1
|
Sun X, Bao N, Rui C, Xue Y, Fang Q, Zheng T, Lin Z, Liu X, Wang X. Identification of large yellow croakers (Larimichthys crocea) scavenger receptor genes: Involvement in immune response to Pseudomonas plecoglossicida infection and hypoxia-exposure experiments. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109307. [PMID: 38122953 DOI: 10.1016/j.fsi.2023.109307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Scavenger receptors (SRs) are pattern recognition receptors involved in the innate immune defense against pathogen infection in fish. However, there has not been much research done on teleosts. In this study, 18 members of the SR gene family were found in large yellow croaker. The identification of the SR gene family showed that the protein length of SR members in large yellow croaker were quite different, and most SR genes were distributed in nuclear and endoplasmic. The evolutionary relationship, exon/intron structure and motif analysis revealed that members of the SR gene family were highly conserved. The results of the expression profiles after Pseudomonas plecoglossicida infection and hypoxia-exposure demonstrated that SR members were involved in inflammatory reactions. Especially, COLEC12 and SCARF1 exhibited substantial changes in response to both P. plecoglossicida and hypoxia stress, indicating their possible immunological functions. The result of this study revealed that SR genes played a vital part in the innate immune response of large yellow croaker, and would give important details for a deeper comprehension of the SR gene family's regulation mechanism under various conditions in large yellow croaker.
Collapse
Affiliation(s)
- Xuanyang Sun
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Ning Bao
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Chen Rui
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Yadong Xue
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Qian Fang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Tianyu Zheng
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Ziyang Lin
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China.
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; National Engineering Research Laboratory of marine Biotechnology and Engineering, Ningbo University, Ningbo, Zhejiang, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China.
| |
Collapse
|
2
|
Wang J, He Z, Cui M, Sun J, Jiang L, Zhuang N, Zhu F, Zhang X, Song H, Cheng C. Hypoxia-induced HIF-1α promotes Listeria monocytogenes invasion into tilapia. Microbiol Spectr 2023; 11:e0140523. [PMID: 37681973 PMCID: PMC10580874 DOI: 10.1128/spectrum.01405-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/06/2023] [Indexed: 09/09/2023] Open
Abstract
HIF-1α is a nuclear transcription factor, and its activity is tightly regulated by the level of available oxygen in cells. Here, we investigated the roles of HIF-1α in the invasion of Listeria monocytogenes into tilapia under hypoxic environments. We found that the expression levels of HIF-1α in examined tissues of hypoxic tilapia were significantly upregulated, indicating that the tissue cells have been in hypoxic conditions. After 24-h infection with L. monocytogenes, we found that bacterial burden counts increased significantly in all examined tissues of hypoxic fish. To explore why the bacterial count increased significantly in the tissues of hypoxic fish, we modulated HIF-1α expression through RNAi technology. The results indicated that c-Met expression levels were positively related to HIF-1α expression. Since c-Met is the receptor of InlB that plays critical roles in the adhesion and invasion of L. monocytogenes, the ∆InlB strain was used to further explore the reason for the significant increase in bacterial counts in hypoxic fish. As expected, the decrease in the adhesion ability of ∆InlB suggested that InlB mediates L. monocytogenes infection in tilapia. After being infected with ∆InlB strain, we found that the bacterial counts in hypoxic fish were not affected by hypoxic conditions or HIF-1α expression levels. These findings indicate that HIF-1α may promote the internalization of InlB by upregulating c-Met expression and therefore contributes to the invasion of L. monocytogenes into hypoxic tilapia. IMPORTANCE Listeria monocytogenes is a zoonotic food-borne bacterial pathogen with a solid pathogenicity for humans. After ingestion of highly contaminated food, L. monocytogenes is able to cross the intestine invading phagocytic and nonphagocytic cells and causes listeriosis. China is the world's largest supplier of tilapia. The contamination rate of L. monocytogenes to tilapia products was as high as 2.81%, causing a severe threat to public health. This study revealed the underlying regulatory mechanisms of HIF-1α in the invasion of L. monocytogenes into tilapia under hypoxic environments. This study will be helpful for better understanding the molecular mechanisms of hypoxic environments in L. monocytogenes infection to tilapia. More importantly, our data will provide novel insights into the prevention and control of this pathogen in aquaculture.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zhan He
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Mingzhu Cui
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Jing Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Lingli Jiang
- Ningbo College of Health Sciences, Ningbo, Zhejiang Province, China
| | - Nanxi Zhuang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Fuxin Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Xian Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Changyong Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Sheng W, Ji G, Zhang L. Role of macrophage scavenger receptor MSR1 in the progression of non-alcoholic steatohepatitis. Front Immunol 2022; 13:1050984. [PMID: 36591228 PMCID: PMC9797536 DOI: 10.3389/fimmu.2022.1050984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic fatty liver disease (NAFLD), and the dysregulation of lipid metabolism and oxidative stress are the typical features. Subsequent dyslipidemia and oxygen radical production may render the formation of modified lipids. Macrophage scavenger receptor 1 (MSR1) is responsible for the uptake of modified lipoprotein and is one of the key molecules in atherosclerosis. However, the unrestricted uptake of modified lipoproteins by MSR1 and the formation of cholesterol-rich foamy macrophages also can be observed in NASH patients and mouse models. In this review, we highlight the dysregulation of lipid metabolism and oxidative stress in NASH, the alteration of MSR1 expression in physiological and pathological conditions, the formation of modified lipoproteins, and the role of MSR1 on macrophage foaming and NASH development and progression.
Collapse
|
4
|
Thomas C, Leleu D, Masson D. Cholesterol and HIF-1α: Dangerous Liaisons in Atherosclerosis. Front Immunol 2022; 13:868958. [PMID: 35386720 PMCID: PMC8977597 DOI: 10.3389/fimmu.2022.868958] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022] Open
Abstract
HIF-1α exerts both detrimental and beneficial actions in atherosclerosis. While there is evidence that HIF-1α could be pro-atherogenic within the atheromatous plaque, experimental models of atherosclerosis suggest a more complex role that depends on the cell type expressing HIF-1α. In atheroma plaques, HIF-1α is stabilized by local hypoxic conditions and by the lipid microenvironment. Macrophage exposure to oxidized LDLs (oxLDLs) or to necrotic plaque debris enriched with oxysterols induces HIF-1α -dependent pathways. Moreover, HIF-1α is involved in many oxLDL-induced effects in macrophages including inflammatory response, angiogenesis and metabolic reprogramming. OxLDLs activate toll-like receptor signaling pathways to promote HIF-1α stabilization. OxLDLs and oxysterols also induce NADPH oxidases and reactive oxygen species production, which subsequently leads to HIF-1α stabilization. Finally, recent investigations revealed that the activation of liver X receptor, an oxysterol nuclear receptor, results in an increase in HIF-1α transcriptional activity. Reciprocally, HIF-1α signaling promotes triglycerides and cholesterol accumulation in macrophages. Hypoxia and HIF-1α increase the uptake of oxLDLs, promote cholesterol and triglyceride synthesis and decrease cholesterol efflux. In conclusion, the impact of HIF-1α on cholesterol homeostasis within macrophages and the feedback activation of the inflammatory response by oxysterols via HIF-1α could play a deleterious role in atherosclerosis. In this context, studies aimed at understanding the specific mechanisms leading to HIF-1α activation within the plaque represents a promising field for research investigations and a path toward development of novel therapies.
Collapse
Affiliation(s)
- Charles Thomas
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Damien Leleu
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,LipSTIC LabEx, Dijon, France.,CHRU Dijon Bourgogne, Laboratory of Clinical Chemistry, Dijon, France
| | - David Masson
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,LipSTIC LabEx, Dijon, France.,CHRU Dijon Bourgogne, Laboratory of Clinical Chemistry, Dijon, France
| |
Collapse
|
5
|
Hochgerner M, Sturm EM, Schnoegl D, Kwapiszewska G, Olschewski H, Marsh LM. Low oxygen levels decrease adaptive immune responses and ameliorate experimental asthma in mice. Allergy 2022; 77:870-882. [PMID: 34309864 PMCID: PMC9290649 DOI: 10.1111/all.15020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/09/2021] [Accepted: 07/13/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND High-altitude therapy has been used as add-on treatment for allergic asthma with considerable success. However, the underlying mechanisms remain unclear. In order to investigate the possible therapeutic effects of high-altitude therapy on allergic asthma, we utilized a new in vivo mouse model. METHODS Mice were treated with house dust mite (HDM) extract over 4 weeks and co-exposed to 10% oxygen (Hyp) or room air for the final 2 weeks. Experimental asthma was assessed by airway hyper-responsiveness, mucus hypersecretion and inflammatory cell recruitment. Isolated immune cells from mouse and allergic patients were stimulated in vitro with HDM under Hyp and normoxia in different co-culture systems to analyse the adaptive immune response. RESULTS Compared to HDM-treated mice in room air, HDM-treated Hyp-mice displayed ameliorated mucosal hypersecretion and airway hyper-responsiveness. The attenuated asthma phenotype was associated with strongly reduced activation of antigen-presenting cells (APCs), effector cell infiltration and cytokine secretion. In vitro, hypoxia almost completely suppressed the HDM-induced adaptive immune response in both mouse and human immune cells. While hypoxia did not affect effector T-cell responses per-se, it interfered with antigen-presenting cell (APC) differentiation and APC/effector cell crosstalk. CONCLUSIONS Hypoxia-induced reduction in the Th2-response to HDM ameliorates allergic asthma in vivo. Hypoxia interferes with APC/T-cell crosstalk and confers an unresponsive phenotype to APCs.
Collapse
Affiliation(s)
| | - Eva M. Sturm
- Division of Pharmacology, Otto Loewi Research Center Medical University of Graz Graz Austria
| | - Diana Schnoegl
- Ludwig Boltzmann Institute for Lung Vascular Research Graz Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research Graz Austria
- Division of Physiology Otto Loewi Research Center, Medical University of Graz Graz Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research Graz Austria
- Division of Pulmonology, Department of Internal Medicine Medical University of Graz Graz Austria
| | - Leigh M. Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research Graz Austria
| |
Collapse
|
6
|
Santiago-Fernández C, Martín-Reyes F, Tome M, Gutierrez-Repiso C, Fernandez-Garcia D, Ocaña-Wilhelmi L, Rivas-Becerra J, Tatzber F, Pursch E, Tinahones FJ, García-Fuentes E, Garrido-Sánchez L. Oxidized LDL Increase the Proinflammatory Profile of Human Visceral Adipocytes Produced by Hypoxia. Biomedicines 2021; 9:biomedicines9111715. [PMID: 34829944 PMCID: PMC8615639 DOI: 10.3390/biomedicines9111715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Little is known about the effects of hypoxia on scavenger receptors (SRs) levels in adipocytes. We analyzed the effect of morbid obesity and hypoxia on SRs and inflammation markers in human visceral adipocytes and whether ox-LDL modify the inflammatory profile produced by hypoxia. Methods: We studied in 17 non-obese and 20 subjects with morbid obesity (MO) the mRNA expression of HIF-1α, SRs (LOX-1, MSR1, CL-P1 and CXCL16), IL6 and TNFα in visceral adipocytes and the effect of hypoxia with or without ox-LDL on visceral in vitro-differentiated adipocytes (VDA). Results: HIF-1α, TNFα, IL6, LOX-1, MSR1 and CXCL16 expression in adipocytes was increased in MO when compared with those in non-obese subjects (p < 0.05). The expression of most of the inflammatory markers and SRs gene correlated with HIF-1α. In VDA, hypoxia increased TNFα, IL6, MSR1, CXCL16 and CL-P1 (p < 0.05) in non-obese subjects, and TNFα, IL6, MSR1 and CXCL16 (p < 0.05) in MO. Silencing HIF-1α prevented the increase of TNFα, IL6, LOX-1, MSR1, CL-P1 and CXCL16 expression (p < 0.05). The combination of hypoxia and ox-LDL produced higher TNFα expression (p = 0.041). Conclusions: Morbid obesity and hypoxia increased SRs and inflammatory markers in visceral adipocytes. In a hypoxic state, ox-LDL increased the proinflammatory response of visceral adipocytes to hypoxia.
Collapse
Affiliation(s)
- Concepción Santiago-Fernández
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA)/Universidad de Málaga, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (C.S.-F.); (F.M.-R.)
| | - Flores Martín-Reyes
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA)/Universidad de Málaga, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (C.S.-F.); (F.M.-R.)
| | - Monica Tome
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario, 29010 Málaga, Spain;
| | - Carolina Gutierrez-Repiso
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA)/Universidad de Málaga, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (C.G.-R.); (D.F.-G.); (L.G.-S.)
| | - Diego Fernandez-Garcia
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA)/Universidad de Málaga, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (C.G.-R.); (D.F.-G.); (L.G.-S.)
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, 29010 Málaga, Spain
| | - Luis Ocaña-Wilhelmi
- Unidad de Gestión Clínica de Cirugía General y Digestiva, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain;
| | - Jose Rivas-Becerra
- Unidad de Gestión Clínica de Cirugía General, Digestiva y Trasplantes, Hospital Regional Universitario, 29010 Málaga, Spain;
| | - Franz Tatzber
- Otto Loewi Research Center, Division of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria;
| | - Edith Pursch
- Institute of Biochemical Engineering, University of Applied Sciences Technikum-Wien, 1200 Vienna, Austria;
| | - Francisco J. Tinahones
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA)/Universidad de Málaga, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (C.G.-R.); (D.F.-G.); (L.G.-S.)
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, 29010 Málaga, Spain
- Correspondence: (F.J.T.); (E.G.-F.)
| | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA)/Universidad de Málaga, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (C.S.-F.); (F.M.-R.)
- CIBER Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto Salud Carlos III, 29010 Málaga, Spain
- Correspondence: (F.J.T.); (E.G.-F.)
| | - Lourdes Garrido-Sánchez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA)/Universidad de Málaga, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (C.G.-R.); (D.F.-G.); (L.G.-S.)
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, 29010 Málaga, Spain
| |
Collapse
|
7
|
SARS-CoV-2 spike protein S1 subunit induces pro-inflammatory responses via toll-like receptor 4 signaling in murine and human macrophages. Heliyon 2021; 7:e06187. [PMID: 33644468 PMCID: PMC7887388 DOI: 10.1016/j.heliyon.2021.e06187] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/02/2020] [Accepted: 01/31/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has now spread globally. Some patients develop severe complications including multiple organ failure. It has been suggested that excessive inflammation associated with the disease plays major role in the severity and mortality of COVID-19. To elucidate the inflammatory mechanisms involved in COVID-19, we examined the effects of SARS-CoV-2 spike protein S1 subunit (hereafter S1) on the pro-inflammatory responses in murine and human macrophages. Murine peritoneal exudate macrophages produced pro-inflammatory mediators in response to S1 exposure. Exposure to S1 also activated nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK) signaling pathways. Pro-inflammatory cytokine induction by S1 was suppressed by selective inhibitors of NF-κB and JNK pathways. Treatment of murine peritoneal exudate macrophages and human THP-1 cell-derived macrophages with a toll-like receptor 4 (TLR4) antagonist attenuated pro-inflammatory cytokine induction and the activation of intracellular signaling by S1 and lipopolysaccharide. Similar results were obtained in experiments using TLR4 siRNA-transfected murine RAW264.7 macrophages. In contrast, TLR2 neutralizing antibodies could not abrogate the S1-induced pro-inflammatory cytokine induction in either RAW264.7 or THP-1 cell-derived macrophages. These results suggest that SARS-CoV-2 spike protein S1 subunit activates TLR4 signaling to induce pro-inflammatory responses in murine and human macrophages. Therefore, TLR4 signaling in macrophages may be a potential target for regulating excessive inflammation in COVID-19 patients.
Collapse
|
8
|
Tsui L, Fong TH. Cobalt Chloride Induces Macrophage Foam Cell Formation: A Chemical Hypoxia Model for Anti-Atherosclerotic Drug Screening. Assay Drug Dev Technol 2020; 19:38-45. [PMID: 33232611 DOI: 10.1089/adt.2020.1007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Macrophages would engulf circulating oxidized (ox)- low-density lipoprotein and form lipid droplet-laden foam cells. Macrophage foam cells are considered an important therapeutic target of atherosclerosis. The aim of the study was to investigate a hypoxic foam cell model for anti-atherosclerotic drug screening using the chemical hypoxia-mimicking agent cobalt chloride (CoCl2). The oil red O stating results showed that treatment with CoCl2 could induce lipid accumulation and lead to cell transformation to spindle-shaped and lipid-rich foam cells in RAW 264.7 macrophages. Incubation with 150 μM CoCl2 for 24 h significantly increased the area of intracellular lipid droplets in macrophages, compared with the control group. Our findings indicate that CoCl2-triggered macrophage foam cells should be a potential in vitro hypoxia model for atherosclerosis drug discovery.
Collapse
Affiliation(s)
- Leo Tsui
- School of Pharmacy and Medical Technology, Putian University, Putian, Fujian, China
| | - Tsorng-Harn Fong
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China
| |
Collapse
|
9
|
Zohora F, Bidad K, Pourpak Z, Moin M. Biological and Immunological Aspects of Iron Deficiency Anemia in Cancer Development: A Narrative Review. Nutr Cancer 2018; 70:546-556. [PMID: 29697284 DOI: 10.1080/01635581.2018.1460685] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Iron Deficiency Anemia (IDA) is a universal health problem and a risk factor for the development of cancer. IDA changes the microenvironment of the human body by affecting both the biological and immunological systems. It increases DNA damage and genomic instability by different mechanisms. IDA is one of the leading causes of the imbalance between different antioxidant enzymes as well as enzymes involved in DNA damage and DNA repair systems of the body. It can affect the biogenesis/expression of microRNAs. IDA interrupts the oxidative phosphorylation energy metabolism and intestinal Cytochrome-P450 systems. It also disturbs multicellular signaling pathways involved in cell survival and helps in tumor angiogenesis. Moreover, IDA is also responsible for the functional deterioration of innate and adaptive immune systems that lead to immunological dysfunctions against invading pathogens. Genomic instability and immunological dysfunctions are the hallmarks of cancer development. In this review, we will review the evidence linking IDA to increased cancer risk.
Collapse
Affiliation(s)
- Fatema Zohora
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Katayoon Bidad
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Zahra Pourpak
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Mostafa Moin
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| |
Collapse
|
10
|
Regular Voluntary Exercise Potentiates Interleukin-1 β and Interleukin-18 Secretion by Increasing Caspase-1 Expression in Murine Macrophages. Mediators Inflamm 2017; 2017:9290416. [PMID: 28133422 PMCID: PMC5241476 DOI: 10.1155/2017/9290416] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/30/2016] [Accepted: 12/12/2016] [Indexed: 11/17/2022] Open
Abstract
Moderate-intensity regular exercise improves proinflammatory responses of lipopolysaccharide- (LPS-) stimulated macrophages. However, intracellular events that mediate the beneficial effects of exercise were unclear. This study aimed to clarify the mechanism by which regular voluntary exercise (VE) improves proinflammatory cytokine production by macrophages challenged with LPS. Peritoneal macrophages from VE mice secreted considerably higher amounts of interleukin- (IL-) 1β and IL-18 than did cells from sedentary control (SC) mice in the presence and absence of LPS, although tumor necrosis factor-α and IL-10 secretion were comparable between both groups. The mRNA levels of these cytokines increased significantly in response to LPS; similar levels were noted in macrophages from both SC and VE mice. Moreover, LPS evoked similar levels of degradation of inhibitor of κB (IκB) α and phosphorylation of IκB kinase β, c-Jun N-terminal kinase, and p38 in macrophages from SC and VE mice. These results indicate that the increased IL-1β and IL-18 secretion in VE mice are regulated posttranscriptionally. On the other hand, macrophages from VE mice showed higher amounts of caspase-1 protein than did cells from SC mice. These results suggest that regular VE potentiates IL-1β and IL-18 secretion in LPS-challenged macrophages by increasing caspase-1 levels.
Collapse
|
11
|
Pan XY, Liu XJ, Li J, Zhen SJ, Liu DX, Feng Q, Zhao WX, Luo Y, Zhang YL, Li HW, Yang JL. The antitumor efficacy of anti-p21Ras scFv mediated by the dual-promoter-regulated recombinant adenovirus KGHV300. Gene Ther 2016; 24:40-48. [PMID: 27834948 DOI: 10.1038/gt.2016.74] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/21/2016] [Accepted: 11/01/2016] [Indexed: 11/09/2022]
Abstract
Ras mutations and overexpression of the Ras protein, p21Ras, are main causes of cancer development and progression, which has made the Ras gene and p21Ras important targets for therapy of Ras-driven cancers. We previously prepared recombinant adenovirus KGHV100 based on replication-defective adenovirus type 5, which could intracellularly express anti-p21Ras single chain fragment viable antibodies (scFv) and repress tumor growth in vitro and in vivo. However, the anti-tumor effects of this anti-p21Ras scFv were limited by short-term scFv expression due to a replication defect of KGHV100. To enhance the anti-tumor efficacy and safety of anti-p21Ras scFv, the present study constructed a dual-promoter-regulated recombinant adenovirus KGHV300 that carried anti-p21Ras scFv. In KGHV300, the expression levels of the essential replication genes E1a and E1b, were controlled by the human telomerase reverse transcriptase promoter and the hypoxia response element, respectively, and the anti-p21Ras scFv gene was controlled by the cytomegalovirus promoter. The conditional replication of KGHV300 and its antitumor efficacy were characterized in several tumor cell lines in vitro and in xenograft models of human breast cancer in nude mice. TCID50 assay demonstrated that KGHV300 could replicate in tumor cell lines but not in normal cell lines. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay indicated that the growth of tumor cells was effectively inhibited by KGHV300 infection. In MDA-MB-231 tumor xenograft models, KGHV300 effectively and significantly inhibited tumor growth and induced apoptosis of tumor cells. We concluded that the recombinant adenovirus KGHV300 may be a more potent and safer antitumor therapeutic for Ras-driven cancer biotherapy.
Collapse
Affiliation(s)
- X Y Pan
- Department of Pathology, Kunming General Hospital, Kunming, Yunnan Province, China
| | - X J Liu
- Graduate School, Kunming Medical University, Kunming, Yunnan Province, China
| | - J Li
- Department of Genetics, Medical College, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - S J Zhen
- Graduate School, Kunming Medical University, Kunming, Yunnan Province, China
| | - D X Liu
- Graduate School, Kunming Medical University, Kunming, Yunnan Province, China
| | - Q Feng
- Department of Pathology, Kunming General Hospital, Kunming, Yunnan Province, China
| | - W X Zhao
- Department of Pathology, Kunming General Hospital, Kunming, Yunnan Province, China
| | - Y Luo
- Department of Genetics, Medical College, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Y L Zhang
- Biotechnique College, Southern Medical University, Guangzhou, Guangdong Province, China
| | - H W Li
- Biotechnique College, Southern Medical University, Guangzhou, Guangdong Province, China
| | - J L Yang
- Department of Pathology, Kunming General Hospital, Kunming, Yunnan Province, China.,Graduate School, Kunming Medical University, Kunming, Yunnan Province, China.,Department of Genetics, Medical College, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| |
Collapse
|
12
|
Dehne N, Brüne B. Hypoxic inhibition of JMJD3 reduces H3K27me3 demethylation and induction of the STAT6 target gene CCL18. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1490-1501. [PMID: 27737800 DOI: 10.1016/j.bbagrm.2016.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/23/2016] [Accepted: 10/07/2016] [Indexed: 01/12/2023]
Abstract
Hypoxia, by activating transcription factors induces transcription of some genes but it also reduces mRNA synthesis by mechanisms that are poorly defined. Activation of human macrophages with interleukin (IL)-4 showed that up-regulation of some IL-4 target genes was reduced when macrophages were incubated at 1% oxygen. Hypoxia impaired induction of chemokine (C-C motif) ligand 18 (CCL18), although IL-4-induced DNA binding of the transcription factor STAT6 remained intact. In contrast, induction of serine peptidase inhibitor, Kunitz type (SPINT)2, another IL-4/STAT6 target gene, was not affected by hypoxia. The repressive histone mark histone 3 lysine 27 trimethylation (H3K27me3), known to prevent chromatin remodelling and transcription, was removed from the SPINT2 but not the CCL18 gene locus under hypoxia or dimethyloxalylglycine-treatment. The H3K27me3 demethylase JMJD3 was required for CCL18 gene induction but dispensable for induction of SPINT2. Our data indicate that hypoxic inhibition of JMJD3 activity reduces demethylation of H3K27me3, nucleosome removal, and hence induction of the STAT6 target gene CCL18, while induction of other STAT6-inducible genes such as SPINT2 remained unaffected by JMJD3. In contrast to mouse MΦ in human cells JMJD3 is not recruited by transcription factors like IRF4, KL4, or PPARγ to convey specificity in gene induction.
Collapse
Affiliation(s)
- Nathalie Dehne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany.
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| |
Collapse
|
13
|
Dehn S, DeBerge M, Yeap XY, Yvan-Charvet L, Fang D, Eltzschig HK, Miller SD, Thorp EB. HIF-2α in Resting Macrophages Tempers Mitochondrial Reactive Oxygen Species To Selectively Repress MARCO-Dependent Phagocytosis. THE JOURNAL OF IMMUNOLOGY 2016; 197:3639-3649. [PMID: 27671111 DOI: 10.4049/jimmunol.1600402] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/24/2016] [Indexed: 12/22/2022]
Abstract
Hypoxia-inducible factor (HIF)-α isoforms regulate key macrophage (MΦ) functions during ischemic inflammation. HIF-2α drives proinflammatory cytokine production; however, the requirements for HIF-2α during other key MΦ functions, including phagocytosis, are unknown. In contrast to HIF-1α, HIF-2α was not required for hypoxic phagocytic uptake. Surprisingly, basal HIF-2α levels under nonhypoxic conditions were necessary and sufficient to suppress phagocytosis. Screening approaches revealed selective induction of the scavenger receptor MARCO, which was required for enhanced engulfment. Chromatin immunoprecipitation identified the antioxidant NRF2 as being directly responsible for inducing Marco Concordantly, Hif-2α-/- MΦs exhibited reduced antioxidant gene expression, and inhibition of mitochondrial reactive oxygen species suppressed Marco expression and phagocytic uptake. Ex vivo findings were recapitulated in vivo; the enhanced engulfment phenotype resulted in increased bacterial clearance and cytokine suppression. Importantly, natural induction of Hif-2α by IL-4 also suppressed MARCO-dependent phagocytosis. Thus, unlike most characterized prophagocytic regulators, HIF-2α can act as a phagocytic repressor. Interestingly, this occurs in resting MΦs through tempering of steady-state mitochondrial reactive oxygen species. In turn, HIF-2α promotes MΦ quiescence by blocking a MARCO bacterial-response pathway. IL-4 also drives HIF-2α suppression of MARCO, leading to compromised bacterial immunosurveillance in vivo.
Collapse
Affiliation(s)
- Shirley Dehn
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611.,Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Matthew DeBerge
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611.,Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Xin-Yi Yeap
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611.,Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Laurent Yvan-Charvet
- INSERM U1065, Centre Mediterraneen de Medecine Moleculaire, Atip-Avenir, 06204 Nice, France
| | - Deyu Fang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Holger K Eltzschig
- Department of Anesthesiology, University of Colorado, Aurora, CO 80045; and
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Edward B Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; .,Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
14
|
Isanejad A, Alizadeh AM, Amani Shalamzari S, Khodayari H, Khodayari S, Khori V, Khojastehnjad N. MicroRNA-206, let-7a and microRNA-21 pathways involved in the anti-angiogenesis effects of the interval exercise training and hormone therapy in breast cancer. Life Sci 2016; 151:30-40. [PMID: 26924493 DOI: 10.1016/j.lfs.2016.02.090] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 11/25/2022]
Abstract
AIMS MicroRNAs (miRNAs) are the targeting signal-transduction pathways that can mediate tumorigenesis via their down and/or up-regulation. For example, miR-21 and miR-206 can effect on the tumor angiogenesis as an oncomir and a tumor suppressor, respectively. MATERIALS AND METHODS The present study is aimed to investigate the effects of the interval exercise training in combination with tamoxifen and/or letrozole on miR-21, miR-206 and let-7 as well as their underlying pathways in regard to tumor angiogenesis in sixty four mice with breast tumor. ELISA, immunohistochemistry, qRT-PCR assays were performed accomplish the study. KEY FINDINGS The results showed that the tumor size was significantly declined in the exercise training, tamoxifen and letrozole groups compared to tumor group. Mir-206 and let-7 were up-regulated, and mir-21 expression was down-regulated in the exercise training compared to tumor group. Exercise training decreased the expression of ER-α, HIF-α, VEGF, CD31 and Ki67 in tumor tissue. The combination tamoxifen and/or letrozole with the exercise training could down-regulate the expression of ERα, miR-21, HIF-1α, TNF-α, CD31, Ki67 and VEGF, and up-regulate the expression of miR-206, PDCD-4, let-7 and IL-10 that led to reducing the angiogenesis and tumor growth. SIGNIFICANCE Our results showed that miR-21, miR-206 and let-7a pathways may involve in the anti-angiogenesis effects of the interval exercise training with hormone therapy in mice model of breast tumor.
Collapse
Affiliation(s)
- Amin Isanejad
- Immunoregulation Research Center, Shahed University, Tehran, Iran; Physical Education Department, Shahed University, Tehran, Iran
| | | | - Sadegh Amani Shalamzari
- Department of Exercise Physiology, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hamid Khodayari
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Khodayari
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | |
Collapse
|
15
|
Mishra KP, Ganju L, Singh SB. Hypoxia modulates innate immune factors: A review. Int Immunopharmacol 2015; 28:425-8. [PMID: 26184693 DOI: 10.1016/j.intimp.2015.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/19/2015] [Accepted: 07/07/2015] [Indexed: 12/30/2022]
Abstract
Hypoxia is an important factor for transcriptional regulation of cell metabolism and the adaptation to cellular stress. It modulates the function of phagocytic cells by stimulating surface receptors such as scavenger receptors, toll like receptors and their downstream signaling cascades. In response to hypoxia, innate immune modifiers are upregulated through pathways involving the key immune response master regulator nuclear factor-κB leading to the modulation of inflammatory cytokines. In this review, we highlighted the effects of hypoxia on different innate immune factors and consequences thereof.
Collapse
Affiliation(s)
- K P Mishra
- Immunomodulation Laboratory, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India.
| | - Lilly Ganju
- Immunomodulation Laboratory, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India
| | - Shashi Bala Singh
- Immunomodulation Laboratory, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India
| |
Collapse
|
16
|
Gondin J, Théret M, Duhamel G, Pegan K, Mathieu JRR, Peyssonnaux C, Cuvellier S, Latroche C, Chazaud B, Bendahan D, Mounier R. Myeloid HIFs are dispensable for resolution of inflammation during skeletal muscle regeneration. THE JOURNAL OF IMMUNOLOGY 2015; 194:3389-99. [PMID: 25750431 DOI: 10.4049/jimmunol.1401420] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Besides their role in cellular responses to hypoxia, hypoxia-inducible factors (HIFs) are involved in innate immunity and also have anti-inflammatory (M2) functions, such as resolution of inflammation preceding healing. Whereas the first steps of the inflammatory response are associated with proinflammatory (M1) macrophages (MPs), resolution of inflammation is associated with anti-inflammatory MPs exhibiting an M2 phenotype. This M1 to M2 sequence is observed during postinjury muscle regeneration, which provides an excellent paradigm to study the resolution of sterile inflammation. In this study, using in vitro and in vivo approaches in murine models, we demonstrated that deletion of hif1a or hif2a in MPs has no impact on the acquisition of an M2 phenotype. Furthermore, using a multiscale methodological approach, we showed that muscles did not require macrophagic hif1a or hif2a to regenerate. These results indicate that macrophagic HIFs do not play a crucial role during skeletal muscle regeneration induced by sterile tissue damage.
Collapse
Affiliation(s)
- Julien Gondin
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Unité Mixte de Recherche 7339, 13385 Marseille, France
| | - Marine Théret
- INSERM, U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5534, Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France; and
| | - Guillaume Duhamel
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Unité Mixte de Recherche 7339, 13385 Marseille, France
| | | | - Jacques R R Mathieu
- INSERM, U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Carole Peyssonnaux
- INSERM, U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Sylvain Cuvellier
- INSERM, U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Claire Latroche
- INSERM, U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Bénédicte Chazaud
- INSERM, U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5534, Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France; and
| | - David Bendahan
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Unité Mixte de Recherche 7339, 13385 Marseille, France
| | - Rémi Mounier
- INSERM, U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5534, Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France; and
| |
Collapse
|
17
|
Tazzyman S, Murdoch C, Yeomans J, Harrison J, Muthana M. Macrophage-mediated response to hypoxia in disease. HYPOXIA 2014; 2:185-196. [PMID: 27774476 PMCID: PMC5045066 DOI: 10.2147/hp.s49717] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hypoxia plays a critical role in the pathobiology of various inflamed, diseased tissues, including malignant tumors, atherosclerotic plaques, myocardial infarcts, the synovia of rheumatoid arthritic joints, healing wounds, and sites of bacterial infection. These areas of hypoxia form when the blood supply is occluded and/or the oxygen supply is unable to keep pace with cell growth and/or infiltration of inflammatory cells. Macrophages are ubiquitous in all tissues of the body and exhibit great plasticity, allowing them to perform divergent functions, including, among others, patrolling tissue, combating invading pathogens and tumor cells, orchestrating wound healing, and restoring homeostasis after an inflammatory response. The number of tissue macrophages increases markedly with the onset and progression of many pathological states, with many macrophages accumulating in avascular and necrotic areas, where they are exposed to hypoxia. Recent studies show that these highly versatile cells then respond rapidly to the hypoxia present by altering their expression of a wide array of genes. Here we review the evidence for hypoxia-driven macrophage inflammatory responses in various disease states, and how this influences disease progression and treatment.
Collapse
Affiliation(s)
| | | | | | | | - Munitta Muthana
- Department of Infection and Immunity, University of Sheffield, Sheffield, UK
| |
Collapse
|
18
|
Direct and indirect suppression of interleukin-6 gene expression in murine macrophages by nuclear orphan receptor REV-ERBα. ScientificWorldJournal 2014; 2014:685854. [PMID: 25401152 PMCID: PMC4220616 DOI: 10.1155/2014/685854] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/05/2014] [Indexed: 11/17/2022] Open
Abstract
It is now evident that many nuclear hormone receptors can modulate target gene expression. REV-ERBα, one of the nuclear hormone receptors with the capacity to alter clock function, is critically involved in lipid metabolism, adipogenesis, and the inflammatory response. Recent studies suggest that REV-ERBα plays a key role in the mediation between clockwork and inflammation. The purpose of the current study was to investigate the role of REV-ERBα in the regulation of interleukin-6 (il6) gene expression in murine macrophages. REV-ERBα agonists, or overexpression of rev-erbα in the murine macrophage cell line RAW264 cells, suppressed the induction of il6 mRNA following a lipopolysaccharide (LPS) endotoxin challenge. Also, rev-erbα overexpression decreased LPS-stimulated nuclear factor κB (NFκB) activation in RAW264 cells. We showed that REV-ERBα represses il6 expression not only indirectly through an NFκB binding motif but also directly through a REV-ERBα binding motif in the murine il6 promoter region. Furthermore, peritoneal macrophages from mice lacking rev-erbα increased il6 mRNA expression. These data suggest that REV-ERBα regulates the inflammatory response of macrophages through the suppression of il6 expression. REV-ERBα may therefore be identified as a potent anti-inflammatory receptor and be a therapeutic target receptor of inflammatory diseases.
Collapse
|
19
|
Posttranscriptional Suppression of Lipopolysaccharide-Stimulated Inflammatory Responses by Macrophages in Middle-Aged Mice: A Possible Role for Eukaryotic Initiation Factor 2 α. Int J Inflam 2014; 2014:292986. [PMID: 24808968 PMCID: PMC3997978 DOI: 10.1155/2014/292986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/24/2014] [Indexed: 11/17/2022] Open
Abstract
The intensities of macrophage inflammatory responses to bacterial components gradually decrease with age. Given that a reduced rate of protein synthesis is a common age-related biochemical change, which is partially mediated by increased phosphorylation of eukaryotic initiation factor-2 α (eIF-2 α ), we investigated the mechanism responsible for the deterioration of macrophage inflammatory responses, focusing specifically on the age-related biochemical changes in middle-aged mice. Peritoneal macrophages isolated from 2-month-old (young) and 12-month-old (middle-aged) male BALB/c mice were stimulated with lipopolysaccharide (LPS). Although LPS-stimulated secretion of tumor necrosis factor- α (TNF- α ) by the macrophages from middle-aged mice was significantly lower than that from young mice, LPS caused marked increases in levels of TNF- α mRNA in macrophages from middle-aged as well as young mice. Moreover, LPS evoked similar levels of phosphorylation of c-Jun N-terminal kinase (JNK) and nuclear factor- κ B (NF- κ B) in young and middle-aged mice. In contrast, the basal level of phosphorylated eIF-2 α in macrophages from middle-aged mice was higher than that in macrophages from young mice. Salubrinal, an inhibitor of the phosphatase activity that dephosphorylates eIF-2 α , suppressed the LPS-stimulated inflammatory responses in a murine macrophage cell line RAW264.7. These results suggest that posttranscriptional suppression of macrophage inflammatory responses during middle age requires phosphorylation of eIF-2 α .
Collapse
|
20
|
Sato S, Sakurai T, Ogasawara J, Takahashi M, Izawa T, Imaizumi K, Taniguchi N, Ohno H, Kizaki T. A Circadian Clock Gene, Rev-erbα, Modulates the Inflammatory Function of Macrophages through the Negative Regulation of Ccl2 Expression. THE JOURNAL OF IMMUNOLOGY 2013; 192:407-17. [DOI: 10.4049/jimmunol.1301982] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Brüne B, Dehne N, Grossmann N, Jung M, Namgaladze D, Schmid T, von Knethen A, Weigert A. Redox control of inflammation in macrophages. Antioxid Redox Signal 2013; 19:595-637. [PMID: 23311665 PMCID: PMC3718318 DOI: 10.1089/ars.2012.4785] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 12/14/2012] [Accepted: 01/11/2013] [Indexed: 12/13/2022]
Abstract
Macrophages are present throughout the human body, constitute important immune effector cells, and have variable roles in a great number of pathological, but also physiological, settings. It is apparent that macrophages need to adjust their activation profile toward a steadily changing environment that requires altering their phenotype, a process known as macrophage polarization. Formation of reactive oxygen species (ROS), derived from NADPH-oxidases, mitochondria, or NO-producing enzymes, are not necessarily toxic, but rather compose a network signaling system, known as redox regulation. Formation of redox signals in classically versus alternatively activated macrophages, their action and interaction at the level of key targets, and the resulting physiology still are insufficiently understood. We review the identity, source, and biological activities of ROS produced during macrophage activation, and discuss how they shape the key transcriptional responses evoked by hypoxia-inducible transcription factors, nuclear-erythroid 2-p45-related factor 2 (Nrf2), and peroxisome proliferator-activated receptor-γ. We summarize the mechanisms how redox signals add to the process of macrophage polarization and reprogramming, how this is controlled by the interaction of macrophages with their environment, and addresses the outcome of the polarization process in health and disease. Future studies need to tackle the option whether we can use the knowledge of redox biology in macrophages to shape their mediator profile in pathophysiology, to accelerate healing in injured tissue, to fight the invading pathogens, or to eliminate settings of altered self in tumors.
Collapse
Affiliation(s)
- Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I-Pathobiochemistry, Goethe-University Frankfurt, Frankfurt, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Scheerer N, Dehne N, Stockmann C, Swoboda S, Baba HA, Neugebauer A, Johnson RS, Fandrey J. Myeloid hypoxia-inducible factor-1α is essential for skeletal muscle regeneration in mice. THE JOURNAL OF IMMUNOLOGY 2013; 191:407-14. [PMID: 23729446 DOI: 10.4049/jimmunol.1103779] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The outstanding regeneration ability of skeletal muscle is based on stem cells that become activated and develop to myoblasts after myotrauma. Proliferation and growth of myoblasts result in self-renewal of skeletal muscle. In this article, we show that myotrauma causes a hypoxic microenvironment leading to accumulation of the transcription factor hypoxia-inducible factor-1 (HIF-1) in skeletal muscle cells, as well as invading myeloid cells. To evaluate the impact of HIF-1 in skeletal muscle injury and repair, we examined mice with a conditional HIF-1α knockout targeted to skeletal muscle or myeloid cells in a model of soft tissue trauma. No differences in acute trauma size were detected between control and HIF-1α knockout mice. However, muscles of myeloid HIF-1α knockout mice showed a significant delay in myoblast proliferation and growth of regenerating myofibers, in association with decreased expression of cyclooxygenase-2 in HIF-1α-deficient myeloid cells. Moreover, the removal of necrotic cell debris and the regeneration of endothelial cell structure were impaired in myeloid HIF-1α knockout mice that showed delayed invasion of macrophages to the injury site. Our findings for the first time, to our knowledge, demonstrate that myeloid HIF-1α is required for adequate skeletal muscle regeneration.
Collapse
Affiliation(s)
- Nina Scheerer
- Institut für Physiologie, Universität Duisburg-Essen, D-45122 Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Crucet M, Wüst SJA, Spielmann P, Lüscher TF, Wenger RH, Matter CM. Hypoxia enhances lipid uptake in macrophages: role of the scavenger receptors Lox1, SRA, and CD36. Atherosclerosis 2013; 229:110-7. [PMID: 23706521 DOI: 10.1016/j.atherosclerosis.2013.04.034] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 04/11/2013] [Accepted: 04/26/2013] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The core of advanced atherosclerotic plaques turns hypoxic as the arterial wall thickens and oxygen diffusion capacity becomes impaired. Macrophage-derived foam cells play a pivotal role in atherosclerotic plaque formation by expressing scavenger receptors that regulate lipid uptake. However, the role of hypoxia in scavenger receptor regulation remains incompletely understood. METHODS AND RESULTS Using RT-qPCR, flow cytometry and immunoblotting, we found that mRNA and protein expression levels of the scavenger receptor A (SRA) and the cluster of differentiation 36 (CD36) were upregulated by oxidized low-density lipoprotein (oxLDL), but decreased following exposure of macrophages to hypoxia. In contrast, lectin-like oxLDL receptor (Lox-1) mRNA and protein levels were upregulated under hypoxic conditions. Flow cytometry confirmed the increased lipid content in macrophages after exposure to 0.2% oxygen and the hypoxia-mimetic dimethyloxalylglycine (DMOG). Antibody-mediated blocking of Lox-1 receptor decreased the hypoxic induction of oxLDL uptake and lipid content. RNAi-mediated knock-down of hypoxia-inducible factor (HIF)-1α in macrophages attenuated the hypoxic induction of Lox-1. CONCLUSIONS Hypoxia increases lipid uptake into macrophages and differentially regulates the expression of oxLDL receptors. Lox-1 plays a major role in hypoxia-induced foam cell formation which is, at least in part, mediated by HIF-1α.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/pharmacology
- Atherosclerosis/metabolism
- Atherosclerosis/physiopathology
- Biological Transport/physiology
- CD36 Antigens/metabolism
- Carcinoma, Hepatocellular
- Cell Line, Tumor
- Cholesterol/metabolism
- Foam Cells/metabolism
- Gene Knockdown Techniques
- Hypoxia/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Lipid Metabolism/physiology
- Lipoproteins, LDL/metabolism
- Liver Neoplasms
- Macrophages/cytology
- Macrophages/metabolism
- Mice
- RNA, Messenger/metabolism
- Scavenger Receptors, Class A/genetics
- Scavenger Receptors, Class A/metabolism
- Scavenger Receptors, Class E/genetics
- Scavenger Receptors, Class E/immunology
- Scavenger Receptors, Class E/metabolism
Collapse
Affiliation(s)
- Margot Crucet
- Cellular Oxygen Physiology, Institute of Physiology, University of Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
24
|
Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 2013; 18:1208-46. [PMID: 22978553 PMCID: PMC3579386 DOI: 10.1089/ars.2011.4498] [Citation(s) in RCA: 396] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The complexity of human DNA has been affected by aerobic metabolism, including endurance exercise and oxygen toxicity. Aerobic endurance exercise could play an important role in the evolution of Homo sapiens, and oxygen was not important just for survival, but it was crucial to redox-mediated adaptation. The metabolic challenge during physical exercise results in an elevated generation of reactive oxygen species (ROS) that are important modulators of muscle contraction, antioxidant protection, and oxidative damage repair, which at moderate levels generate physiological responses. Several factors of mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitogen-activated protein kinase, and SIRT1, are modulated by exercise-associated changes in the redox milieu. PGC-1α activation could result in decreased oxidative challenge, either by upregulation of antioxidant enzymes and/or by an increased number of mitochondria that allows lower levels of respiratory activity for the same degree of ATP generation. Endogenous thiol antioxidants glutathione and thioredoxin are modulated with high oxygen consumption and ROS generation during physical exercise, controlling cellular function through redox-sensitive signaling and protein-protein interactions. Endurance exercise-related angiogenesis, up to a significant degree, is regulated by ROS-mediated activation of hypoxia-inducible factor 1α. Moreover, the exercise-associated ROS production could be important to DNA methylation and post-translation modifications of histone residues, which create heritable adaptive conditions based on epigenetic features of chromosomes. Accumulating data indicate that exercise with moderate intensity has systemic and complex health-promoting effects, which undoubtedly involve regulation of redox homeostasis and signaling.
Collapse
Affiliation(s)
- Zsolt Radak
- Faculty of Physical Education and Sport Science, Institute of Sport Science, Semmelweis University, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
25
|
Shirato K, Sato S, Sato M, Hashizume Y, Tachiyashiki K, Imaizumi K. β 2-Agonist Clenbuterol Suppresses Bacterial Phagocytosis of Splenic Macrophages Expressing High Levels of Macrophage Receptor with Collagenous Structure. Biol Pharm Bull 2013; 36:475-80. [DOI: 10.1248/bpb.b12-00875] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ken Shirato
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University
| | - Shogo Sato
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University
| | - Madoka Sato
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University
| | - Yoko Hashizume
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University
| | - Kaoru Tachiyashiki
- Department of Natural and Living Sciences, Graduate School of Education, Joetsu University of Education
| | - Kazuhiko Imaizumi
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University
- Global COE Doctoral Program, Graduate School of Sport Sciences, Waseda University
| |
Collapse
|
26
|
Ohno H, Shirato K, Sakurai T, Ogasawara J, Sumitani Y, Sato S, Imaizumi K, Ishida H, Kizaki T. Effect of exercise on HIF-1 and VEGF signaling. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2012. [DOI: 10.7600/jpfsm.1.5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Palazón A, Aragonés J, Morales-Kastresana A, de Landázuri MO, Melero I. Molecular Pathways: Hypoxia Response in Immune Cells Fighting or Promoting Cancer. Clin Cancer Res 2011; 18:1207-13. [DOI: 10.1158/1078-0432.ccr-11-1591] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
DAI MIN, XIA XIAOBO, XIONG SIQI. BDNF regulates GLAST and glutamine synthetase in mouse retinal Müller cells. J Cell Physiol 2011; 227:596-603. [DOI: 10.1002/jcp.22762] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Rahat MA, Bitterman H, Lahat N. Molecular mechanisms regulating macrophage response to hypoxia. Front Immunol 2011; 2:45. [PMID: 22566835 PMCID: PMC3342364 DOI: 10.3389/fimmu.2011.00045] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/29/2011] [Indexed: 12/24/2022] Open
Abstract
Monocytes and Macrophages (Mo/Mɸ) exhibit great plasticity, as they can shift between different modes of activation and, driven by their immediate microenvironment, perform divergent functions. These include, among others, patrolling their surroundings and maintaining homeostasis (resident Mo/Mɸ), combating invading pathogens and tumor cells (classically activated or M1 Mo/Mɸ), orchestrating wound healing (alternatively activated or M2 Mo/Mɸ), and restoring homeostasis after an inflammatory response (resolution Mɸ). Hypoxia is an important factor in the Mɸ microenvironment, is prevalent in many physiological and pathological conditions, and is interdependent with the inflammatory response. Although Mo/Mɸ have been studied in hypoxia, the mechanisms by which hypoxia influences the different modes of their activation, and how it regulates the shift between them, remain unclear. Here we review the current knowledge about the molecular mechanisms that mediate this hypoxic regulation of Mɸ activation. Much is known about the hypoxic transcriptional regulatory network, which includes the master regulators hypoxia-induced factor-1 and NF-κB, as well as other transcription factors (e.g., AP-1, Erg-1), but we also highlight the role of post-transcriptional and post-translational mechanisms. These mechanisms mediate hypoxic induction of Mɸ pro-angiogenic mediators, suppress M1 Mɸ by post-transcriptionally inhibiting pro-inflammatory mediators, and help shift the classically activated Mɸ into an activation state which approximate the alternatively activated or resolution Mɸ.
Collapse
Affiliation(s)
- Michal A Rahat
- Immunology Research Unit, Carmel Medical Center, The Ruth and Bruce Rappaport Faculty of Medicine, Technion Haifa, Israel.
| | | | | |
Collapse
|
30
|
Guleng B, Han J, Yang JQ, Huang QW, Huang JK, Yang XN, Liu JJ, Ren JL. TFF3 mediated induction of VEGF via hypoxia in human gastric cancer SGC-7901 cells. Mol Biol Rep 2011; 39:4127-34. [PMID: 21769478 DOI: 10.1007/s11033-011-1195-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 07/11/2011] [Indexed: 11/25/2022]
Abstract
Increasing evidence indicates that in gastric epithelial cells, induction of TFF3 by hypoxia is mediated by HIF-1. Since VEGF is one of the most important angiogenic factors on cancer progression, we have started to investigate the possible link among HIF-1α, VEGF, and TFF3 in gastric cancer cells. We induced the hypoxic condition in SGC-7901cells using hypoxia-mimetic agent of CoCI2. SGC7901 cells were transfected with pcPUR + U6 plasmid carrying RNAi targeted to human TFF3 and selected puromycin-resistant pools to establish the stable knockdown of TFF3 cells. Our results showed the induction of HIF-1a via hypoxia and consequences of increased expressions of the TFF3 and VEGF in gastric cancer SGC-7901 cells. Overexpression of TFF3 upregulated the mRNA expressions of VEGF and HIF-1a induced by hypoxia, and stable knockdown of TFF3 impaired the mRNA upregulations of VEGF and HIF-1a induced by hypoxia. Furthermore, knockdown of TFF3 reduced the VEGF protein secretion: as VEGF secretion was increased time dependent manner in response to the hypoxia induction in TFF3-WT cells; however, VEGF production was significantly decreased in TFF3-KD cells (621 ± 89 vs. 264 ± 73 at 6 h and 969 ± 97 vs. 508 ± 69 at 12 h, P < 0.05). Our data demonstrated the TFF3 mediated regulation of VEGF expression induced by hypoxia, and implicated that TFF3 might be applied as a potential anti-angiogenic target for treatment of gastric cancer.
Collapse
Affiliation(s)
- Bayasi Guleng
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, 201 Hubin South Road, Xiamen, 361004, Fujian, China.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Effect of Hypoxia on The Glutamate Transporter and Glutamine Synthetase in Mouse Retinal Müller Cells. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2010.00292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Sakurai T, Endo S, Hatano D, Ogasawara J, Kizaki T, Oh-ishi S, Izawa T, Ishida H, Ohno H. Effects of exercise training on adipogenesis of stromal-vascular fraction cells in rat epididymal white adipose tissue. Acta Physiol (Oxf) 2010. [DOI: 10.1111/j.1748-1716.2010.02159.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
33
|
Werno C, Menrad H, Weigert A, Dehne N, Goerdt S, Schledzewski K, Kzhyshkowska J, Brüne B. Knockout of HIF-1α in tumor-associated macrophages enhances M2 polarization and attenuates their pro-angiogenic responses. Carcinogenesis 2010; 31:1863-72. [PMID: 20427344 DOI: 10.1093/carcin/bgq088] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tumor-associated macrophages (TAMs) constitute major infiltrates of solid tumors and express a marker profile that characterizes alternatively activated macrophages (MФs). TAMs accumulate in hypoxic tumor regions, express high amounts of hypoxia-inducible factor-1 (HIF-1) and contribute to tumor angiogenesis and invasiveness. However, the precise role of HIF-1 on MФ infiltration and phenotype alterations remains poorly defined. Therefore, we cocultured wild type (wt) versus HIF-1α(-/-) MФs with tumor spheroids. Both, wt and HIF-1α(-/-) MФs, infiltrated hypoxic regions of tumor spheroids at equal rates and got alternatively activated. Interestingly, significantly higher amounts of HIF-1α(-/-) MФs expressed the TAM markers CD206 and stabilin-1 compared with wt phagocytes. Stimulation of infiltrated TAMs with lipopolysaccharide (LPS)/interferon-γ revealed a reduced expression of the pro-inflammatory markers interleukin (IL)-6, tumor necrosis factor-α and inducible nitric oxide synthase in HIF-1α(-/-) MФs. Furthermore, HIF-1α(-/-) MФs were less cytotoxic toward tumor cells. Although infiltration of MФs increased the invasive potential of tumor spheroids independently of HIF-1, the ability to stimulate differentiation of stem cells toward CD31-positive cells was triggered by wt but not by HIF-1α(-/-) MФs. Our data suggest that HIF-1α-deficient MФs develop a more prominent TAM marker profile accompanied by reduced cytotoxicity, whereas HIF-1 seems indispensable for the angiogenesis-promoting properties of TAMs.
Collapse
Affiliation(s)
- Christian Werno
- Institute of Biochemistry I--Pathobiochemistry/Zentrum für Arzneimittelforschung, Entwicklung und Sicherheit, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|