1
|
Gonschorek D, Goldin MA, Oesterle J, Schwerd-Kleine T, Arlinghaus R, Zhao Z, Schubert T, Marre O, Euler T. Nitric oxide modulates contrast suppression in a subset of mouse retinal ganglion cells. eLife 2025; 13:RP98742. [PMID: 39783858 PMCID: PMC11717361 DOI: 10.7554/elife.98742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Neuromodulators have major influences on the regulation of neural circuit activity across the nervous system. Nitric oxide (NO) has been shown to be a prominent neuromodulator in many circuits and has been extensively studied in the retina. Here, it has been associated with the regulation of light adaptation, gain control, and gap junctional coupling, but its effect on the retinal output, specifically on the different types of retinal ganglion cells (RGCs), is still poorly understood. In this study, we used two-photon Ca2+ imaging and multi-electrode array (MEA) recordings to measure light-evoked activity of RGCs in the ganglion cell layer in the ex vivo mouse retina. This approach allowed us to investigate the neuromodulatory effects of NO on a cell type-level. Our findings reveal that NO selectively modulates the suppression of temporal responses in a distinct subset of contrast-suppressed RGC types, increasing their activity without altering the spatial properties of their receptive fields. Given that under photopic conditions, NO release is triggered by quick changes in light levels, we propose that these RGC types signal fast contrast changes to higher visual regions. Remarkably, we found that about one-third of the RGC types, recorded using two-photon Ca2+ imaging, exhibited consistent, cell type-specific adaptational response changes throughout an experiment, independent of NO. By employing a sequential-recording paradigm, we could disentangle those additional adaptational response changes from drug-induced modulations. Taken together, our research highlights the selective neuromodulatory effects of NO on RGCs and emphasizes the need of considering non-pharmacological activity changes, like adaptation, in such study designs.
Collapse
Affiliation(s)
- Dominic Gonschorek
- Werner Reichardt Centre for Integrative Neuroscience, University of TübingenTübingenGermany
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
- GRK 2381 ’cGMP: From Bedside to Bench’, University of TübingenTübingenGermany
| | - Matías A Goldin
- Institut de la Vision, Sorbonne Université, INSERM, CNRSParisFrance
| | - Jonathan Oesterle
- Werner Reichardt Centre for Integrative Neuroscience, University of TübingenTübingenGermany
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
- Hertie Institute for AI in Brain Health, Tübingen AI Center, University of TübingenTübingenGermany
| | - Tom Schwerd-Kleine
- Werner Reichardt Centre for Integrative Neuroscience, University of TübingenTübingenGermany
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
- GRK 2381 ’cGMP: From Bedside to Bench’, University of TübingenTübingenGermany
| | - Ryan Arlinghaus
- Werner Reichardt Centre for Integrative Neuroscience, University of TübingenTübingenGermany
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
| | - Zhijian Zhao
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
| | - Timm Schubert
- Werner Reichardt Centre for Integrative Neuroscience, University of TübingenTübingenGermany
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
| | - Olivier Marre
- Institut de la Vision, Sorbonne Université, INSERM, CNRSParisFrance
| | - Thomas Euler
- Werner Reichardt Centre for Integrative Neuroscience, University of TübingenTübingenGermany
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
- GRK 2381 ’cGMP: From Bedside to Bench’, University of TübingenTübingenGermany
- Bernstein Center for Computational Neuroscience, University of TübingenTübingenGermany
| |
Collapse
|
2
|
Patterson SS, Cai Y, Yang Q, Merigan WH, Williams DR. Asymmetric Activation of Retinal ON and OFF Pathways by AOSLO Raster-Scanned Visual Stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628952. [PMID: 39763934 PMCID: PMC11702774 DOI: 10.1101/2024.12.17.628952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Adaptive optics scanning light ophthalmoscopy (AOSLO) enables high-resolution retinal imaging, eye tracking, and stimulus delivery in the living eye. AOSLO-mediated visual stimuli are created by temporally modulating the excitation light as it scans across the retina. As a result, each location within the field of view receives a brief flash of light during each scanner cycle (every 33-40 ms). Here we used in vivo calcium imaging with AOSLO to investigate the impact of this intermittent stimulation on the retinal ON and OFF pathways. Raster-scanned backgrounds exaggerated existing ON-OFF pathway asymmetries leading to high baseline activity in ON cells and increased response rectification in OFF cells.
Collapse
Affiliation(s)
- Sara S Patterson
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, 14642
- Del Monte Institute for Neuroscience, University of Rochester Medical Center, NY, 14642
| | - Yongyi Cai
- Institute of Optics, University of Rochester, Rochester, NY, 14627
| | - Qiang Yang
- Center for Visual Science, University of Rochester, Rochester, NY, 14627
| | - William H Merigan
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, 14642
- Center for Visual Science, University of Rochester, Rochester, NY, 14627
| | - David R Williams
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, 14642
- Institute of Optics, University of Rochester, Rochester, NY, 14627
- Center for Visual Science, University of Rochester, Rochester, NY, 14627
| |
Collapse
|
3
|
Shiga Y, Rangel Olguin AG, El Hajji S, Belforte N, Quintero H, Dotigny F, Alarcon-Martinez L, Krishnaswamy A, Di Polo A. Endoplasmic reticulum stress-related deficits in calcium clearance promote neuronal dysfunction that is prevented by SERCA2 gene augmentation. Cell Rep Med 2024; 5:101839. [PMID: 39615485 PMCID: PMC11722116 DOI: 10.1016/j.xcrm.2024.101839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/25/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024]
Abstract
Disruption of calcium (Ca2+) homeostasis in neurons is a hallmark of neurodegenerative diseases. Here, we investigate the mechanisms leading to Ca2+ dysregulation and ask whether altered Ca2+ dynamics impinge on neuronal stress and circuit dysfunction. Using two-photon microscopy, we show that ocular hypertension, a major risk factor in glaucoma, and optic nerve crush injury disrupt the capacity of retinal neurons to clear cytosolic Ca2+ leading to impaired light-evoked responses. Gene- and protein expression analysis reveal the loss of the sarco-endoplasmic reticulum (ER) Ca2+-ATPase2 pump (SERCA2/ATP2A2) in injured retinal neurons from mice and patients with primary open-angle glaucoma. Pharmacological activation or neuron-specific gene delivery of SERCA2 is sufficient to rescue single-cell Ca2+ dynamics and promote robust survival of damaged neurons. Furthermore, SERCA2 gene supplementation reduces ER stress, reestablishes circuit balance, and restores visual behaviors. Our findings reveal that enhancing the Ca2+ clearance capacity of vulnerable neurons alleviates organelle stress and promotes neurorecovery.
Collapse
Affiliation(s)
- Yukihiro Shiga
- Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | | | - Sana El Hajji
- Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Nicolas Belforte
- Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Heberto Quintero
- Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Florence Dotigny
- Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Luis Alarcon-Martinez
- Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Arjun Krishnaswamy
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada.
| |
Collapse
|
4
|
Korympidou MM, Strauss S, Schubert T, Franke K, Berens P, Euler T, Vlasits AL. GABAergic amacrine cells balance biased chromatic information in the mouse retina. Cell Rep 2024; 43:114953. [PMID: 39509269 DOI: 10.1016/j.celrep.2024.114953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/30/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
The retina extracts chromatic information present in an animal's environment. How this information is processed in the retina is not well understood. In the mouse, chromatic information is not collected equally throughout the retina. Green and UV signals are primarily detected in the dorsal and ventral retina, respectively. However, at the output of the retina, chromatic tuning is more mixed throughout the retina. This suggests that lateral processing by inhibitory amacrine cells shapes chromatic information at the retinal output. We systematically surveyed the chromatic responses of dendritic processes of the 40+ GABAergic amacrine cell types. We identified 25 functional types with distinct chromatic and achromatic properties. We used pharmacology and a biologically inspired deep learning model to explore how inhibition and excitation shape the properties of functional types. Our data suggest that amacrine cells balance the biased spectral tuning of excitation, thereby supporting diversity of chromatic information at the retinal output.
Collapse
Affiliation(s)
- Maria M Korympidou
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience (GTC), University of Tübingen, 72076 Tübingen, Germany
| | - Sarah Strauss
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience (GTC), University of Tübingen, 72076 Tübingen, Germany; Hertie Institute for AI in Brain Health, University of Tübingen, 72076 Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Katrin Franke
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, CA 94303, USA
| | - Philipp Berens
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Hertie Institute for AI in Brain Health, University of Tübingen, 72076 Tübingen, Germany; Tübingen AI Center, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany.
| | - Anna L Vlasits
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Department of Ophthalmology & Visual Sciences, University of Illinois, Chicago, IL 60603, USA.
| |
Collapse
|
5
|
Höfling L, Szatko KP, Behrens C, Deng Y, Qiu Y, Klindt DA, Jessen Z, Schwartz GW, Bethge M, Berens P, Franke K, Ecker AS, Euler T. A chromatic feature detector in the retina signals visual context changes. eLife 2024; 13:e86860. [PMID: 39365730 PMCID: PMC11452179 DOI: 10.7554/elife.86860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/25/2024] [Indexed: 10/06/2024] Open
Abstract
The retina transforms patterns of light into visual feature representations supporting behaviour. These representations are distributed across various types of retinal ganglion cells (RGCs), whose spatial and temporal tuning properties have been studied extensively in many model organisms, including the mouse. However, it has been difficult to link the potentially nonlinear retinal transformations of natural visual inputs to specific ethological purposes. Here, we discover a nonlinear selectivity to chromatic contrast in an RGC type that allows the detection of changes in visual context. We trained a convolutional neural network (CNN) model on large-scale functional recordings of RGC responses to natural mouse movies, and then used this model to search in silico for stimuli that maximally excite distinct types of RGCs. This procedure predicted centre colour opponency in transient suppressed-by-contrast (tSbC) RGCs, a cell type whose function is being debated. We confirmed experimentally that these cells indeed responded very selectively to Green-OFF, UV-ON contrasts. This type of chromatic contrast was characteristic of transitions from ground to sky in the visual scene, as might be elicited by head or eye movements across the horizon. Because tSbC cells performed best among all RGC types at reliably detecting these transitions, we suggest a role for this RGC type in providing contextual information (i.e. sky or ground) necessary for the selection of appropriate behavioural responses to other stimuli, such as looming objects. Our work showcases how a combination of experiments with natural stimuli and computational modelling allows discovering novel types of stimulus selectivity and identifying their potential ethological relevance.
Collapse
Affiliation(s)
- Larissa Höfling
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
- Centre for Integrative Neuroscience, University of TübingenTübingenGermany
| | - Klaudia P Szatko
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
- Centre for Integrative Neuroscience, University of TübingenTübingenGermany
| | - Christian Behrens
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
| | - Yuyao Deng
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
- Centre for Integrative Neuroscience, University of TübingenTübingenGermany
| | - Yongrong Qiu
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
- Centre for Integrative Neuroscience, University of TübingenTübingenGermany
| | | | - Zachary Jessen
- Feinberg School of Medicine, Department of Ophthalmology, Northwestern UniversityChicagoUnited States
| | - Gregory W Schwartz
- Feinberg School of Medicine, Department of Ophthalmology, Northwestern UniversityChicagoUnited States
| | - Matthias Bethge
- Centre for Integrative Neuroscience, University of TübingenTübingenGermany
- Tübingen AI Center, University of TübingenTübingenGermany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
- Centre for Integrative Neuroscience, University of TübingenTübingenGermany
- Tübingen AI Center, University of TübingenTübingenGermany
- Hertie Institute for AI in Brain HealthTübingenGermany
| | - Katrin Franke
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
| | - Alexander S Ecker
- Institute of Computer Science and Campus Institute Data Science, University of GöttingenGöttingenGermany
- Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
- Centre for Integrative Neuroscience, University of TübingenTübingenGermany
| |
Collapse
|
6
|
Chang L, Ran Y, Yang M, Auferkorte O, Butz E, Hüser L, Haverkamp S, Euler T, Schubert T. Spike desensitisation as a mechanism for high-contrast selectivity in retinal ganglion cells. Front Cell Neurosci 2024; 17:1337768. [PMID: 38269116 PMCID: PMC10806099 DOI: 10.3389/fncel.2023.1337768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
In the vertebrate retina, several dozens of parallel channels relay information about the visual world to the brain. These channels are represented by the different types of retinal ganglion cells (RGCs), whose responses are rendered selective for distinct sets of visual features by various mechanisms. These mechanisms can be roughly grouped into synaptic interactions and cell-intrinsic mechanisms, with the latter including dendritic morphology as well as ion channel complement and distribution. Here, we investigate how strongly ion channel complement can shape RGC output by comparing two mouse RGC types, the well-described ON alpha cell and a little-studied ON cell that is EGFP-labelled in the Igfbp5 mouse line and displays an unusual selectivity for stimuli with high contrast. Using patch-clamp recordings and computational modelling, we show that a higher activation threshold and a pronounced slow inactivation of the voltage-gated Na+ channels contribute to the distinct contrast tuning and transient responses in ON Igfbp5 RGCs, respectively. In contrast, such a mechanism could not be observed in ON alpha cells. This study provides an example for the powerful role that the last stage of retinal processing can play in shaping RGC responses.
Collapse
Affiliation(s)
- Le Chang
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
- Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yanli Ran
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Mingpo Yang
- Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | | | - Elisabeth Butz
- Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
| | - Laura Hüser
- Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
| | - Silke Haverkamp
- Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior – Caesar, Bonn, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
McCracken S, Fitzpatrick MJ, Hall AL, Wang Z, Kerschensteiner D, Morgan JL, Williams PR. Diversity in homeostatic calcium set points predicts retinal ganglion cell survival following optic nerve injury in vivo. Cell Rep 2023; 42:113165. [PMID: 37751356 PMCID: PMC10947246 DOI: 10.1016/j.celrep.2023.113165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/29/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Retinal ganglion cell (RGC) degeneration drives vision loss in blinding conditions. RGC death is often triggered by axon degeneration in the optic nerve. Here, we study the contributions of dynamic and homeostatic Ca2+ levels to RGC death from axon injury. We find that axonal Ca2+ elevations from optic nerve injury do not propagate over distance or reach RGC somas, and acute and chronic Ca2+ dynamics do not affect RGC survival. Instead, we discover that baseline Ca2+ levels vary widely between RGCs and predict their survival after axon injury, and that lowering these levels reduces RGC survival. Further, we find that well-surviving RGC types have higher baseline Ca2+ levels than poorly surviving types. Finally, we observe considerable variation in the baseline Ca2+ levels of different RGCs of the same type, which are predictive of within-type differences in survival.
Collapse
Affiliation(s)
- Sean McCracken
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael J Fitzpatrick
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Allison L Hall
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Postbaccalaureate Program in Developmental Biology & Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zelun Wang
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel Kerschensteiner
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Josh L Morgan
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philip R Williams
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
8
|
Mamiya A, Sustar A, Siwanowicz I, Qi Y, Lu TC, Gurung P, Chen C, Phelps JS, Kuan AT, Pacureanu A, Lee WCA, Li H, Mhatre N, Tuthill JC. Biomechanical origins of proprioceptor feature selectivity and topographic maps in the Drosophila leg. Neuron 2023; 111:3230-3243.e14. [PMID: 37562405 PMCID: PMC10644877 DOI: 10.1016/j.neuron.2023.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/28/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023]
Abstract
Our ability to sense and move our bodies relies on proprioceptors, sensory neurons that detect mechanical forces within the body. Different subtypes of proprioceptors detect different kinematic features, such as joint position, movement, and vibration, but the mechanisms that underlie proprioceptor feature selectivity remain poorly understood. Using single-nucleus RNA sequencing (RNA-seq), we found that proprioceptor subtypes in the Drosophila leg lack differential expression of mechanosensitive ion channels. However, anatomical reconstruction of the proprioceptors and connected tendons revealed major biomechanical differences between subtypes. We built a model of the proprioceptors and tendons that identified a biomechanical mechanism for joint angle selectivity and predicted the existence of a topographic map of joint angle, which we confirmed using calcium imaging. Our findings suggest that biomechanical specialization is a key determinant of proprioceptor feature selectivity in Drosophila. More broadly, the discovery of proprioceptive maps reveals common organizational principles between proprioception and other topographically organized sensory systems.
Collapse
Affiliation(s)
- Akira Mamiya
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Anne Sustar
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Igor Siwanowicz
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yanyan Qi
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tzu-Chiao Lu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pralaksha Gurung
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Chenghao Chen
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jasper S Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Aaron T Kuan
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hongjie Li
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Natasha Mhatre
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
9
|
Qiu Y, Klindt DA, Szatko KP, Gonschorek D, Hoefling L, Schubert T, Busse L, Bethge M, Euler T. Efficient coding of natural scenes improves neural system identification. PLoS Comput Biol 2023; 19:e1011037. [PMID: 37093861 PMCID: PMC10159360 DOI: 10.1371/journal.pcbi.1011037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/04/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Neural system identification aims at learning the response function of neurons to arbitrary stimuli using experimentally recorded data, but typically does not leverage normative principles such as efficient coding of natural environments. Visual systems, however, have evolved to efficiently process input from the natural environment. Here, we present a normative network regularization for system identification models by incorporating, as a regularizer, the efficient coding hypothesis, which states that neural response properties of sensory representations are strongly shaped by the need to preserve most of the stimulus information with limited resources. Using this approach, we explored if a system identification model can be improved by sharing its convolutional filters with those of an autoencoder which aims to efficiently encode natural stimuli. To this end, we built a hybrid model to predict the responses of retinal neurons to noise stimuli. This approach did not only yield a higher performance than the "stand-alone" system identification model, it also produced more biologically plausible filters, meaning that they more closely resembled neural representation in early visual systems. We found these results applied to retinal responses to different artificial stimuli and across model architectures. Moreover, our normatively regularized model performed particularly well in predicting responses of direction-of-motion sensitive retinal neurons. The benefit of natural scene statistics became marginal, however, for predicting the responses to natural movies. In summary, our results indicate that efficiently encoding environmental inputs can improve system identification models, at least for noise stimuli, and point to the benefit of probing the visual system with naturalistic stimuli.
Collapse
Affiliation(s)
- Yongrong Qiu
- Institute for Ophthalmic Research, U Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), U Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience (GTC), International Max Planck Research School, U Tübingen, Tübingen, Germany
| | - David A Klindt
- Institute for Ophthalmic Research, U Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), U Tübingen, Tübingen, Germany
- Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Klaudia P Szatko
- Institute for Ophthalmic Research, U Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), U Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience (GTC), International Max Planck Research School, U Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience, Tübingen, Germany
| | - Dominic Gonschorek
- Institute for Ophthalmic Research, U Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), U Tübingen, Tübingen, Germany
- Research Training Group 2381, U Tübingen, Tübingen, Germany
| | - Larissa Hoefling
- Institute for Ophthalmic Research, U Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), U Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience, Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, U Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), U Tübingen, Tübingen, Germany
| | - Laura Busse
- Division of Neurobiology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
- Bernstein Center for Computational Neuroscience, Planegg-Martinsried, Germany
| | - Matthias Bethge
- Centre for Integrative Neuroscience (CIN), U Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience, Tübingen, Germany
- Institute for Theoretical Physics, U Tübingen, Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, U Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), U Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience, Tübingen, Germany
| |
Collapse
|
10
|
Wang X, Roberts PA, Yoshimatsu T, Lagnado L, Baden T. Amacrine cells differentially balance zebrafish color circuits in the central and peripheral retina. Cell Rep 2023; 42:112055. [PMID: 36757846 DOI: 10.1016/j.celrep.2023.112055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/01/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
The vertebrate inner retina is driven by photoreceptors whose outputs are already pre-processed; in zebrafish, outer retinal circuits split "color" from "grayscale" information across four cone-photoreceptor types. It remains unclear how the inner retina processes incoming spectral information while also combining cone signals to shape grayscale functions. We address this question by imaging the light-driven responses of amacrine cells (ACs) and bipolar cells (BCs) in larval zebrafish in the presence and pharmacological absence of inner retinal inhibition. We find that ACs enhance opponency in some bipolar cells while at the same time suppressing pre-existing opponency in others, so that, depending on the retinal region, the net change in the number of color-opponent units is essentially zero. To achieve this "dynamic balance," ACs counteract intrinsic color opponency of BCs via the On channel. Consistent with these observations, Off-stratifying ACs are exclusively achromatic, while all color-opponent ACs stratify in the On sublamina.
Collapse
Affiliation(s)
- Xinwei Wang
- School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK.
| | - Paul A Roberts
- School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK
| | - Takeshi Yoshimatsu
- School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK
| | - Leon Lagnado
- School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK.
| | - Tom Baden
- School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK; Institute of Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany.
| |
Collapse
|
11
|
Strauss S, Korympidou MM, Ran Y, Franke K, Schubert T, Baden T, Berens P, Euler T, Vlasits AL. Center-surround interactions underlie bipolar cell motion sensitivity in the mouse retina. Nat Commun 2022; 13:5574. [PMID: 36163124 PMCID: PMC9513071 DOI: 10.1038/s41467-022-32762-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/16/2022] [Indexed: 11/09/2022] Open
Abstract
Motion sensing is a critical aspect of vision. We studied the representation of motion in mouse retinal bipolar cells and found that some bipolar cells are radially direction selective, preferring the origin of small object motion trajectories. Using a glutamate sensor, we directly observed bipolar cells synaptic output and found that there are radial direction selective and non-selective bipolar cell types, the majority being selective, and that radial direction selectivity relies on properties of the center-surround receptive field. We used these bipolar cell receptive fields along with connectomics to design biophysical models of downstream cells. The models and additional experiments demonstrated that bipolar cells pass radial direction selective excitation to starburst amacrine cells, which contributes to their directional tuning. As bipolar cells provide excitation to most amacrine and ganglion cells, their radial direction selectivity may contribute to motion processing throughout the visual system.
Collapse
Affiliation(s)
- Sarah Strauss
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Tübingen AI Center, University of Tübingen, Tübingen, Germany
| | - Maria M Korympidou
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Yanli Ran
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Katrin Franke
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Tom Baden
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Tübingen AI Center, University of Tübingen, Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| | - Anna L Vlasits
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
12
|
Liu Z, Lu X, Villette V, Gou Y, Colbert KL, Lai S, Guan S, Land MA, Lee J, Assefa T, Zollinger DR, Korympidou MM, Vlasits AL, Pang MM, Su S, Cai C, Froudarakis E, Zhou N, Patel SS, Smith CL, Ayon A, Bizouard P, Bradley J, Franke K, Clandinin TR, Giovannucci A, Tolias AS, Reimer J, Dieudonné S, St-Pierre F. Sustained deep-tissue voltage recording using a fast indicator evolved for two-photon microscopy. Cell 2022; 185:3408-3425.e29. [PMID: 35985322 PMCID: PMC9563101 DOI: 10.1016/j.cell.2022.07.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/13/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022]
Abstract
Genetically encoded voltage indicators are emerging tools for monitoring voltage dynamics with cell-type specificity. However, current indicators enable a narrow range of applications due to poor performance under two-photon microscopy, a method of choice for deep-tissue recording. To improve indicators, we developed a multiparameter high-throughput platform to optimize voltage indicators for two-photon microscopy. Using this system, we identified JEDI-2P, an indicator that is faster, brighter, and more sensitive and photostable than its predecessors. We demonstrate that JEDI-2P can report light-evoked responses in axonal termini of Drosophila interneurons and the dendrites and somata of amacrine cells of isolated mouse retina. JEDI-2P can also optically record the voltage dynamics of individual cortical neurons in awake behaving mice for more than 30 min using both resonant-scanning and ULoVE random-access microscopy. Finally, ULoVE recording of JEDI-2P can robustly detect spikes at depths exceeding 400 μm and report voltage correlations in pairs of neurons.
Collapse
Affiliation(s)
- Zhuohe Liu
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Xiaoyu Lu
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77005, USA
| | - Vincent Villette
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Yueyang Gou
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin L Colbert
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shujuan Lai
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sihui Guan
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michelle A Land
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jihwan Lee
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77005, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tensae Assefa
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Daniel R Zollinger
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maria M Korympidou
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Baden-Württemberg 72076, Germany; Center for Integrative Neuroscience, University of Tübingen, Tübingen, Baden-Württemberg 72076, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Baden-Württemberg, 72076, Germany
| | - Anna L Vlasits
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Baden-Württemberg 72076, Germany; Center for Integrative Neuroscience, University of Tübingen, Tübingen, Baden-Württemberg 72076, Germany
| | - Michelle M Pang
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Sharon Su
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Changjia Cai
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Emmanouil Froudarakis
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion 70013, Greece
| | - Na Zhou
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Saumil S Patel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cameron L Smith
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX 77030, USA
| | - Annick Ayon
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Pierre Bizouard
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Jonathan Bradley
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Katrin Franke
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Baden-Württemberg 72076, Germany; Center for Integrative Neuroscience, University of Tübingen, Tübingen, Baden-Württemberg 72076, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Baden-Württemberg, 72076, Germany
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Andrea Giovannucci
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, Chapel Hill, NC 27599, USA
| | - Andreas S Tolias
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stéphane Dieudonné
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - François St-Pierre
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77005, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
13
|
Spampinato GLB, Ronzitti E, Zampini V, Ferrari U, Trapani F, Khabou H, Agraval A, Dalkara D, Picaud S, Papagiakoumou E, Marre O, Emiliani V. All-optical inter-layers functional connectivity investigation in the mouse retina. CELL REPORTS METHODS 2022; 2:100268. [PMID: 36046629 PMCID: PMC9421538 DOI: 10.1016/j.crmeth.2022.100268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/03/2022] [Accepted: 07/19/2022] [Indexed: 06/01/2023]
Abstract
We developed a multi-unit microscope for all-optical inter-layers circuits interrogation. The system performs two-photon (2P) functional imaging and 2P multiplexed holographic optogenetics at axially distinct planes. We demonstrated the capability of the system to map, in the mouse retina, the functional connectivity between rod bipolar cells (RBCs) and ganglion cells (GCs) by activating single or defined groups of RBCs while recording the evoked response in the GC layer with cell-type specificity and single-cell resolution. We then used a logistic model to probe the functional connectivity between cell types by deriving the "cellular receptive field" describing how RBCs impact each GC type. With the capability to simultaneously image and control neuronal activity at axially distinct planes, the system enables a precise interrogation of multi-layered circuits. Understanding this information transfer is a promising avenue to dissect complex neural circuits and understand the neural basis of computations.
Collapse
Affiliation(s)
| | - Emiliano Ronzitti
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Valeria Zampini
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Ulisse Ferrari
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Francesco Trapani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Hanen Khabou
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | | | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | | | - Olivier Marre
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Valentina Emiliani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| |
Collapse
|
14
|
Meah A, Boodram V, Bucinca-Cupallari F, Lim H. Axonal architecture of the mouse inner retina revealed by second harmonic generation. PNAS NEXUS 2022; 1:pgac160. [PMID: 36106183 PMCID: PMC9463061 DOI: 10.1093/pnasnexus/pgac160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/11/2022] [Indexed: 01/29/2023]
Abstract
We describe a novel method for visualizing the network of axons in the unlabeled fresh wholemount retina. The intrinsic radiation of second harmonic generation (SHG) was utilized to visualize single axons of all major retinal neurons, i.e., photoreceptors, horizontal cells, bipolar cells, amacrine cells, and the retinal ganglion cells. The cell types of SHG+ axons were determined using transgenic GFP/YFP mice. New findings were obtained with retinal SHG imaging: Müller cells do not maintain uniformly polarized microtubules in the processes; SHG+ axons of bipolar cells terminate in the inner plexiform layer (IPL) in a subtype-specific manner; a subset of amacrine cells, presumably the axon-bearing types, emits SHG; and the axon-like neurites of amacrine cells provide a cytoskeletal scaffolding for the IPL stratification. To demonstrate the utility, retinal SHG imaging was applied to testing whether the inner retina is preserved in glaucoma, using DBA/2 mice as a model of glaucoma and DBA/2-Gpnmb+ as the nonglaucomatous control. It was found that the morphology of the inner retina was largely intact in glaucoma and the presynaptic compartments to the retinal ganglion cells were uncompromised. It proves retinal SHG imaging as a promising technology for studying the physiological and diseased retinas in 3D.
Collapse
Affiliation(s)
- Arafat Meah
- Department of Physics and Astronomy, Hunter College, New York, NY 10065, USA
| | - Vinessia Boodram
- Department of Physics and Astronomy, Hunter College, New York, NY 10065, USA
| | - Festa Bucinca-Cupallari
- Department of Physics and Astronomy, Hunter College, New York, NY 10065, USA,The Graduate Centre of the City University of New York, New York, NY 10065, USA
| | | |
Collapse
|
15
|
Idrees S, Baumann MP, Korympidou MM, Schubert T, Kling A, Franke K, Hafed ZM, Franke F, Münch TA. Suppression without inhibition: how retinal computation contributes to saccadic suppression. Commun Biol 2022; 5:692. [PMID: 35821404 PMCID: PMC9276698 DOI: 10.1038/s42003-022-03526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/23/2022] [Indexed: 11/08/2022] Open
Abstract
Visual perception remains stable across saccadic eye movements, despite the concurrent strongly disruptive visual flow. This stability is partially associated with a reduction in visual sensitivity, known as saccadic suppression, which already starts in the retina with reduced ganglion cell sensitivity. However, the retinal circuit mechanisms giving rise to such suppression remain unknown. Here, we describe these mechanisms using electrophysiology in mouse, pig, and macaque retina, 2-photon calcium imaging, computational modeling, and human psychophysics. We find that sequential stimuli, like those that naturally occur during saccades, trigger three independent suppressive mechanisms in the retina. The main mechanism is triggered by contrast-reversing sequential stimuli and originates within the receptive field center of ganglion cells. It does not involve inhibition or other known suppressive mechanisms like saturation or adaptation. Instead, it relies on temporal filtering of the inherently slow response of cone photoreceptors coupled with downstream nonlinearities. Two further mechanisms of suppression are present predominantly in ON ganglion cells and originate in the receptive field surround, highlighting another disparity between ON and OFF ganglion cells. The mechanisms uncovered here likely play a role in shaping the retinal output following eye movements and other natural viewing conditions where sequential stimulation is ubiquitous.
Collapse
Affiliation(s)
- Saad Idrees
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany
- International Max Planck Research School, University of Tübingen, 72074, Tübingen, Germany
- Center for Vision Research, York University, Toronto, ON, M3J 1P3, Canada
| | - Matthias-Philipp Baumann
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany
| | - Maria M Korympidou
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany
- International Max Planck Research School, University of Tübingen, 72074, Tübingen, Germany
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany
| | - Timm Schubert
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany
| | - Alexandra Kling
- Department of Neurosurgery, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Katrin Franke
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany
- Bernstein Center for Computational Neuroscience, University of Tübingen, 72076, Tübingen, Germany
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany
| | - Felix Franke
- Bio Engineering Laboratory, ETH Zürich, 4058, Basel, Switzerland.
- Institute of Molecular and Clinical Ophthalmology Basel, 4031, Basel, Switzerland.
- Faculty of Science, University of Basel, 4056, Basel, Switzerland.
| | - Thomas A Münch
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany.
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
16
|
Zhang Y, Huang R, Nörenberg W, Arrenberg AB. A robust receptive field code for optic flow detection and decomposition during self-motion. Curr Biol 2022; 32:2505-2516.e8. [PMID: 35550724 DOI: 10.1016/j.cub.2022.04.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/14/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
The perception of optic flow is essential for any visually guided behavior of a moving animal. To mechanistically predict behavior and understand the emergence of self-motion perception in vertebrate brains, it is essential to systematically characterize the motion receptive fields (RFs) of optic-flow-processing neurons. Here, we present the fine-scale RFs of thousands of motion-sensitive neurons studied in the diencephalon and the midbrain of zebrafish. We found neurons that serve as linear filters and robustly encode directional and speed information of translation-induced optic flow. These neurons are topographically arranged in pretectum according to translation direction. The unambiguous encoding of translation enables the decomposition of translational and rotational self-motion information from mixed optic flow. In behavioral experiments, we successfully demonstrated the predicted decomposition in the optokinetic and optomotor responses. Together, our study reveals the algorithm and the neural implementation for self-motion estimation in a vertebrate visual system.
Collapse
Affiliation(s)
- Yue Zhang
- Werner Reichardt Centre for Integrative Neuroscience, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre for Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Ruoyu Huang
- Werner Reichardt Centre for Integrative Neuroscience, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Wiebke Nörenberg
- Werner Reichardt Centre for Integrative Neuroscience, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre for Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Aristides B Arrenberg
- Werner Reichardt Centre for Integrative Neuroscience, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
17
|
Behrens C, Yadav SC, Korympidou MM, Zhang Y, Haverkamp S, Irsen S, Schaedler A, Lu X, Liu Z, Lause J, St-Pierre F, Franke K, Vlasits A, Dedek K, Smith RG, Euler T, Berens P, Schubert T. Retinal horizontal cells use different synaptic sites for global feedforward and local feedback signaling. Curr Biol 2022; 32:545-558.e5. [PMID: 34910950 PMCID: PMC8886496 DOI: 10.1016/j.cub.2021.11.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 10/19/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022]
Abstract
In the outer plexiform layer (OPL) of the mammalian retina, cone photoreceptors (cones) provide input to more than a dozen types of cone bipolar cells (CBCs). In the mouse, this transmission is modulated by a single horizontal cell (HC) type. HCs perform global signaling within their laterally coupled network but also provide local, cone-specific feedback. However, it is unknown how HCs provide local feedback to cones at the same time as global forward signaling to CBCs and where the underlying synapses are located. To assess how HCs simultaneously perform different modes of signaling, we reconstructed the dendritic trees of five HCs as well as cone axon terminals and CBC dendrites in a serial block-face electron microscopy volume and analyzed their connectivity. In addition to the fine HC dendritic tips invaginating cone axon terminals, we also identified "bulbs," short segments of increased dendritic diameter on the primary dendrites of HCs. These bulbs are in an OPL stratum well below the cone axon terminal base and make contacts with other HCs and CBCs. Our results from immunolabeling, electron microscopy, and glutamate imaging suggest that HC bulbs represent GABAergic synapses that do not receive any direct photoreceptor input. Together, our data suggest the existence of two synaptic strata in the mouse OPL, spatially separating cone-specific feedback and feedforward signaling to CBCs. A biophysical model of a HC dendritic branch and voltage imaging support the hypothesis that this spatial arrangement of synaptic contacts allows for simultaneous local feedback and global feedforward signaling by HCs.
Collapse
Affiliation(s)
- Christian Behrens
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tübingen, Otfried-Müller-Str. 27, 72076 Tübingen, Germany
| | - Shubhash Chandra Yadav
- Neurosensorics/Animal Navigation, Institute for Biology and Environmental Sciences, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26111 Oldenburg, Germany
| | - Maria M Korympidou
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tübingen, Otfried-Müller-Str. 27, 72076 Tübingen, Germany
| | - Yue Zhang
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tübingen, Otfried-Müller-Str. 27, 72076 Tübingen, Germany
| | - Silke Haverkamp
- Department of Computational Neuroethology, Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Stephan Irsen
- Electron Microscopy and Analytics, Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Anna Schaedler
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tübingen, Otfried-Müller-Str. 27, 72076 Tübingen, Germany
| | - Xiaoyu Lu
- Systems, Synthetic, and Physical Biology Program, Rice University, 6500 Main St., Houston, TX 77005, USA
| | - Zhuohe Liu
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Jan Lause
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tübingen, Otfried-Müller-Str. 27, 72076 Tübingen, Germany
| | - François St-Pierre
- Systems, Synthetic, and Physical Biology Program, Rice University, 6500 Main St., Houston, TX 77005, USA; Department of Electrical and Computer Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA; Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Katrin Franke
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany
| | - Anna Vlasits
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany
| | - Karin Dedek
- Neurosensorics/Animal Navigation, Institute for Biology and Environmental Sciences, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26111 Oldenburg, Germany
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA 19104, USA
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Tübingen AI Center, University of Tübingen, Maria-von-Linden-Straße 6, 72076 Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany.
| |
Collapse
|
18
|
Janiak FK, Bartel P, Bale MR, Yoshimatsu T, Komulainen E, Zhou M, Staras K, Prieto-Godino LL, Euler T, Maravall M, Baden T. Non-telecentric two-photon microscopy for 3D random access mesoscale imaging. Nat Commun 2022; 13:544. [PMID: 35087041 PMCID: PMC8795402 DOI: 10.1038/s41467-022-28192-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/04/2022] [Indexed: 01/07/2023] Open
Abstract
Diffraction-limited two-photon microscopy permits minimally invasive optical monitoring of neuronal activity. However, most conventional two-photon microscopes impose significant constraints on the size of the imaging field-of-view and the specific shape of the effective excitation volume, thus limiting the scope of biological questions that can be addressed and the information obtainable. Here, employing a non-telecentric optical design, we present a low-cost, easily implemented and flexible solution to address these limitations, offering a several-fold expanded three-dimensional field of view. Moreover, rapid laser-focus control via an electrically tunable lens allows near-simultaneous imaging of remote regions separated in three dimensions and permits the bending of imaging planes to follow natural curvatures in biological structures. Crucially, our core design is readily implemented (and reversed) within a matter of hours, making it highly suitable as a base platform for further development. We demonstrate the application of our system for imaging neuronal activity in a variety of examples in zebrafish, mice and fruit flies.
Collapse
Affiliation(s)
- F K Janiak
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK.
| | - P Bartel
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - M R Bale
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - T Yoshimatsu
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - E Komulainen
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - M Zhou
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - K Staras
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | | | - T Euler
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - M Maravall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - T Baden
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK.
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
19
|
The influence of spontaneous and visual activity on the development of direction selectivity maps in mouse retina. Cell Rep 2022; 38:110225. [PMID: 35021080 PMCID: PMC8805704 DOI: 10.1016/j.celrep.2021.110225] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/11/2021] [Accepted: 12/10/2021] [Indexed: 01/23/2023] Open
Abstract
In mice, retinal direction selectivity is organized in a map that aligns to the body and gravitational axes of optic flow, and little is known about how this map develops. We find direction selectivity maps are largely present at eye opening and develop normally in the absence of visual experience. Remarkably, in mice lacking the beta2 subunit of neuronal nicotinic acetylcholine receptors (β2-nAChR-KO), which exhibit drastically reduced cholinergic retinal waves in the first postnatal week, selectivity to horizontal motion is absent while selectivity to vertical motion remains. We tested several possible mechanisms that could explain the loss of horizontal direction selectivity in β2-nAChR-KO mice (wave propagation bias, FRMD7 expression, starburst amacrine cell morphology), but all were found to be intact when compared with WT mice. This work establishes a role for retinal waves in the development of asymmetric circuitry that mediates retinal direction selectivity via an unknown mechanism.
Collapse
|
20
|
Das S, Popp V, Power M, Groeneveld K, Yan J, Melle C, Rogerson L, Achury M, Schwede F, Strasser T, Euler T, Paquet-Durand F, Nache V. Redefining the role of Ca 2+-permeable channels in photoreceptor degeneration using diltiazem. Cell Death Dis 2022; 13:47. [PMID: 35013127 PMCID: PMC8748460 DOI: 10.1038/s41419-021-04482-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/07/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022]
Abstract
Hereditary degeneration of photoreceptors has been linked to over-activation of Ca2+-permeable channels, excessive Ca2+-influx, and downstream activation of Ca2+-dependent calpain-type proteases. Unfortunately, after more than 20 years of pertinent research, unequivocal evidence proving significant and reproducible photoreceptor protection with Ca2+-channel blockers is still lacking. Here, we show that both D- and L-cis enantiomers of the anti-hypertensive drug diltiazem were very effective at blocking photoreceptor Ca2+-influx, most probably by blocking the pore of Ca2+-permeable channels. Yet, unexpectedly, this block neither reduced the activity of calpain-type proteases, nor did it result in photoreceptor protection. Remarkably, application of the L-cis enantiomer of diltiazem even led to a strong increase in photoreceptor cell death. These findings shed doubt on the previously proposed links between Ca2+ and retinal degeneration and are highly relevant for future therapy development as they may serve to refocus research efforts towards alternative, Ca2+-independent degenerative mechanisms.
Collapse
Affiliation(s)
- Soumyaparna Das
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany
| | - Valerie Popp
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Michael Power
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, 72076, Tübingen, Germany
| | - Kathrin Groeneveld
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University Jena, 07743, Jena, Germany.,Biomolecular Photonics Group, University Hospital Jena, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Jie Yan
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany
| | - Christian Melle
- Biomolecular Photonics Group, University Hospital Jena, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Luke Rogerson
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, 72076, Tübingen, Germany
| | - Marlly Achury
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany
| | - Frank Schwede
- BIOLOG Life Science Institute GmbH & Co KG, 28199, Bremen, Germany
| | - Torsten Strasser
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, 72076, Tübingen, Germany
| | | | - Vasilica Nache
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University Jena, 07743, Jena, Germany.
| |
Collapse
|
21
|
Chen C, Agrawal S, Mark B, Mamiya A, Sustar A, Phelps JS, Lee WCA, Dickson BJ, Card GM, Tuthill JC. Functional architecture of neural circuits for leg proprioception in Drosophila. Curr Biol 2021; 31:5163-5175.e7. [PMID: 34637749 PMCID: PMC8665017 DOI: 10.1016/j.cub.2021.09.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/30/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022]
Abstract
To effectively control their bodies, animals rely on feedback from proprioceptive mechanosensory neurons. In the Drosophila leg, different proprioceptor subtypes monitor joint position, movement direction, and vibration. Here, we investigate how these diverse sensory signals are integrated by central proprioceptive circuits. We find that signals for leg joint position and directional movement converge in second-order neurons, revealing pathways for local feedback control of leg posture. Distinct populations of second-order neurons integrate tibia vibration signals across pairs of legs, suggesting a role in detecting external substrate vibration. In each pathway, the flow of sensory information is dynamically gated and sculpted by inhibition. Overall, our results reveal parallel pathways for processing of internal and external mechanosensory signals, which we propose mediate feedback control of leg movement and vibration sensing, respectively. The existence of a functional connectivity map also provides a resource for interpreting connectomic reconstruction of neural circuits for leg proprioception. To understand how diverse proprioceptive signals from the Drosophila leg are integrated by downstream circuits, Chen et al. use optogenetics and calcium imaging to map functional connectivity between sensory and central neurons. This work identifies parallel neural pathways for processing leg vibration vs. joint position and movement.
Collapse
Affiliation(s)
- Chenghao Chen
- Department of Physiology and Biophysics, University of Washington, 1705 N.E. Pacific Street, Seattle, WA 98195, USA; Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Sweta Agrawal
- Department of Physiology and Biophysics, University of Washington, 1705 N.E. Pacific Street, Seattle, WA 98195, USA
| | - Brandon Mark
- Department of Physiology and Biophysics, University of Washington, 1705 N.E. Pacific Street, Seattle, WA 98195, USA
| | - Akira Mamiya
- Department of Physiology and Biophysics, University of Washington, 1705 N.E. Pacific Street, Seattle, WA 98195, USA
| | - Anne Sustar
- Department of Physiology and Biophysics, University of Washington, 1705 N.E. Pacific Street, Seattle, WA 98195, USA
| | - Jasper S Phelps
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, 1705 N.E. Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
22
|
Rochon PL, Theriault C, Rangel Olguin AG, Krishnaswamy A. The cell adhesion molecule Sdk1 shapes assembly of a retinal circuit that detects localized edges. eLife 2021; 10:e70870. [PMID: 34545809 PMCID: PMC8514235 DOI: 10.7554/elife.70870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/11/2021] [Indexed: 01/10/2023] Open
Abstract
Nearly 50 different mouse retinal ganglion cell (RGC) types sample the visual scene for distinct features. RGC feature selectivity arises from their synapses with a specific subset of amacrine (AC) and bipolar cell (BC) types, but how RGC dendrites arborize and collect input from these specific subsets remains poorly understood. Here we examine the hypothesis that RGCs employ molecular recognition systems to meet this challenge. By combining calcium imaging and type-specific histological stains, we define a family of circuits that express the recognition molecule Sidekick-1 (Sdk1), which include a novel RGC type (S1-RGC) that responds to local edges. Genetic and physiological studies revealed that Sdk1 loss selectively disrupts S1-RGC visual responses, which result from a loss of excitatory and inhibitory inputs and selective dendritic deficits on this neuron. We conclude that Sdk1 shapes dendrite growth and wiring to help S1-RGCs become feature selective.
Collapse
|
23
|
Wang K, Hinz J, Zhang Y, Thiele TR, Arrenberg AB. Parallel Channels for Motion Feature Extraction in the Pretectum and Tectum of Larval Zebrafish. Cell Rep 2021; 30:442-453.e6. [PMID: 31940488 DOI: 10.1016/j.celrep.2019.12.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/27/2019] [Accepted: 12/09/2019] [Indexed: 11/18/2022] Open
Abstract
Non-cortical visual areas in vertebrate brains extract relevant stimulus features, such as motion, object size, and location, to support diverse behavioral tasks. The optic tectum and pretectum, two primary visual areas in zebrafish, are involved in motion processing, and yet their differential neural representation of behaviorally relevant visual features is unclear. Here, we characterize receptive fields (RFs) of motion-sensitive neurons in the diencephalon and midbrain. We show that RFs of many pretectal neurons are large and sample the lower visual field, whereas RFs of tectal neurons are mostly small-size selective and sample the upper nasal visual field more densely. Furthermore, optomotor swimming can reliably be evoked by presenting forward motion in the lower temporal visual field alone, matching the lower visual field bias of the pretectum. Thus, tectum and pretectum extract different visual features from distinct regions of visual space, which is likely a result of their adaptations to hunting and optomotor behavior, respectively.
Collapse
Affiliation(s)
- Kun Wang
- Werner Reichardt Centre for Integrative Neuroscience, Institute for Neurobiology, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre for Neuroscience, University of Tübingen, 72074 Tübingen, Germany
| | - Julian Hinz
- Werner Reichardt Centre for Integrative Neuroscience, Institute for Neurobiology, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre for Neuroscience, University of Tübingen, 72074 Tübingen, Germany
| | - Yue Zhang
- Werner Reichardt Centre for Integrative Neuroscience, Institute for Neurobiology, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre for Neuroscience, University of Tübingen, 72074 Tübingen, Germany
| | - Tod R Thiele
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Aristides B Arrenberg
- Werner Reichardt Centre for Integrative Neuroscience, Institute for Neurobiology, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
24
|
Gonzalez MA, Walker AS, Cao KJ, Lazzari-Dean JR, Settineri NS, Kong EJ, Kramer RH, Miller EW. Voltage Imaging with a NIR-Absorbing Phosphine Oxide Rhodamine Voltage Reporter. J Am Chem Soc 2021; 143:2304-2314. [PMID: 33501825 PMCID: PMC7986050 DOI: 10.1021/jacs.0c11382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of fluorescent dyes that emit and absorb light at wavelengths greater than 700 nm and that respond to biochemical and biophysical events in living systems remains an outstanding challenge for noninvasive optical imaging. Here, we report the design, synthesis, and application of near-infrared (NIR)-absorbing and -emitting optical voltmeter based on a sulfonated, phosphine-oxide (po) rhodamine for voltage imaging in intact retinas. We find that po-rhodamine based voltage reporters, or poRhoVRs, display NIR excitation and emission profiles at greater than 700 nm, show a range of voltage sensitivities (13 to 43% ΔF/F per 100 mV in HEK cells), and can be combined with existing optical sensors, like Ca2+-sensitive fluorescent proteins (GCaMP), and actuators, like light-activated opsins ChannelRhodopsin-2 (ChR2). Simultaneous voltage and Ca2+ imaging reveals differences in activity dynamics in rat hippocampal neurons, and pairing poRhoVR with blue-light based ChR2 affords all-optical electrophysiology. In ex vivo retinas isolated from a mouse model of retinal degeneration, poRhoVR, together with GCaMP-based Ca2+ imaging and traditional multielectrode array (MEA) recording, can provide a comprehensive physiological activity profile of neuronal activity, revealing differences in voltage and Ca2+ dynamics within hyperactive networks of the mouse retina. Taken together, these experiments establish that poRhoVR will open new horizons in optical interrogation of cellular and neuronal physiology in intact systems.
Collapse
Affiliation(s)
- Monica A. Gonzalez
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Alison S. Walker
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Helen Wills Neuroscience Institute. University of California, Berkeley, California 94720, United States
| | - Kevin J. Cao
- Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, United States
| | - Julia R. Lazzari-Dean
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Nicholas S. Settineri
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Eui Ju Kong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Richard H. Kramer
- Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, United States
- Department of Helen Wills Neuroscience Institute. University of California, Berkeley, California 94720, United States
| | - Evan W. Miller
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, United States
- Department of Helen Wills Neuroscience Institute. University of California, Berkeley, California 94720, United States
| |
Collapse
|
25
|
Agrawal S, Dickinson ES, Sustar A, Gurung P, Shepherd D, Truman JW, Tuthill JC. Central processing of leg proprioception in Drosophila. eLife 2020; 9:e60299. [PMID: 33263281 PMCID: PMC7752136 DOI: 10.7554/elife.60299] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022] Open
Abstract
Proprioception, the sense of self-movement and position, is mediated by mechanosensory neurons that detect diverse features of body kinematics. Although proprioceptive feedback is crucial for accurate motor control, little is known about how downstream circuits transform limb sensory information to guide motor output. Here we investigate neural circuits in Drosophila that process proprioceptive information from the fly leg. We identify three cell types from distinct developmental lineages that are positioned to receive input from proprioceptor subtypes encoding tibia position, movement, and vibration. 13Bα neurons encode femur-tibia joint angle and mediate postural changes in tibia position. 9Aα neurons also drive changes in leg posture, but encode a combination of directional movement, high frequency vibration, and joint angle. Activating 10Bα neurons, which encode tibia vibration at specific joint angles, elicits pausing in walking flies. Altogether, our results reveal that central circuits integrate information across proprioceptor subtypes to construct complex sensorimotor representations that mediate diverse behaviors, including reflexive control of limb posture and detection of leg vibration.
Collapse
Affiliation(s)
- Sweta Agrawal
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Evyn S Dickinson
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Anne Sustar
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Pralaksha Gurung
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - David Shepherd
- School of Natural Sciences, Bangor UniversityBangorUnited Kingdom
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Friday Harbor Laboratories, University of WashingtonFriday HarborUnited States
| | - John C Tuthill
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| |
Collapse
|
26
|
Zimmermann M, Maia Chagas A, Bartel P, Pop S, Prieto-Godino L, Baden T. LED Zappelin': An open source LED controller for arbitrary spectrum visual stimulation and optogenetics during 2-photon imaging. HARDWAREX 2020; 8:e00127. [PMID: 35498254 PMCID: PMC9041195 DOI: 10.1016/j.ohx.2020.e00127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 05/19/2023]
Abstract
Two-photon (2P) microscopy is a cornerstone technique in neuroscience research. However, combining 2P imaging with spectrally arbitrary light stimulation can be challenging due to crosstalk between stimulation light and fluorescence detection. To overcome this limitation, we present a simple and low-cost electronic solution based on an ESP32 microcontroller and a TLC5947 LED driver to rapidly time-interleave stimulation and detection epochs during scans. Implemented for less than $100, our design can independently drive up to 24 arbitrary spectrum LEDs to meet user requirements. We demonstrate the utility of our stimulator for colour vision experiments on the in vivo tetrachromatic zebrafish retina and for optogenetic circuit mapping in Drosophila.
Collapse
Affiliation(s)
- M.J.Y. Zimmermann
- Sussex Neuroscience, School of Life Sciences, University of Sussex, United Kingdom
| | - A. Maia Chagas
- Sussex Neuroscience, School of Life Sciences, University of Sussex, United Kingdom
- TReND in Africa (www.TReNDinAfrica.org), United Kingdom
- GOSH Community (http://openhardware.science/)
- Institute for Ophthalmic Research, University of Tübingen, Germany
| | - P. Bartel
- Sussex Neuroscience, School of Life Sciences, University of Sussex, United Kingdom
| | - S. Pop
- The Francis Crick Institute, London, United Kingdom
| | - L.L. Prieto-Godino
- TReND in Africa (www.TReNDinAfrica.org), United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - T. Baden
- Sussex Neuroscience, School of Life Sciences, University of Sussex, United Kingdom
- TReND in Africa (www.TReNDinAfrica.org), United Kingdom
- Institute for Ophthalmic Research, University of Tübingen, Germany
| |
Collapse
|
27
|
Zhou M, Bear J, Roberts PA, Janiak FK, Semmelhack J, Yoshimatsu T, Baden T. Zebrafish Retinal Ganglion Cells Asymmetrically Encode Spectral and Temporal Information across Visual Space. Curr Biol 2020; 30:2927-2942.e7. [PMID: 32531283 PMCID: PMC7416113 DOI: 10.1016/j.cub.2020.05.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/31/2020] [Accepted: 05/18/2020] [Indexed: 12/23/2022]
Abstract
In vertebrate vision, the tetrachromatic larval zebrafish permits non-invasive monitoring and manipulating of neural activity across the nervous system in vivo during ongoing behavior. However, despite a perhaps unparalleled understanding of links between zebrafish brain circuits and visual behaviors, comparatively little is known about what their eyes send to the brain via retinal ganglion cells (RGCs). Major gaps in knowledge include any information on spectral coding and information on potentially critical variations in RGC properties across the retinal surface corresponding with asymmetries in the statistics of natural visual space and behavioral demands. Here, we use in vivo two-photon imaging during hyperspectral visual stimulation as well as photolabeling of RGCs to provide a functional and anatomical census of RGCs in larval zebrafish. We find that RGCs' functional and structural properties differ across the eye and include a notable population of UV-responsive On-sustained RGCs that are only found in the acute zone, likely to support visual prey capture of UV-bright zooplankton. Next, approximately half of RGCs display diverse forms of color opponency, including many that are driven by a pervasive and slow blue-Off system-far in excess of what would be required to satisfy traditional models of color vision. In addition, most information on spectral contrast was intermixed with temporal information. Taken together, our results suggest that zebrafish RGCs send a diverse and highly regionalized time-color code to the brain.
Collapse
Affiliation(s)
- Mingyi Zhou
- School of Life Sciences, University of Sussex, Brighton BN19QG, UK
| | - John Bear
- School of Life Sciences, University of Sussex, Brighton BN19QG, UK; Hong Kong University of Science and Technology, Hong Kong
| | - Paul A Roberts
- School of Life Sciences, University of Sussex, Brighton BN19QG, UK
| | - Filip K Janiak
- School of Life Sciences, University of Sussex, Brighton BN19QG, UK
| | | | | | - Tom Baden
- School of Life Sciences, University of Sussex, Brighton BN19QG, UK; Institute for Ophthalmic Research, University of Tübingen, Tübingen 72076, Germany.
| |
Collapse
|
28
|
Szatko KP, Korympidou MM, Ran Y, Berens P, Dalkara D, Schubert T, Euler T, Franke K. Neural circuits in the mouse retina support color vision in the upper visual field. Nat Commun 2020; 11:3481. [PMID: 32661226 PMCID: PMC7359335 DOI: 10.1038/s41467-020-17113-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Color vision is essential for an animal’s survival. It starts in the retina, where signals from different photoreceptor types are locally compared by neural circuits. Mice, like most mammals, are dichromatic with two cone types. They can discriminate colors only in their upper visual field. In the corresponding ventral retina, however, most cones display the same spectral preference, thereby presumably impairing spectral comparisons. In this study, we systematically investigated the retinal circuits underlying mouse color vision by recording light responses from cones, bipolar and ganglion cells. Surprisingly, most color-opponent cells are located in the ventral retina, with rod photoreceptors likely being involved. Here, the complexity of chromatic processing increases from cones towards the retinal output, where non-linear center-surround interactions create specific color-opponent output channels to the brain. This suggests that neural circuits in the mouse retina are tuned to extract color from the upper visual field, aiding robust detection of predators and ensuring the animal’s survival. Mice are able to discriminate colors, at least in the upper visual field. Here, the authors provide a comprehensive characterization of retinal circuits underlying this behavior.
Collapse
Affiliation(s)
- Klaudia P Szatko
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany.,Graduate Training Center of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Maria M Korympidou
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Graduate Training Center of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany.,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Yanli Ran
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany.,Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany.,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Katrin Franke
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany. .,Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany. .,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
29
|
Klioutchnikov A, Wallace DJ, Frosz MH, Zeltner R, Sawinski J, Pawlak V, Voit KM, Russell PSJ, Kerr JND. Three-photon head-mounted microscope for imaging deep cortical layers in freely moving rats. Nat Methods 2020; 17:509-513. [PMID: 32371979 DOI: 10.1038/s41592-020-0817-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/19/2020] [Indexed: 02/05/2023]
Abstract
We designed a head-mounted three-photon microscope for imaging deep cortical layer neuronal activity in a freely moving rat. Delivery of high-energy excitation pulses at 1,320 nm required both a hollow-core fiber whose transmission properties did not change with fiber movement and dispersion compensation. These developments enabled imaging at >1.1 mm below the cortical surface and stable imaging of layer 5 neuronal activity for >1 h in freely moving rats performing a range of behaviors.
Collapse
Affiliation(s)
| | - Damian J Wallace
- Department of Behavior and Brain Organization, Research Center Caesar, Bonn, Germany
| | - Michael H Frosz
- Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Richard Zeltner
- Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Juergen Sawinski
- Department of Behavior and Brain Organization, Research Center Caesar, Bonn, Germany
| | - Verena Pawlak
- Department of Behavior and Brain Organization, Research Center Caesar, Bonn, Germany
| | - Kay-Michael Voit
- Department of Behavior and Brain Organization, Research Center Caesar, Bonn, Germany
| | | | - Jason N D Kerr
- Department of Behavior and Brain Organization, Research Center Caesar, Bonn, Germany.
| |
Collapse
|
30
|
Ran Y, Huang Z, Baden T, Schubert T, Baayen H, Berens P, Franke K, Euler T. Type-specific dendritic integration in mouse retinal ganglion cells. Nat Commun 2020; 11:2101. [PMID: 32355170 PMCID: PMC7193577 DOI: 10.1038/s41467-020-15867-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/30/2020] [Indexed: 11/17/2022] Open
Abstract
Neural computation relies on the integration of synaptic inputs across a neuron’s dendritic arbour. However, it is far from understood how different cell types tune this process to establish cell-type specific computations. Here, using two-photon imaging of dendritic Ca2+ signals, electrical recordings of somatic voltage and biophysical modelling, we demonstrate that four morphologically distinct types of mouse retinal ganglion cells with overlapping excitatory synaptic input (transient Off alpha, transient Off mini, sustained Off, and F-mini Off) exhibit type-specific dendritic integration profiles: in contrast to the other types, dendrites of transient Off alpha cells were spatially independent, with little receptive field overlap. The temporal correlation of dendritic signals varied also extensively, with the highest and lowest correlation in transient Off mini and transient Off alpha cells, respectively. We show that differences between cell types can likely be explained by differences in backpropagation efficiency, arising from the specific combinations of dendritic morphology and ion channel densities. Neurons compute by integrating synaptic inputs across their dendritic arbor. Here, the authors show that distinct cell-types of mouse retinal ganglion cells that receive similar excitatory inputs have different biophysical mechanisms of input integration to generate their unique response tuning.
Collapse
Affiliation(s)
- Yanli Ran
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Ziwei Huang
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Tom Baden
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Harald Baayen
- Department of Linguistics, University of Tübingen, Tübingen, Germany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany.,Institute of Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Katrin Franke
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany. .,Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany. .,Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
31
|
Zhao Z, Klindt DA, Maia Chagas A, Szatko KP, Rogerson L, Protti DA, Behrens C, Dalkara D, Schubert T, Bethge M, Franke K, Berens P, Ecker AS, Euler T. The temporal structure of the inner retina at a single glance. Sci Rep 2020; 10:4399. [PMID: 32157103 PMCID: PMC7064538 DOI: 10.1038/s41598-020-60214-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/09/2020] [Indexed: 12/12/2022] Open
Abstract
The retina decomposes visual stimuli into parallel channels that encode different features of the visual environment. Central to this computation is the synaptic processing in a dense layer of neuropil, the so-called inner plexiform layer (IPL). Here, different types of bipolar cells stratifying at distinct depths relay the excitatory feedforward drive from photoreceptors to amacrine and ganglion cells. Current experimental techniques for studying processing in the IPL do not allow imaging the entire IPL simultaneously in the intact tissue. Here, we extend a two-photon microscope with an electrically tunable lens allowing us to obtain optical vertical slices of the IPL, which provide a complete picture of the response diversity of bipolar cells at a "single glance". The nature of these axial recordings additionally allowed us to isolate and investigate batch effects, i.e. inter-experimental variations resulting in systematic differences in response speed. As a proof of principle, we developed a simple model that disentangles biological from experimental causes of variability and allowed us to recover the characteristic gradient of response speeds across the IPL with higher precision than before. Our new framework will make it possible to study the computations performed in the central synaptic layer of the retina more efficiently.
Collapse
Affiliation(s)
- Zhijian Zhao
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| | - David A Klindt
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
- Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
- Institute for Theoretical Physics, University of Tübingen, Tübingen, Germany
| | - André Maia Chagas
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Klaudia P Szatko
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Luke Rogerson
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
- Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Dario A Protti
- Department of Physiology and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Christian Behrens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
- Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| | - Matthias Bethge
- Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
- Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany
- Institute for Theoretical Physics, University of Tübingen, Tübingen, Germany
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Katrin Franke
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
- Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
- Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany
- Institute of Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Alexander S Ecker
- Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
- Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany
- Institute for Theoretical Physics, University of Tübingen, Tübingen, Germany
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Computer Science, University of Göttingen, Göttingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
- Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
32
|
Brysch C, Leyden C, Arrenberg AB. Functional architecture underlying binocular coordination of eye position and velocity in the larval zebrafish hindbrain. BMC Biol 2019; 17:110. [PMID: 31884959 PMCID: PMC6936144 DOI: 10.1186/s12915-019-0720-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The oculomotor integrator (OI) in the vertebrate hindbrain transforms eye velocity input into persistent position coding output, which plays a crucial role in retinal image stability. For a mechanistic understanding of the integrator function and eye position control, knowledge about the tuning of the OI and other oculomotor nuclei is needed. Zebrafish are increasingly used to study integrator function and sensorimotor circuits, yet the precise neuronal tuning to motor variables remains uncharacterized. RESULTS Here, we recorded cellular calcium signals while evoking monocular and binocular optokinetic eye movements at different slow-phase eye velocities. Our analysis reveals the anatomical distributions of motoneurons and internuclear neurons in the nucleus abducens as well as those of oculomotor neurons in caudally adjacent hindbrain volumes. Each neuron is tuned to eye position and/or velocity to variable extents and is only activated after surpassing particular eye position and velocity thresholds. While the abducens (rhombomeres 5/6) mainly codes for eye position, in rhombomeres 7/8, a velocity-to-position coding gradient exists along the rostro-caudal axis, which likely corresponds to the oculomotor structures storing velocity and position, and is in agreement with a feedforward mechanism of persistent activity generation. Position encoding neurons are recruited at eye position thresholds distributed across the behaviourally relevant dynamic range, while velocity-encoding neurons have more centred firing thresholds for velocity. In the abducens, neurons coding exclusively for one eye intermingle with neurons coding for both eyes. Many of these binocular neurons are preferentially active during conjugate eye movements and less active during monocular eye movements. This differential recruitment during monocular versus conjugate tasks represents a functional diversification in the final common motor pathway. CONCLUSIONS We localized and functionally characterized the repertoire of oculomotor neurons in the zebrafish hindbrain. Our findings provide evidence for a mixed but task-specific binocular code and suggest that generation of persistent activity is organized along the rostro-caudal axis in the hindbrain.
Collapse
Affiliation(s)
- Christian Brysch
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tübingen, 72076, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, 72074, Tübingen, Germany
| | - Claire Leyden
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tübingen, 72076, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, 72074, Tübingen, Germany
| | - Aristides B Arrenberg
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
33
|
Gholami S, Pedraza-González L, Yang X, Granovsky AA, Ioffe IN, Olivucci M. Multistate Multiconfiguration Quantum Chemical Computation of the Two-Photon Absorption Spectra of Bovine Rhodopsin. J Phys Chem Lett 2019; 10:6293-6300. [PMID: 31545053 PMCID: PMC7141604 DOI: 10.1021/acs.jpclett.9b02291] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Recently, progress in IR sources has led to the discovery that humans can detect infrared (IR) light. This is hypothesized to be due to the two-photon absorption (TPA) events promoting the retina dim-light rod photoreceptor rhodopsin to the same excited state populated via one-photon absorption (OPA). Here, we combine quantum mechanics/molecular mechanics and extended multiconfiguration quasi-degenerate perturbation theory calculations to simulate the TPA spectrum of bovine rhodopsin (Rh) as a model for the human photoreceptor. The results show that the TPA spectrum of Rh has an intense S0 → S1 band but shows also S0 → S2 and S0 → S3 transitions whose intensities, relative to the S0 → S1 band, are significantly increased when compared to the corresponding bands of the OPA spectrum. In conclusion, we show that IR light in the 950 nm region can be perceived by rod photoreceptors, thus supporting the two-photon origin of the IR perception. We also found that the same photoreceptor can perceive red (i.e., close to 680 nm) light provided that TPA induces population of S2.
Collapse
Affiliation(s)
- Samira Gholami
- Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| | - Laura Pedraza-González
- Department of Biotechnology, Chemistry and Pharmacy , Università di Siena , via A. Moro 2 , I-53100 Siena , Siena , Italy
| | - Xuchun Yang
- Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| | | | - Ilya N Ioffe
- Department of Chemistry , Lomonosov Moscow State University , 119991 Moscow , Russia
| | - Massimo Olivucci
- Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403 , United States
- Department of Biotechnology, Chemistry and Pharmacy , Università di Siena , via A. Moro 2 , I-53100 Siena , Siena , Italy
| |
Collapse
|
34
|
Franke K, Maia Chagas A, Zhao Z, Zimmermann MJY, Bartel P, Qiu Y, Szatko KP, Baden T, Euler T. An arbitrary-spectrum spatial visual stimulator for vision research. eLife 2019; 8:e48779. [PMID: 31545172 PMCID: PMC6783264 DOI: 10.7554/elife.48779] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/20/2019] [Indexed: 01/05/2023] Open
Abstract
Visual neuroscientists require accurate control of visual stimulation. However, few stimulator solutions simultaneously offer high spatio-temporal resolution and free control over the spectra of the light sources, because they rely on off-the-shelf technology developed for human trichromatic vision. Importantly, consumer displays fail to drive UV-shifted short wavelength-sensitive photoreceptors, which strongly contribute to visual behaviour in many animals, including mice, zebrafish and fruit flies. Moreover, many non-mammalian species feature more than three spectral photoreceptor types. Here, we present a flexible, spatial visual stimulator with up to six arbitrary spectrum chromatic channels. It combines a standard digital light processing engine with open source hard- and software that can be easily adapted to the experimentalist's needs. We demonstrate the capability of this general visual stimulator experimentally in the in vitro mouse retinal whole-mount and the in vivo zebrafish. With this work, we intend to start a community effort of sharing and developing a common stimulator design for vision research.
Collapse
Affiliation(s)
- Katrin Franke
- Institute for Ophthalmic ResearchUniversity of TübingenTübingenGermany
- Bernstein Center for Computational NeuroscienceUniversity of TübingenTübingenGermany
| | - André Maia Chagas
- Institute for Ophthalmic ResearchUniversity of TübingenTübingenGermany
- Center for Integrative NeuroscienceUniversity of TübingenTübingenGermany
- Sussex Neuroscience, School of Life SciencesUniversity of SussexFalmerUnited Kingdom
| | - Zhijian Zhao
- Institute for Ophthalmic ResearchUniversity of TübingenTübingenGermany
- Center for Integrative NeuroscienceUniversity of TübingenTübingenGermany
| | - Maxime JY Zimmermann
- Sussex Neuroscience, School of Life SciencesUniversity of SussexFalmerUnited Kingdom
| | - Philipp Bartel
- Sussex Neuroscience, School of Life SciencesUniversity of SussexFalmerUnited Kingdom
| | - Yongrong Qiu
- Institute for Ophthalmic ResearchUniversity of TübingenTübingenGermany
- Center for Integrative NeuroscienceUniversity of TübingenTübingenGermany
| | - Klaudia P Szatko
- Institute for Ophthalmic ResearchUniversity of TübingenTübingenGermany
- Bernstein Center for Computational NeuroscienceUniversity of TübingenTübingenGermany
| | - Tom Baden
- Institute for Ophthalmic ResearchUniversity of TübingenTübingenGermany
- Sussex Neuroscience, School of Life SciencesUniversity of SussexFalmerUnited Kingdom
| | - Thomas Euler
- Institute for Ophthalmic ResearchUniversity of TübingenTübingenGermany
- Bernstein Center for Computational NeuroscienceUniversity of TübingenTübingenGermany
- Center for Integrative NeuroscienceUniversity of TübingenTübingenGermany
| |
Collapse
|
35
|
Rogerson LE, Zhao Z, Franke K, Euler T, Berens P. Bayesian hypothesis testing and experimental design for two-photon imaging data. PLoS Comput Biol 2019; 15:e1007205. [PMID: 31374071 PMCID: PMC6693774 DOI: 10.1371/journal.pcbi.1007205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 08/14/2019] [Accepted: 06/20/2019] [Indexed: 12/24/2022] Open
Abstract
Variability, stochastic or otherwise, is a central feature of neural activity. Yet the means by which estimates of variation and uncertainty are derived from noisy observations of neural activity is often heuristic, with more weight given to numerical convenience than statistical rigour. For two-photon imaging data, composed of fundamentally probabilistic streams of photon detections, the problem is particularly acute. Here, we present a statistical pipeline for the inference and analysis of neural activity using Gaussian Process regression, applied to two-photon recordings of light-driven activity in ex vivo mouse retina. We demonstrate the flexibility and extensibility of these models, considering cases with non-stationary statistics, driven by complex parametric stimuli, in signal discrimination, hierarchical clustering and other inference tasks. Sparse approximation methods allow these models to be fitted rapidly, permitting them to actively guide the design of light stimulation in the midst of ongoing two-photon experiments.
Collapse
Affiliation(s)
- Luke E. Rogerson
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany
- Graduate Training Center for Neuroscience, University of Tübingen, Tübingen, Germany
| | - Zhijian Zhao
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Katrin Franke
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| |
Collapse
|
36
|
Zhang Y, Arrenberg AB. High throughput, rapid receptive field estimation for global motion sensitive neurons using a contiguous motion noise stimulus. J Neurosci Methods 2019; 326:108366. [PMID: 31356837 DOI: 10.1016/j.jneumeth.2019.108366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND The systematic characterization of receptive fields (RF) is essential for understanding visual motion processing. The performance of RF estimation depends on the employed stimuli, the complexity of the encoded features, and the quality of the activity readout. Calcium imaging is an attractive readout method for high-throughput neuronal activity recordings. However, calcium recordings are oftentimes noisy and of low temporal resolution. The RF estimation of neurons sensitive to global motion is particularly challenging due to their potentially complex combination of preferred directions across visual field positions. NEW METHOD Here, we present a novel noise stimulus, which is enriched with spatiotemporally contiguous motion and thus triggers robust calcium responses. We combined this contiguous motion noise (CMN) stimulus with reverse correlation followed by a two-step nonparametric cluster-based bootstrapping test for efficient and reliable RF estimation. RESULTS The in silico evaluation of our approach showed that RF centre positions and preferred directions are reliably detected in most of the simulated neurons. Suppressive RF components were detected in 40% of the simulated neurons. We successfully applied our approach to estimate the RFs of 163 motion-sensitive neurons in vivo within 40 min in the pretectum of zebrafish. Many in vivo neurons were sensitive to elaborate directional flow fields in their RFs. COMPARISON WITH EXISTING METHODS Our approach outperforms white noise methods and others due to the optimized motion stimulus statistics and ascertainable fine RF structures. CONCLUSIONS The CMN method enables efficient, non-biased RF estimation and will benefit systematic high-throughput investigations of RFs using calcium imaging.
Collapse
Affiliation(s)
- Yue Zhang
- Werner Reichardt Centre for Integrative Neuroscience, Institute of Neurobiology, University of Tübingen, D-72076, Tübingen, Germany; Graduate Training Centre for Neuroscience, University of Tübingen, D-72076, Tübingen, Germany
| | - Aristides B Arrenberg
- Werner Reichardt Centre for Integrative Neuroscience, Institute of Neurobiology, University of Tübingen, D-72076, Tübingen, Germany.
| |
Collapse
|
37
|
Wang K, Hinz J, Haikala V, Reiff DF, Arrenberg AB. Selective processing of all rotational and translational optic flow directions in the zebrafish pretectum and tectum. BMC Biol 2019; 17:29. [PMID: 30925897 PMCID: PMC6441171 DOI: 10.1186/s12915-019-0648-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/13/2019] [Indexed: 11/17/2022] Open
Abstract
Background The processing of optic flow in the pretectum/accessory optic system allows animals to stabilize retinal images by executing compensatory optokinetic and optomotor behavior. The success of this behavior depends on the integration of information from both eyes to unequivocally identify all possible translational or rotational directions of motion. However, it is still unknown whether the precise direction of ego-motion is already identified in the zebrafish pretectum or later in downstream premotor areas. Results Here, we show that the zebrafish pretectum and tectum each contain four populations of motion-sensitive direction-selective (DS) neurons, with each population encoding a different preferred direction upon monocular stimulation. In contrast, binocular stimulation revealed the existence of pretectal and tectal neurons that are specifically tuned to only one of the many possible combinations of monocular motion, suggesting that further downstream sensory processing might not be needed to instruct appropriate optokinetic and optomotor behavior. Conclusion Our results suggest that local, task-specific pretectal circuits process DS retinal inputs and carry out the binocular sensory computations necessary for optokinetic and optomotor behavior. Electronic supplementary material The online version of this article (10.1186/s12915-019-0648-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kun Wang
- Werner Reichardt Centre for Integrative Neuroscience, Institute of Neurobiology, University of Tübingen, 72076, Tübingen, Germany.,Graduate Training Centre for Neuroscience, University of Tübingen, 72076, Tübingen, Germany
| | - Julian Hinz
- Werner Reichardt Centre for Integrative Neuroscience, Institute of Neurobiology, University of Tübingen, 72076, Tübingen, Germany.,Graduate Training Centre for Neuroscience, University of Tübingen, 72076, Tübingen, Germany.,Present address: Friedrich Miescher Institute for Biomedical Research, 4058, Basel, Switzerland
| | - Väinö Haikala
- Neurobiology and Behavior, Institute Biology 1, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Dierk F Reiff
- Neurobiology and Behavior, Institute Biology 1, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Aristides B Arrenberg
- Werner Reichardt Centre for Integrative Neuroscience, Institute of Neurobiology, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
38
|
Román Rosón M, Bauer Y, Kotkat AH, Berens P, Euler T, Busse L. Mouse dLGN Receives Functional Input from a Diverse Population of Retinal Ganglion Cells with Limited Convergence. Neuron 2019; 102:462-476.e8. [PMID: 30799020 DOI: 10.1016/j.neuron.2019.01.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/08/2018] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
Abstract
Mouse vision is based on the parallel output of more than 30 functional types of retinal ganglion cells (RGCs). Little is known about how representations of visual information change between retina and dorsolateral geniculate nucleus (dLGN) of the thalamus, the main relay between retina and cortex. Here, we functionally characterized responses of retrogradely labeled dLGN-projecting RGCs and dLGN neurons to the same set of visual stimuli. We found that many of the previously identified functional RGC types innervate dLGN, which maintained a high degree of functional diversity. Using a linear model to assess functional connectivity between RGC types and dLGN neurons, we found that responses of dLGN neurons could be predicted as linear combination of inputs from on average five RGC types, but only two of those had the strongest functional impact. Thus, mouse dLGN receives functional input from a diverse population of RGC types with limited convergence.
Collapse
Affiliation(s)
- Miroslav Román Rosón
- Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Institute for Ophthalmic Research, University Hospital Tübingen, 72076 Tübingen, Germany; Division of Neurobiology, Department Biology II, LMU Munich, 82151 Munich, Germany; Graduate School of Neural & Behavioural Sciences, International Max Planck Research School, University of Tübingen, 72074 Tübingen, Germany
| | - Yannik Bauer
- Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Division of Neurobiology, Department Biology II, LMU Munich, 82151 Munich, Germany; Graduate School of Systemic Neuroscience (GSN), LMU Munich, 82151 Munich, Germany
| | - Ann H Kotkat
- Division of Neurobiology, Department Biology II, LMU Munich, 82151 Munich, Germany; ENB Elite Master of Science Program in Neuroengineering, Technical University of Munich, 80333 Munich, Germany
| | - Philipp Berens
- Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Institute for Ophthalmic Research, University Hospital Tübingen, 72076 Tübingen, Germany; Bernstein Centre for Computational Neuroscience, 72076 Tübingen, Germany.
| | - Thomas Euler
- Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Institute for Ophthalmic Research, University Hospital Tübingen, 72076 Tübingen, Germany; Bernstein Centre for Computational Neuroscience, 72076 Tübingen, Germany.
| | - Laura Busse
- Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Division of Neurobiology, Department Biology II, LMU Munich, 82151 Munich, Germany; Bernstein Centre for Computational Neuroscience, 72076 Tübingen, Germany; Bernstein Centre for Computational Neuroscience, 82151 Munich, Germany.
| |
Collapse
|
39
|
Schwarz C, Sharma R, Cheong SK, Keller M, Williams DR, Hunter JJ. Selective S Cone Damage and Retinal Remodeling Following Intense Ultrashort Pulse Laser Exposures in the Near-Infrared. Invest Ophthalmol Vis Sci 2018; 59:5973-5984. [PMID: 30556839 PMCID: PMC6298064 DOI: 10.1167/iovs.18-25383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023] Open
Abstract
Purpose Infrared ultrashort pulse lasers are becoming increasingly popular for applications in the living eye. However, safety standards are not yet well established. Here we investigate retinal damage close to threshold for this pulse regime in the living macaque eye. Methods Retinal radiant exposures between 214 and 856 J/cm2 were delivered to the photoreceptor layer with an ultrashort pulse laser (730 nm, 55 fs, 80 MHz) through a two-photon adaptive optics scanning light ophthalmoscope. Retinal exposures were followed up immediately after and over several weeks with high-resolution reflectance and two-photon excited fluorescence ophthalmoscopy, providing structural and functional information. Results Retinal radiant exposures of 856 J/cm2 resulted in permanent S cone damage. Immediately after the exposure, the affected cones emitted about 2.6 times less two-photon excited fluorescence (TPEF) and showed an altered TPEF time course. Several weeks after the initial exposure, S cone outer and inner segments had disappeared. The space was filled by rods in the peripheral retina and cones near the fovea. Conclusion Interestingly, S cones are the receptor class with the lowest sensitivity in the near-infrared but are known to be particularly susceptible to ultraviolet and blue light. This effect of selective S cone damage after intense infrared ultrashort pulse laser exposure may be due to nonlinear absorption and distinct from pure thermal and mechanical mechanisms often associated with ultrashort pulse lasers.
Collapse
Affiliation(s)
- Christina Schwarz
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Robin Sharma
- Facebook Reality Labs, Redmond, Washington, United States
| | - Soon Keen Cheong
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Matthew Keller
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- College of Natural Science, Michigan State University, East Lansing, Michigan, United States
| | - David R. Williams
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- The Institute of Optics, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| | - Jennifer J. Hunter
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- The Institute of Optics, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
| |
Collapse
|
40
|
Mamiya A, Gurung P, Tuthill JC. Neural Coding of Leg Proprioception in Drosophila. Neuron 2018; 100:636-650.e6. [PMID: 30293823 PMCID: PMC6481666 DOI: 10.1016/j.neuron.2018.09.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/01/2018] [Accepted: 09/05/2018] [Indexed: 01/12/2023]
Abstract
Animals rely on an internal sense of body position and movement to effectively control motor behavior. This sense of proprioception is mediated by diverse populations of mechanosensory neurons distributed throughout the body. Here, we investigate neural coding of leg proprioception in Drosophila, using in vivo two-photon calcium imaging of proprioceptive sensory neurons during controlled movements of the fly tibia. We found that the axons of leg proprioceptors are organized into distinct functional projections that contain topographic representations of specific kinematic features. Using subclass-specific genetic driver lines, we show that one group of axons encodes tibia position (flexion/extension), another encodes movement direction, and a third encodes bidirectional movement and vibration frequency. Overall, our findings reveal how proprioceptive stimuli from a single leg joint are encoded by a diverse population of sensory neurons, and provide a framework for understanding how proprioceptive feedback signals are used by motor circuits to coordinate the body.
Collapse
Affiliation(s)
- Akira Mamiya
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Pralaksha Gurung
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
41
|
Tiriac A, Smith BE, Feller MB. Light Prior to Eye Opening Promotes Retinal Waves and Eye-Specific Segregation. Neuron 2018; 100:1059-1065.e4. [PMID: 30392793 DOI: 10.1016/j.neuron.2018.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/24/2018] [Accepted: 10/05/2018] [Indexed: 11/16/2022]
Abstract
Retinal waves are bursts of correlated activity that occur prior to eye opening and provide a critical source of activity that drives the refinement of retinofugal projections. Retinal waves are thought to be initiated spontaneously with their spatiotemporal features dictated by immature neural circuits. Here we demonstrate that, during the second postnatal week in mice, changes in light intensity dictate where and when a subset of retinal waves are triggered via activation of conventional photoreceptors. Propagation properties of triggered waves are indistinguishable from spontaneous waves, indicating that they are activating the same retinal circuits. Using whole-brain imaging techniques, we demonstrate that light deprivation prior to eye opening diminishes eye-specific segregation of the retinal projections to the dorsolateral geniculate nucleus of the thalamus, but not other retinal targets. These data indicate that light that passes through the closed eyelids plays a critical role in the development of the image-forming visual system.
Collapse
Affiliation(s)
- Alexandre Tiriac
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Benjamin E Smith
- School of Optometry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
42
|
Molecular Fingerprinting of On-Off Direction-Selective Retinal Ganglion Cells Across Species and Relevance to Primate Visual Circuits. J Neurosci 2018; 39:78-95. [PMID: 30377226 DOI: 10.1523/jneurosci.1784-18.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/08/2018] [Accepted: 10/23/2018] [Indexed: 12/27/2022] Open
Abstract
The ability to detect moving objects is an ethologically salient function. Direction-selective neurons have been identified in the retina, thalamus, and cortex of many species, but their homology has remained unclear. For instance, it is unknown whether direction-selective retinal ganglion cells (DSGCs) exist in primates and, if so, whether they are the equivalent to mouse and rabbit DSGCs. Here, we used a molecular/circuit approach in both sexes to address these issues. In mice, we identify the transcription factor Satb2 (special AT-rich sequence-binding protein 2) as a selective marker for three RGC types: On-Off DSGCs encoding motion in either the anterior or posterior direction, a newly identified type of Off-DSGC, and an Off-sustained RGC type. In rabbits, we find that expression of Satb2 is conserved in On-Off DSGCs; however, it has evolved to include On-Off DSGCs encoding upward and downward motion in addition to anterior and posterior motion. Next, we show that macaque RGCs express Satb2 most likely in a single type. We used rabies virus-based circuit-mapping tools to reveal the identity of macaque Satb2-RGCs and discovered that their dendritic arbors are relatively large and monostratified. Together, these data indicate Satb2-expressing On-Off DSGCs are likely not present in the primate retina. Moreover, if DSGCs are present in the primate retina, it is unlikely that they express Satb2.SIGNIFICANCE STATEMENT The ability to detect object motion is a fundamental feature of almost all visual systems. Here, we identify a novel marker for retinal ganglion cells encoding directional motion that is evolutionarily conserved in mice and rabbits, but not in primates. We show in macaque monkeys that retinal ganglion cells (RGCs) that express this marker comprise a single type and are morphologically distinct from mouse and rabbit direction-selective RGCs. Our findings indicate that On-Off direction-selective retinal neurons may have evolutionarily diverged in primates and more generally provide novel insight into the identity and organization of primate parallel visual pathways.
Collapse
|
43
|
Zebrafish Differentially Process Color across Visual Space to Match Natural Scenes. Curr Biol 2018; 28:2018-2032.e5. [DOI: 10.1016/j.cub.2018.04.075] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 01/09/2023]
|
44
|
Liu J, Reggiani JDS, Laboulaye MA, Pandey S, Chen B, Rubenstein JLR, Krishnaswamy A, Sanes JR. Tbr1 instructs laminar patterning of retinal ganglion cell dendrites. Nat Neurosci 2018; 21:659-670. [PMID: 29632360 PMCID: PMC5920715 DOI: 10.1038/s41593-018-0127-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/20/2018] [Indexed: 12/20/2022]
Abstract
Visual information is delivered to the brain by >40 types of retinal ganglion cells (RGCs). Diversity in this representation arises within the inner plexiform layer (IPL), where dendrites of each RGC type are restricted to specific sublaminae, limiting the interneuronal types that can innervate them. How such dendritic restriction arises is unclear. We show that the transcription factor Tbr1 is expressed by four mouse RGC types with dendrites in the outer IPL and is required for their laminar specification. Loss of Tbr1 results in elaboration of dendrites within the inner IPL, while misexpression in other cells retargets their neurites to the outer IPL. Two transmembrane molecules, Sorcs3 and Cdh8, act as effectors of the Tbr1-controlled lamination program. However, they are expressed in just one Tbr1+ RGC type, supporting a model in which a single transcription factor implements similar laminar choices in distinct cell types by recruiting partially non-overlapping effectors.
Collapse
Affiliation(s)
- Jinyue Liu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.,Center for Brain Science, Harvard University, Cambridge, MA, USA.,Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Jasmine D S Reggiani
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.,Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Mallory A Laboulaye
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.,Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Shristi Pandey
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.,Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Bin Chen
- Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - John L R Rubenstein
- Department of Psychiatry, University of California at San Francisco, San Francisco, CA, USA
| | - Arjun Krishnaswamy
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.,Center for Brain Science, Harvard University, Cambridge, MA, USA.,Department of Physiology, McGill University, Montreal, QC, Canada
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA. .,Center for Brain Science, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
45
|
Eliminating Glutamatergic Input onto Horizontal Cells Changes the Dynamic Range and Receptive Field Organization of Mouse Retinal Ganglion Cells. J Neurosci 2018; 38:2015-2028. [PMID: 29352045 DOI: 10.1523/jneurosci.0141-17.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 12/20/2017] [Accepted: 01/02/2018] [Indexed: 12/21/2022] Open
Abstract
In the mammalian retina, horizontal cells receive glutamatergic inputs from many rod and cone photoreceptors and return feedback signals to them, thereby changing photoreceptor glutamate release in a light-dependent manner. Horizontal cells also provide feedforward signals to bipolar cells. It is unclear, however, how horizontal cell signals also affect the temporal, spatial, and contrast tuning in retinal output neurons, the ganglion cells. To study this, we generated a genetically modified mouse line in which we eliminated the light dependency of feedback by deleting glutamate receptors from mouse horizontal cells. This genetic modification allowed us to investigate the impact of horizontal cells on ganglion cell signaling independent of the actual mode of feedback in the outer retina and without pharmacological manipulation of signal transmission. In control and genetically modified mice (both sexes), we recorded the light responses of transient OFF-α retinal ganglion cells in the intact retina. Excitatory postsynaptic currents (EPSCs) were reduced and the cells were tuned to lower temporal frequencies and higher contrasts, presumably because photoreceptor output was attenuated. Moreover, receptive fields of recorded cells showed a significantly altered surround structure. Our data thus suggest that horizontal cells are responsible for adjusting the dynamic range of retinal ganglion cells and, together with amacrine cells, contribute to the center/surround organization of ganglion cell receptive fields in the mouse.SIGNIFICANCE STATEMENT Horizontal cells represent a major neuronal class in the mammalian retina and provide lateral feedback and feedforward signals to photoreceptors and bipolar cells, respectively. The mode of signal transmission remains controversial and, moreover, the contribution of horizontal cells to visual processing is still elusive. To address the question of how horizontal cells affect retinal output signals, we recorded the light responses of transient OFF-α retinal ganglion cells in a newly generated mouse line. In this mouse line, horizontal cell signals were no longer modulated by light. With light response recordings, we show that horizontal cells increase the dynamic range of retinal ganglion cells for contrast and temporal changes and contribute to the center/surround organization of their receptive fields.
Collapse
|
46
|
Chapot CA, Behrens C, Rogerson LE, Baden T, Pop S, Berens P, Euler T, Schubert T. Local Signals in Mouse Horizontal Cell Dendrites. Curr Biol 2017; 27:3603-3615.e5. [PMID: 29174891 DOI: 10.1016/j.cub.2017.10.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/01/2017] [Accepted: 10/19/2017] [Indexed: 01/07/2023]
Abstract
The mouse retina contains a single type of horizontal cell, a GABAergic interneuron that samples from all cone photoreceptors within reach and modulates their glutamatergic output via parallel feedback mechanisms. Because horizontal cells form an electrically coupled network, they have been implicated in global signal processing, such as large-scale contrast enhancement. Recently, it has been proposed that horizontal cells can also act locally at the level of individual cone photoreceptors. To test this possibility physiologically, we used two-photon microscopy to record light stimulus-evoked Ca2+ signals in cone axon terminals and horizontal cell dendrites as well as glutamate release in the outer plexiform layer. By selectively stimulating the two mouse cone opsins with green and UV light, we assessed whether signals from individual cones remain isolated within horizontal cell dendritic tips or whether they spread across the dendritic arbor. Consistent with the mouse's opsin expression gradient, we found that the Ca2+ signals recorded from dendrites of dorsal horizontal cells were dominated by M-opsin and those of ventral horizontal cells by S-opsin activation. The signals measured in neighboring horizontal cell dendritic tips varied markedly in their chromatic preference, arguing against global processing. Rather, our experimental data and results from biophysically realistic modeling support the idea that horizontal cells can process cone input locally, extending the classical view of horizontal cell function. Pharmacologically removing horizontal cells from the circuitry reduced the sensitivity of the cone signal to low frequencies, suggesting that local horizontal cell feedback shapes the temporal properties of cone output.
Collapse
Affiliation(s)
- Camille A Chapot
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Christian Behrens
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Luke E Rogerson
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Tom Baden
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK
| | - Sinziana Pop
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, 72076 Tübingen, Germany.
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
47
|
Benchmarking Spike Rate Inference in Population Calcium Imaging. Neuron 2017; 90:471-82. [PMID: 27151639 DOI: 10.1016/j.neuron.2016.04.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 08/20/2015] [Accepted: 03/10/2016] [Indexed: 11/20/2022]
Abstract
A fundamental challenge in calcium imaging has been to infer spike rates of neurons from the measured noisy fluorescence traces. We systematically evaluate different spike inference algorithms on a large benchmark dataset (>100,000 spikes) recorded from varying neural tissue (V1 and retina) using different calcium indicators (OGB-1 and GCaMP6). In addition, we introduce a new algorithm based on supervised learning in flexible probabilistic models and find that it performs better than other published techniques. Importantly, it outperforms other algorithms even when applied to entirely new datasets for which no simultaneously recorded data is available. Future data acquired in new experimental conditions can be used to further improve the spike prediction accuracy and generalization performance of the model. Finally, we show that comparing algorithms on artificial data is not informative about performance on real data, suggesting that benchmarking different methods with real-world datasets may greatly facilitate future algorithmic developments in neuroscience.
Collapse
|
48
|
Koren D, Grove JCR, Wei W. Cross-compartmental Modulation of Dendritic Signals for Retinal Direction Selectivity. Neuron 2017; 95:914-927.e4. [PMID: 28781167 DOI: 10.1016/j.neuron.2017.07.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/08/2017] [Accepted: 07/19/2017] [Indexed: 11/19/2022]
Abstract
Compartmentalized signaling in dendritic subdomains is critical for the function of many central neurons. In the retina, individual dendritic sectors of a starburst amacrine cell (SAC) are preferentially activated by different directions of linear motion, indicating limited signal propagation between the sectors. However, the mechanism that regulates this propagation is poorly understood. Here, we find that metabotropic glutamate receptor 2 (mGluR2) signaling, which acts on voltage-gated calcium channels in SACs, selectively restricts cross-sector signal propagation in SACs, but does not affect local dendritic computation within individual sectors. mGluR2 signaling ensures sufficient electrotonic isolation of dendritic sectors to prevent their depolarization during non-preferred motion, yet enables controlled multicompartmental signal integration that enhances responses to preferred motion. Furthermore, mGluR2-mediated dendritic compartmentalization in SACs is important for the functional output of direction-selective ganglion cells (DSGCs). Therefore, our results directly link modulation of dendritic compartmentalization to circuit-level encoding of motion direction in the retina.
Collapse
Affiliation(s)
- David Koren
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA; Interdisciplinary Scientist Training Program, The University of Chicago, Chicago, IL 60637, USA
| | - James C R Grove
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| | - Wei Wei
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
49
|
Maia Chagas A, Prieto-Godino LL, Arrenberg AB, Baden T. The €100 lab: A 3D-printable open-source platform for fluorescence microscopy, optogenetics, and accurate temperature control during behaviour of zebrafish, Drosophila, and Caenorhabditis elegans. PLoS Biol 2017; 15:e2002702. [PMID: 28719603 PMCID: PMC5515398 DOI: 10.1371/journal.pbio.2002702] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Small, genetically tractable species such as larval zebrafish, Drosophila, or Caenorhabditis elegans have become key model organisms in modern neuroscience. In addition to their low maintenance costs and easy sharing of strains across labs, one key appeal is the possibility to monitor single or groups of animals in a behavioural arena while controlling the activity of select neurons using optogenetic or thermogenetic tools. However, the purchase of a commercial solution for these types of experiments, including an appropriate camera system as well as a controlled behavioural arena, can be costly. Here, we present a low-cost and modular open-source alternative called 'FlyPi'. Our design is based on a 3D-printed mainframe, a Raspberry Pi computer, and high-definition camera system as well as Arduino-based optical and thermal control circuits. Depending on the configuration, FlyPi can be assembled for well under €100 and features optional modules for light-emitting diode (LED)-based fluorescence microscopy and optogenetic stimulation as well as a Peltier-based temperature stimulator for thermogenetics. The complete version with all modules costs approximately €200 or substantially less if the user is prepared to 'shop around'. All functions of FlyPi can be controlled through a custom-written graphical user interface. To demonstrate FlyPi's capabilities, we present its use in a series of state-of-the-art neurogenetics experiments. In addition, we demonstrate FlyPi's utility as a medical diagnostic tool as well as a teaching aid at Neurogenetics courses held at several African universities. Taken together, the low cost and modular nature as well as fully open design of FlyPi make it a highly versatile tool in a range of applications, including the classroom, diagnostic centres, and research labs.
Collapse
Affiliation(s)
- Andre Maia Chagas
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Graduate school for Neural and Behavioural Neuroscience, University of Tübingen, Tübingen, Germany
- TReND in Africa gUG, Bonn, Germany
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Lucia L. Prieto-Godino
- TReND in Africa gUG, Bonn, Germany
- Center of Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Aristides B. Arrenberg
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| | - Tom Baden
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- TReND in Africa gUG, Bonn, Germany
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
50
|
Forman CJ, Tomes H, Mbobo B, Burman RJ, Jacobs M, Baden T, Raimondo JV. Openspritzer: an open hardware pressure ejection system for reliably delivering picolitre volumes. Sci Rep 2017; 7:2188. [PMID: 28526883 PMCID: PMC5438373 DOI: 10.1038/s41598-017-02301-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/10/2017] [Indexed: 11/09/2022] Open
Abstract
The ability to reliably and precisely deliver picolitre volumes is an important component of biological research. Here we describe a high-performance, low-cost, open hardware pressure ejection system (Openspritzer), which can be constructed from off the shelf components. The device is capable of delivering minute doses of reagents to a wide range of biological and chemical systems. In this work, we characterise the performance of the device and compare it to a popular commercial system using two-photon fluorescence microscopy. We found that Openspritzer provides the same level of control over delivered reagent dose as the commercial system. Next, we demonstrate the utility of Openspritzer in a series of standard neurobiological applications. First, we used Openspritzer to deliver precise amounts of reagents to hippocampal neurons to elicit time- and dose-precise responses on neuronal voltage. Second, we used Openspritzer to deliver infectious viral and bacterial agents to living tissue. This included viral transfection of hippocampal interneurons with channelrhodopsin for the optogenetic manipulation of hippocampal circuitry with light. We anticipate that due to its high performance and low cost Openspritzer will be of interest to a broad range of researchers working in the life and physical sciences.
Collapse
Affiliation(s)
- C J Forman
- School of Life Sciences, University of Sussex, Sussex, United Kingdom.
| | - H Tomes
- Division of Physiology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - B Mbobo
- Division of Physiology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - R J Burman
- Division of Physiology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - M Jacobs
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Immunology of Infectious Disease Research Unit, South African Medical Research Council, Cape Town, South Africa.,National Health Laboratory Service, Sandringham, Johannesburg, South Africa
| | - T Baden
- School of Life Sciences, University of Sussex, Sussex, United Kingdom. .,Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany.
| | - J V Raimondo
- Division of Physiology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|