1
|
Li X, Lei ZC, Lo CY, Jan TY, Lau CW, Yao XQ. Endothelial cell Orai1 is essential for endothelium-dependent contraction of mouse carotid arteries in normotensive and hypertensive mice. Acta Pharmacol Sin 2024; 45:975-987. [PMID: 38279042 PMCID: PMC11053128 DOI: 10.1038/s41401-024-01227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024] Open
Abstract
Endothelium-dependent contraction (EDC) exists in blood vessels of normotensive animals, but is exaggerated in hypertension. An early signal in EDC is cytosolic Ca2+ rise in endothelial cells. In this study we investigated the functional role of Orai1, a major endothelial cell Ca2+ entry channel, in EDC. Hypertension model was established in WT mice by intake of L-NNA in the drinking water (0.5 g/L) for 4 weeks or osmotic pump delivery of Ang II (1.5 mg·kg-1·d-1) for 2 weeks. In TRPC5 KO mice, the concentration of L-NNA and Ang II were increased to 1 g/L or 2 mg·kg-1·d-1, respectively. Arterial segments were prepared from carotid arteries and aortas, and EDC was elicited by acetylcholine in the presence of Nω-nitro-L-arginine methyl ester. We showed that low concentration of acetylcholine (3-30 nM) initiated relaxation in phenylephrine-precontracted carotid arteries of both normotensive and hypertensive mice, while high concentration of acetylcholine (0.1-2 μM) induced contraction. Application of selective Orai1 inhibitors AnCoA4 (100 μM) or YM58483 (400 nM) had no effect on ACh-induced relaxation but markedly reduced acetylcholine-induced EDC. We found that EDC was increased in hypertensive mice compared with that of normotensive mice, which was associated with increased Orai1 expression in endothelial cells of hypertensive mice. Compared to TRPC5 and TRPV4, which were also involved in EDC, endothelial cell Orai1 had relatively greater contribution to EDC than either TRPC5 or TRPV4 alone. We identified COX-2, followed by PGF2α, PGD2 and PGE2 as the downstream signals of Orai1/TRPC5/TRPV4. In conclusion, Orai1 coordinates together with TRPC5 and TRPV4 in endothelial cells to regulate EDC responses. This study demonstrates a novel function of Orai1 in EDC in both normotensive and hypertensive mice, thus providing a general scheme about the control of EDC by Ca2+-permeable channels.
Collapse
Affiliation(s)
- Xiao Li
- School of Biomedical Sciences, Heart and Vascular Institute and Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhen-Chuan Lei
- School of Biomedical Sciences, Heart and Vascular Institute and Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun Yin Lo
- School of Biomedical Sciences, Heart and Vascular Institute and Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Tsz Yau Jan
- School of Biomedical Sciences, Heart and Vascular Institute and Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Wai Lau
- School of Biomedical Sciences, Heart and Vascular Institute and Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Qiang Yao
- School of Biomedical Sciences, Heart and Vascular Institute and Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
- Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Norman K, Hemmings KE, Shawer H, Appleby HL, Burnett AJ, Hamzah N, Gosain R, Woodhouse EM, Beech DJ, Foster R, Bailey MA. Side-by-side comparison of published small molecule inhibitors against thapsigargin-induced store-operated Ca2+ entry in HEK293 cells. PLoS One 2024; 19:e0296065. [PMID: 38261554 PMCID: PMC10805320 DOI: 10.1371/journal.pone.0296065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/05/2023] [Indexed: 01/25/2024] Open
Abstract
Calcium (Ca2+) is a key second messenger in eukaryotes, with store-operated Ca2+ entry (SOCE) being the main source of Ca2+ influx into non-excitable cells. ORAI1 is a highly Ca2+-selective plasma membrane channel that encodes SOCE. It is ubiquitously expressed in mammals and has been implicated in numerous diseases, including cardiovascular disease and cancer. A number of small molecules have been identified as inhibitors of SOCE with a variety of potential therapeutic uses proposed and validated in vitro and in vivo. These encompass both nonselective Ca2+ channel inhibitors and targeted selective inhibitors of SOCE. Inhibition of SOCE can be quantified both directly and indirectly with a variety of assay setups, making an accurate comparison of the activity of different SOCE inhibitors challenging. We have used a fluorescence based Ca2+ addback assay in native HEK293 cells to generate dose-response data for many published SOCE inhibitors. We were able to directly compare potency. Most compounds were validated with only minor and expected variations in potency, but some were not. This could be due to differences in assay setup relating to the mechanism of action of the inhibitors and highlights the value of a singular approach to compare these compounds, as well as the general need for biorthogonal validation of novel bioactive compounds. The compounds observed to be the most potent against SOCE in our study were: 7-azaindole 14d (12), JPIII (17), Synta-66 (6), Pyr 3 (5), GSK5503A (8), CM4620 (14) and RO2959 (7). These represent the most promising candidates for future development of SOCE inhibitors for therapeutic use.
Collapse
Affiliation(s)
- Katherine Norman
- School of Chemistry, University of Leeds, Leeds, West Yorkshire, United Kingdom
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Karen E. Hemmings
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Heba Shawer
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Hollie L. Appleby
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Alan J. Burnett
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Nurasyikin Hamzah
- School of Chemistry, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Rajendra Gosain
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Emily M. Woodhouse
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - David J. Beech
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Richard Foster
- School of Chemistry, University of Leeds, Leeds, West Yorkshire, United Kingdom
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Marc A. Bailey
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| |
Collapse
|
3
|
Sevilleja-Ortiz A, El Assar M, García-Gómez B, La Fuente JM, Alonso-Isa M, Romero-Otero J, Martínez-Salamanca JI, Fernández A, Rodríguez-Mañas L, Angulo J. STIM/Orai Inhibition as a Strategy for Alleviating Diabetic Erectile Dysfunction Through Modulation of Rat and Human Penile Tissue Contractility and in vivo Potentiation of Erectile Responses. J Sex Med 2022; 19:1733-1749. [PMID: 36195535 DOI: 10.1016/j.jsxm.2022.08.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/12/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Stromal interaction molecule (STIM)/Orai calcium entry system appears to have a role in erectile dysfunction (ED) pathophysiology but its specific contribution to diabetic ED was not elucidated. AIM To evaluate STIM/Orai inhibition on functional alterations associated with diabetic ED in rat and human penile tissues and on in vivo erectile responses in diabetic rats. METHODS Rat corpus cavernosum (RCC) strips from nondiabetic (No DM) and streptozotocin-induced diabetic (DM) rats and human penile resistance arteries (HPRA) and corpus cavernosum (HCC) from ED patients undergoing penile prosthesis insertion were functionally evaluated in organ chambers and wire myographs. Erectile function in vivo in rats was assessed by intracavernosal pressure (ICP) responses to cavernous nerve electrical stimulation (CNES). Expression of STIM/Orai elements in HCC was determined by immunofluorescence and immunoblot. MAIN OUTCOME MEASURES Functional responses in RCC, HCC and HPRA and STIM/Orai protein expression in HCC. In vivo erectile responses to CNES. RESULTS Inhibition of Orai channels with YM-58483 (20 µM) significantly reduced adrenergic contractions in RCC but more effectively in DM. Thromboxane-induced and neurogenic contractions were reduced by STIM/Orai inhibition while defective endothelial, neurogenic and PDE5 inhibitor-induced relaxations were enhanced by YM-58483 (10 µM) in RCC from DM rats. In vivo, YM-58483 caused erections and attenuated diabetes-related impairment of erectile responses. YM-58483 potentiated the effects of PDE5 inhibition. In human tissues, STIM/Orai inhibition depressed adrenergic and thromboxane-induced contractions in ED patients more effectively in those with type 2 diabetes. Diabetes was associated with increased expression of Orai1 and Orai3 in ED patients. CLINICAL TRANSLATION Targeting STIM/Orai to alleviate diabetes-related functional alterations of penile vascular tissue could improve erectile function and potentiate therapeutic effects of PDE5 inhibitors in diabetic ED. STRENGTHS AND LIMITATIONS Improving effects of STIM/Orai inhibition on diabetes-related functional impairment was evidenced in vitro and in vivo in an animal model and validated in human tissues from ED patients. Functional findings were complemented with expression results. Main limitation was low numbers of human experiments due to limited human tissue availability. CONCLUSIONS STIM/Orai inhibition alleviated alterations of functional responses in vitro and improved erectile responses in vivo in diabetic rats, potentiating the effects of PDE5 inhibition. STIM/Orai inhibition was validated as a target to modulate functional alterations of human penile vascular tissue in diabetic ED where Orai1 and Orai3 channels were upregulated. STIM/Orai inhibition could be a potential therapeutic strategy to overcome poor response to conventional ED therapy in diabetic patients. Sevilleja-Ortiz A, El Assar M, García-Gómez B, et al. STIM/Orai Inhibition as a Strategy for Alleviating Diabetic Erectile Dysfunction Through Modulation of Rat and Human Penile Tissue Contractility and in vivo Potentiation of Erectile Responses. J Sex Med 2022;19:1733-1749.
Collapse
Affiliation(s)
- Alejandro Sevilleja-Ortiz
- Fundación para la Investigación Biomédica del Hospital Universitario Ramón y Cajal, Madrid, Spain; Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología (IRYCIS-UFV), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Borja García-Gómez
- Servicio de Urología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - José M La Fuente
- Serviço de Urologia, Hospital Geral de Santo Antonio, Porto, Portugal
| | - Manuel Alonso-Isa
- Servicio de Urología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | | | - Argentina Fernández
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología (IRYCIS-UFV), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Spain
| | - Javier Angulo
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología (IRYCIS-UFV), Hospital Universitario Ramón y Cajal, Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Fang X, Dong S, Wu Y, He Y, Lu M, Shi D, Feng N, Yin S, Jiang Y, Zhang A, Ding Y, Zhang Q, Tang J, Zhang W, He X. Ameliorated biomechanical properties of carotid arteries by puerarin in spontaneously hypertensive rats. BMC Complement Med Ther 2021; 21:173. [PMID: 34154575 PMCID: PMC8216761 DOI: 10.1186/s12906-021-03345-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An emerging body of evidence indicates that puerarin (PUE) plays an important role in the treatment of angina pectoris, myocardial ischemia-reperfusion injury, hypertension and other cardiovascular diseases, but how PUE affects the vascular remodeling of hypertensive rats has not been reported yet. This study aimed to investigate the effect and mechanism of PUE on carotid arteries of spontaneously hypertensive rats (SHR) to provide the basis for the clinical application of PUE. METHODS Thirty male SHR and six male Wistar Kyoto rats (WKY) aged 3 months were used in this study, SHR rats were randomly divided into 5 groups, PUE(40 or 80 mg/kg/d, ip) and telmisartan (TELMI) (30 mg/kg/d, ig) were administrated for 3 months. We use DMT myography pressure-diameter system to investigate biomechanical properties of carotid arteries, 10 μM pan-classical transient receptor potential channels (TRPCs) inhibitor SKF96365, 200 nM specific TRPC6 inhibitor SAR7334 and 100 μM Orai1 inhibitor ANCOA4 were used in the mechanical test. RESULTS PUE can significantly decrease systolic and diastolic blood pressure, long-term administration of PUE resulted in a mild reduction of thickness and inner diameter of carotid artery. PUE ameliorate NE-response and vascular remodeling mainly through inhibiting TRPCs channel activities of VSMC. CONCLUSION PUE can ameliorate biomechanical remodeling of carotid arteries through inhibiting TRPCs channel activities of VSMC in spontaneously hypertensive rats.
Collapse
Affiliation(s)
- Xiaoxia Fang
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000 China
| | - Sheng Dong
- Department of Anatomy, Hubei University of Medicine, Shiyan, 442000 China
| | - Yun Wu
- Department of Anatomy, Hubei University of Medicine, Shiyan, 442000 China
| | - Yun He
- Department of Ultrasound, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000 China
| | - Min Lu
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000 China
| | - Dandan Shi
- Department of Anatomy, Hubei University of Medicine, Shiyan, 442000 China
| | - Na Feng
- Department of Anatomy, Hubei University of Medicine, Shiyan, 442000 China
| | - Songhe Yin
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000 China
| | - Yan Jiang
- Department of Ultrasound, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000 China
| | - Anhua Zhang
- Department of Anatomy, Hubei University of Medicine, Shiyan, 442000 China
| | - Yan Ding
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000 China
| | - Qiufang Zhang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000 China
| | - Junming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000 China
| | - Wenjun Zhang
- Department of Ultrasound, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000 China
| | - Xiju He
- Department of Anatomy, Hubei University of Medicine, Shiyan, 442000 China
- Department of Ultrasound, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000 China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000 China
| |
Collapse
|
5
|
Martín-Aragón Baudel MAS, Shi J, Large WA, Albert AP. Obligatory role for PKCδ in PIP 2 -mediated activation of store-operated TRPC1 channels in vascular smooth muscle cells. J Physiol 2020; 598:3911-3925. [PMID: 32627185 PMCID: PMC7656825 DOI: 10.1113/jp279947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS In vascular smooth muscle cells (VSMCs), activation of Ca2+ -permeable store-operated channels (SOCs) composed of canonical transient receptor potential channel 1 (TRPC1) subunits mediates Ca2+ entry pathways that regulate contraction, proliferation and migration, which are processes associated with vascular disease. Activation of TRPC1-based SOCs requires protein kinase C (PKC) activity, which is proposed to phosphorylate TRPC1 proteins to promote channel opening by phosphatidylinositol 4,5-bisphosphate (PIP2 ). We investigated the identity of the PKC isoform involved in activating TRPC1-based SOCs in rat mesenteric artery VSMCs. TRPC1-based SOCs were reduced by PKCδ inhibitors and knockdown of PKCδ expression. Store depletion induced interactions between TRPC1 and PKCδ and PKCδ-dependent phosphorylation of TRPC1. Furthermore, generation of store-operated interactions between PIP2 and TRPC1 and activation of TRPC1-based SOCs by PIP2 required PKCδ. These findings reveal that PKCδ activity has an obligatory role in activating TRPC1-based SOCs, through regulating PIP2 -mediated channel opening. ABSTRACT In vascular smooth muscle cells (VMSCs), stimulation of Ca2+ -permeable canonical transient receptor potential channel 1 (TRPC1)-based store-operated channels (SOCs) mediates Ca2+ entry pathways that regulate cell contraction, proliferation and migration, which are processes associated with vascular disease. It is therefore important to understand how TRPC1-based SOCs are activated. Stimulation of TRPC1-based SOCs requires protein kinase C (PKC) activity, with store-operated PKC-dependent phosphorylation of TRPC1 essential for channel opening by phosphatidylinositol 4,5-bisphosphate (PIP2 ). Experimental protocols used to activate TRPC1-based SOCs suggest that the PKC isoform involved requires diacylglycerol (DAG) but is Ca2+ -insensitive, which are characteristics of the novel group of PKC isoforms (δ, ε, η, θ). Hence, the present study examined whether a novel PKC isoform(s) is involved in activating TRPC1-based SOCs in contractile rat mesenteric artery VSMCs. Store-operated whole-cell cation currents were blocked by Pico145, a highly selective and potent TRPC1/4/5 channel blocker and T1E3, a TRPC1 blocking antibody. PKCδ was expressed in VSMCs, and selective PKCδ inhibitory peptides and knockdown of PKCδ expression with morpholinos oligomers inhibited TRPC1-based SOCs. TRPC1 and PKCδ interactions and phosphorylation of TRPC1 induced by store depletion were both reduced by pharmacological inhibition and PKCδ knockdown. In addition, store-operated PIP2 and TRPC1 interactions were blocked by PKCδ inhibition, and PKCδ was required for PIP2 -mediated activation of TRPC1 currents. These results identify the involvement of PKCδ in stimulation of TRPC1-based SOCs and highlight that store-operated PKCδ activity is obligatory for channel opening by PIP2 , the probable activating ligand.
Collapse
Affiliation(s)
| | - Jian Shi
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - William A Large
- Vascular Biology Research Centre, Molecular and Clinical Research Institute, St George's, University of London, Cranmer Terrace, London, UK
| | - Anthony P Albert
- Vascular Biology Research Centre, Molecular and Clinical Research Institute, St George's, University of London, Cranmer Terrace, London, UK
| |
Collapse
|
6
|
Sevilleja-Ortiz A, El Assar M, García-Rojo E, Romero-Otero J, García-Gómez B, Fernández A, Medina-Polo J, La Fuente JM, Rodríguez-Mañas L, Angulo J. Enhanced Contribution of Orai Channels to Contractility of Human Penile Smooth Muscle in Erectile Dysfunction. J Sex Med 2020; 17:881-891. [DOI: 10.1016/j.jsxm.2020.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022]
|
7
|
Yang X, Ma G, Zheng S, Qin X, Li X, Du L, Wang Y, Zhou Y, Li M. Optical Control of CRAC Channels Using Photoswitchable Azopyrazoles. J Am Chem Soc 2020; 142:9460-9470. [DOI: 10.1021/jacs.0c02949] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xingye Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
| | - Sisi Zheng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaojun Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiang Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
8
|
Manoury B, Idres S, Leblais V, Fischmeister R. Ion channels as effectors of cyclic nucleotide pathways: Functional relevance for arterial tone regulation. Pharmacol Ther 2020; 209:107499. [PMID: 32068004 DOI: 10.1016/j.pharmthera.2020.107499] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Numerous mediators and drugs regulate blood flow or arterial pressure by acting on vascular tone, involving cyclic nucleotide intracellular pathways. These signals lead to regulation of several cellular effectors, including ion channels that tune cell membrane potential, Ca2+ influx and vascular tone. The characterization of these vasocontrictive or vasodilating mechanisms has grown in complexity due to i) the variety of ion channels that are expressed in both vascular endothelial and smooth muscle cells, ii) the heterogeneity of responses among the various vascular beds, and iii) the number of molecular mechanisms involved in cyclic nucleotide signalling in health and disease. This review synthesizes key data from literature that highlight ion channels as physiologically relevant effectors of cyclic nucleotide pathways in the vasculature, including the characterization of the molecular mechanisms involved. In smooth muscle cells, cation influx or chloride efflux through ion channels are associated with vasoconstriction, whereas K+ efflux repolarizes the cell membrane potential and mediates vasodilatation. Both categories of ion currents are under the influence of cAMP and cGMP pathways. Evidence that some ion channels are influenced by CN signalling in endothelial cells will also be presented. Emphasis will also be put on recent data touching a variety of determinants such as phosphodiesterases, EPAC and kinase anchoring, that complicate or even challenge former paradigms.
Collapse
Affiliation(s)
- Boris Manoury
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France.
| | - Sarah Idres
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France
| | - Véronique Leblais
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France
| | | |
Collapse
|
9
|
Negri S, Faris P, Berra-Romani R, Guerra G, Moccia F. Endothelial Transient Receptor Potential Channels and Vascular Remodeling: Extracellular Ca 2 + Entry for Angiogenesis, Arteriogenesis and Vasculogenesis. Front Physiol 2020; 10:1618. [PMID: 32038296 PMCID: PMC6985578 DOI: 10.3389/fphys.2019.01618] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Vasculogenesis, angiogenesis and arteriogenesis represent three crucial mechanisms involved in the formation and maintenance of the vascular network in embryonal and post-natal life. It has long been known that endothelial Ca2+ signals are key players in vascular remodeling; indeed, multiple pro-angiogenic factors, including vascular endothelial growth factor, regulate endothelial cell fate through an increase in intracellular Ca2+ concentration. Transient Receptor Potential (TRP) channel consist in a superfamily of non-selective cation channels that are widely expressed within vascular endothelial cells. In addition, TRP channels are present in the two main endothelial progenitor cell (EPC) populations, i.e., myeloid angiogenic cells (MACs) and endothelial colony forming cells (ECFCs). TRP channels are polymodal channels that can assemble in homo- and heteromeric complexes and may be sensitive to both pro-angiogenic cues and subtle changes in local microenvironment. These features render TRP channels the most versatile Ca2+ entry pathway in vascular endothelial cells and in EPCs. Herein, we describe how endothelial TRP channels stimulate vascular remodeling by promoting angiogenesis, arteriogenesis and vasculogenesis through the integration of multiple environmental, e.g., extracellular growth factors and chemokines, and intracellular, e.g., reactive oxygen species, a decrease in Mg2+ levels, or hypercholesterolemia, stimuli. In addition, we illustrate how endothelial TRP channels induce neovascularization in response to synthetic agonists and small molecule drugs. We focus the attention on TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, TRPV1, TRPV4, TRPM2, TRPM4, TRPM7, TRPA1, that were shown to be involved in angiogenesis, arteriogenesis and vasculogenesis. Finally, we discuss the role of endothelial TRP channels in aberrant tumor vascularization by focusing on TRPC1, TRPC3, TRPV2, TRPV4, TRPM8, and TRPA1. These observations suggest that endothelial TRP channels represent potential therapeutic targets in multiple disorders featured by abnormal vascularization, including cancer, ischemic disorders, retinal degeneration and neurodegeneration.
Collapse
Affiliation(s)
- Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Pawan Faris
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Germano Guerra
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
10
|
Martín-Aragón Baudel MAS, Shi J, Large WA, Albert AP. Insights into Activation Mechanisms of Store-Operated TRPC1 Channels in Vascular Smooth Muscle. Cells 2020; 9:E179. [PMID: 31936855 PMCID: PMC7017204 DOI: 10.3390/cells9010179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 01/10/2023] Open
Abstract
In vascular smooth muscle cells (VMSCs), the stimulation of store-operated channels (SOCs) mediate Ca2+ influx pathways which regulate important cellular functions including contraction, proliferation, migration, and growth that are associated with the development of vascular diseases. It is therefore important that we understand the biophysical, molecular composition, activation pathways, and physiological significance of SOCs in VSMCs as these maybe future therapeutic targets for conditions such as hypertension and atherosclerosis. Archetypal SOCs called calcium release-activated channels (CRACs) are composed of Orai1 proteins and are stimulated by the endo/sarcoplasmic reticulum Ca2+ sensor stromal interaction molecule 1 (STIM1) following store depletion. In contrast, this review focuses on proposals that canonical transient receptor potential (TRPC) channels composed of a heteromeric TRPC1/C5 molecular template, with TRPC1 conferring activation by store depletion, mediate SOCs in native contractile VSMCs. In particular, it summarizes our recent findings which describe a novel activation pathway of these TRPC1-based SOCs, in which protein kinase C (PKC)-dependent TRPC1 phosphorylation and phosphatidylinositol 4,5-bisphosphate (PIP2) are obligatory for channel opening. This PKC- and PIP2-mediated gating mechanism is regulated by the PIP2-binding protein myristoylated alanine-rich C kinase (MARCKS) and is coupled to store depletion by TRPC1-STIM1 interactions which induce Gq/PLCβ1 activity. Interestingly, the biophysical properties and activation mechanisms of TRPC1-based SOCs in native contractile VSMCs are unlikely to involve Orai1.
Collapse
Affiliation(s)
| | - Jian Shi
- LIGHT Laboratories, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK;
| | - William A. Large
- Vascular Biology Research Centre, Molecular and Clinical Research Institute, St. George’s, University of London, London SW17 0RE, UK;
| | - Anthony P. Albert
- Vascular Biology Research Centre, Molecular and Clinical Research Institute, St. George’s, University of London, London SW17 0RE, UK;
| |
Collapse
|
11
|
TRPC Channels in the SOCE Scenario. Cells 2020; 9:cells9010126. [PMID: 31948094 PMCID: PMC7016597 DOI: 10.3390/cells9010126] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 11/29/2022] Open
Abstract
Transient receptor potential (TRP) proteins form non-selective Ca2+ permeable channels that contribute to the modulation of a number of physiological functions in a variety of cell types. Since the identification of TRP proteins in Drosophila, it is well known that these channels are activated by stimuli that induce PIP2 hydrolysis. The canonical TRP (TRPC) channels have long been suggested to be constituents of the store-operated Ca2+ (SOC) channels; however, none of the TRPC channels generate Ca2+ currents that resemble ICRAC. STIM1 and Orai1 have been identified as the components of the Ca2+ release-activated Ca2+ (CRAC) channels and there is a body of evidence supporting that STIM1 is able to gate Orai1 and TRPC1 in order to mediate non-selective cation currents named ISOC. STIM1 has been found to interact to and activate Orai1 and TRPC1 by different mechanisms and the involvement of TRPC1 in store-operated Ca2+ entry requires both STIM1 and Orai1. In addition to the participation of TRPC1 in the ISOC currents, TRPC1 and other TRPC proteins might play a relevant role modulating Orai1 channel function. This review summarizes the functional role of TRPC channels in the STIM1–Orai1 scenario.
Collapse
|
12
|
Role of Orai1 and L-type Ca V1.2 channels in Endothelin-1 mediated coronary contraction under ischemia and reperfusion. Cell Calcium 2020; 86:102157. [PMID: 31926404 DOI: 10.1016/j.ceca.2019.102157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023]
Abstract
Ischemia and Reperfusion (I/R) injuries are associated with coronary artery hypercontracture. They are mainly originated by an exacerbated response to agonists released by endothelium such as Endothelin (ET-1), involving the alteration in intracellular calcium handling. Recent evidences have highlighted the implication of Store-Operated Calcium Channels (SOCC) in intracellular calcium homeostasis in coronary artery. However, little is known about the role of SOCC in the regulation of coronary vascular tone under I/R. The aim of this study was to evaluate the role of SOCC and l-type Ca2+ channels (LTCC) in coronary artery vasoconstriction originated by ET-1 in I/R. We used Left Anterior Descendent coronary artery (LAD) rings, isolated from Wistar rats, to study the contractility and intracellular Ca2+ concentration ([Ca2+]i) under a simulated I/R protocol. We observed that responses to high-KCL induced depolarization and caffeine-induced Ca2+ release are attenuated in coronary artery under I/R. Furthermore, ET-1 addition in ischemia promotes transient and small rise of [Ca2+]i and coronary vascular tone. Meanwhile, these effects are significantly potentiated during reperfusion. The resulting ET-1-induced vasoconstrictions and [Ca2+]i increase were abolished by; GSK-7975A and gadolinium, inhibitors of SOCC; and nifedipine a widely used inhibitor of LTCC. Interestingly, using in situ Proximity Ligation Assay (PLA) in isolated coronary smooth muscle cells we found significant colocalization of LTCC CaV1.2 isoform with Orai1, the pore forming subunit of SOCC, and TRPC1 under I/R. Our data suggest that hypercontraction of coronary artery induced by ET-1 after I/R involves the co-activation of LTCC and SOCC, which colocalize significantly in the sarcolemma of coronary smooth muscle cells.
Collapse
|
13
|
Filippini A, D'Amore A, D'Alessio A. Calcium Mobilization in Endothelial Cell Functions. Int J Mol Sci 2019; 20:ijms20184525. [PMID: 31547344 PMCID: PMC6769945 DOI: 10.3390/ijms20184525] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Endothelial cells (ECs) constitute the innermost layer that lines all blood vessels from the larger arteries and veins to the smallest capillaries, including the lymphatic vessels. Despite the histological classification of endothelium of a simple epithelium and its homogeneous morphological appearance throughout the vascular system, ECs, instead, are extremely heterogeneous both structurally and functionally. The different arrangement of cell junctions between ECs and the local organization of the basal membrane generate different type of endothelium with different permeability features and functions. Continuous, fenestrated and discontinuous endothelia are distributed based on the specific function carried out by the organs. It is thought that a large number ECs functions and their responses to extracellular cues depend on changes in intracellular concentrations of calcium ion ([Ca2+]i). The extremely complex calcium machinery includes plasma membrane bound channels as well as intracellular receptors distributed in distinct cytosolic compartments that act jointly to maintain a physiological [Ca2+]i, which is crucial for triggering many cellular mechanisms. Here, we first survey the overall notions related to intracellular Ca2+ mobilization and later highlight the involvement of this second messenger in crucial ECs functions with the aim at stimulating further investigation that link Ca2+ mobilization to ECs in health and disease.
Collapse
Affiliation(s)
- Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy.
| | - Antonella D'Amore
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy.
| | - Alessio D'Alessio
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "Agostino Gemelli", IRCCS, 00168 Rome, Italy.
| |
Collapse
|
14
|
Ma K, Liu P, Al-Maghout T, Sukkar B, Cao H, Voelkl J, Alesutan I, Pieske B, Lang F. Phosphate-induced ORAI1 expression and store-operated Ca 2+ entry in aortic smooth muscle cells. J Mol Med (Berl) 2019; 97:1465-1475. [PMID: 31385016 DOI: 10.1007/s00109-019-01824-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/02/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022]
Abstract
Compromised renal phosphate elimination in chronic kidney disease (CKD) leads to hyperphosphatemia, which in turn triggers osteo-/chondrogenic signaling in vascular smooth muscle cells (VSMCs) and vascular calcification. Osteo-/chondrogenic transdifferentiation of VSMCs leads to upregulation of the transcription factors MSX2, CBFA1, and SOX9 as well as tissue-nonspecific alkaline phosphatase (ALPL) which fosters calcification by degrading the calcification inhibitor pyrophosphate. Osteo-/chondrogenic signaling in VSMCs involves the serum- and glucocorticoid-inducible kinase SGK1. As shown in other cell types, SGK1 is a powerful stimulator of ORAI1, a Ca2+-channel accomplishing store-operated Ca2+-entry (SOCE). ORAI1 is stimulated following intracellular store depletion by the Ca2+ sensor STIM1. The present study explored whether phosphate regulates ORAI1 and/or STIM1 expression and, thus, SOCE in VSMCs. To this end, primary human aortic smooth muscle cells (HAoSMCs) were exposed to the phosphate donor β-glycerophosphate. Transcript levels were estimated by qRT-PCR, protein abundance by western blotting, ALPL activity by colorimetry, calcification by alizarin red S staining, cytosolic Ca2+-concentration ([Ca2+]i) by Fura-2-fluorescence, and SOCE from increase of [Ca2+]i following re-addition of extracellular Ca2+ after store depletion with thapsigargin. As a result, β-glycerophosphate treatment increased ORAI1 and STIM1 transcript levels and protein abundance as well as SOCE in HAoSMCs. Additional treatment with ORAI1 inhibitor MRS1845 or SGK1 inhibitor GSK650394 virtually disrupted the effects of β-glycerophosphate on SOCE. Moreover, the β-glycerophosphate-induced MSX2, CBFA1, SOX9, and ALPL mRNA expression and activity in HAoSMCs were suppressed in the presence of the ORAI1 inhibitor and upon ORAI1 silencing. In conclusion, enhanced phosphate upregulates ORAI1 and STIM1 expression and store-operated Ca2+-entry, which participate in the orchestration of osteo-/chondrogenic signaling of VSMCs. KEY MESSAGES: • In aortic SMC, phosphate donor ß-glycerophosphate upregulates Ca2+ channel ORAI1. • In aortic SMC, ß-glycerophosphate upregulates ORAI1-activator STIM1. • In aortic SMC, ß-glycerophosphate upregulates store-operated Ca2+-entry (SOCE). • The effect of ß-glycerophosphate on SOCE is disrupted by ORAI1 inhibitor MRS1845. • Stimulation of osteogenic signaling is disrupted by MRS1845 and ORAI1 silencing.
Collapse
Affiliation(s)
- Ke Ma
- Department of Pharmacology & Experimental Therapy, University of Tübingen, 72076, Tübingen, Germany
| | - Ping Liu
- Department of Pharmacology & Experimental Therapy, University of Tübingen, 72076, Tübingen, Germany
| | - Tamer Al-Maghout
- Department of Pharmacology & Experimental Therapy, University of Tübingen, 72076, Tübingen, Germany
| | - Basma Sukkar
- Department of Pharmacology & Experimental Therapy, University of Tübingen, 72076, Tübingen, Germany
| | - Hang Cao
- Department of Pharmacology & Experimental Therapy, University of Tübingen, 72076, Tübingen, Germany
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, 4040, Linz, Austria.,Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany.,Department of Nephrology and Medical Intensive Care, Charité University Medicine, Berlin, Germany
| | - Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, 4040, Linz, Austria.,Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Department of Internal Medicine and Cardiology, German Heart Center Berlin (DHZB), Berlin, Germany
| | - Florian Lang
- Department of Vegetative and Clinical Physiology, University of Tübingen, Wilhelmstr. 56, 72074, Tübingen, Germany.
| |
Collapse
|
15
|
Kondo C, Clark RB, Al‐Jezani N, Kim TY, Belke D, Banderali U, Szerencsei RT, Jalloul AH, Schnetkamp PPM, Spitzer KW, Giles WR. ATP triggers a robust intracellular [Ca 2+ ]-mediated signalling pathway in human synovial fibroblasts. Exp Physiol 2018; 103:1101-1122. [PMID: 29791754 DOI: 10.1113/ep086851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/26/2018] [Indexed: 01/05/2023]
Abstract
NEW FINDINGS What is the central question of this study? What are the main [Ca2+ ]i signalling pathways activated by ATP in human synovial fibroblasts? What is the main finding and its importance? In human synovial fibroblasts ATP acts through a linked G-protein (Gq ) and phospholipase C signalling mechanism to produce IP3 , which then markedly enhances release of Ca2+ from the endoplasmic reticulum. These results provide new information for the detection of early pathophysiology of arthritis. ABSTRACT In human articular joints, synovial fibroblasts (HSFs) have essential physiological functions that include synthesis and secretion of components of the extracellular matrix and essential articular joint lubricants, as well as release of paracrine substances such as ATP. Although the molecular and cellular processes that lead to a rheumatoid arthritis (RA) phenotype are not fully understood, HSF cells exhibit significant changes during this disease progression. The effects of ATP on HSFs were studied by monitoring changes in intracellular Ca2+ ([Ca2+ ]i ), and measuring electrophysiological properties. ATP application to HSF cell populations that had been enzymatically released from 2-D cell culture revealed that ATP (10-100 μm), or its analogues UTP or ADP, consistently produced a large transient increase in [Ca2+ ]i . These changes (i) were initiated by activation of the P2 Y purinergic receptor family, (ii) required Gq -mediated signal transduction, (iii) did not involve a transmembrane Ca2+ influx, but instead (iv) arose almost entirely from activation of endoplasmic reticulum (ER)-localized inositol 1,4,5-trisphosphate (IP3 ) receptors that triggered Ca2+ release from the ER. Corresponding single cell electrophysiological studies revealed that these ATP effects (i) were insensitive to [Ca2+ ]o removal, (ii) involved an IP3 -mediated intracellular Ca2+ release process, and (iii) strongly turned on Ca2+ -activated K+ current(s) that significantly hyperpolarized these cells. Application of histamine produced very similar effects in these HSF cells. Since ATP is a known paracrine agonist and histamine is released early in the inflammatory response, these findings may contribute to identification of early steps/defects in the initiation and progression of RA.
Collapse
Affiliation(s)
- C Kondo
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - R B Clark
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | | | - T Y Kim
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - D Belke
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | | | - R T Szerencsei
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - A H Jalloul
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - P P M Schnetkamp
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - K W Spitzer
- Nora Eccles Harrison Cardiovascular Centre, Salt Lake City, UT, USA
| | - W R Giles
- Faculty of Kinesiology, University of Calgary, Calgary, Canada.,Faculty of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
16
|
Kimura M, Nishi K, Higashikawa A, Ohyama S, Sakurai K, Tazaki M, Shibukawa Y. High pH-Sensitive Store-Operated Ca 2+ Entry Mediated by Ca 2+ Release-Activated Ca 2+ Channels in Rat Odontoblasts. Front Physiol 2018; 9:443. [PMID: 29765331 PMCID: PMC5938338 DOI: 10.3389/fphys.2018.00443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/10/2018] [Indexed: 11/13/2022] Open
Abstract
Odontoblasts play a crucial role in dentin formation and sensory transduction following the application of stimuli to the dentin surface. Various exogenous and endogenous stimuli elicit an increase in the intracellular free calcium concentration ([Ca2+]i) in odontoblasts, which is mediated by Ca2+ release from intracellular Ca2+ stores and/or Ca2+ influx from the extracellular medium. In a previous study, we demonstrated that the depletion of Ca2+ stores in odontoblasts activated store-operated Ca2+ entry (SOCE), a Ca2+ influx pathway. However, the precise biophysical and pharmacological properties of SOCE in odontoblasts have remained unclear. In the present study, we examined the functional expression and pharmacological properties of Ca2+ release-activated Ca2+ (CRAC) channels that mediate SOCE and evaluated the alkali sensitivity of SOCE in rat odontoblasts. In the absence of extracellular Ca2+, treatment with thapsigargin (TG), a sarco/endoplasmic reticulum Ca2+-ATPase inhibitor, induced an increase in [Ca2+]i. After [Ca2+]i returned to near-resting levels, the subsequent application of 2.5 mM extracellular Ca2+ resulted in an increase in [Ca2+]i which is a typical of SOCE activation. Additionally, application of 2-methylthioadenosine diphosphate trisodium salt (2-MeSADP), a P2Y1,12,13 receptor agonist, or carbachol (CCh), a muscarinic cholinergic receptor agonist, in the absence of extracellular Ca2+, induced a transient increase in [Ca2+]i. The subsequent addition of extracellular Ca2+ resulted in significantly higher [Ca2+]i in 2-MeSADP- or CCh-treated odontoblasts than in untreated cells. SOCE, that is activated by addition of extracellular Ca2+ in the TG pretreated odontoblasts was then suppressed by Synta66, BTP2, or lanthanum, which are CRAC channel inhibitors. Treatment with an alkaline solution enhanced SOCE, while treatment with HC030031, a TRPA1 channel antagonist, inhibited it. The amplitude of SOCE at pH 9 in the presence of HC030031 was higher than that at pH 7.4 in the absence of HC030031. These findings indicate that CRAC channel-mediated alkali-sensitive SOCE occurs in odontoblasts. SOCE is mediated by P2Y and muscarinic-cholinergic receptors, which are activated by endogenous ligands in odontoblasts.
Collapse
Affiliation(s)
- Maki Kimura
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Koichi Nishi
- Department of Removable Prosthodontics and Gerodontology, Tokyo Dental College, Tokyo, Japan
| | | | - Sadao Ohyama
- Department of Physiology, Tokyo Dental College, Tokyo, Japan.,Department of Oral Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Kaoru Sakurai
- Department of Removable Prosthodontics and Gerodontology, Tokyo Dental College, Tokyo, Japan
| | - Masakazu Tazaki
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | | |
Collapse
|
17
|
Avila-Medina J, Mayoral-Gonzalez I, Dominguez-Rodriguez A, Gallardo-Castillo I, Ribas J, Ordoñez A, Rosado JA, Smani T. The Complex Role of Store Operated Calcium Entry Pathways and Related Proteins in the Function of Cardiac, Skeletal and Vascular Smooth Muscle Cells. Front Physiol 2018; 9:257. [PMID: 29618985 PMCID: PMC5872157 DOI: 10.3389/fphys.2018.00257] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/06/2018] [Indexed: 12/11/2022] Open
Abstract
Cardiac, skeletal, and smooth muscle cells shared the common feature of contraction in response to different stimuli. Agonist-induced muscle's contraction is triggered by a cytosolic free Ca2+ concentration increase due to a rapid Ca2+ release from intracellular stores and a transmembrane Ca2+ influx, mainly through L-type Ca2+ channels. Compelling evidences have demonstrated that Ca2+ might also enter through other cationic channels such as Store-Operated Ca2+ Channels (SOCCs), involved in several physiological functions and pathological conditions. The opening of SOCCs is regulated by the filling state of the intracellular Ca2+ store, the sarcoplasmic reticulum, which communicates to the plasma membrane channels through the Stromal Interaction Molecule 1/2 (STIM1/2) protein. In muscle cells, SOCCs can be mainly non-selective cation channels formed by Orai1 and other members of the Transient Receptor Potential-Canonical (TRPC) channels family, as well as highly selective Ca2+ Release-Activated Ca2+ (CRAC) channels, formed exclusively by subunits of Orai proteins likely organized in macromolecular complexes. This review summarizes the current knowledge of the complex role of Store Operated Calcium Entry (SOCE) pathways and related proteins in the function of cardiac, skeletal, and vascular smooth muscle cells.
Collapse
Affiliation(s)
- Javier Avila-Medina
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain.,Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío, CSIC, University of Seville, Sevilla, Spain.,CIBERCV, Madrid, Spain
| | | | - Alejandro Dominguez-Rodriguez
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain.,Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío, CSIC, University of Seville, Sevilla, Spain.,CIBERCV, Madrid, Spain
| | | | - Juan Ribas
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain
| | - Antonio Ordoñez
- CIBERCV, Madrid, Spain.,Department of Surgery, University of Seville, Sevilla, Spain
| | - Juan A Rosado
- Cell Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain.,Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío, CSIC, University of Seville, Sevilla, Spain.,CIBERCV, Madrid, Spain
| |
Collapse
|
18
|
Transient receptor potential canonical type 3 channels: Interactions, role and relevance - A vascular focus. Pharmacol Ther 2017; 174:79-96. [DOI: 10.1016/j.pharmthera.2017.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Choi D, Park E, Jung E, Seong YJ, Hong M, Lee S, Burford J, Gyarmati G, Peti-Peterdi J, Srikanth S, Gwack Y, Koh CJ, Boriushkin E, Hamik A, Wong AK, Hong YK. ORAI1 Activates Proliferation of Lymphatic Endothelial Cells in Response to Laminar Flow Through Krüppel-Like Factors 2 and 4. Circ Res 2017; 120:1426-1439. [PMID: 28167653 PMCID: PMC6300148 DOI: 10.1161/circresaha.116.309548] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 11/16/2022]
Abstract
RATIONALE Lymphatic vessels function to drain interstitial fluid from a variety of tissues. Although shear stress generated by fluid flow is known to trigger lymphatic expansion and remodeling, the molecular basis underlying flow-induced lymphatic growth is unknown. OBJECTIVE We aimed to gain a better understanding of the mechanism by which laminar shear stress activates lymphatic proliferation. METHODS AND RESULTS Primary endothelial cells from dermal blood and lymphatic vessels (blood vascular endothelial cells and lymphatic endothelial cells [LECs]) were exposed to low-rate steady laminar flow. Shear stress-induced molecular and cellular responses were defined and verified using various mutant mouse models. Steady laminar flow induced the classic shear stress responses commonly in blood vascular endothelial cells and LECs. Surprisingly, however, only LECs showed enhanced cell proliferation by regulating the vascular endothelial growth factor (VEGF)-A, VEGF-C, FGFR3, and p57/CDKN1C genes. As an early signal mediator, ORAI1, a pore subunit of the calcium release-activated calcium channel, was identified to induce the shear stress phenotypes and cell proliferation in LECs responding to the fluid flow. Mechanistically, ORAI1 induced upregulation of Krüppel-like factor (KLF)-2 and KLF4 in the flow-activated LECs, and the 2 KLF proteins cooperate to regulate VEGF-A, VEGF-C, FGFR3, and p57 by binding to the regulatory regions of the genes. Consistently, freshly isolated LECs from Orai1 knockout embryos displayed reduced expression of KLF2, KLF4, VEGF-A, VEGF-C, and FGFR3 and elevated expression of p57. Accordingly, mouse embryos deficient in Orai1, Klf2, or Klf4 showed a significantly reduced lymphatic density and impaired lymphatic development. CONCLUSIONS Our study identified a molecular mechanism for laminar flow-activated LEC proliferation.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Cyclin-Dependent Kinase Inhibitor p57/genetics
- Cyclin-Dependent Kinase Inhibitor p57/metabolism
- Endothelial Cells/metabolism
- Endothelium, Lymphatic/metabolism
- Endothelium, Lymphatic/pathology
- Endothelium, Lymphatic/physiopathology
- Endothelium, Vascular/metabolism
- Gene Expression Regulation
- Genotype
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Kruppel-Like Factor 4
- Kruppel-Like Transcription Factors/deficiency
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Lymphangiogenesis
- Mechanotransduction, Cellular
- Mice, Knockout
- ORAI1 Protein/deficiency
- ORAI1 Protein/genetics
- ORAI1 Protein/metabolism
- Phenotype
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Stress, Mechanical
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor C/genetics
- Vascular Endothelial Growth Factor C/metabolism
Collapse
Affiliation(s)
- Dongwon Choi
- Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
- Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Eunkyung Park
- Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
- Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Eunson Jung
- Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
- Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Young Jin Seong
- Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
- Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mingu Hong
- Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
- Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Sunju Lee
- Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
- Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - James Burford
- Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Georgina Gyarmati
- Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Janos Peti-Peterdi
- Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Sonal Srikanth
- Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Yousang Gwack
- Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Chester J. Koh
- Pediatric Urology, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas
| | - Evgenii Boriushkin
- Cardiovascular Medicine, Department of Medicine, Stony Brook University, Stony Brook, New York, 11794
| | - Anne Hamik
- Cardiovascular Medicine, Department of Medicine, Stony Brook University, Stony Brook, New York, 11794
- Northport Veterans Affairs Medical Center, Northport, New York
| | - Alex K. Wong
- Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Young-Kwon Hong
- Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
- Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
20
|
Ewart MA, Ugusman A, Vishwanath A, Almabrouk TA, Alganga H, Katwan OJ, Hubanova P, Currie S, Kennedy S. Changes in IP3 Receptor Expression and Function in Aortic Smooth Muscle of Atherosclerotic Mice. J Vasc Res 2017; 54:68-78. [PMID: 28365690 PMCID: PMC5804831 DOI: 10.1159/000461581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/09/2017] [Indexed: 01/01/2023] Open
Abstract
Peroxynitrite is an endothelium-independent vasodilator that induces relaxation via membrane hyperpolarization. The activation of IP3 receptors triggers the opening of potassium channels and hyperpolarization. Previously we found that relaxation to peroxynitrite was maintained during the development of atherosclerosis due to changes in the expression of calcium-regulatory proteins. In this study we investigated: (1) the mechanism of peroxynitrite-induced relaxation in the mouse aorta, (2) the effect of atherosclerosis on relaxation to peroxynitrite and other vasodilators, and (3) the effect of atherosclerosis on the expression and function of the IP3 receptor. Aortic function was studied using wire myography, and atherosclerosis was induced by fat-feeding ApoE−/− mice. The expression of IP3 receptors was studied using Western blotting and immunohistochemistry. Relaxation to peroxynitrite was attenuated by the IP3 antagonists 2-APB and xestospongin C and also the Kv channel blocker 4-aminopyridine (4-AP). Atherosclerosis attenuated vasodilation to cromakalim and the AMPK activator A769662 but not peroxynitrite. Relaxation was attenuated to a greater extent by 2-APB in atherosclerotic aortae despite the reduced expression of IP3 receptors. 4-AP was less effective in ApoE−/− mice fat-fed for 4 months. Peroxynitrite relaxation involves an IP3-induced calcium release and KV channel activation. This mechanism becomes less important as atherosclerosis develops, and relaxation to peroxynitrite may be maintained by increased calcium extrusion.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/physiopathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/physiopathology
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/physiopathology
- Calcium Signaling
- Diet, High-Fat
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Genetic Predisposition to Disease
- Inositol 1,4,5-Trisphosphate Receptors/agonists
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Peroxynitrous Acid/pharmacology
- Phenotype
- Potassium Channels, Voltage-Gated/metabolism
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Marie-Ann Ewart
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Azizah Ugusman
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Physiology, Faculty of Medicine, National University of Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Anisha Vishwanath
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tarek A.M. Almabrouk
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Husam Alganga
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Omar J. Katwan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Pavlina Hubanova
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Susan Currie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, UK
| | - Simon Kennedy
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- *Dr. Simon Kennedy, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ (UK), E-Mail
| |
Collapse
|
21
|
Shi J, Miralles F, Kinet JP, Birnbaumer L, Large WA, Albert AP. Evidence that Orai1 does not contribute to store-operated TRPC1 channels in vascular smooth muscle cells. Channels (Austin) 2017; 11:329-339. [PMID: 28301277 PMCID: PMC5555289 DOI: 10.1080/19336950.2017.1303025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ca2+-permeable store-operated channels (SOCs) mediate Ca2+ entry pathways which are involved in many cellular functions such as contraction, growth, and proliferation. Prototypical SOCs are formed of Orai1 proteins and are activated by the endo/sarcoplasmic reticulum Ca2+ sensor stromal interaction molecule 1 (STIM1). There is considerable debate about whether canonical transient receptor potential 1 (TRPC1) proteins also form store-operated channels (SOCs), and if they do, is Orai1 involved. We recently showed that stimulation of TRPC1-based SOCs involves store depletion inducing STIM1-evoked Gαq/PLCβ1 activity in contractile vascular smooth muscle cells (VSMCs). Therefore the present work investigates the role of Orai1 in activation of TRPC1-based SOCs in freshly isolated mesenteric artery VSMCs from wild-type (WT) and Orai1−/− mice. Store-operated whole-cell and single channel currents recorded from WT and Orai1−/− VSMCs had similar properties, with relatively linear current-voltage relationships, reversal potentials of about +20mV, unitary conductances of about 2pS, and inhibition by anti-TRPC1 and anti-STIM1 antibodies. In Orai1−/− VSMCs, store depletion induced PLCβ1 activity measured with the fluorescent phosphatidylinositol 4,5-bisphosphate/inositol 1,4,5-trisphosphate biosensor GFP-PLCδ1-PH, which was prevented by knockdown of STIM1. In addition, in Orai1−/− VSMCs, store depletion induced translocation of STIM1 from within the cell to the plasma membrane where it formed STIM1-TRPC1 interactions at discrete puncta-like sites. These findings indicate that activation of TRPC1-based SOCs through a STIM1-activated PLCβ1 pathway are likely to occur independently of Orai1 proteins, providing evidence that TRPC1 channels form genuine SOCs in VSMCs with a contractile phenotype.
Collapse
Affiliation(s)
- Jian Shi
- a Institute of Cardiovascular & Metabolic Medicine, School of Medicine , University of Leeds , Leeds , UK
| | - Francesc Miralles
- b Vascular Biology Research Centre, Institute of Molecular & Clinical Sciences Research Institute , St. George's, University of London , Cranmer Terrace, London , UK.,c Institute of Medical & Biomedical Education, St. George's , University of London , Cranmer Terrace, London , UK
| | - Jean-Pierre Kinet
- d Laboratory of Allergy and Immunology, Department of Pathology, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA
| | - Lutz Birnbaumer
- e Laboratory of Neurobiology , National Institute of Environmental Health Sciences , Research Triangle Park, NC , USA.,f Institute of Biomedical Research (BIOMED) , Catholic University of Argentina , Buenos Aires , Argentina
| | - William A Large
- b Vascular Biology Research Centre, Institute of Molecular & Clinical Sciences Research Institute , St. George's, University of London , Cranmer Terrace, London , UK
| | - Anthony P Albert
- b Vascular Biology Research Centre, Institute of Molecular & Clinical Sciences Research Institute , St. George's, University of London , Cranmer Terrace, London , UK
| |
Collapse
|
22
|
Kuang SJ, Qian JS, Yang H, Rao F, Chen XY, Zhang MZ, Shan ZX, Lin QX, Xue YM, Wu SL, Jiang L, Chen CB, Deng CY. The enhancement of TXA 2 receptors-mediated contractile response in intrarenal artery dysfunction in type 2 diabetic mice. Eur J Pharmacol 2017; 805:93-100. [PMID: 28286123 DOI: 10.1016/j.ejphar.2017.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/28/2017] [Accepted: 03/08/2017] [Indexed: 11/28/2022]
Abstract
Thromboxane A2 (TXA2) has been implicated in the pathogenesis of diabetic vascular complications, although the underlying mechanism remains unclear. The present study investigated the alterations in TXA2 receptor signal transduction in type 2 diabetic renal arteries. The contraction of renal arterial rings in control (db/m+) mice and type 2 diabetic (db/db) mice was measured by a Multi Myograph System. Intracellular calcium concentration ([Ca2+]i) in vascular smooth muscle cells was measured by Fluo-4/AM dye and confocal laser scanning microscopy. Quantitative real-time PCR and Western blot analysis were used to determine gene and protein expression levels, respectively. A stable TXA2 mimic U46619 caused markedly stronger dose-dependent contractions in the renal arteries of db/db mice than in those of db/m+ mice. This response was completely blocked by a TXA2 receptor antagonist GR32191 and significantly inhibited by U73122. U46619-induced vasoconstriction was increased in the presence of nifedipine in db/db mice compared with that in db/m+ mice, whereas the response to U46619 did not differ between the two groups in the presence of SKF96365. Sarcoplasmic reticulum Ca2+ release-mediated and CaCl2-induced contractions did not differ between the two groups. In db/db mice, store-operated Ca2+(SOC) entry-mediated contraction in the renal arteries and SOC entry-mediated Ca2+ influx in smooth muscle cells were significantly increased. And the gene and protein expressions of TXA2 receptors, Orai1 and Stim1 were upregulated in the diabetic renal arteries. Therefore the enhancement of U46619-induced contraction was mediated by the upregulation of TXA2 receptors and downstream signaling in the diabetic renal arteries.
Collapse
Affiliation(s)
- Su-Juan Kuang
- Guangdong Cardiovascular Institute, PR China; Department of Medical Research, Guangdong General Hospital, PR China; Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Jie-Sheng Qian
- Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Hui Yang
- Guangdong Cardiovascular Institute, PR China; Department of Medical Research, Guangdong General Hospital, PR China; Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Fang Rao
- Guangdong Cardiovascular Institute, PR China; Department of Medical Research, Guangdong General Hospital, PR China; Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Xiao-Yan Chen
- Guangdong Cardiovascular Institute, PR China; Department of Medical Research, Guangdong General Hospital, PR China; Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Meng-Zhen Zhang
- Guangdong Cardiovascular Institute, PR China; Department of Medical Research, Guangdong General Hospital, PR China; Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Zhi-Xin Shan
- Guangdong Cardiovascular Institute, PR China; Department of Medical Research, Guangdong General Hospital, PR China; Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Qiu-Xiong Lin
- Guangdong Cardiovascular Institute, PR China; Department of Medical Research, Guangdong General Hospital, PR China; Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Yu-Mei Xue
- Guangdong Cardiovascular Institute, PR China; Department of Medical Research, Guangdong General Hospital, PR China; Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Shu-Lin Wu
- Guangdong Cardiovascular Institute, PR China; Department of Medical Research, Guangdong General Hospital, PR China; Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Li Jiang
- Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Chun-Bo Chen
- Guangdong Cardiovascular Institute, PR China; Department of Medical Research, Guangdong General Hospital, PR China; Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China.
| | - Chun-Yu Deng
- Guangdong Cardiovascular Institute, PR China; Department of Medical Research, Guangdong General Hospital, PR China; Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China.
| |
Collapse
|
23
|
Shi J, Miralles F, Birnbaumer L, Large WA, Albert AP. Store-operated interactions between plasmalemmal STIM1 and TRPC1 proteins stimulate PLCβ1 to induce TRPC1 channel activation in vascular smooth muscle cells. J Physiol 2017; 595:1039-1058. [PMID: 27753095 PMCID: PMC5309361 DOI: 10.1113/jp273302] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/13/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Depletion of Ca2+ stores activates store-operated channels (SOCs), which mediate Ca2+ entry pathways that regulate cellular processes such as contraction, proliferation and gene expression. In vascular smooth muscle cells (VSMCs), stimulation of SOCs composed of canonical transient receptor potential channel 1 (TRPC1) proteins requires G protein α q subunit (Gαq)/phospholipase C (PLC)β1/protein kinase C (PKC) activity. We studied the role of stromal interaction molecule 1 (STIM1) in coupling store depletion to this activation pathway using patch clamp recording, GFP-PLCδ1-PH imaging and co-localization techniques. Store-operated TRPC1 channel and PLCβ1 activities were inhibited by STIM1 short hairpin RNA (shRNA) and absent in TRPC1-/- cells, and store-operated PKC phosphorylation of TRPC1 was inhibited by STIM1 shRNA. Store depletion induced interactions between STIM1 and TRPC1, Gαq and PLCβ1, which required STIM1 and TRPC1. Similar effects were produced with noradrenaline. These findings identify a new activation mechanism of TRPC1-based SOCs in VSMCs, and a novel role for STIM1, where store-operated STIM1-TRPC1 interactions stimulate Gαq/PLCβ1/PKC activity to induce channel gating. ABSTRACT In vascular smooth muscle cells (VSMCs), stimulation of canonical transient receptor potential channel 1 (TRPC1) protein-based store-operated channels (SOCs) mediates Ca2+ entry pathways that regulate contractility, proliferation and migration. It is therefore important to understand how these channels are activated. Studies have shown that stimulation of TRPC1-based SOCs requires G protein α q subunit (Gαq)/phospholipase C (PLC)β1 activities and protein kinase C (PKC) phosphorylation, although it is unclear how store depletion stimulates this gating pathway. The present study examines this issue by focusing on the role of stromal interaction molecule 1 (STIM1), an endo/sarcoplasmic reticulum Ca2+ sensor. Store-operated TRPC1 channel activity was inhibited by TRPC1 and STIM1 antibodies and STIM1 short hairpin RNA (shRNA) in wild-type VSMCs, and was absent in TRPC1-/- VSMCs. Store-operated PKC phosphorylation of TRPC1 was reduced by knockdown of STIM1. Moreover, store-operated PLCβ1 activity measured with the fluorescent phosphatidylinositol 4,5-bisphosphate/inositol 1,4,5-trisphosphate biosensor GFP-PLCδ1-PH was reduced by STIM1 shRNA and absent in TRPC1-/- cells. Immunocytochemistry, co-immunoprecipitation and proximity ligation assays revealed that store depletion activated STIM1 translocation from within the cell to the plasma membrane (PM) where it formed STIM1-TRPC1 complexes, which then associated with Gαq and PLCβ1. Noradrenaline also evoked TRPC1 channel activity and associations between TRPC1, STIM1, Gαq and PLCβ1, which were inhibited by STIM1 knockdown. Effects of N-terminal and C-terminal STIM1 antibodies on TRPC1-based SOCs and STIM1 staining suggest that channel activation may involve insertion of STIM1 into the PM. The findings of the present study identify a new activation mechanism of TRPC1-based SOCs in VSMCs, and a novel role for STIM1, in which store-operated STIM1-TRPC1 interactions stimulate PLCβ1 activity to induce PKC phosphorylation of TRPC1 and channel gating.
Collapse
Affiliation(s)
- Jian Shi
- Vascular Biology Research CentreMolecular & Clinical Sciences Research Institute
| | - Francesc Miralles
- Vascular Biology Research CentreMolecular & Clinical Sciences Research Institute
- Institute of Medical & Biomedical EducationSt George'sUniversity of LondonLondonUK
| | - Lutz Birnbaumer
- Neurobiology LaboratoryNational Institute of Environmental Health SciencesResearch Triangle ParkNCUSA
- Institute of Biomedical Research (BIOMED)School of Medical SciencesCatholic University of ArgentinaBuenos AiresArgentina
| | - William A. Large
- Vascular Biology Research CentreMolecular & Clinical Sciences Research Institute
| | - Anthony P. Albert
- Vascular Biology Research CentreMolecular & Clinical Sciences Research Institute
| |
Collapse
|
24
|
Chen M, Li J, Jiang F, Fu J, Xia X, Du J, Hu M, Huang J, Shen B. Orai1 forms a signal complex with BKCa channel in mesenteric artery smooth muscle cells. Physiol Rep 2016; 4:4/1/e12682. [PMID: 26755740 PMCID: PMC4760400 DOI: 10.14814/phy2.12682] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Orai1, a specific nonvoltage‐gated Ca2+ channel, has been found to be one of key molecules involved in store‐operated Ca2+ entry (SOCE). Orai1 may associate with other proteins to form a signaling complex, which is essential for regulating a variety of physiological functions. In this study, we studied the possible interaction between Orai1 and large conductance Ca2+‐activated potassium channel (BKCa). Using RNA interference technique, we demonstrated that the SOCE and its associated membrane hyperpolarization were markedly suppressed after knockdown of Orai1 with a specific Orai1 siRNA in rat mesenteric artery smooth muscle. Moreover, isometric tension measurements showed that agonist‐induced vasocontraction was increased after Orai1 was knocked down or the tissue was incubated with BKCa blocker iberiotoxin. Coimmunoprecipitation data revealed that BKCa and Orai1 could reciprocally pull down each other. In situ proximity ligation assay further demonstrated that Orai1 and BKCa are in close proximity. Taken together, these results indicate that Orai1 physically associates with BKCa to form a signaling complex in the rat mesenteric artery smooth muscle. Ca2+ influx via Orai1 stimulates BKCa, leading to membrane hyperpolarization. This hyperpolarizing effect of Orai1‐BKCa coupling could contribute to reduce agonist‐induced membrane depolarization, therefore preventing excessive contraction of the rat mesenteric artery smooth muscle in response to contractile agonists.
Collapse
Affiliation(s)
- Meihua Chen
- Department of Physiology, Anhui Medical University, Hefei, Anhui, China
| | - Jie Li
- Department of Physiology, Anhui Medical University, Hefei, Anhui, China
| | - Feifei Jiang
- Department of Pediatrics, The people's hospital of Bozhou, Bozhou, Anhui, China
| | - Jie Fu
- Department of Physiology, Anhui Medical University, Hefei, Anhui, China
| | - Xianming Xia
- Department of Gastroenterology and Hepatology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Juan Du
- Department of Physiology, Anhui Medical University, Hefei, Anhui, China
| | - Min Hu
- Department of Sports and Health, Guangdong Provincial Key Laboratory of Sports and Health Promotion, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Junhao Huang
- Department of Sports and Health, Guangdong Provincial Key Laboratory of Sports and Health Promotion, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Bing Shen
- Department of Physiology, Anhui Medical University, Hefei, Anhui, China Central Laboratory of Molecular and Cellular Biology of School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
25
|
Ávila-Medina J, Calderón-Sánchez E, González-Rodríguez P, Monje-Quiroga F, Rosado JA, Castellano A, Ordóñez A, Smani T. Orai1 and TRPC1 Proteins Co-localize with CaV1.2 Channels to Form a Signal Complex in Vascular Smooth Muscle Cells. J Biol Chem 2016; 291:21148-21159. [PMID: 27535226 DOI: 10.1074/jbc.m116.742171] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Indexed: 11/06/2022] Open
Abstract
Voltage-dependent CaV1.2 L-type Ca2+ channels (LTCC) are the main route for calcium entry in vascular smooth muscle cells (VSMC). Several studies have also determined the relevant role of store-operated Ca2+ channels (SOCC) in vascular tone regulation. Nevertheless, the role of Orai1- and TRPC1-dependent SOCC in vascular tone regulation and their possible interaction with CaV1.2 are still unknown. The current study sought to characterize the co-activation of SOCC and LTCC upon stimulation by agonists, and to determine the possible crosstalk between Orai1, TRPC1, and CaV1.2. Aorta rings and isolated VSMC obtained from wild type or smooth muscle-selective conditional CaV1.2 knock-out (CaV1.2KO) mice were used to study vascular contractility, intracellular Ca2+ mobilization, and distribution of ion channels. We found that serotonin (5-HT) or store depletion with thapsigargin (TG) enhanced intracellular free Ca2+ concentration ([Ca2+]i) and stimulated aorta contraction. These responses were sensitive to LTCC and SOCC inhibitors. Also, 5-HT- and TG-induced responses were significantly attenuated in CaV1.2KO mice. Furthermore, hyperpolarization induced with cromakalim or valinomycin significantly reduced both 5-HT and TG responses, whereas these responses were enhanced with LTCC agonist Bay-K-8644. Interestingly, in situ proximity ligation assay revealed that CaV1.2 interacts with Orai1 and TRPC1 in untreated VSMC. These interactions enhanced significantly after stimulation of cells with 5-HT and TG. Therefore, these data indicate for the first time a functional interaction between Orai1, TRPC1, and CaV1.2 channels in VSMC, confirming that upon agonist stimulation, vessel contraction involves Ca2+ entry due to co-activation of Orai1- and TRPC1-dependent SOCC and LTCC.
Collapse
Affiliation(s)
- Javier Ávila-Medina
- From the Departamento de Fisiología Médica y Biofísica and Groupo de Fisiopatología Cardiovascular, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Eva Calderón-Sánchez
- Groupo de Fisiopatología Cardiovascular, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | | | - Francisco Monje-Quiroga
- the Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Wien, Austria, and
| | - Juan Antonio Rosado
- the Departamento de Fisiología, Universidad de Extremadura, 10071 Cáceres, Spain
| | | | - Antonio Ordóñez
- Groupo de Fisiopatología Cardiovascular, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Tarik Smani
- From the Departamento de Fisiología Médica y Biofísica and Groupo de Fisiopatología Cardiovascular, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain,
| |
Collapse
|
26
|
Stanisz H, Vultur A, Herlyn M, Roesch A, Bogeski I. The role of Orai-STIM calcium channels in melanocytes and melanoma. J Physiol 2016; 594:2825-35. [PMID: 26864956 DOI: 10.1113/jp271141] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/04/2016] [Indexed: 12/12/2022] Open
Abstract
Calcium signalling within normal and cancer cells regulates many important cellular functions such as migration, proliferation, differentiation and cytokine secretion. Store operated Ca(2+) entry (SOCE) via the Ca(2+) release activated Ca(2+) (CRAC) channels, which are composed of the plasma membrane based Orai channels and the endoplasmic reticulum stromal interaction molecules (STIMs), is a major Ca(2+) entry route in many cell types. Orai and STIM have been implicated in the growth and metastasis of multiple cancers; however, while their involvement in cancer is presently indisputable, how Orai-STIM-controlled Ca(2+) signals affect malignant transformation, tumour growth and invasion is not fully understood. Here, we review recent studies linking Orai-STIM Ca(2+) channels with cancer, with a particular focus on melanoma. We highlight and examine key molecular players and the signalling pathways regulated by Orai and STIM in normal and malignant cells, we expose discrepancies, and we reflect on the potential of Orai-STIMs as anticancer drug targets. Finally, we discuss the functional implications of future discoveries in the field of Ca(2+) signalling.
Collapse
Affiliation(s)
- Hedwig Stanisz
- Department of Dermatology, Venerology and Allergology, University Hospital of the Saarland, Homburg, Germany
| | - Adina Vultur
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Meenhard Herlyn
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Alexander Roesch
- Department of Dermatology, University Hospital Essen, Hufelandstraße 55, D-45122, Essen, Germany
| | - Ivan Bogeski
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, 66421, Homburg, Germany
| |
Collapse
|
27
|
Shi J, Miralles F, Birnbaumer L, Large WA, Albert AP. Store depletion induces Gαq-mediated PLCβ1 activity to stimulate TRPC1 channels in vascular smooth muscle cells. FASEB J 2015; 30:702-15. [PMID: 26467792 PMCID: PMC4714548 DOI: 10.1096/fj.15-280271] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/28/2015] [Indexed: 11/29/2022]
Abstract
Depletion of sarcoplasmic reticulum (SR) Ca2+ stores activates store-operated channels (SOCs) composed of canonical transient receptor potential (TRPC) 1 proteins in vascular smooth muscle cells (VSMCs), which contribute to important cellular functions. We have previously shown that PKC is obligatory for activation of TRPC1 SOCs in VSMCs, and the present study investigates if the classic phosphoinositol signaling pathway involving Gαq-mediated PLC activity is responsible for driving PKC-dependent channel gating. The G-protein inhibitor GDP-β-S, anti-Gαq antibodies, the PLC inhibitor U73122, and the PKC inhibitor GF109203X all inhibited activation of TRPC1 SOCs, and U73122 and GF109203X also reduced store-operated PKC-dependent phosphorylation of TRPC1 proteins. Three distinct SR Ca2+ store-depleting agents, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester, cyclopiazonic acid, and N,N,N′,N′-tetrakis(2-pyridylmethyl)ethane-1,2-diamineed, induced translocations of the fluorescent biosensor GFP-PLCδ1-PH from the cell membrane to the cytosol, which were inhibited by U73122. Knockdown of PLCβ1 with small hairpin RNA reduced both store-operated PLC activity and stimulation of TRPC1 SOCs. Immunoprecipitation studies and proximity ligation assays revealed that store depletion induced interactions between TRPC1 and Gαq, and TRPC1 and PLCβ1. We propose a novel activation mechanism for TRPC1 SOCs in VSMCs, in which store depletion induces formation of TRPC1-Gαq-PLCβ1 complexes that lead to PKC stimulation and channel gating.—Shi, J., Miralles, F., Birnbaumer, L., Large, W. A., Albert, A. P. Store depletion induces Gαq-mediated PLCβ1 activity to stimulate TRPC1 channels in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Jian Shi
- *Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, and Institute of Medical and Biomedical Education, St. George's, University of London, London, United Kingdom; and Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Francesc Miralles
- *Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, and Institute of Medical and Biomedical Education, St. George's, University of London, London, United Kingdom; and Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Lutz Birnbaumer
- *Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, and Institute of Medical and Biomedical Education, St. George's, University of London, London, United Kingdom; and Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - William A Large
- *Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, and Institute of Medical and Biomedical Education, St. George's, University of London, London, United Kingdom; and Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Anthony P Albert
- *Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, and Institute of Medical and Biomedical Education, St. George's, University of London, London, United Kingdom; and Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
28
|
Li J, Bruns AF, Hou B, Rode B, Webster PJ, Bailey MA, Appleby HL, Moss NK, Ritchie JE, Yuldasheva NY, Tumova S, Quinney M, McKeown L, Taylor H, Prasad KR, Burke D, O'Regan D, Porter KE, Foster R, Kearney MT, Beech DJ. Orai3 Surface Accumulation and Calcium Entry Evoked by Vascular Endothelial Growth Factor. Arterioscler Thromb Vasc Biol 2015; 35:1987-94. [PMID: 26160956 PMCID: PMC4548547 DOI: 10.1161/atvbaha.115.305969] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/24/2015] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Vascular endothelial growth factor (VEGF) acts, in part, by triggering calcium ion (Ca2+) entry. Here, we sought understanding of a Synta66-resistant Ca2+ entry pathway activated by VEGF.
Collapse
Affiliation(s)
- Jing Li
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Alexander-Francisco Bruns
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Bing Hou
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Baptiste Rode
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Peter J Webster
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Marc A Bailey
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Hollie L Appleby
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Nicholas K Moss
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Judith E Ritchie
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Nadira Y Yuldasheva
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Sarka Tumova
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Matthew Quinney
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Lynn McKeown
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Hilary Taylor
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - K Raj Prasad
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Dermot Burke
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - David O'Regan
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Karen E Porter
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Richard Foster
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Mark T Kearney
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - David J Beech
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.).
| |
Collapse
|
29
|
Leblanc N, Forrest AS, Ayon RJ, Wiwchar M, Angermann JE, Pritchard HAT, Singer CA, Valencik ML, Britton F, Greenwood IA. Molecular and functional significance of Ca(2+)-activated Cl(-) channels in pulmonary arterial smooth muscle. Pulm Circ 2015; 5:244-68. [PMID: 26064450 DOI: 10.1086/680189] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/22/2014] [Indexed: 12/31/2022] Open
Abstract
Increased peripheral resistance of small distal pulmonary arteries is a hallmark signature of pulmonary hypertension (PH) and is believed to be the consequence of enhanced vasoconstriction to agonists, thickening of the arterial wall due to remodeling, and increased thrombosis. The elevation in arterial tone in PH is attributable, at least in part, to smooth muscle cells of PH patients being more depolarized and displaying higher intracellular Ca(2+) levels than cells from normal subjects. It is now clear that downregulation of voltage-dependent K(+) channels (e.g., Kv1.5) and increased expression and activity of voltage-dependent (Cav1.2) and voltage-independent (e.g., canonical and vanilloid transient receptor potential [TRPC and TRPV]) Ca(2+) channels play an important role in the functional remodeling of pulmonary arteries in PH. This review focuses on an anion-permeable channel that is now considered a novel excitatory mechanism in the systemic and pulmonary circulations. It is permeable to Cl(-) and is activated by a rise in intracellular Ca(2+) concentration (Ca(2+)-activated Cl(-) channel, or CaCC). The first section outlines the biophysical and pharmacological properties of the channel and ends with a description of the molecular candidate genes postulated to encode for CaCCs, with particular emphasis on the bestrophin and the newly discovered TMEM16 and anoctamin families of genes. The second section provides a review of the various sources of Ca(2+) activating CaCCs, which include stimulation by mobilization from intracellular Ca(2+) stores and Ca(2+) entry through voltage-dependent and voltage-independent Ca(2+) channels. The third and final section summarizes recent findings that suggest a potentially important role for CaCCs and the gene TMEM16A in PH.
Collapse
Affiliation(s)
- Normand Leblanc
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Abigail S Forrest
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Ramon J Ayon
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Michael Wiwchar
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Jeff E Angermann
- School of Community Health Sciences, University of Nevada, Reno, Nevada, USA
| | - Harry A T Pritchard
- Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, St. George's University of London, London, United Kingdom
| | - Cherie A Singer
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Maria L Valencik
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Fiona Britton
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Iain A Greenwood
- Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, St. George's University of London, London, United Kingdom
| |
Collapse
|
30
|
Redondo PC, Rosado JA. Store-operated calcium entry: unveiling the calcium handling signalplex. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:183-226. [PMID: 25805125 DOI: 10.1016/bs.ircmb.2015.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) is an important mechanism for Ca(2+) influx in non-excitable cells, also present in excitable cells. The activation of store-operated channels (SOCs) is finely regulated by the filling state of the intracellular agonist-sensitive Ca(2+) compartments, and both, the mechanism of sensing the Ca(2+) stores and the nature and functional properties of the SOCs, have been a matter of intense investigation and debate. The identification of STIM1 as the endoplasmic reticulum Ca(2+) sensor and both Orai1, as the pore-forming subunit of the channels mediating the Ca(2+)-selective store-operated current, and the members of the TRPC subfamily of proteins, as the channels mediating the cation-permeable SOCs, has shed new light on the underlying events. This review summarizes the initial hypothesis and the current advances on the mechanism of activation of SOCE.
Collapse
Affiliation(s)
- Pedro C Redondo
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Cáceres, Spain
| |
Collapse
|
31
|
Xu N, Cioffi DL, Alexeyev M, Rich TC, Stevens T. Sodium entry through endothelial store-operated calcium entry channels: regulation by Orai1. Am J Physiol Cell Physiol 2014; 308:C277-88. [PMID: 25428882 DOI: 10.1152/ajpcell.00063.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Orai1 interacts with transient receptor potential protein of the canonical subfamily (TRPC4) and contributes to calcium selectivity of the endothelial cell store-operated calcium entry current (ISOC). Orai1 silencing increases sodium permeability and decreases membrane-associated calcium, although it is not known whether Orai1 is an important determinant of cytosolic sodium transitions. We test the hypothesis that, upon activation of store-operated calcium entry channels, Orai1 is a critical determinant of cytosolic sodium transitions. Activation of store-operated calcium entry channels transiently increased cytosolic calcium and sodium, characteristic of release from an intracellular store. The sodium response occurred more abruptly and returned to baseline more rapidly than did the transient calcium rise. Extracellular choline substitution for sodium did not inhibit the response, although 2-aminoethoxydiphenyl borate and YM-58483 reduced it by ∼50%. After this transient response, cytosolic sodium continued to increase due to influx through activated store-operated calcium entry channels. The magnitude of this sustained increase in cytosolic sodium was greater when experiments were conducted in low extracellular calcium and when Orai1 expression was silenced; these two interventions were not additive, suggesting a common mechanism. 2-Aminoethoxydiphenyl borate and YM-58483 inhibited the sustained increase in cytosolic sodium, only in the presence of Orai1. These studies demonstrate that sodium permeates activated store-operated calcium entry channels, resulting in an increase in cytosolic sodium; the magnitude of this response is determined by Orai1.
Collapse
Affiliation(s)
- Ningyong Xu
- Department of Pharmacology, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Donna L Cioffi
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Mikhail Alexeyev
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Thomas C Rich
- Department of Pharmacology, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Troy Stevens
- Department of Pharmacology, University of South Alabama, Mobile, Alabama; Department of Medicine, University of South Alabama, Mobile, Alabama; and Center for Lung Biology, University of South Alabama, Mobile, Alabama
| |
Collapse
|
32
|
May the remodeling of the Ca²⁺ toolkit in endothelial progenitor cells derived from cancer patients suggest alternative targets for anti-angiogenic treatment? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1958-73. [PMID: 25447551 DOI: 10.1016/j.bbamcr.2014.10.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/16/2014] [Accepted: 10/28/2014] [Indexed: 01/10/2023]
Abstract
Endothelial progenitor cells (EPCs) may be recruited from bone marrow to sustain the metastatic switch in a number of solid cancers, including breast cancer (BC) and renal cellular carcinoma (RCC). Preventing EPC mobilization causes tumor shrinkage. Novel anti-angiogenic treatments have been introduced in therapy to inhibit VEGFR-2 signaling; unfortunately, these drugs blocked tumor angiogenesis in pre-clinical murine models, but resulted far less effective in human patients. Understanding the molecular mechanisms driving EPC proliferation and tubulogenesis in cancer patients could outline novel targets for alternative anti-angiogenic treatments. Store-operated Ca²⁺ entry (SOCE) regulates the growth of human EPCs, and it is mediated by the interaction between the endoplasmic reticulum Ca²⁺-sensor, Stim1, and the plasmalemmal Ca²⁺ channels, Orai1 and TRPC1. EPCs do not belong to the neoplastic clone: thus, unlike tumor endothelium and neoplastic cells, they should not remodel their Ca²⁺ toolkit in response to tumor microenvironment. However, our recent work demonstrated that EPCs isolated from naïve RCC patients (RCC-EPCs) undergo a dramatic remodeling of their Ca²⁺ toolkit by displaying a remarkable drop in the endoplasmic reticulum Ca²⁺ content, by down-regulating the expression of inositol-1,4,5-receptors (InsP3Rs), and by up-regulating Stim1, Orai1 and TRPC1. Moreover, EPCs are dramatically less sensitive to VEGF stimulation both in terms of Ca²⁺ signaling and of gene expression when isolated from tumor patients. Conversely, the pharmacological abolition of SOCE suppresses proliferation in these cells. These results question the suitability of VEGFR-2 as a therapeutically relevant target for anti-angiogenic treatments and hint at Orai1 and TRPC1 as more promising alternatives. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
|
33
|
Bon RS, Beech DJ. In pursuit of small molecule chemistry for calcium-permeable non-selective TRPC channels -- mirage or pot of gold? Br J Pharmacol 2014; 170:459-74. [PMID: 23763262 DOI: 10.1111/bph.12274] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/29/2013] [Accepted: 05/09/2013] [Indexed: 12/21/2022] Open
Abstract
The primary purpose of this review is to address the progress towards small molecule modulators of human Transient Receptor Potential Canonical proteins (TRPC1, TRPC3, TRPC4, TRPC5, TRPC6 and TRPC7). These proteins generate channels for calcium and sodium ion entry. They are relevant to many mammalian cell types including acinar gland cells, adipocytes, astrocytes, cardiac myocytes, cochlea hair cells, endothelial cells, epithelial cells, fibroblasts, hepatocytes, keratinocytes, leukocytes, mast cells, mesangial cells, neurones, osteoblasts, osteoclasts, platelets, podocytes, smooth muscle cells, skeletal muscle and tumour cells. There are broad-ranging positive roles of the channels in cell adhesion, migration, proliferation, survival and turning, vascular permeability, hypertrophy, wound-healing, hypo-adiponectinaemia, angiogenesis, neointimal hyperplasia, oedema, thrombosis, muscle endurance, lung hyper-responsiveness, glomerular filtration, gastrointestinal motility, pancreatitis, seizure, innate fear, motor coordination, saliva secretion, mast cell degranulation, cancer cell drug resistance, survival after myocardial infarction, efferocytosis, hypo-matrix metalloproteinase, vasoconstriction and vasodilatation. Known small molecule stimulators of the channels include hyperforin, genistein and rosiglitazone, but there is more progress with inhibitors, some of which have promising potency and selectivity. The inhibitors include 2-aminoethoxydiphenyl borate, 2-aminoquinolines, 2-aminothiazoles, fatty acids, isothiourea derivatives, naphthalene sulfonamides, N-phenylanthranilic acids, phenylethylimidazoles, piperazine/piperidine analogues, polyphenols, pyrazoles and steroids. A few of these agents are starting to be useful as tools for determining the physiological and pathophysiological functions of TRPC channels. We suggest that the pursuit of small molecule modulators for TRPC channels is important but that it requires substantial additional effort and investment before we can reap the rewards of highly potent and selective pharmacological modulators.
Collapse
Affiliation(s)
- Robin S Bon
- School of Chemistry, University of Leeds, Leeds, UK
| | | |
Collapse
|
34
|
Duckles H, Boycott HE, Al-Owais MM, Elies J, Johnson E, Dallas ML, Porter KE, Giuntini F, Boyle JP, Scragg JL, Peers C. Heme oxygenase-1 regulates cell proliferation via carbon monoxide-mediated inhibition of T-type Ca2+ channels. Pflugers Arch 2014; 467:415-27. [PMID: 24744106 PMCID: PMC4293494 DOI: 10.1007/s00424-014-1503-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/14/2014] [Accepted: 03/14/2014] [Indexed: 11/24/2022]
Abstract
Induction of the antioxidant enzyme heme oxygenase-1 (HO-1) affords cellular protection and suppresses proliferation of vascular smooth muscle cells (VSMCs) associated with a variety of pathological cardiovascular conditions including myocardial infarction and vascular injury. However, the underlying mechanisms are not fully understood. Over-expression of Cav3.2 T-type Ca2+ channels in HEK293 cells raised basal [Ca2+]i and increased proliferation as compared with non-transfected cells. Proliferation and [Ca2+]i levels were reduced to levels seen in non-transfected cells either by induction of HO-1 or exposure of cells to the HO-1 product, carbon monoxide (CO) (applied as the CO releasing molecule, CORM-3). In the aortic VSMC line A7r5, proliferation was also inhibited by induction of HO-1 or by exposure of cells to CO, and patch-clamp recordings indicated that CO inhibited T-type (as well as L-type) Ca2+ currents in these cells. Finally, in human saphenous vein smooth muscle cells, proliferation was reduced by T-type channel inhibition or by HO-1 induction or CO exposure. The effects of T-type channel blockade and HO-1 induction were non-additive. Collectively, these data indicate that HO-1 regulates proliferation via CO-mediated inhibition of T-type Ca2+ channels. This signalling pathway provides a novel means by which proliferation of VSMCs (and other cells) may be regulated therapeutically.
Collapse
Affiliation(s)
- Hayley Duckles
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Arcangeli A, Crociani O, Bencini L. Interaction of tumour cells with their microenvironment: ion channels and cell adhesion molecules. A focus on pancreatic cancer. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130101. [PMID: 24493749 DOI: 10.1098/rstb.2013.0101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cancer must be viewed as a 'tissue', constituted of both transformed cells and a heterogeneous microenvironment, the 'tumour microenvironment' (TME). The TME undergoes a complex remodelling during the course of multistep tumourigenesis, hence strongly contributing to tumour progression. Ion channels and transporters (ICTs), being expressed on both tumour cells and in the different cellular components of the TME, are in a strategic position to sense and mediate signals arising from the TME. Often, this transmission is mediated by integrin adhesion receptors, which are the main cellular receptors capable of mediating cell-to-cell and cell-to-matrix bidirectional signalling. Integrins can often operate in conjunction with ICT because they can behave as functional partners of ICT proteins. The role of integrin receptors in the crosstalk between tumour cells and the TME is particularly relevant in the context of pancreatic cancer (PC), characterized by an overwhelming TME which actively contributes to therapy resistance. We discuss the possibility that this occurs through integrins and ICTs, which could be exploited as targets to overcome chemoresistance in PC.
Collapse
Affiliation(s)
- Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, , Viale G.B. Morgagni, 50, 50134 Firenze, Italy
| | | | | |
Collapse
|
36
|
Fiorio Pla A, Munaron L. Functional properties of ion channels and transporters in tumour vascularization. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130103. [PMID: 24493751 DOI: 10.1098/rstb.2013.0103] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vascularization is crucial for solid tumour growth and invasion, providing metabolic support and sustaining metastatic dissemination. It is now accepted that ion channels and transporters play a significant role in driving the cancer growth at all stages. They may represent novel therapeutic, diagnostic and prognostic targets for anti-cancer therapies. On the other hand, although the expression and role of ion channels and transporters in the vascular endothelium is well recognized and subject of recent reviews, only recently has their involvement in tumour vascularization been recognized. Here, we review the current literature on ion channels and transporters directly involved in the angiogenic process. Particular interest will be focused on tumour angiogenesis in vivo as well as in the different steps that drive this process in vitro, such as endothelial cell proliferation, migration, adhesion and tubulogenesis. Moreover, we compare the 'transportome' system of tumour vascular network with the physiological one.
Collapse
Affiliation(s)
- Alessandra Fiorio Pla
- Department of Life Sciences and Systems Biology, Center for Complex Systems in Molecular Biology and Medicine (SysBioM), Nanostructured Interfaces and Surfaces Centre of Excellence (NIS), University of Torino, , Via Accademia Albertina 13, Torino 10123, Italy
| | | |
Collapse
|
37
|
Abstract
Human canonical transient receptor potential channel 5 (TRPC5) has been cloned from the Xq23 region on chromosome X as a suspect in nonsyndromic mental retardation. TRPC5 is a Ca(2+)-permeable cation channel predominantly expressed in the CNS, including the hippocampus, cerebellum, amygdala, sensory neurons, and retina. It also shows more restricted expression in the periphery, notably in the kidney and cardiovascular system. Homotetrameric TRPC5 channels are primarily activated by receptors coupled to Gq and phospholipase C and/or Gi proteins, but TRPC5 channels may also gate in a store-dependent manner, which requires other partner proteins such TRPC1, STIM1, and Orai1. There is an impressive array of other activators of TRPC5 channels, such as nitric oxide, lysophospholipids, sphingosine-1-phosphate, reduced thioredoxin, protons, lanthanides, and calcium, and many can cause its direct activation. Moreover, TRPC5 shows constitutive activity, and it is responsive to membrane stretch and cold. Thus, TRPC5 channels have significant potential for synergistic activation and may serve as an important focal point in Ca(2+) signalling and electrogenesis. Moreover, TRPC5 functions in partnership with about 60 proteins, including TRPC1, TRPC4, calmodulin, IP3 receptors, NHERF, NCS-1, junctate, stathmin 2, Ca(2+)-binding protein 1, caveolin, and SESTD1, while its desensitisation is mediated by both protein kinases A and C. TRPC5 has a distinct voltage dependence shared only with its closest relative, TRPC4. Its unique N-shaped activation curve underlined by intracellular Mg(2+) block seems to be perfectly "shaped" to trigger action potential discharge, but not to grossly interfere with the action potential shape. The range of biological functions of TRPC5 channels is also impressive, from neurotransmission to control of axon guidance and vascular smooth muscle cell migration and contractility. Recent studies of Trpc5 gene knockouts begin to uncover its roles in fear, anxiety, seizures, and cold sensing.
Collapse
Affiliation(s)
- Alexander V Zholos
- Department of Biophysics, Educational and Scientific Centre "Institute of Biology", Taras Shevchenko Kiev National University, Kiev, 03022, Ukraine,
| |
Collapse
|
38
|
Fiorio Pla A, Gkika D. Emerging role of TRP channels in cell migration: from tumor vascularization to metastasis. Front Physiol 2013; 4:311. [PMID: 24204345 PMCID: PMC3817680 DOI: 10.3389/fphys.2013.00311] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/11/2013] [Indexed: 01/28/2023] Open
Abstract
Transient Receptor Potential (TRP) channels modulate intracellular Ca(2+) concentrations, controlling critical cytosolic and nuclear events that are involved in the initiation and progression of cancer. It is not, therefore, surprising that the expression of some TRP channels is altered during tumor growth and metastasis. Cell migration of both epithelial and endothelial cells is an essential step of the so-called metastatic cascade that leads to the spread of the disease within the body. It is in fact required for both tumor vascularization as well as for tumor cell invasion into adjacent tissues and intravasation into blood/lymphatic vessels. Studies from the last 15 years have unequivocally shown that the ion channles and the transport proteins also play important roles in cell migration. On the other hand, recent literature underlies a critical role for TRP channels in the migration process both in cancer cells as well as in tumor vascularization. This will be the main focus of our review. We will provide an overview of recent advances in this field describing TRP channels contribution to the vascular and cancer cell migration process, and we will systematically discuss relevant molecular mechanism involved.
Collapse
Affiliation(s)
- Alessandra Fiorio Pla
- Department of Life Sciences and Systems Biology, Nanostructured Interfaces and Surfaces Centre of Excellence, University of Torino Torino, Italy ; Inserm U1003, Equipe labellisée par la Ligue Nationale contre le cancer, Université des Sciences et Technologies de Lille Villeneuve d'Ascq, France
| | | |
Collapse
|
39
|
Dragoni S, Laforenza U, Bonetti E, Lodola F, Bottino C, Guerra G, Borghesi A, Stronati M, Rosti V, Tanzi F, Moccia F. Canonical transient receptor potential 3 channel triggers vascular endothelial growth factor-induced intracellular Ca2+ oscillations in endothelial progenitor cells isolated from umbilical cord blood. Stem Cells Dev 2013; 22:2561-80. [PMID: 23682725 DOI: 10.1089/scd.2013.0032] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Endothelial colony-forming cells (ECFCs) are the only endothelial progenitor cells (EPCs) that are capable of acquiring a mature endothelial phenotype. ECFCs are mainly mobilized from bone marrow to promote vascularization and represent a promising tool for cell-based therapy of severe ischemic diseases. Vascular endothelial growth factor (VEGF) stimulates the proliferation of peripheral blood-derived ECFCs (PB-ECFCs) through oscillations in intracellular Ca(2+) concentration ([Ca(2+)]i). VEGF-induced Ca(2+) spikes are driven by the interplay between inositol-1,4,5-trisphosphate (InsP3)-dependent Ca(2+) release and store-operated Ca(2+) entry (SOCE). The therapeutic potential of umbilical cord blood-derived ECFCs (UCB-ECFCs) has also been shown in recent studies. However, VEGF-induced proliferation of UCB-ECFCs is faster compared with their peripheral counterpart. Unlike PB-ECFCs, UCB-ECFCs express canonical transient receptor potential channel 3 (TRPC3) that mediates diacylglycerol-dependent Ca(2+) entry. The present study aimed at investigating whether the higher proliferative potential of UCB-ECFCs was associated to any difference in the molecular underpinnings of their Ca(2+) response to VEGF. We found that VEGF induces oscillations in [Ca(2+)]i that are patterned by the interaction between InsP3-dependent Ca(2+) release and SOCE. Unlike PB-ECFCs, VEGF-evoked Ca(2+) oscillations do not arise in the absence of extracellular Ca(2+) entry and after pharmacological (with Pyr3 and flufenamic acid) and genetic (by employing selective small interference RNA) suppression of TRPC3. VEGF-induced UCB-ECFC proliferation is abrogated on inhibition of the intracellular Ca(2+) spikes. Therefore, the Ca(2+) response to VEGF in UCB-ECFCs is shaped by a different Ca(2+) machinery as compared with PB-ECFCs, and TRPC3 stands out as a promising target in EPC-based treatment of ischemic pathologies.
Collapse
Affiliation(s)
- Silvia Dragoni
- 1 Department of Biology and Biotechnology "Lazzaro Spallanzani,", University of Pavia , Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zheng H, Zhou MH, Hu C, Kuo E, Peng X, Hu J, Kuo L, Zhang SL. Differential roles of the C and N termini of Orai1 protein in interacting with stromal interaction molecule 1 (STIM1) for Ca2+ release-activated Ca2+ (CRAC) channel activation. J Biol Chem 2013; 288:11263-72. [PMID: 23447534 DOI: 10.1074/jbc.m113.450254] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The entry of extracellular Ca(2+), which is mediated by Ca(2+) release-activated Ca(2+) (CRAC) channels, is essential for T cell activation and the normal functioning of other immune cells. Although the molecular components of CRAC channels, the Orai1 pore-forming subunit and the STIM1-activating subunit have been recently identified, the gating mechanism by which Orai1 channels conduct Ca(2+) entry upon Orai1-STIM1 interaction following Ca(2+) store release remains elusive. Herein, we show that C-terminal truncations or point mutations prevented Orai1 from binding to STIM1 and subsequent channel opening. In contrast, an Orai1 mutant with an N-terminal truncation interacted with but failed to be activated by STIM1. Moreover, Orai1 channels with C-terminal disruption, but not N-terminal truncation, could be gated by fused functional domains of STIM1. Interestingly, the channel activities of Orai1 mutants carrying either an N-terminal or a C-terminal truncation were restored by a methionine mutation at the putative gating hinge, the conserved Gly-98 site in the first transmembrane segment (TM1) of Orai1. Collectively, these results support a stepwise gating mechanism of STIM1-operated Orai1 channels; the initial binding between STIM1 and the C terminus of Orai1 docks STIM1 onto the N terminus of Orai1 to initiate conformational changes of the pore-lining TM1 helix of Orai1, leading to the opening of the channel.
Collapse
Affiliation(s)
- Hongying Zheng
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Temple, Texas 76504, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Horinouchi T, Terada K, Higashi T, Miwa S. Endothelin Receptor Signaling: New Insight Into Its Regulatory Mechanisms. J Pharmacol Sci 2013; 123:85-101. [DOI: 10.1254/jphs.13r02cr] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
42
|
Derler I, Schindl R, Fritsch R, Heftberger P, Riedl MC, Begg M, House D, Romanin C. The action of selective CRAC channel blockers is affected by the Orai pore geometry. Cell Calcium 2012; 53:139-51. [PMID: 23218667 PMCID: PMC3580291 DOI: 10.1016/j.ceca.2012.11.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/02/2012] [Accepted: 11/03/2012] [Indexed: 11/10/2022]
Abstract
As the molecular composition of calcium-release activated calcium (CRAC) channels has been unknown for two decades, elucidation of selective inhibitors has been considerably hampered. By the identification of the two key components of CRAC channels, STIM1 and Orai1 have emerged as promising targets for CRAC blockers. The aim of this study was to thoroughly characterize the effects of two selective CRAC channel blockers on currents derived from STIM1/Orai heterologoulsy expressed in HEK293 cells. The novel compounds GSK-7975A and GSK-5503A were tested for effects on STIM1 mediated Orai1 or Orai3 currents by whole-cell patch-clamp recordings and for the effects on STIM1 oligomerisation or STIM1/Orai coupling by FRET microscopy. To investigate their site of action, inhibitory effects of these molecules were explored using Orai pore mutants. The GSK blockers inhibited Orai1 and Orai3 currents with an IC50 of approximately 4 μM and exhibited a substantially slower rate of onset than the typical pore blocker La3+, together with almost no current recovery upon wash-out over 4 min. For the less Ca2+-selective Orai1 E106D pore mutant, ICRAC inhibition was significantly reduced. FRET experiments indicated that neither STIM1–STIM1 oligomerization nor STIM1–Orai1 coupling was affected by these compounds. These CRAC channel blockers are acting downstream of STIM1 oligomerization and STIM1/Orai1 interaction, potentially via an allosteric effect on the selectivity filter of Orai. The elucidation of these CRAC current blockers represents a significant step toward the identification of CRAC channel-selective drug compounds.
Collapse
Affiliation(s)
- Isabella Derler
- Institute of Biophysics, University of Linz, 4040 Linz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Numaga-Tomita T, Putney JW. Role of STIM1- and Orai1-mediated Ca2+ entry in Ca2+-induced epidermal keratinocyte differentiation. J Cell Sci 2012. [PMID: 23203806 DOI: 10.1242/jcs.115980] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The uppermost thin layer on the surface of the skin, called the epidermis, is responsible for the barrier function of the skin. The epidermis has a multilayered structure in which each layer consists of keratinocytes (KCs) of different differentiation status. The integrity of KC differentiation is crucial for the function of skin and its loss causes or is accompanied by skin diseases. Intracellular and extracellular Ca(2+) is known to play important roles in KC differentiation. However, the molecular mechanisms underlying Ca(2+) regulation of KC differentiation are still largely unknown. Store-operated Ca(2+) entry (SOCE) is a major Ca(2+) influx pathway in most non-excitable cells. SOCE is evoked in response to a fall in Ca(2+) concentration in the endoplasmic reticulum. Two proteins have been identified as essential components of SOCE: STIM1, a Ca(2+) sensor in the ER, and Orai1, a subunit of Ca(2+) channels in the plasma membrane. In this study, we analyzed the contribution of SOCE to KC growth and differentiation using RNAi knockdown of STIM1 and Orai1 in the human keratinocyte cell line, HaCaT. KC differentiation was induced by a switch in extracellular Ca(2+) concentration from low (0.03 mM; undifferentiated KCs) to high (1.8 mM; differentiated KCs). This Ca(2+) switch triggers phospholipase-C-mediated intracellular Ca(2+) signals (Ca(2+)-switch-induced Ca(2+) response), which would probably involve the activation of SOCE. Knockdown of either STIM1 or Orai1 strongly suppressed SOCE and almost completely abolished the Ca(2+)-switch-induced Ca(2+) responses, resulting in impaired expression of keratin1, an early KC differentiation marker. Furthermore, loss of either STIM1 or Orai1 suppressed normal growth of HaCaT cells in low Ca(2+) and inhibited the growth arrest in response to a Ca(2+) switch. These results demonstrate that SOCE plays multiple crucial roles in KC differentiation and function.
Collapse
Affiliation(s)
- Takuro Numaga-Tomita
- National Institute of Environmental Health Sciences-NIH, Department of Health and Human Services, PO Box 12233, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
44
|
Role of TRPC3 channel in human internal mammary artery. Arch Med Res 2012; 43:431-7. [PMID: 22960861 DOI: 10.1016/j.arcmed.2012.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 08/10/2012] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS Intracellular calcium regulation in endothelial cells depends on transient receptor potential channels (TRPs). Canonical TRPs (TRPCs) are now recognized as the most important Ca(2+)-permeable cation channels in vascular endothelium and TRPC3 channel is reported to play a role in vasodilation in animal vessels. However, little is known about the role of TRPCs in human arteries. We therefore tested the hypothesis that TRPCs play a role in human arteries. METHODS Cumulative concentration-relaxation curves to acetylcholine (-11 to -4.5 log M) were established in the human internal mammary artery (IMA) rings (n = 42) taken from 28 patients undergoing coronary artery bypass grafting in precontraction induced by U46619 (-8 log M) in the absence or presence of SKF96365 (10 μmol/L) or Pyr3 (3 μmol/L). Protein expressions of TRPC3 were determined by Western blot and immunohistochemistry staining. RESULTS The maximal relaxation induced by acetylcholine was significantly attenuated by the nonspecific cation channels inhibitor, SKF96365 (48.2 ± 3.7 vs. 66.0 ± 0.9% in control, p <0.01) or the selective TRPC3 blocker, Pyr3 (58.4 ± 2.3% vs. 67.7 ± 1.1% in control, p <0.01). Protein expression of TRPC3 was detected in human IMA. CONCLUSIONS TRPC3 exists and plays a role in the acetylcholine-induced endothelium-dependent relaxation in the human IMA. This study suggests that TRPC3 may be a potential new target in endothelial protection in patients with endothelial dysfunction such as in patients with coronary artery disease in order to improve the long-term patency of the grafting vessels.
Collapse
|
45
|
Moccia F, Berra-Romani R, Tanzi F. Update on vascular endothelial Ca 2+ signalling: A tale of ion channels, pumps and transporters. World J Biol Chem 2012; 3:127-58. [PMID: 22905291 PMCID: PMC3421132 DOI: 10.4331/wjbc.v3.i7.127] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/04/2012] [Accepted: 07/11/2012] [Indexed: 02/05/2023] Open
Abstract
A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and forms a multifunctional transducing organ that mediates a plethora of cardiovascular processes. The activation of ECs from as state of quiescence is, therefore, regarded among the early events leading to the onset and progression of potentially lethal diseases, such as hypertension, myocardial infarction, brain stroke, and tumor. Intracellular Ca2+ signals have long been know to play a central role in the complex network of signaling pathways regulating the endothelial functions. Notably, recent work has outlined how any change in the pattern of expression of endothelial channels, transporters and pumps involved in the modulation of intracellular Ca2+ levels may dramatically affect whole body homeostasis. Vascular ECs may react to both mechanical and chemical stimuli by generating a variety of intracellular Ca2+ signals, ranging from brief, localized Ca2+ pulses to prolonged Ca2+ oscillations engulfing the whole cytoplasm. The well-defined spatiotemporal profile of the subcellular Ca2+ signals elicited in ECs by specific extracellular inputs depends on the interaction between Ca2+ releasing channels, which are located both on the plasma membrane and in a number of intracellular organelles, and Ca2+ removing systems. The present article aims to summarize both the past and recent literature in the field to provide a clear-cut picture of our current knowledge on the molecular nature and the role played by the components of the Ca2+ machinery in vascular ECs under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Francesco Moccia
- Francesco Moccia, Franco Tanzi, Department of Biology and Biotechnologies "Lazzaro Spallanzani", Laboratory of Physiology, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | | | | |
Collapse
|
46
|
McKeown L, Moss NK, Turner P, Li J, Heath N, Burke D, O’Regan D, Gilthorpe MS, Porter KE, Beech DJ. Platelet-derived growth factor maintains stored calcium through a nonclustering Orai1 mechanism but evokes clustering if the endoplasmic reticulum is stressed by store depletion. Circ Res 2012; 111:66-76. [PMID: 22556336 PMCID: PMC3605802 DOI: 10.1161/circresaha.111.263616] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RATIONALE Calcium entry through Orai1 channels drives vascular smooth muscle cell migration and neointimal hyperplasia. The channels are activated by the important growth factor platelet-derived growth factor (PDGF). Channel activation is suggested to depend on store depletion, which redistributes and clusters stromal interaction molecule 1 (STIM1), which then coclusters and activates Orai1. OBJECTIVE To determine the relevance of STIM1 and Orai1 redistribution in PDGF responses. METHODS AND RESULTS Vascular smooth muscle cells were cultured from human saphenous vein. STIM1 and Orai1 were tagged with green and red fluorescent proteins to track them in live cells. Under basal conditions, the proteins were mobile but mostly independent of each other. Inhibition of sarco-endoplasmic reticulum calcium ATPase led to store depletion and dramatic redistribution of STIM1 and Orai1 into coclusters. PDGF did not evoke redistribution, even though it caused calcium release and Orai1-mediated calcium entry in the same time period. After chemical blockade of Orai1-mediated calcium entry, however, PDGF caused redistribution. Similarly, mutagenic disruption of calcium flux through Orai1 caused PDGF to evoke redistribution, showing that calcium flux through the wild-type channels had been filling the stores. Acidification of the extracellular medium to pH 6.4 caused inhibition of Orai1-mediated calcium entry and conferred capability for PDGF to evoke complete redistribution and coclustering. CONCLUSIONS The data suggest that PDGF has a nonclustering mechanism by which to activate Orai1 channels and maintain calcium stores replete. Redistribution and clustering become important, however, when the endoplasmic reticulum stress signal of store depletion arises, for example when acidosis inhibits Orai1 channels.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Calcium/metabolism
- Calcium Channels/metabolism
- Cells, Cultured
- Endoplasmic Reticulum/drug effects
- Endoplasmic Reticulum/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- Hydrogen-Ion Concentration
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Microscopy, Fluorescence
- Microscopy, Video
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Mutation
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- ORAI1 Protein
- Platelet-Derived Growth Factor/metabolism
- Protein Transport
- Recombinant Fusion Proteins/metabolism
- Saphenous Vein/metabolism
- Stress, Physiological
- Stromal Interaction Molecule 1
- Thapsigargin/pharmacology
- Time Factors
- Transfection
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Lynn McKeown
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Nicholas K Moss
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul Turner
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jing Li
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Nikki Heath
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Dermot Burke
- Leeds Teaching Hospitals, General Infirmary, Great George Street, Leeds, LS1 3EX
| | - David O’Regan
- Leeds Teaching Hospitals, General Infirmary, Great George Street, Leeds, LS1 3EX
| | - Mark S Gilthorpe
- Faculty of Medicine & Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Karen E Porter
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Medicine & Health, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Beech
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Medicine & Health, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
47
|
Abstract
Stromal interaction molecules (STIM1 and STIM2) are single pass transmembrane proteins located mainly in the endoplasmic reticulum (ER). STIM proteins contain an EF-hand in their N-termini that faces the lumen side of the ER allowing them to act as ER calcium (Ca(2+)) sensors. STIM1 has been recognized as central to the activation of the highly Ca(2+) selective store-operated Ca(2+) (SOC) entry current mediated by the Ca(2+) release-activated Ca(2+) (CRAC) channel; CRAC channels are formed by tetramers of the plasma membrane (PM) protein Orai1. Physiologically, the production of inositol 1,4,5-trisphosphate (IP(3)) upon stimulation of phospholipase C-coupled receptors and the subsequent emptying of IP(3)-sensitive ER Ca(2+) stores are sensed by STIM1 molecules which aggregate and move closer to the PM to interact physically with Orai1 channels and activate Ca(2+) entry. Orai1 has two homologous proteins encoded by separate genes, Orai2 and Orai3. Other modes of receptor-regulated Ca(2+) entry into cells are store-independent; for example, arachidonic acid activates a highly Ca(2+) selective store-independent channel formed by heteropentamers of Orai1 and Orai3 and regulated by the PM pool of STIM1. Here, I will discuss results pertaining to the roles of STIM and Orai proteins in smooth muscle Ca(2+) entry pathways and their role in vascular remodelling.
Collapse
Affiliation(s)
- Mohamed Trebak
- The Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|