rats one (BDO1) or seven (BDO7) days after bile duct obstruction (BDO) or 18 h after administration of lipopolysaccharide (LPS). In comparison to the respective control groups, biliary and total clearances of MTX were decreased to 12% and 49% in the BDO1 group, to 5% and 56% in the BDO7 animals, and to 42% and 43% in the LPS group, respectively. Renal clearance of MTX was unchanged in BDO groups, but decreased to 23% of controls in the LPS animals. The serum biochemistry and expression of main hepatic MTX transporters (Mrp2, Mrp3, Mrp4, Bcrp, Oatp1a1, Oatp1a4 and Oatp1b2) confirmed the pathological cholestatic changes in the liver and partly elucidated the cause of changes in MTX pharmacokinetic parameters. In conclusion, this study is the first describing marked alteration of MTX hepatic and renal elimination induced by cholestasis in rats. Moreover, the reported changes in MTX pharmacokinetics and respective transporter expression suggest important mechanistic differences between the two widely used cholestatic models.
Collapse
Affiliation(s)
- Eva Brcakova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University in Prague
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Regulation of P-glycoprotein in renal proximal tubule epithelial cells by LPS and TNF-alpha. J Biomed Biotechnol 2010; 2010:525180. [PMID: 20300455 PMCID: PMC2841251 DOI: 10.1155/2010/525180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 11/13/2009] [Accepted: 12/08/2009] [Indexed: 02/04/2023] Open
Abstract
During endotoxemia, the ATP-dependent drug efflux pump P-glycoprotein (Abcb1/P-gp) is upregulated in kidney proximal tubule epithelial cells. The signaling pathway through which lipopolysaccharide (LPS) or tumor necrosis factor-α (TNF-α) regulates P-gp expression and activity was investigated further in the present study. Exposure of rat kidney proximal tubule cells to TNF-α alone or TNF-α and LPS increased P-gp gene and protein expression levels and efflux activity, suggesting de novo P-gp synthesis. Upon exposure to TNF-α in combination with LPS, P-gp activity in renal proximal tubule cells is increased under influence of nitric oxide (NO) produced by inducible NO synthase. Upon exposure to TNF-α alone, P-gp upregulation seems to involve TLR4 activation and nuclear factor kappaB (NF-κB) translocation, a pathway that is likely independent of NO. These findings indicate that at least two pathways regulate P-gp expression in the kidney during endotoxemia.
Collapse
|
30
|
Nawa A, Fujita Hamabe W, Tokuyama S. Inducible nitric oxide synthase-mediated decrease of intestinal P-glycoprotein expression under streptozotocin-induced diabetic conditions. Life Sci 2010; 86:402-9. [PMID: 20097209 DOI: 10.1016/j.lfs.2010.01.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 12/08/2009] [Accepted: 01/14/2010] [Indexed: 10/19/2022]
Abstract
AIMS P-glycoprotein (P-gp), one of the important drug-efflux pumps, is known to be affected by pathological conditions such as inflammation or infection. Recently, it is reported that high glucose or hyperglycemia can alternate P-gp expression levels at the blood-brain barrier or in the kidney, although the details are still unknown. Here, we analyzed the alteration of intestinal P-gp expression and function in the development of diabetes and elucidated the mechanisms. MAIN METHODS Type 1 diabetes was induced in male ddY mice by an i.p. injection of streptozotocin (STZ) (230 mg/kg). We analyzed ileal P-gp expression and function using Western blot analysis and an in situ closed loop method, respectively. KEY FINDINGS A significant reduction of P-gp expression level in ileum was found 9 days after STZ administration. In contrast, a remarkable decrease in P-gp function was observed on the 3rd and 9th days. Interestingly, nitric oxide synthase (NOS) activity in ilea was significantly increased on the 9th day. The decrease of P-gp expression levels observed on the 9th day was completely suppressed by L-N(G)-nitroarginine methyl ester (L-NAME), a broad range NOS inhibitor, or aminoguanidine, a specific inducible NOS (iNOS) inhibitor. SIGNIFICANCE These results indicate the possibility that nitric oxide (NO), produced by iNOS in the ileum, is involved in the reduction of ileal P-gp expression under STZ-induced diabetic conditions.
Collapse
Affiliation(s)
- Ayaka Nawa
- Department of Clinical Pharmacy, Kobe Gakuin University Faculty of Pharmaceutical Sciences, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | | | | |
Collapse
|
31
|
Heemskerk S, Masereeuw R, Russel FGM, Pickkers P. Selective iNOS inhibition for the treatment of sepsis-induced acute kidney injury. Nat Rev Nephrol 2009; 5:629-40. [PMID: 19786992 DOI: 10.1038/nrneph.2009.155] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incidence and mortality of sepsis and the associated development of acute kidney injury (AKI) remain high, despite intense research into potential treatments. Targeting the inflammatory response and/or sepsis-induced alterations in the (micro)circulation are two therapeutic strategies. Another approach could involve modulating the downstream mechanisms that are responsible for organ system dysfunction. Activation of inducible nitric oxide (NO) synthase (iNOS) during sepsis leads to elevated NO levels that influence renal hemodynamics and cause peroxynitrite-related tubular injury through the local generation of reactive nitrogen species. In many organs iNOS is not constitutively expressed; however, it is constitutively expressed in the kidney and, in humans, a relationship between the upregulation of renal iNOS and proximal tubular injury during systemic inflammation has been demonstrated. For these reasons, the selective inhibition of renal iNOS might have important implications for the treatment of sepsis-induced AKI. Various animal studies have demonstrated that selective iNOS inhibition-in contrast to nonselective NOS inhibition-attenuates sepsis-induced renal dysfunction and improves survival, a finding that warrants investigation in clinical trials. In this Review, the selective inhibition of iNOS as a potential novel treatment for sepsis-induced AKI is discussed.
Collapse
Affiliation(s)
- Suzanne Heemskerk
- Department of Intensive Care Medicine and the Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
32
|
Abstract
Constipation is a significant problem related to opioid medications used to manage pain. This review attempts to outline the latest findings related to the therapeutic usefulness of a μ opioid receptor antagonist, methylnaltrexone in the treatment of opioid-induced constipation. The review highlights methylnaltrexone bromide (Relistor™; Progenics/Wyeth) a quaternary derivative of naltrexone, which was recently approved in the United States, Europe and Canada. The Food and Drug Administration in the United States approved a subcutaneous injection for the treatment of opioid bowel dysfunction in patients with advanced illness who are receiving palliative care and when laxative therapy has been insufficient. Methylnaltrexone is a peripherally restricted, μ opioid receptor antagonist that accelerates oral-cecal transit in patients with opioid-induced constipation without reversing the analgesic effects of morphine or inducing symptoms of opioid withdrawal. An analysis of the mechanism of action and the potential benefits of using methylnaltrexone is based on data from published basic research and recent clinical studies.
Collapse
Affiliation(s)
- Beverley Greenwood-Van Meerveld
- Veterans Affairs Medical Center, Oklahoma Center for Neuroscience, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kelly M Standifer
- Department of Pharmaceutical Sciences, Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
33
|
Huls M, Russel FGM, Masereeuw R. The Role of ATP Binding Cassette Transporters in Tissue Defense and Organ Regeneration. J Pharmacol Exp Ther 2008; 328:3-9. [DOI: 10.1124/jpet.107.132225] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
34
|
Heemskerk S, Wouterse AC, Russel FG, Masereeuw R. Nitric oxide down-regulates the expression of organic cation transporters (OCT) 1 and 2 in rat kidney during endotoxemia. Eur J Pharmacol 2008; 584:390-7. [DOI: 10.1016/j.ejphar.2008.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 01/22/2008] [Accepted: 02/06/2008] [Indexed: 11/24/2022]
|
35
|
Aoki K, Saso N, Kato S, Sugiyama Y, Sato H. Nitric Oxide and Peroxynitrite Regulate Transporter Transcription in Rat Liver Slices. Biol Pharm Bull 2008; 31:1882-7. [DOI: 10.1248/bpb.31.1882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kimiko Aoki
- School of Pharmaceutical Sciences, Showa University
- Nihon Pharmaceutical University
| | - Naomi Saso
- School of Pharmaceutical Sciences, Showa University
| | - Satoko Kato
- School of Pharmaceutical Sciences, Showa University
| | - Yuichi Sugiyama
- Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Hitoshi Sato
- School of Pharmaceutical Sciences, Showa University
| |
Collapse
|
36
|
Maeng HJ, Kim MH, Jin HE, Shin SM, Tsuruo T, Kim SG, Kim DD, Shim CK, Chung SJ. Functional induction of P-glycoprotein in the blood-brain barrier of streptozotocin-induced diabetic rats: evidence for the involvement of nuclear factor-kappaB, a nitrosative stress-sensitive transcription factor, in the regulation. Drug Metab Dispos 2007; 35:1996-2005. [PMID: 17664251 DOI: 10.1124/dmd.107.015800] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to investigate the transport kinetics of cyclosporin A, a well known substrate for P-glycoprotein (P-gp), across the blood-brain barrier (BBB), and the expression of the transporter in the brain of streptozotocin-induced diabetic rats. The in vivo transport clearance of cyclosporin A was significantly reduced in diabetic rats compared with that in the control. The decreased transport was associated with the increased level of mRNA and the protein for P-glycoprotein in the rat brain. The functional activity of the efflux transporter in mouse brain capillary endothelial (MBEC4) cells, an in vitro model of the BBB, was also stimulated when slow nitric oxide (NO)-releasing donors were present, whereas the stimulation was absent in the case of rapid NO-releasing donors (e.g., S-nitroso-N-acetyl-dl-penicillamine and diethylenetriamine). The stimulatory effect was highest for sodium nitroprusside (SNP) and the functional induction associated with the increased mRNA and protein level of the transporter. The pretreatment of the cell with SNP along with ascorbate, methylene blue, or superoxide dismutase attenuated the induction of function and expression for P-glycoprotein, suggesting that the reaction product between superoxide and NO is involved in the induction of function and expression. The level of nuclear translocation of nuclear factor-kappaB (NF-kappaB) and DNA binding activity of nuclear extracts to the NF-kappaB consensus oligonucleotide was increased in MBEC4 cells pretreated with SNP. Taken together, these observations suggest that nitrosative stress leads to the up-regulation of the message for the efflux transporter and, ultimately, to the enhanced function, probably via a NF-kappaB-dependent mechanism.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Active Transport, Cell Nucleus/drug effects
- Animals
- Antioxidants/pharmacology
- Blood Glucose/metabolism
- Blood-Brain Barrier/metabolism
- Blotting, Western
- Cell Line
- Cell Nucleus/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/metabolism
- Endothelial Cells/cytology
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Free Radical Scavengers/pharmacology
- Gene Expression/drug effects
- Male
- Mice
- NF-kappa B/metabolism
- Nitric Oxide Donors/pharmacology
- Nitrites/blood
- Nitrites/metabolism
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
- Superoxides/metabolism
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Han-Joo Maeng
- Department of Pharmaceutics, College of Pharmacy, Seoul National University, Kwanak-gu, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
McClintock D, Eisner M, Matthay MA. Renal Effects of Nitric Oxide during Sepsis: Another Two-Edged Sword? Am J Respir Crit Care Med 2007. [DOI: 10.1164/ajrccm.176.4.420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Dana McClintock
- University of California, San Francisco, San Francisco, California
| | - Mark Eisner
- University of California, San Francisco, San Francisco, California
| | | |
Collapse
|