1
|
Janssens JV, Raaijmakers AJA, Weeks KL, Bell JR, Mellor KM, Curl CL, Delbridge LMD. The cardiomyocyte origins of diastolic dysfunction: cellular components of myocardial "stiffness". Am J Physiol Heart Circ Physiol 2024; 326:H584-H598. [PMID: 38180448 DOI: 10.1152/ajpheart.00334.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The impaired ability of the heart to relax and stretch to accommodate venous return is generally understood to represent a state of "diastolic dysfunction" and often described using the all-purpose noun "stiffness." Despite the now common qualitative usage of this term in fields of cardiac patho/physiology, the specific quantitative concept of stiffness as a molecular and biophysical entity with real practical interpretation in healthy and diseased hearts is sometimes obscure. The focus of this review is to characterize the concept of cardiomyocyte stiffness and to develop interpretation of "stiffness" attributes at the cellular and molecular levels. Here, we consider "stiffness"-related terminology interpretation and make links between cardiomyocyte stiffness and aspects of functional and structural cardiac performance. We discuss cross bridge-derived stiffness sources, considering the contributions of diastolic myofilament activation and impaired relaxation. This includes commentary relating to the role of cardiomyocyte Ca2+ flux and Ca2+ levels in diastole, the troponin-tropomyosin complex role as a Ca2+ effector in diastole, the myosin ADP dissociation rate as a modulator of cross bridge attachment and regulation of cross-bridge attachment by myosin binding protein C. We also discuss non-cross bridge-derived stiffness sources, including the titin sarcomeric spring protein, microtubule and intermediate filaments, and cytoskeletal extracellular matrix interactions. As the prevalence of conditions involving diastolic heart failure has escalated, a more sophisticated understanding of the molecular, cellular, and tissue determinants of cardiomyocyte stiffness offers potential to develop imaging and molecular intervention tools.
Collapse
Affiliation(s)
- Johannes V Janssens
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Antonia J A Raaijmakers
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kate L Weeks
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Monash University, Parkville, Victoria, Australia
| | - James R Bell
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
| | - Kimberley M Mellor
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Claire L Curl
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Lea M D Delbridge
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Sequeira V, Maack C, Reil GH, Reil JC. Exploring the Connection Between Relaxed Myosin States and the Anrep Effect. Circ Res 2024; 134:117-134. [PMID: 38175910 DOI: 10.1161/circresaha.123.323173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The Anrep effect is an adaptive response that increases left ventricular contractility following an acute rise in afterload. Although the mechanistic origin remains undefined, recent findings suggest a two-phase activation of resting myosin for contraction, involving strain-sensitive and posttranslational phases. We propose that this mobilization represents a transition among the relaxed states of myosin-specifically, from the super-relaxed (SRX) to the disordered-relaxed (DRX)-with DRX myosin ready to participate in force generation. This hypothesis offers a unified explanation that connects myosin's SRX-DRX equilibrium and the Anrep effect as parts of a singular phenomenon. We underscore the significance of this equilibrium in modulating contractility, primarily studied in the context of hypertrophic cardiomyopathy, the most common inherited cardiomyopathy associated with diastolic dysfunction, hypercontractility, and left ventricular hypertrophy. As we posit that the cellular basis of the Anrep effect relies on a two-phased transition of myosin from the SRX to the contraction-ready DRX configuration, any dysregulation in this equilibrium may result in the pathological manifestation of the Anrep phenomenon. For instance, in hypertrophic cardiomyopathy, hypercontractility is linked to a considerable shift of myosin to the DRX state, implying a persistent activation of the Anrep effect. These valuable insights call for additional research to uncover a clinical Anrep fingerprint in pathological states. Here, we demonstrate through noninvasive echocardiographic pressure-volume measurements that this fingerprint is evident in 12 patients with hypertrophic obstructive cardiomyopathy before septal myocardial ablation. This unique signature is characterized by enhanced contractility, indicated by a leftward shift and steepening of the end-systolic pressure-volume relationship, and a prolonged systolic ejection time adjusted for heart rate, which reverses post-procedure. The clinical application of this concept has potential implications beyond hypertrophic cardiomyopathy, extending to other genetic cardiomyopathies and even noncongenital heart diseases with complex etiologies across a broad spectrum of left ventricular ejection fractions.
Collapse
Affiliation(s)
- Vasco Sequeira
- Department of Translational Science Universitätsklinikum, Deutsche Zentrum für Herzinsuffizienz (DZHI), Würzburg, Germany (V.S., C.M.)
| | - Christoph Maack
- Department of Translational Science Universitätsklinikum, Deutsche Zentrum für Herzinsuffizienz (DZHI), Würzburg, Germany (V.S., C.M.)
| | - Gert-Hinrich Reil
- Klinik für Kardiologie, Klinikum Oldenburg, Innere Medizin I, Germany (G.-H.R.)
| | - Jan-Christian Reil
- Klinik für Allgemeine und Interventionelle Kardiologie, Herz- und Diabetes-Zentrum Nordrhein-Westphalen, Germany (J.-C.R.)
| |
Collapse
|
3
|
Sun B, Kekenes-Huskey PM. Myofilament-associated proteins with intrinsic disorder (MAPIDs) and their resolution by computational modeling. Q Rev Biophys 2023; 56:e2. [PMID: 36628457 PMCID: PMC11070111 DOI: 10.1017/s003358352300001x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cardiac sarcomere is a cellular structure in the heart that enables muscle cells to contract. Dozens of proteins belong to the cardiac sarcomere, which work in tandem to generate force and adapt to demands on cardiac output. Intriguingly, the majority of these proteins have significant intrinsic disorder that contributes to their functions, yet the biophysics of these intrinsically disordered regions (IDRs) have been characterized in limited detail. In this review, we first enumerate these myofilament-associated proteins with intrinsic disorder (MAPIDs) and recent biophysical studies to characterize their IDRs. We secondly summarize the biophysics governing IDR properties and the state-of-the-art in computational tools toward MAPID identification and characterization of their conformation ensembles. We conclude with an overview of future computational approaches toward broadening the understanding of intrinsic disorder in the cardiac sarcomere.
Collapse
Affiliation(s)
- Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | | |
Collapse
|
4
|
Martin AA, Thompson BR, Hahn D, Angulski ABB, Hosny N, Cohen H, Metzger JM. Cardiac Sarcomere Signaling in Health and Disease. Int J Mol Sci 2022; 23:16223. [PMID: 36555864 PMCID: PMC9782806 DOI: 10.3390/ijms232416223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The cardiac sarcomere is a triumph of biological evolution wherein myriad contractile and regulatory proteins assemble into a quasi-crystalline lattice to serve as the central point upon which cardiac muscle contraction occurs. This review focuses on the many signaling components and mechanisms of regulation that impact cardiac sarcomere function. We highlight the roles of the thick and thin filament, both as necessary structural and regulatory building blocks of the sarcomere as well as targets of functionally impactful modifications. Currently, a new focus emerging in the field is inter-myofilament signaling, and we discuss here the important mediators of this mechanism, including myosin-binding protein C and titin. As the understanding of sarcomere signaling advances, so do the methods with which it is studied. This is reviewed here through discussion of recent live muscle systems in which the sarcomere can be studied under intact, physiologically relevant conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Snelders M, Koedijk IH, Schirmer J, Mulleners O, van Leeuwen J, de Wagenaar NP, Bartulos O, Voskamp P, Braam S, Guttenberg Z, Danser AJ, Majoor-Krakauer D, Meijering E, van der Pluijm I, Essers J. Contraction pressure analysis using optical imaging in normal and MYBPC3-mutated hiPSC-derived cardiomyocytes grown on matrices with tunable stiffness. BIOMATERIALS AND BIOSYSTEMS 2022; 8:100068. [PMID: 36824378 PMCID: PMC9934435 DOI: 10.1016/j.bbiosy.2022.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/09/2022] [Accepted: 10/15/2022] [Indexed: 12/04/2022] Open
Abstract
Current in vivo disease models and analysis methods for cardiac drug development have been insufficient in providing accurate and reliable predictions of drug efficacy and safety. Here, we propose a custom optical flow-based analysis method to quantitatively measure recordings of contracting cardiomyocytes on polydimethylsiloxane (PDMS), compatible with medium-throughput systems. Movement of the PDMS was examined by covalently bound fluorescent beads on the PDMS surface, differences caused by increased substrate stiffness were compared, and cells were stimulated with β-agonist. We further validated the system using cardiomyocytes treated with endothelin-1 and compared their contractions against control and cells incubated with receptor antagonist bosentan. After validation we examined two MYBPC3-mutant patient-derived cell lines. Recordings showed that higher substrate stiffness resulted in higher contractile pressure, while beating frequency remained similar to control. β-agonist stimulation resulted in both higher beating frequency as well as higher pressure values during contraction and relaxation. Cells treated with endothelin-1 showed an increased beating frequency, but a lower contraction pressure. Cells treated with both endothelin-1 and bosentan remained at control level of beating frequency and pressure. Lastly, both MYBPC3-mutant lines showed a higher beating frequency and lower contraction pressure. Our validated method is capable of automatically quantifying contraction of hiPSC-derived cardiomyocytes on a PDMS substrate of known shear modulus, returning an absolute value. Our method could have major benefits in a medium-throughput setting.
Collapse
Affiliation(s)
- Matthijs Snelders
- Department of Molecular Genetics, Erasmus MC, Rotterdam, the Netherlands
| | - Iris H. Koedijk
- Department of Molecular Genetics, Erasmus MC, Rotterdam, the Netherlands
| | | | - Otto Mulleners
- Department of Molecular Genetics, Erasmus MC, Rotterdam, the Netherlands
| | | | - Nathalie P. de Wagenaar
- Department of Molecular Genetics, Erasmus MC, Rotterdam, the Netherlands,Department of Cardiology, Erasmus MC, Rotterdam, the Netherlands
| | | | | | | | | | - A.H. Jan Danser
- Department of Internal Medicine - Pharmacology, Erasmus MC, Rotterdam, the Netherlands
| | | | - Erik Meijering
- School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, Erasmus MC, Rotterdam, the Netherlands,Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus MC, Rotterdam, the Netherlands,Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands,Department of Radiotherapy, Erasmus MC, Rotterdam, the Netherlands,Corresponding author: Erasmus Medical Center, Wytemaweg 80, Rotterdam 3015CN, The Netherlands
| |
Collapse
|
6
|
Tallo CA, Duncan LH, Yamamoto AH, Slaydon JD, Arya GH, Turlapati L, Mackay TFC, Carbone MA. Heat shock proteins and small nucleolar RNAs are dysregulated in a Drosophila model for feline hypertrophic cardiomyopathy. G3 (BETHESDA, MD.) 2021; 11:jkaa014. [PMID: 33561224 PMCID: PMC7849908 DOI: 10.1093/g3journal/jkaa014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022]
Abstract
In cats, mutations in myosin binding protein C (encoded by the MYBPC3 gene) have been associated with hypertrophic cardiomyopathy (HCM). However, the molecular mechanisms linking these mutations to HCM remain unknown. Here, we establish Drosophila melanogaster as a model to understand this connection by generating flies harboring MYBPC3 missense mutations (A31P and R820W) associated with feline HCM. The A31P and R820W flies displayed cardiovascular defects in their heart rates and exercise endurance. We used RNA-seq to determine which processes are misregulated in the presence of mutant MYBPC3 alleles. Transcriptome analysis revealed significant downregulation of genes encoding small nucleolar RNA (snoRNAs) in exercised female flies harboring the mutant alleles compared to flies that harbor the wild-type allele. Other processes that were affected included the unfolded protein response and immune/defense responses. These data show that mutant MYBPC3 proteins have widespread effects on the transcriptome of co-regulated genes. Transcriptionally differentially expressed genes are also candidate genes for future evaluation as genetic modifiers of HCM as well as candidate genes for genotype by exercise environment interaction effects on the manifestation of HCM; in cats as well as humans.
Collapse
Affiliation(s)
- Christian A Tallo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Laura H Duncan
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Akihiko H Yamamoto
- The Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA
| | - Joshua D Slaydon
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Gunjan H Arya
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Lavanya Turlapati
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Trudy F C Mackay
- The Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, Greenwood, SC 29646, USA
| | - Mary A Carbone
- The Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
- The Center for Integrated Fungal Research and Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695-7244, USA
| |
Collapse
|
7
|
Tallo CA, Duncan LH, Yamamoto AH, Slaydon JD, Arya GH, Turlapati L, Mackay TFC, Carbone MA. Heat shock proteins and small nucleolar RNAs are dysregulated in a Drosophila model for feline hypertrophic cardiomyopathy. G3 (BETHESDA, MD.) 2021. [PMID: 33561224 DOI: 10.1093/g3journal/jkaa014.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In cats, mutations in myosin binding protein C (encoded by the MYBPC3 gene) have been associated with hypertrophic cardiomyopathy (HCM). However, the molecular mechanisms linking these mutations to HCM remain unknown. Here, we establish Drosophila melanogaster as a model to understand this connection by generating flies harboring MYBPC3 missense mutations (A31P and R820W) associated with feline HCM. The A31P and R820W flies displayed cardiovascular defects in their heart rates and exercise endurance. We used RNA-seq to determine which processes are misregulated in the presence of mutant MYBPC3 alleles. Transcriptome analysis revealed significant downregulation of genes encoding small nucleolar RNA (snoRNAs) in exercised female flies harboring the mutant alleles compared to flies that harbor the wild-type allele. Other processes that were affected included the unfolded protein response and immune/defense responses. These data show that mutant MYBPC3 proteins have widespread effects on the transcriptome of co-regulated genes. Transcriptionally differentially expressed genes are also candidate genes for future evaluation as genetic modifiers of HCM as well as candidate genes for genotype by exercise environment interaction effects on the manifestation of HCM; in cats as well as humans.
Collapse
Affiliation(s)
- Christian A Tallo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Laura H Duncan
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Akihiko H Yamamoto
- The Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA
| | - Joshua D Slaydon
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Gunjan H Arya
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Lavanya Turlapati
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Trudy F C Mackay
- The Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, Greenwood, SC 29646, USA
| | - Mary A Carbone
- The Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA.,The Center for Integrated Fungal Research and Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695-7244, USA
| |
Collapse
|
8
|
Solomon T, Filipovska A, Hool L, Viola H. Preventative therapeutic approaches for hypertrophic cardiomyopathy. J Physiol 2020; 599:3495-3512. [PMID: 32822065 PMCID: PMC8359240 DOI: 10.1113/jp279410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/06/2020] [Indexed: 11/08/2022] Open
Abstract
Sarcomeric gene mutations are associated with the development of hypertrophic cardiomyopathy (HCM). Current drug therapeutics for HCM patients are effective in relieving symptoms, but do not prevent or reverse disease progression. Moreover, due to heterogeneity in the clinical manifestations of the disease, patients experience variable outcomes in response to therapeutics. Mechanistically, alterations in calcium handling, sarcomeric disorganization, energy metabolism and contractility participate in HCM disease progression. While some similarities exist, each mutation appears to lead to mutation‐specific pathophysiology. Furthermore, these alterations may precede or proceed development of the pathology. This review assesses the efficacy of HCM therapeutics from studies performed in animal models of HCM and human clinical trials. Evidence suggests that a preventative rather than corrective therapeutic approach may be more efficacious in the treatment of HCM. In addition, a clear understanding of mutation‐specific mechanisms may assist in informing the most effective therapeutic mode of action.
![]()
Collapse
Affiliation(s)
- Tanya Solomon
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia.,Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia.,Telethon Kids Institute, Perth Children's Hospital, Nedlands, Western Australia, Australia.,School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Livia Hool
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia.,Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Helena Viola
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
9
|
Nollet EE, Manders EM, Goebel M, Jansen V, Brockmann C, Osinga J, van der Velden J, Helmes M, Kuster DWD. Large-Scale Contractility Measurements Reveal Large Atrioventricular and Subtle Interventricular Differences in Cultured Unloaded Rat Cardiomyocytes. Front Physiol 2020; 11:815. [PMID: 32848817 PMCID: PMC7396550 DOI: 10.3389/fphys.2020.00815] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/18/2020] [Indexed: 01/22/2023] Open
Abstract
The chambers of the heart fulfill different hemodynamic functions, which are reflected in their structural and contractile properties. While the atria are highly elastic to allow filling from the venous system, the ventricles need to be able to produce sufficiently high pressures to eject blood into the circulation. The right ventricle (RV) pumps into the low pressure pulmonary circulation, while the left ventricle (LV) needs to overcome the high pressure of the systemic circulation. It is incompletely understood whether these differences can be explained by the contractile differences at the level of the individual cardiomyocytes of the chambers. We addressed this by isolating cardiomyocytes from atria, RV, LV, and interventricular septum (IVS) of five healthy wild-type rats. Using a high-throughput contractility set-up, we measured contractile function of 2,043 cells after overnight culture. Compared to ventricular cardiomyocytes, atrial cells showed a twofold lower contraction amplitude and 1.4- to 1.7-fold slower kinetics of contraction and relaxation. The interventricular differences in contractile function were much smaller; RV cells displayed 12–13% less fractional shortening and 5–9% slower contraction and 3–15% slower relaxation kinetics relative to their LV and IVS counterparts. Aided by a large dataset, we established relationships between contractile parameters and found contraction velocity, fractional shortening and relaxation velocity to be highly correlated. In conclusion, our findings are in line with contractile differences observed at the atrioventricular level, but can only partly explain the interventricular differences that exist at the organ level.
Collapse
Affiliation(s)
- Edgar E Nollet
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | | | - Max Goebel
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Valentijn Jansen
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Cord Brockmann
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Jorrit Osinga
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Michiel Helmes
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands.,CytoCypher BV, Wageningen, Netherlands
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| |
Collapse
|
10
|
Phosphomimetic cardiac myosin-binding protein C partially rescues a cardiomyopathy phenotype in murine engineered heart tissue. Sci Rep 2019; 9:18152. [PMID: 31796859 PMCID: PMC6890639 DOI: 10.1038/s41598-019-54665-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Phosphorylation of cardiac myosin-binding protein C (cMyBP-C), encoded by MYBPC3, increases the availability of myosin heads for interaction with actin thus enhancing contraction. cMyBP-C phosphorylation level is lower in septal myectomies of patients with hypertrophic cardiomyopathy (HCM) than in non-failing hearts. Here we compared the effect of phosphomimetic (D282) and wild-type (S282) cMyBP-C gene transfer on the HCM phenotype of engineered heart tissues (EHTs) generated from a mouse model carrying a Mybpc3 mutation (KI). KI EHTs showed lower levels of mutant Mybpc3 mRNA and protein, and altered gene expression compared with wild-type (WT) EHTs. Furthermore, KI EHTs exhibited faster spontaneous contractions and higher maximal force and sensitivity to external [Ca2+] under pacing. Adeno-associated virus-mediated gene transfer of D282 and S282 similarly restored Mybpc3 mRNA and protein levels and suppressed mutant Mybpc3 transcripts. Moreover, both exogenous cMyBP-C proteins were properly incorporated in the sarcomere. KI EHTs hypercontractility was similarly prevented by both treatments, but S282 had a stronger effect than D282 to normalize the force-Ca2+-relationship and the expression of dysregulated genes. These findings in an in vitro model indicate that S282 is a better choice than D282 to restore the HCM EHT phenotype. To which extent the results apply to human HCM remains to be seen.
Collapse
|
11
|
Tonino P, Kiss B, Gohlke J, Smith JE, Granzier H. Fine mapping titin's C-zone: Matching cardiac myosin-binding protein C stripes with titin's super-repeats. J Mol Cell Cardiol 2019; 133:47-56. [PMID: 31158359 DOI: 10.1016/j.yjmcc.2019.05.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/22/2019] [Accepted: 05/30/2019] [Indexed: 01/04/2023]
Abstract
Titin is largely comprised of serially-linked immunoglobulin (Ig) and fibronectin type-III (Fn3) domains. Many of these domains are arranged in an 11 domain super-repeat pattern that is repeated 11 times, forming the so-named titin C-zone in the A-band region of the sarcomere. Each super-repeat is thought to provide binding sites for thick filament proteins, such as cMyBP-C (cardiac myosin-binding protein C). However, it remains to be established which of titin's 11 C-zone super-repeats anchor cMyBP-C as titin contains 11 super-repeats and cMyBP-C is found in 9 stripes only. To study the layout of titin's C-zone in relation to MyBP-C, immunolabeling studies were performed on mouse skinned myocardium with antibodies to titin and cMyBP-C, using both immuno-electron microscopy and super-resolution optical microscopy. Results indicate that cMyBP-C locates near the interface between titin's C-zone super-repeats. Studies on a mouse model in which two of titin's C-zone repeats have been genetically deleted support that the first Ig domain of a super-repeat is important for anchoring cMyBP-C but also Fn3 domains located at the end of the preceding repeat. Furthermore, not all super-repeat interfaces are equal as the interface between super-repeat 1 and 2 (close to titin's D-zone) does not contain cMyBP-C. Finally, titin's C-zone does not extend all the way to the bare zone but instead terminates at the level of the second myosin crown. This study enhances insights in the molecular layout of the C-zone of titin, its relation to cMyBP-C, and its possible roles in cardiomyopathies.
Collapse
Affiliation(s)
- Paola Tonino
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, USA
| | - Balazs Kiss
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, USA
| | - Jochen Gohlke
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, USA
| | - John E Smith
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, USA
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
12
|
Role of intrinsic disorder in muscle sarcomeres. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:311-340. [PMID: 31521234 DOI: 10.1016/bs.pmbts.2019.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The role and utility of intrinsically disordered regions (IDRs) is reviewed for two groups of sarcomeric proteins, such as members of tropomodulin/leiomodin (Tmod/Lmod) protein homology group and myosin binding protein C (MyBP-C). These two types of sarcomeric proteins represent very different but strongly interdependent functions, being responsible for maintaining structure and operation of the muscle sarcomere. The role of IDRs in the formation of complexes between thin filaments and Tmods/Lmods is discussed within the framework of current understanding of the thin filament length regulation. For MyBP-C, the function of IDRs is discussed in the context of MYBP-C-dependent sarcomere contraction and actomyosin activation.
Collapse
|
13
|
Stanczyk PJ, Seidel M, White J, Viero C, George CH, Zissimopoulos S, Lai FA. Association of cardiac myosin-binding protein-C with the ryanodine receptor channel - putative retrograde regulation? J Cell Sci 2018; 131:jcs.210443. [PMID: 29930088 PMCID: PMC6104826 DOI: 10.1242/jcs.210443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 05/31/2018] [Indexed: 11/20/2022] Open
Abstract
The cardiac muscle ryanodine receptor-Ca2+ release channel (RyR2) constitutes the sarcoplasmic reticulum (SR) Ca2+ efflux mechanism that initiates myocyte contraction, while cardiac myosin-binding protein-C (cMyBP-C; also known as MYBPC3) mediates regulation of acto-myosin cross-bridge cycling. In this paper, we provide the first evidence for the presence of direct interaction between these two proteins, forming a RyR2-cMyBP-C complex. The C-terminus of cMyBP-C binds with the RyR2 N-terminus in mammalian cells and the interaction is not mediated by a fibronectin-like domain. Notably, we detected complex formation between both recombinant cMyBP-C and RyR2, as well as between the native proteins in cardiac tissue. Cellular Ca2+ dynamics in HEK293 cells is altered upon co-expression of cMyBP-C and RyR2, with lowered frequency of RyR2-mediated spontaneous Ca2+ oscillations, suggesting that cMyBP-C exerts a potential inhibitory effect on RyR2-dependent Ca2+ release. Discovery of a functional RyR2 association with cMyBP-C provides direct evidence for a putative mechanistic link between cytosolic soluble cMyBP-C and SR-mediated Ca2+ release, via RyR2. Importantly, this interaction may have clinical relevance to the observed cMyBP-C and RyR2 dysfunction in cardiac pathologies, such as hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Paulina J Stanczyk
- Sir Geraint Evans Wales Heart Research Institute, Department of Cardiology, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.,School of Biosciences, Sir Martin Evans Building, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Monika Seidel
- Sir Geraint Evans Wales Heart Research Institute, Department of Cardiology, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.,Swansea University Medical School, Institute of Life Science, Swansea SA2 8PP, UK
| | - Judith White
- Sir Geraint Evans Wales Heart Research Institute, Department of Cardiology, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.,School of Biosciences, Sir Martin Evans Building, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Cedric Viero
- Sir Geraint Evans Wales Heart Research Institute, Department of Cardiology, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.,Institute of Pharmacology and Toxicology, Medical School, Saarland University, Homburg/Saar, Germany
| | - Christopher H George
- Sir Geraint Evans Wales Heart Research Institute, Department of Cardiology, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.,Swansea University Medical School, Institute of Life Science, Swansea SA2 8PP, UK
| | - Spyros Zissimopoulos
- Sir Geraint Evans Wales Heart Research Institute, Department of Cardiology, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK .,Swansea University Medical School, Institute of Life Science, Swansea SA2 8PP, UK
| | - F Anthony Lai
- Sir Geraint Evans Wales Heart Research Institute, Department of Cardiology, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK .,School of Biosciences, Sir Martin Evans Building, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3AX, UK.,College of Medicine, Member of QU Health, Qatar University, P.O. Box 2013, Doha, Qatar
| |
Collapse
|
14
|
van Velzen HG, Schinkel AFL, Oldenburg RA, van Slegtenhorst MA, Frohn-Mulder IME, van der Velden J, Michels M. Clinical Characteristics and Long-Term Outcome of Hypertrophic Cardiomyopathy in Individuals With a MYBPC3 (Myosin-Binding Protein C) Founder Mutation. ACTA ACUST UNITED AC 2018; 10:CIRCGENETICS.116.001660. [PMID: 28794111 DOI: 10.1161/circgenetics.116.001660] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/02/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND MYBPC3 (Myosin-binding protein C) founder mutations account for 35% of hypertrophic cardiomyopathy (HCM) cases in the Netherlands. We compared clinical characteristics and outcome of MYBPC3 founder mutation (FG+) HCM with nonfounder genotype-positive (G+) and genotype-negative (G-) HCM. METHODS AND RESULTS The study included 680 subjects: 271 FG+ carriers, 132 G+ probands with HCM, and 277 G- probands with HCM. FG+ carriers included 134 FG+ probands with HCM, 54 FG+ relatives diagnosed with HCM after family screening, 74 FG+/phenotype-negative relatives, and 9 with noncompaction or dilated cardiomyopathy. The clinical phenotype of FG+ and G+ probands with HCM was similar. FG+ and G+ probands were younger with less left ventricular outflow tract obstruction than G- probands, however, had more hypertrophy, and nonsustained ventricular tachycardia. FG+ relatives with HCM had less hypertrophy, smaller left atria, and less systolic and diastolic dysfunction than FG+ probands with HCM. After 8±6 years, cardiovascular mortality in FG+ probands with HCM was similar to G+ HCM (22% versus 14%; log-rank P=0.14), but higher than G- HCM (22% versus 6%; log-rank P<0.001) and FG+ relatives with HCM (22% versus 4%; P=0.009). Cardiac events were absent in FG+/phenotype-negative relatives; subtle HCM developed in 11% during 6 years of follow-up. CONCLUSIONS Clinical phenotype and outcome of FG+ HCM was similar to G+ HCM but worse than G- HCM and FG+ HCM diagnosed in the context of family screening. These findings indicate the need for more intensive follow-up of FG+ and G+ HCM versus G- HCM and FG+ HCM in relatives.
Collapse
Affiliation(s)
- Hannah G van Velzen
- From the Department of Cardiology, Thoraxcenter (H.G.v.V., A.F.L.S., M.M.), Department of Clinical Genetics (R.A.O., M.A.v.S.), and Department of Pediatrics (I.M.E.F.-M.), Erasmus Medical Center, Rotterdam, The Netherlands; Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and Netherlands Heart Institute, Utrecht (J.v.d.V.).
| | - Arend F L Schinkel
- From the Department of Cardiology, Thoraxcenter (H.G.v.V., A.F.L.S., M.M.), Department of Clinical Genetics (R.A.O., M.A.v.S.), and Department of Pediatrics (I.M.E.F.-M.), Erasmus Medical Center, Rotterdam, The Netherlands; Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Rogier A Oldenburg
- From the Department of Cardiology, Thoraxcenter (H.G.v.V., A.F.L.S., M.M.), Department of Clinical Genetics (R.A.O., M.A.v.S.), and Department of Pediatrics (I.M.E.F.-M.), Erasmus Medical Center, Rotterdam, The Netherlands; Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Marjon A van Slegtenhorst
- From the Department of Cardiology, Thoraxcenter (H.G.v.V., A.F.L.S., M.M.), Department of Clinical Genetics (R.A.O., M.A.v.S.), and Department of Pediatrics (I.M.E.F.-M.), Erasmus Medical Center, Rotterdam, The Netherlands; Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Ingrid M E Frohn-Mulder
- From the Department of Cardiology, Thoraxcenter (H.G.v.V., A.F.L.S., M.M.), Department of Clinical Genetics (R.A.O., M.A.v.S.), and Department of Pediatrics (I.M.E.F.-M.), Erasmus Medical Center, Rotterdam, The Netherlands; Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Jolanda van der Velden
- From the Department of Cardiology, Thoraxcenter (H.G.v.V., A.F.L.S., M.M.), Department of Clinical Genetics (R.A.O., M.A.v.S.), and Department of Pediatrics (I.M.E.F.-M.), Erasmus Medical Center, Rotterdam, The Netherlands; Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Michelle Michels
- From the Department of Cardiology, Thoraxcenter (H.G.v.V., A.F.L.S., M.M.), Department of Clinical Genetics (R.A.O., M.A.v.S.), and Department of Pediatrics (I.M.E.F.-M.), Erasmus Medical Center, Rotterdam, The Netherlands; Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and Netherlands Heart Institute, Utrecht (J.v.d.V.)
| |
Collapse
|
15
|
Prondzynski M, Krämer E, Laufer SD, Shibamiya A, Pless O, Flenner F, Müller OJ, Münch J, Redwood C, Hansen A, Patten M, Eschenhagen T, Mearini G, Carrier L. Evaluation of MYBPC3 trans-Splicing and Gene Replacement as Therapeutic Options in Human iPSC-Derived Cardiomyocytes. MOLECULAR THERAPY. NUCLEIC ACIDS 2017. [PMID: 28624223 PMCID: PMC5458066 DOI: 10.1016/j.omtn.2017.05.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gene therapy is a promising option for severe forms of genetic diseases. We previously provided evidence for the feasibility of trans-splicing, exon skipping, and gene replacement in a mouse model of hypertrophic cardiomyopathy (HCM) carrying a mutation in MYBPC3, encoding cardiac myosin-binding protein C (cMyBP-C). Here we used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from an HCM patient carrying a heterozygous c.1358-1359insC MYBPC3 mutation and from a healthy donor. HCM hiPSC-CMs exhibited ∼50% lower MYBPC3 mRNA and cMyBP-C protein levels than control, no truncated cMyBP-C, larger cell size, and altered gene expression, thus reproducing human HCM features. We evaluated RNA trans-splicing and gene replacement after transducing hiPSC-CMs with adeno-associated virus. trans-splicing with 5' or 3' pre-trans-splicing molecules represented ∼1% of total MYBPC3 transcripts in healthy hiPSC-CMs. In contrast, gene replacement with the full-length MYBPC3 cDNA resulted in ∼2.5-fold higher MYBPC3 mRNA levels in HCM and control hiPSC-CMs. This restored the cMyBP-C level to 81% of the control level, suppressed hypertrophy, and partially restored gene expression to control level in HCM cells. This study provides evidence for (1) the feasibility of trans-splicing, although with low efficiency, and (2) efficient gene replacement in hiPSC-CMs with a MYBPC3 mutation.
Collapse
Affiliation(s)
- Maksymilian Prondzynski
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Elisabeth Krämer
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Sandra D Laufer
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; Hamburg Zentrum für Experimentelle Therapieforschung (HEXT) Stem Cell Facility, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Aya Shibamiya
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; Hamburg Zentrum für Experimentelle Therapieforschung (HEXT) Stem Cell Facility, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ole Pless
- Fraunhofer IME Screening-Port, 22525 Hamburg, Germany
| | - Frederik Flenner
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Oliver J Müller
- Department of Cardiology, Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Julia Münch
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; University Heart Center Hamburg, 20246 Hamburg, Germany
| | - Charles Redwood
- Radcliffe Department of Medicine, University of Oxford, Oxford OX1 3PA, UK
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Monica Patten
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; University Heart Center Hamburg, 20246 Hamburg, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Giulia Mearini
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.
| |
Collapse
|
16
|
Mohamed IA, Krishnamoorthy NT, Nasrallah GK, Da'as SI. The Role of Cardiac Myosin Binding Protein C3 in Hypertrophic Cardiomyopathy-Progress and Novel Therapeutic Opportunities. J Cell Physiol 2017; 232:1650-1659. [PMID: 27731493 DOI: 10.1002/jcp.25639] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 11/11/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is a common autosomal dominant genetic cardiovascular disorder marked by genetic and phenotypic heterogeneity. Mutations in the gene encodes the cardiac myosin-binding protein C, cMYBPC3 is amongst the various sarcomeric genes that are associated with HCM. These mutations produce mutated mRNAs and truncated cMyBP-C proteins. In this review, we will discuss the implications and molecular mechanisms involved in MYBPC3 different mutations. Further, we will highlight the novel targets that can be developed into potential therapeutics for the treatment of HMC. J. Cell. Physiol. 232: 1650-1659, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Iman A Mohamed
- Department of Biomedical Science, Zewail City of Science and Technology, Giza, Egypt
| | - Navaneethakrishnan T Krishnamoorthy
- Division of Experimental Genetics, Sidra Medical and Research Center, Doha, Qatar.,Heart Science Centre, National Heart and Lung Institute, Imperial College London, London, UK
| | - Gheyath K Nasrallah
- Department of Biomedical Science, College of Health Science, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| | - Sahar I Da'as
- Division of Experimental Genetics, Sidra Medical and Research Center, Doha, Qatar.,Department of Biomedical and Biological Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
17
|
Phosphorylation and calcium antagonistically tune myosin-binding protein C's structure and function. Proc Natl Acad Sci U S A 2016; 113:3239-44. [PMID: 26908872 DOI: 10.1073/pnas.1522236113] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During each heartbeat, cardiac contractility results from calcium-activated sliding of actin thin filaments toward the centers of myosin thick filaments to shorten cellular length. Cardiac myosin-binding protein C (cMyBP-C) is a component of the thick filament that appears to tune these mechanochemical interactions by its N-terminal domains transiently interacting with actin and/or the myosin S2 domain, sensitizing thin filaments to calcium and governing maximal sliding velocity. Both functional mechanisms are potentially further tunable by phosphorylation of an intrinsically disordered, extensible region of cMyBP-C's N terminus, the M-domain. Using atomic force spectroscopy, electron microscopy, and mutant protein expression, we demonstrate that phosphorylation reduced the M-domain's extensibility and shifted the conformation of the N-terminal domain from an extended structure to a compact configuration. In combination with motility assay data, these structural effects of M-domain phosphorylation suggest a mechanism for diminishing the functional potency of individual cMyBP-C molecules. Interestingly, we found that calcium levels necessary to maximally activate the thin filament mitigated the structural effects of phosphorylation by increasing M-domain extensibility and shifting the phosphorylated N-terminal fragments back to the extended state, as if unphosphorylated. Functionally, the addition of calcium to the motility assays ablated the impact of phosphorylation on maximal sliding velocities, fully restoring cMyBP-C's inhibitory capacity. We conclude that M-domain phosphorylation may have its greatest effect on tuning cMyBP-C's calcium-sensitization of thin filaments at the low calcium levels between contractions. Importantly, calcium levels at the peak of contraction would allow cMyBP-C to remain a potent contractile modulator, regardless of cMyBP-C's phosphorylation state.
Collapse
|
18
|
ADP-stimulated contraction: A predictor of thin-filament activation in cardiac disease. Proc Natl Acad Sci U S A 2015; 112:E7003-12. [PMID: 26621701 DOI: 10.1073/pnas.1513843112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diastolic dysfunction is general to all idiopathic dilated (IDCM) and hypertrophic cardiomyopathy (HCM) patients. Relaxation deficits may result from increased actin-myosin formation during diastole due to altered tropomyosin position, which blocks myosin binding to actin in the absence of Ca(2+). We investigated whether ADP-stimulated force development (without Ca(2+)) can be used to reveal changes in actin-myosin blockade in human cardiomyopathy cardiomyocytes. Cardiac samples from HCM patients, harboring thick-filament (MYH7mut, MYBPC3mut) and thin-filament (TNNT2mut, TNNI3mut) mutations, and IDCM were compared with sarcomere mutation-negative HCM (HCMsmn) and nonfailing donors. Myofilament ADP sensitivity was higher in IDCM and HCM compared with donors, whereas it was lower for MYBPC3. Increased ADP sensitivity in IDCM, HCMsmn, and MYH7mut was caused by low phosphorylation of myofilament proteins, as it was normalized to donors by protein kinase A (PKA) treatment. Troponin exchange experiments in a TNNT2mut sample corrected the abnormal actin-myosin blockade. In MYBPC3trunc samples, ADP sensitivity highly correlated with cardiac myosin-binding protein-C (cMyBP-C) protein level. Incubation of cardiomyocytes with cMyBP-C antibody against the actin-binding N-terminal region reduced ADP sensitivity, indicative of cMyBP-C's role in actin-myosin regulation. In the presence of Ca(2+), ADP increased myofilament force development and sarcomere stiffness. Enhanced sarcomere stiffness in sarcomere mutation-positive HCM samples was irrespective of the phosphorylation background. In conclusion, ADP-stimulated contraction can be used as a tool to study how protein phosphorylation and mutant proteins alter accessibility of myosin binding on actin. In the presence of Ca(2+), pathologic [ADP] and low PKA-phosphorylation, high actin-myosin formation could contribute to the impaired myocardial relaxation observed in cardiomyopathies.
Collapse
|
19
|
Sequeira V, van der Velden J. Historical perspective on heart function: the Frank-Starling Law. Biophys Rev 2015; 7:421-447. [PMID: 28510104 DOI: 10.1007/s12551-015-0184-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 12/18/2022] Open
Abstract
More than a century of research on the Frank-Starling Law has significantly advanced our knowledge about the working heart. The Frank-Starling Law mandates that the heart is able to match cardiac ejection to the dynamic changes occurring in ventricular filling and thereby regulates ventricular contraction and ejection. Significant efforts have been attempted to identify a common fundamental basis for the Frank-Starling heart and, although a unifying idea has still to come forth, there is mounting evidence of a direct relationship between length changes in individual constituents (cardiomyocytes) and their sensitivity to Ca2+ ions. As the Frank-Starling Law is a vital event for the healthy heart, it is of utmost importance to understand its mechanical basis in order to optimize and organize therapeutic strategies to rescue the failing human heart. The present review is a historic perspective on cardiac muscle function. We "revive" a century of scientific research on the heart's fundamental protein constituents (contractile proteins), to their assemblies in the muscle (the sarcomeres), culminating in a thorough overview of the several synergistically events that compose the Frank-Starling mechanism. It is the authors' personal beliefs that much can be gained by understanding the Frank-Starling relationship at the cellular and whole organ level, so that we can finally, in this century, tackle the pathophysiologic mechanisms underlying heart failure.
Collapse
Affiliation(s)
- Vasco Sequeira
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.,ICIN- Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
20
|
Cardiac myosin binding protein C regulates postnatal myocyte cytokinesis. Proc Natl Acad Sci U S A 2015; 112:9046-51. [PMID: 26153423 DOI: 10.1073/pnas.1511004112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Homozygous cardiac myosin binding protein C-deficient (Mybpc(t/t)) mice develop dramatic cardiac dilation shortly after birth; heart size increases almost twofold. We have investigated the mechanism of cardiac enlargement in these hearts. Throughout embryogenesis myocytes undergo cell division while maintaining the capacity to pump blood by rapidly disassembling and reforming myofibrillar components of the sarcomere throughout cell cycle progression. Shortly after birth, myocyte cell division ceases. Cardiac MYBPC is a thick filament protein that regulates sarcomere organization and rigidity. We demonstrate that many Mybpc(t/t) myocytes undergo an additional round of cell division within 10 d postbirth compared with their wild-type counterparts, leading to increased numbers of mononuclear myocytes. Short-hairpin RNA knockdown of Mybpc3 mRNA in wild-type mice similarly extended the postnatal window of myocyte proliferation. However, adult Mybpc(t/t) myocytes are unable to fully regenerate the myocardium after injury. MYBPC has unexpected inhibitory functions during postnatal myocyte cytokinesis and cell cycle progression. We suggest that human patients with homozygous MYBPC3-null mutations develop dilated cardiomyopathy, coupled with myocyte hyperplasia (increased cell number), as observed in Mybpc(t/t) mice. Human patients, with heterozygous truncating MYBPC3 mutations, like mice with similar mutations, have hypertrophic cardiomyopathy. However, the mechanism leading to hypertrophic cardiomyopathy in heterozygous MYBPC3(+/-) individuals is myocyte hypertrophy (increased cell size), whereas the mechanism leading to cardiac dilation in homozygous Mybpc3(-/-) mice is primarily myocyte hyperplasia.
Collapse
|
21
|
Orientation of myosin binding protein C in the cardiac muscle sarcomere determined by domain-specific immuno-EM. J Mol Biol 2014; 427:274-86. [PMID: 25451032 DOI: 10.1016/j.jmb.2014.10.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 01/09/2023]
Abstract
Myosin binding protein C is a thick filament protein of vertebrate striated muscle. The cardiac isoform [cardiac myosin binding protein C (cMyBP-C)] is essential for normal cardiac function, and mutations in cMyBP-C cause cardiac muscle disease. The rod-shaped molecule is composed primarily of 11 immunoglobulin- or fibronectin-like domains and is located at nine sites, 43nm apart, in each half of the A-band. To understand how cMyBP-C functions, it is important to know its structural organization in the sarcomere, as this will affect its ability to interact with other sarcomeric proteins. Several models, in which cMyBP-C wraps around, extends radially from, or runs axially along the thick filament, have been proposed. Our goal was to define cMyBP-C orientation by determining the relative axial positions of different cMyBP-C domains. Immuno-electron microscopy was performed using mouse cardiac myofibrils labeled with antibodies specific to the N- and C-terminal domains and to the middle of cMyBP-C. Antibodies to all regions of the molecule, except the C-terminus, labeled at the same nine axial positions in each half A-band, consistent with a circumferential and/or radial rather than an axial orientation of the bulk of the molecule. The C-terminal antibody stripes were slightly displaced axially, demonstrating an axial orientation of the C-terminal three domains, with the C-terminus closer to the M-line. These results, combined with previous studies, suggest that the C-terminal domains of cMyBP-C run along the thick filament surface, while the N-terminus extends toward neighboring thin filaments. This organization provides a structural framework for understanding cMyBP-C's modulation of cardiac muscle contraction.
Collapse
|