1
|
Ota C, Nagashima A, Kato A. Electroneutral Na +/Cl - cotransport activity of zebrafish Slc12a10.1 expressed in Xenopus oocytes. Am J Physiol Regul Integr Comp Physiol 2024; 327:R152-R163. [PMID: 38842519 DOI: 10.1152/ajpregu.00096.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Na+/Cl- cotransporter 2 (Ncc2 or Slc12a10) is a membrane transport protein that belongs to the electroneutral cation-chloride cotransporter family. The Slc12a10 gene (slc12a10) is widely present in bony vertebrates but is deleted or pseudogenized in birds, some bony fishes, and most mammals. Slc12a10 is highly homologous to Ncc (Slc12a3 or Ncc1); however, there are only a few reports measuring the activity of Slc12a10. In this study, we focused on zebrafish Slc12a10.1 (zSlc12a10.1) and analyzed its activity using Xenopus oocyte electrophysiology. Analysis using Na+-selective microelectrodes showed that intracellular sodium activity (aNai) in zSlc12a10.1 oocytes was significantly decreased in Na+- or Cl--free medium and recovered when Na+ or Cl- was readded to the medium. Similar analysis using a Cl--selective microelectrode showed that intracellular chloride activity (aCli) in zSlc12a10.1 oocytes significantly decreased in Na+- or Cl--free medium and recovered when Na+ or Cl- was readded to the medium. When a similar experiment was performed with a voltage clamp, the membrane current did not change when aNai of zSlc12a10.1 oocytes was decreased in Na+-free medium. Molecular phylogenetic and synteny analyses suggest that gene duplication between slc12a10.2 and slc12a10.3 in zebrafish is a relatively recent event, whereas gene duplication between slc12a10.1 and the ancestral gene of slc12a10.2/slc12a10.3 occurred at least about 2 million years ago. slc12a10 deficiency was observed in species belonging to Ictaluridae, Salmoniformes, Osmeriformes, Batrachoididae, Syngnathiformes, Gobiesociformes, Labriformes, and Tetraodontiformes. These results indicate that zebrafish Slc12a10.1 is an electroneutral Na+/Cl-cotransporter and establish its evolutionary position among various teleost slc12a10 paralogs.NEW & NOTEWORTHY Na+/Cl- cotransporter 2 (Slc12a10; Ncc2) is a protein highly homologous to Ncc (Slc12a3; Ncc1); however, there are only a few reports measuring the activity of Slc12a10. Electrophysiological analysis of Xenopus oocytes expressing zebrafish Slc12a10.1 showed that Slc12a10.1 acts as an electroneutral Na+/Cl-cotransporter. This is the third report on the activity of Slc12a10, following previous reports on Slc12a10 in eels.
Collapse
Affiliation(s)
- Chihiro Ota
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ayumi Nagashima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Akira Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
2
|
Kim K, Nist KM, Puleo F, McKenna J, Wainford RD. Sex differences in dietary sodium evoked NCC regulation and blood pressure in male and female Sprague-Dawley, Dahl salt-resistant, and Dahl salt-sensitive rats. Am J Physiol Renal Physiol 2024; 327:F277-F289. [PMID: 38813592 PMCID: PMC11460337 DOI: 10.1152/ajprenal.00150.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Hypertension affects approximately one in two United States adults and sex plays an important role in the pathogenesis of hypertension. The Na+-Cl- cotransporter (NCC), regulated by a kinase network including with-no-lysine kinase (WNK)1 and WNK4, STE20/SPS1-related proline alanine-rich kinase (SPAK), and oxidative stress response 1 (OxSR1), is critical to Na+ reabsorption and blood pressure regulation. Dietary salt differentially modulates NCC in salt-sensitive and salt-resistant rats, in part by modulation of WNK/SPAK/OxSR1 signaling. In this study, we tested the hypothesis that sex-dependent differences in NCC regulation contribute to the development of the salt sensitivity of blood pressure using male and female Sprague-Dawley (SD), Dahl salt-resistant (DSR), and Dahl salt-sensitive (DSS) rats. In normotensive salt-resistant SD and DSR rats, a high-salt diet evoked significant decreases in NCC activity, expression, and phosphorylation. In males, these changes were associated with no change in WNK1 expression, a decrease in WNK4 levels, and suppression of SPAK/OxSR1 expression and phosphorylation. In contrast, in females, there was decreased NCC activity associated with suppression of SPAK/OxSR1 expression and phosphorylation. In hypertensive DSS rats, the ability of females to suppress NCC (in opposition to males) via a SPAK/OxSR1 mechanism likely contributes to their lower magnitude of salt-sensitive hypertension. Collectively, our findings support the existence of sex differences in male versus female rats with NCC regulation during dietary salt intake involving suppression of WNK4 expression in male rats only and the involvement of SPAK/OxSR1 signaling in both males and females.NEW & NOTEWORTHY NCC regulation is sex dependent. In normotensive male and female Sprague-Dawley and Dahl salt-resistant rats, which exhibit dietary Na+-evoked NCC suppression, male rats exhibit decreased WNK4 expression and decreased SPAK and OxSR1 levels, whereas female rats only suppress SPAK and OxSR1. In hypertensive Dahl salt-sensitive rats, the ability of females to suppress NCC (in opposition to males) via a SPAK/OxSR1 mechanism likely contributes to their lower magnitude of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Kiyoung Kim
- Department of Pharmacology and Experimental Therapeutics, Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
| | - Kayla M Nist
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
| | - Franco Puleo
- Department of Pharmacology and Experimental Therapeutics, Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
| | - James McKenna
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Richard D Wainford
- Department of Pharmacology and Experimental Therapeutics, Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
3
|
Rioux AV, Nsimba-Batomene TR, Slimani S, Bergeron NAD, Gravel MAM, Schreiber SV, Fiola MJ, Haydock L, Garneau AP, Isenring P. Navigating the multifaceted intricacies of the Na +-Cl - cotransporter, a highly regulated key effector in the control of hydromineral homeostasis. Physiol Rev 2024; 104:1147-1204. [PMID: 38329422 PMCID: PMC11381001 DOI: 10.1152/physrev.00027.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/01/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024] Open
Abstract
The Na+-Cl- cotransporter (NCC; SLC12A3) is a highly regulated integral membrane protein that is known to exist as three splice variants in primates. Its primary role in the kidney is to mediate the cosymport of Na+ and Cl- across the apical membrane of the distal convoluted tubule. Through this role and the involvement of other ion transport systems, NCC allows the systemic circulation to reclaim a fraction of the ultrafiltered Na+, K+, Cl-, and Mg+ loads in exchange for Ca2+ and [Formula: see text]. The physiological relevance of the Na+-Cl- cotransport mechanism in humans is illustrated by several abnormalities that result from NCC inactivation through the administration of thiazides or in the setting of hereditary disorders. The purpose of the present review is to discuss the molecular mechanisms and overall roles of Na+-Cl- cotransport as the main topics of interest. On reading the narrative proposed, one will realize that the knowledge gained in regard to these themes will continue to progress unrelentingly no matter how refined it has now become.
Collapse
Affiliation(s)
- A V Rioux
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - T R Nsimba-Batomene
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S Slimani
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - N A D Bergeron
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M A M Gravel
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S V Schreiber
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M J Fiola
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - L Haydock
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - A P Garneau
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - P Isenring
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
4
|
Belay S, Belay G, Nigussie H, Ahbara AM, Tijjani A, Dessie T, Tarekegn GM, Jian-Lin H, Mor S, Woldekiros HS, Dobney K, Lebrasseur O, Hanotte O, Mwacharo JM. Anthropogenic events and responses to environmental stress are shaping the genomes of Ethiopian indigenous goats. Sci Rep 2024; 14:14908. [PMID: 38942813 PMCID: PMC11213886 DOI: 10.1038/s41598-024-65303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/19/2024] [Indexed: 06/30/2024] Open
Abstract
Anthropological and biophysical processes have shaped livestock genomes over Millenia and can explain their current geographic distribution and genetic divergence. We analyzed 57 Ethiopian indigenous domestic goat genomes alongside 67 equivalents of east, west, and north-west African, European, South Asian, Middle East, and wild Bezoar goats. Cluster, ADMIXTURE (K = 4) and phylogenetic analysis revealed four genetic groups comprising African, European, South Asian, and wild Bezoar goats. The Middle Eastern goats had an admixed genome of these four genetic groups. At K = 5, the West African Dwarf and Moroccan goats were separated from East African goats demonstrating a likely historical legacy of goat arrival and dispersal into Africa via the coastal Mediterranean Sea and the Horn of Africa. FST, XP-EHH, and Hp analysis revealed signatures of selection in Ethiopian goats overlaying genes for thermo-sensitivity, oxidative stress response, high-altitude hypoxic adaptation, reproductive fitness, pathogen defence, immunity, pigmentation, DNA repair, modulation of renal function and integrated fluid and electrolyte homeostasis. Notable examples include TRPV1 (a nociception gene); PTPMT1 (a critical hypoxia survival gene); RETREG (a regulator of reticulophagy during starvation), and WNK4 (a molecular switch for osmoregulation). These results suggest that human-mediated translocations and adaptation to contrasting environments are shaping indigenous African goat genomes.
Collapse
Affiliation(s)
- Shumuye Belay
- Tigray Agricultural Research Institute, Mekelle, Ethiopia.
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia.
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia.
| | - Gurja Belay
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Helen Nigussie
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abulgasim M Ahbara
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Roslin Institute Building, Midlothian, UK
- Department of Zoology, Misurata University, Misurata, Libya
| | - Abdulfatai Tijjani
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Tadelle Dessie
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Getinet M Tarekegn
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Roslin Institute Building, Midlothian, UK
- Institute of Biotechnology (IoB), Addis Ababa University, Addis Ababa, Ethiopia
| | - Han Jian-Lin
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Siobhan Mor
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Helina S Woldekiros
- Department of Anthropology, Washington University in St. Louis, St. Louis, USA
| | - Keith Dobney
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
- University of Sydney, Sydney, Australia
| | - Ophelie Lebrasseur
- Palaeogenomics and Bioarchaeology Research Network, School of Archaeology, University of Oxford, Oxford, UK
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Joram M Mwacharo
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Roslin Institute Building, Midlothian, UK.
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia.
| |
Collapse
|
5
|
Motoshima T, Nagashima A, Ota C, Oka H, Hosono K, Braasch I, Nishihara H, Kato A. Na +/Cl - cotransporter 2 is not fish-specific and is widely found in amphibians, non-avian reptiles, and select mammals. Physiol Genomics 2023; 55:113-131. [PMID: 36645671 PMCID: PMC9988527 DOI: 10.1152/physiolgenomics.00143.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Solute carrier 12 (Slc12) is a family of electroneutral cation-coupled chloride (Cl-) cotransporters. Na+/K+/2Cl- (Nkcc) and Na+/Cl- cotransporters (Ncc) belong to the Nkcc/Ncc subfamily. Human and mouse possess one gene for the Na+/Cl- cotransporter (ncc gene: slc12a3), whereas teleost fishes possess multiple ncc genes, slc12a3 (ncc1) and slc12a10 (ncc2), in addition to their species-specific paralogs. Amphibians and squamates have two ncc genes: slc12a3 (ncc1) and ncc3. However, the evolutionary relationship between slc12a10 and ncc3 remains unresolved, and the presence of slc12a10 (ncc2) in mammals has not been clarified. Synteny and phylogenetic analyses of vertebrate genome databases showed that ncc3 is the ortholog of slc12a10, and slc12a10 is present in most ray-finned fishes, coelacanths, amphibians, reptiles, and a few mammals (e.g., platypus and horse) but pseudogenized or deleted in birds, most mammals, and some ray-finned fishes (pufferfishes). This shows that slc12a10 is widely present among bony vertebrates and pseudogenized or deleted independently in multiple lineages. Notably, as compared with some fish that show varied slc12a10 tissue expression profile, spotted gar, African clawed frog, red-eared slider turtle, and horse express slc12a10 in the ovaries or premature gonads. In horse tissues, an unexpectedly large number of splicing variants for Slc12a10 have been cloned, many of which encode truncated forms of Slc12a10, suggesting that the functional constraints of horse slc12a10 are weakened, which may be in the process of becoming a pseudogene. Our results elaborate on the evolution of Nkcc/Ncc subfamily of Slc12 in vertebrates.NEW & NOTEWORTHY slc12a10 is not a fish-specific gene and is present in a few mammals (e.g., platypus and horse), non-avian reptiles, amphibians, but was pseudogenized or deleted in most mammals (e.g., human, mouse, cat, cow, and rhinoceros), birds, and some ray-finned fishes (pufferfishes).
Collapse
Affiliation(s)
- Toya Motoshima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ayumi Nagashima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Chihiro Ota
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Haruka Oka
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kohei Hosono
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ingo Braasch
- Department of Integrative Biology, College of Natural Science, Michigan State University, East Lansing, Michigan, United States
| | - Hidenori Nishihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Akira Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
6
|
Structural insights into how a blood-pressure drug inhibits an ion transporter. Nature 2023:10.1038/d41586-023-00164-4. [PMID: 36792899 DOI: 10.1038/d41586-023-00164-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
7
|
Fan M, Zhang J, Lee CL, Zhang J, Feng L. Structure and thiazide inhibition mechanism of the human Na-Cl cotransporter. Nature 2023; 614:788-793. [PMID: 36792826 PMCID: PMC10030352 DOI: 10.1038/s41586-023-05718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/09/2023] [Indexed: 02/17/2023]
Abstract
The sodium-chloride cotransporter (NCC) is critical for kidney physiology1. The NCC has a major role in salt reabsorption in the distal convoluted tubule of the nephron2,3, and mutations in the NCC cause the salt-wasting disease Gitelman syndrome4. As a key player in salt handling, the NCC regulates blood pressure and is the target of thiazide diuretics, which have been widely prescribed as first-line medications to treat hypertension for more than 60 years5-7. Here we determined the structures of human NCC alone and in complex with a commonly used thiazide diuretic using cryo-electron microscopy. These structures, together with functional studies, reveal major conformational states of the NCC and an intriguing regulatory mechanism. They also illuminate how thiazide diuretics specifically interact with the NCC and inhibit its transport function. Our results provide critical insights for understanding the Na-Cl cotransport mechanism of the NCC, and they establish a framework for future drug design and for interpreting disease-related mutations.
Collapse
Affiliation(s)
- Minrui Fan
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jianxiu Zhang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chien-Ling Lee
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jinru Zhang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Liang Feng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
8
|
Nan J, Yuan Y, Yang X, Shan Z, Liu H, Wei F, Zhang W, Zhang Y. Cryo-EM structure of the human sodium-chloride cotransporter NCC. SCIENCE ADVANCES 2022; 8:eadd7176. [PMID: 36351028 PMCID: PMC9645730 DOI: 10.1126/sciadv.add7176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/21/2022] [Indexed: 05/29/2023]
Abstract
The sodium-chloride cotransporter NCC mediates the coupled import of sodium and chloride across the plasma membrane, playing vital roles in kidney extracellular fluid volume and blood pressure control. Here, we present the full-length structure of human NCC, with 2.9 Å for the transmembrane domain and 3.8 Å for the carboxyl-terminal domain. NCC adopts an inward-open conformation and a domain-swap dimeric assembly. Conserved ion binding sites among the cation-chloride cotransporters and the Na2 site are observed in our structure. A unique His residue in the substrate pocket in NCC potentially interacts with Na1 and Cl1 and might also mediate the coordination of Na2 through a Ser residue. Putative observed water molecules are indicated to participate in the coordination of ions and TM coupling. Together with transport activity assays, our structure provides the first glimpse of NCC and defines ion binding sites, promoting drug development for hypertension targeting on NCC.
Collapse
Affiliation(s)
- Jing Nan
- Shanghai Fifth People’s Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yafei Yuan
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuemei Yang
- Shanghai Fifth People’s Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ziyang Shan
- Shanghai Fifth People’s Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Huihui Liu
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Feiwen Wei
- Shanghai Fifth People’s Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Wei Zhang
- Shanghai Fifth People’s Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yanqing Zhang
- Shanghai Fifth People’s Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
9
|
Kong L, Tang X, Kang Y, Dong L, Tong J, Xu J, Gao PJ, Wang JG, Shen W, Zhu L. The Role of Urinary Extracellular Vesicles Sodium Chloride Cotransporter in Subtyping Primary Aldosteronism. Front Endocrinol (Lausanne) 2022; 13:834409. [PMID: 35444613 PMCID: PMC9013911 DOI: 10.3389/fendo.2022.834409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/08/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Adrenal venous sampling (AVS) is recognized as the gold standard for subtyping primary aldosteronism (PA), but its invasive nature and technical challenges limit its availability. A recent study reported that sodium chloride cotransporter (NCC) in urinary extracellular vesicles (uEVs) is a promising marker for assessing the biological activity of aldosterone and can be treated as a potential biomarker of PA. The current study was conducted to verify the hypothesis that the expression of NCC and its phosphorylated form (pNCC) in uEVs are different in various subtypes and genotypes of PA and can be used to select AVS candidates. METHODS A total of 50 patients with PA were enrolled in the study. Urinary extracellular vesicles (uEVs) were isolated from spot urine samples using ultracentrifugation. NCC and pNCC expressions were tested in patients diagnosed with PA who underwent AVS. Sanger sequencing of KCNJ5 was performed on DNA extracted from adrenal adenoma. RESULTS pNCC (1.89 folds, P<.0001) and NCC (1.82 folds, P=0.0002) was more abundant in the uEVs in the high lateralization index (h-LI, ≥ 4) group than in the low LI (l-LI, < 4) group. Carriers of the somatic KCNJ5 mutations, compared with non-carriers, had more abundant pNCC expression (2.16 folds, P=0.0039). Positive correlation between pNCC abundance and plasma aldosterone level was found in this study (R = 0.1220, P = 0.0129). CONCLUSIONS The expression of pNCC in uEVs in patients with PA with various subtypes and genotypes was different. It can be used as biomarker of AVS for PA subtyping.
Collapse
Affiliation(s)
- Linghui Kong
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Tang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Kang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Dong
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianhua Tong
- Department of Laboratory Medicine and Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianzhong Xu
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping-jin Gao
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji-guang Wang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weili Shen
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Limin Zhu, ; Weili Shen,
| | - Limin Zhu
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Limin Zhu, ; Weili Shen,
| |
Collapse
|
10
|
Mo S, Cui Y, Sun K, Wang H, Peng X, Ou L, Lei X, Huang M, Mei W, Xin L, He H, Peng B, Tian Y, Wang P, Li X, Zhang R, Zhu X. High sodium chloride affects BMP-7 and 1α-hydroxylase levels through NCC and CLC-5 in NRK-52E cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112762. [PMID: 34530263 DOI: 10.1016/j.ecoenv.2021.112762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/01/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
A diet high in sodium chloride (NaCl) can affect renal function damage and increase urinary calcium excretion, leading to bone loss. in renal tubules, Na-Cl co-transporter (NCC) and chloride channel 5 (CLC-5) are involved in regulating urinary calcium excretion. In addition, some cytokines, such as Bone morphogenetic protein 7 (BMP-7) and 1α-hydroxylase, are synthesized by renal tubules, which target on bone and play important roles on bone metabolism. However, the specific mechanisms between NaCl and these ion channels or cytokines still need investigations from many aspects. This study, in culture normal rat renal tubular epithelial NRK-52E cells, showed that high concentrations of NaCl significantly inhibited the cell viability and increased the cell apoptosis. High concentration of NaCl reduce bone mineral density (BMD), as demonstrated by the significantly increased mRNA and protein levels of NCC and osteopontin (OPN), but decreased the levels of CLC-5, BMP-7, and 1α-hydroxylase. In addition, we found that ovariectomized (OVX) rats on a high-salt diet for 12 weeks had altered levels of these indices in the renal cortices. Moreover, the BMD in fourth and fifth lumbar vertebra (LV4 and 5) and femurs were significantly decreased and bone microstructure was destroyed of these rats. We also demonstrated that high concentration of NaCl enhanced the inhibition of these cytokines which is beneficial to increase BMD, induced by modulating ion channels NCC and CLC-5. In conclusion, our results indicate that high concentration of NaCl reduce BMD by regulating ion channels NCC and CLC-5.
Collapse
Affiliation(s)
- Shu Mo
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, PR China; College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China; Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, 518000, PR China
| | - Yan Cui
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Kehuan Sun
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Haixia Wang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Xunqian Peng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Ling Ou
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Xiaojun Lei
- College of Clinical Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Mengtian Huang
- College of Clinical Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Wenhui Mei
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Ling Xin
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Haibing He
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Bojia Peng
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Ya Tian
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Panpan Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, PR China; Cancer research Institution, Jinan University, Guangzhou, Guangdong, 510630, PR China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, 510630, PR China
| | - Xiaoyun Li
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, 510630, PR China
| | - Ronghua Zhang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China; College of Pharmacy, Jinan University, Guangzhou, Guangdong 510630, PR China; Cancer research Institution, Jinan University, Guangzhou, Guangdong, 510630, PR China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, 510630, PR China
| | - Xiaofeng Zhu
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, PR China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, 510630, PR China.
| |
Collapse
|
11
|
Compensatory ion transport buffers daily protein rhythms to regulate osmotic balance and cellular physiology. Nat Commun 2021; 12:6035. [PMID: 34654800 PMCID: PMC8520019 DOI: 10.1038/s41467-021-25942-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/04/2021] [Indexed: 01/15/2023] Open
Abstract
Between 6-20% of the cellular proteome is under circadian control and tunes mammalian cell function with daily environmental cycles. For cell viability, and to maintain volume within narrow limits, the daily variation in osmotic potential exerted by changes in the soluble proteome must be counterbalanced. The mechanisms and consequences of this osmotic compensation have not been investigated before. In cultured cells and in tissue we find that compensation involves electroneutral active transport of Na+, K+, and Cl- through differential activity of SLC12A family cotransporters. In cardiomyocytes ex vivo and in vivo, compensatory ion fluxes confer daily variation in electrical activity. Perturbation of soluble protein abundance has commensurate effects on ion composition and cellular function across the circadian cycle. Thus, circadian regulation of the proteome impacts ion homeostasis with substantial consequences for the physiology of electrically active cells such as cardiomyocytes.
Collapse
|
12
|
Liu LP, Gholam MF, Elshikha AS, Kawakibi T, Elmoujahid N, Moussa HH, Song S, Alli AA. Transgenic Mice Overexpressing Human Alpha-1 Antitrypsin Exhibit Low Blood Pressure and Altered Epithelial Transport Mechanisms in the Inactive and Active Cycles. Front Physiol 2021; 12:710313. [PMID: 34630137 PMCID: PMC8493122 DOI: 10.3389/fphys.2021.710313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Human alpha-1 antitrypsin (hAAT) is a versatile protease inhibitor, but little is known about its targets in the aldosterone-sensitive distal nephron and its role in electrolyte balance and blood pressure control. We analyzed urinary electrolytes, osmolality, and blood pressure from hAAT transgenic (hAAT-Tg) mice and C57B/6 wild-type control mice maintained on either a normal salt or high salt diet. Urinary sodium, potassium, and chloride concentrations as well as urinary osmolality were lower in hAAT-Tg mice maintained on a high salt diet during both the active and inactive cycles. hAAT-Tg mice showed a lower systolic blood pressure compared to C57B6 mice when maintained on a normal salt diet but this was not observed when they were maintained on a high salt diet. Cathepsin B protein activity was less in hAAT-Tg mice compared to wild-type controls. Protein expression of the alpha subunit of the sodium epithelial channel (ENaC) alpha was also reduced in the hAAT-Tg mice. Natriuretic peptide receptor C (NPRC) protein expression in membrane fractions of the kidney cortex was reduced while circulating levels of atrial natriuretic peptide (ANP) were greater in hAAT-Tg mice compared to wild-type controls. This study characterizes the electrolyte and blood pressure phenotype of hAAT-Tg mice during the inactive and active cycles and investigates the mechanism by which ENaC activation is inhibited in part by a mechanism involving decreased cathepsin B activity and increased ANP levels in the systemic circulation.
Collapse
Affiliation(s)
- Lauren P Liu
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Mohammed F Gholam
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Ahmed Samir Elshikha
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Tamim Kawakibi
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Nasseem Elmoujahid
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Hassan H Moussa
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Sihong Song
- Department of Pharmaceutics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Abdel A Alli
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States.,Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
13
|
Tuttolomondo A, Simonetta I, Riolo R, Todaro F, Di Chiara T, Miceli S, Pinto A. Pathogenesis and Molecular Mechanisms of Anderson-Fabry Disease and Possible New Molecular Addressed Therapeutic Strategies. Int J Mol Sci 2021; 22:10088. [PMID: 34576250 PMCID: PMC8465525 DOI: 10.3390/ijms221810088] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Anderson-Fabry disease (AFD) is a rare disease with an incidenceof approximately 1:117,000 male births. Lysosomal accumulation of globotriaosylceramide (Gb3) is the element characterizing Fabry disease due to a hereditary deficiency α-galactosidase A (GLA) enzyme. The accumulation of Gb3 causes lysosomal dysfunction that compromises cell signaling pathways. Deposition of sphingolipids occurs in the autonomic nervous system, dorsal root ganglia, kidney epithelial cells, vascular system cells, and myocardial cells, resulting in organ failure. This manuscript will review the molecular pathogenetic pathways involved in Anderson-Fabry disease and in its organ damage. Some studies reported that inhibition of mitochondrial function and energy metabolism plays a significant role in AFD cardiomyopathy and in kidney disease of AFD patients. Furthermore, mitochondrial dysfunction has been reported as linked to the dysregulation of the autophagy-lysosomal pathway which inhibits the mechanistic target of rapamycin kinase (mTOR) mediated control of mitochondrial metabolism in AFD cells. Cerebrovascular complications due to AFD are caused by cerebral micro vessel stenosis. These are caused by wall thickening resulting from the intramural accumulation of glycolipids, luminal occlusion or thrombosis. Other pathogenetic mechanisms involved in organ damage linked to Gb3 accumulation are endocytosis and lysosomal degradation of endothelial calcium-activated intermediate-conductance potassium ion channel 3.1 (KCa3.1) via a clathrin-dependent process. This process represents a crucial event in endothelial dysfunction. Several studies have identified the deacylated form of Gb3, globotriaosylsphingosine (Lyso-Gb3), as the main catabolite that increases in plasma and urine in patients with AFD. The mean concentrations of Gb3 in all organs and plasma of Galactosidase A knockout mice were significantly higher than those of wild-type mice. The distributions of Gb3 isoforms vary from organ to organ. Various Gb3 isoforms were observed mainly in the kidneys, and kidney-specific Gb3 isoforms were hydroxylated. Furthermore, the action of Gb3 on the KCa3.1 channel suggests a possible contribution of this interaction to the Fabry disease process, as this channel is expressed in various cells, including endothelial cells, fibroblasts, smooth muscle cells in proliferation, microglia, and lymphocytes. These molecular pathways could be considered a potential therapeutic target to correct the enzyme in addition to the traditional enzyme replacement therapies (ERT) or drug chaperone therapy.
Collapse
Affiliation(s)
- Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.); (T.D.C.); (S.M.); (A.P.)
- Centro di Riferimento Regionale per la Cura e Diagnosi della Malattia di Anderson–Fabry, 90127 Palermo, Italy
- Molecular and Clinical Medicine PhD Programme, University of Palermo, 90127 Palermo, Italy
| | - Irene Simonetta
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.); (T.D.C.); (S.M.); (A.P.)
- Centro di Riferimento Regionale per la Cura e Diagnosi della Malattia di Anderson–Fabry, 90127 Palermo, Italy
- Molecular and Clinical Medicine PhD Programme, University of Palermo, 90127 Palermo, Italy
| | - Renata Riolo
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.); (T.D.C.); (S.M.); (A.P.)
- Centro di Riferimento Regionale per la Cura e Diagnosi della Malattia di Anderson–Fabry, 90127 Palermo, Italy
| | - Federica Todaro
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.); (T.D.C.); (S.M.); (A.P.)
- Centro di Riferimento Regionale per la Cura e Diagnosi della Malattia di Anderson–Fabry, 90127 Palermo, Italy
| | - Tiziana Di Chiara
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.); (T.D.C.); (S.M.); (A.P.)
- Centro di Riferimento Regionale per la Cura e Diagnosi della Malattia di Anderson–Fabry, 90127 Palermo, Italy
| | - Salvatore Miceli
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.); (T.D.C.); (S.M.); (A.P.)
- Centro di Riferimento Regionale per la Cura e Diagnosi della Malattia di Anderson–Fabry, 90127 Palermo, Italy
- Molecular and Clinical Medicine PhD Programme, University of Palermo, 90127 Palermo, Italy
| | - Antonio Pinto
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.); (T.D.C.); (S.M.); (A.P.)
- Centro di Riferimento Regionale per la Cura e Diagnosi della Malattia di Anderson–Fabry, 90127 Palermo, Italy
- Molecular and Clinical Medicine PhD Programme, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
14
|
Milano S, Carmosino M, Gerbino A, Saponara I, Lapi D, Dal Monte M, Bagnoli P, Svelto M, Procino G. Activation of the Thiazide-Sensitive Sodium-Chloride Cotransporter by Beta3-Adrenoreceptor in the Distal Convoluted Tubule. Front Physiol 2021; 12:695824. [PMID: 34483955 PMCID: PMC8414899 DOI: 10.3389/fphys.2021.695824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/16/2021] [Indexed: 12/02/2022] Open
Abstract
We previously showed that the beta-3 adrenergic receptor (BAR3) is expressed in most segments of the nephron where its agonism promotes a potent antidiuretic effect. We localized BAR3 in distal convoluted tubule (DCT) cells expressing the thiazide-sensitive sodium-chloride cotransporter (NCC). Aim of this study is to investigate the possible functional role of BAR3 on NCC modulation in DCT cells. Here, we found that, in mice, the knockout of BAR3 was paralleled by a significant attenuation of NCC phosphorylation, paralleled by reduced expression and activation of STE-20/SPS1-related proline-alanine-rich kinase (SPAK) and WNKs the main kinases involved in NCC activation. Conversely, in BAR1/2 knockout mice, we found reduced NCC abundance with no changes in the phosphorylation state of NCC. Moreover, selective BAR3 agonism promotes both SPAK and NCC activation in wild-type mouse kidney slices. In conclusion, our findings suggest a novel role for BAR3 in the regulation of NCC in DCT.
Collapse
Affiliation(s)
- Serena Milano
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Monica Carmosino
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Ilenia Saponara
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Dominga Lapi
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
15
|
Transcriptome Profiling Reveals a Divergent Adaptive Response to Hyper- and Hypo-Salinity in the Yellow Drum, Nibea albiflora. Animals (Basel) 2021; 11:ani11082201. [PMID: 34438658 PMCID: PMC8388402 DOI: 10.3390/ani11082201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Global warming and certain climate disasters (typhoon, tsunami, etc.) can lead to fluctuation in seawater salinity that causes salinity stress in fish. The aim of this study was to investigate the functional genes and relevant pathways in response to salinity stress in the yellow drum. Genes and pathways related to signal transduction, osmoregulation, and metabolism may be involved in the adaptive regulation to salinity in the yellow drum. Additionally, the genes under salinity stress were mainly divided into three expression trends. Our results provided novel insights into further study of the salinity adaptability of euryhaline fishes. Abstract The yellow drum (Nibea albiflora) is an important marine economic fish that is widely distributed in the coastal waters of the Northwest Pacific. In order to understand the molecular regulatory mechanism of the yellow drum under salinity stress, in the present study, transcriptome analysis was performed under gradients with six salinities (10, 15, 20, 25, 30, and 35 psu). Compared to 25 psu, 907, 1109, 1309, 18, and 243 differentially expressed genes (DEGs) were obtained under 10, 15, 20, 30, and 35 psu salinities, respectively. The differential gene expression was further validated by quantitative real-time PCR (qPCR). The results of the tendency analysis showed that all DEGs of the yellow drum under salinity fluctuation were mainly divided into three expression trends. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the PI3K-Akt signaling pathway, Jak-STAT signaling pathway as well as the glutathione metabolism and steroid biosynthesis pathways may be the key pathways for the salinity adaptive regulation mechanism of the yellow drum. G protein-coupled receptors (GPCRs), the solute carrier family (SLC), the transient receptor potential cation channel subfamily V member 6 (TRPV6), isocitrate dehydrogenase (IDH1), and fructose-bisphosphate aldolase C-B (ALDOCB) may be the key genes in the response of the yellow drum to salinity stress. This study explored the transcriptional patterns of the yellow drum under salinity stress and provided fundamental information for the study of salinity adaptability in this species.
Collapse
|
16
|
Torres AM, Dnyanmote AV, Granados JC, Nigam SK. Renal and non-renal response of ABC and SLC transporters in chronic kidney disease. Expert Opin Drug Metab Toxicol 2021; 17:515-542. [PMID: 33749483 DOI: 10.1080/17425255.2021.1899159] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The solute carrier (SLC) and the ATP-binding cassette (ABC) transporter superfamilies play essential roles in the disposition of small molecules (endogenous metabolites, uremic toxins, drugs) in the blood, kidney, liver, intestine, and other organs. In chronic kidney disease (CKD), the loss of renal function is associated with altered function of remote organs. As renal function declines, many molecules accumulate in the plasma. Many studies now support the view that ABC and SLC transporters as well as drug metabolizing enzymes (DMEs) in renal and non-renal tissues are directly or indirectly affected by the presence of various types of uremic toxins, including those derived from the gut microbiome; this can lead to aberrant inter-organ communication. AREAS COVERED Here, the expression, localization and/or function of various SLC and ABC transporters as well as DMEs in the kidney and other organs are discussed in the context of CKD and systemic pathophysiology. EXPERT OPINION According to the Remote Sensing and Signaling Theory (RSST), a transporter and DME-centric network that optimizes local and systemic metabolism maintains homeostasis in the steady state and resets homeostasis following perturbations due to renal dysfunction. The implications of this view for pharmacotherapy of CKD are also discussed.
Collapse
Affiliation(s)
- Adriana M Torres
- Pharmacology Area, Faculty of Biochemistry and Pharmaceutical Sciences, National University of Rosario, CONICET, Suipacha 531, S2002LRK Rosario, Argentina
| | - Ankur V Dnyanmote
- Department of Pediatrics, IWK Health Centre - Dalhousie University, 5850 University Ave, Halifax, NS, B3K 6R8, Canada
| | - Jeffry C Granados
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0693, USA
| | - Sanjay K Nigam
- Departments of Pediatrics and Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0693, USA
| |
Collapse
|
17
|
Brown A, Meor Azlan NF, Wu Z, Zhang J. WNK-SPAK/OSR1-NCC kinase signaling pathway as a novel target for the treatment of salt-sensitive hypertension. Acta Pharmacol Sin 2021; 42:508-517. [PMID: 32724175 PMCID: PMC8115323 DOI: 10.1038/s41401-020-0474-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/06/2020] [Indexed: 02/08/2023] Open
Abstract
Hypertension is the most prevalent health condition worldwide, affecting ~1 billion people. Gordon's syndrome is a form of secondary hypertension that can arise due to a number of possible mutations in key genes that encode proteins in a pathway containing the With No Lysine [K] (WNK) and its downstream target kinases, SPS/Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress responsive kinase 1 (OSR1). This pathway regulates the activity of the thiazide-sensitive sodium chloride cotransporter (NCC), which is responsible for NaCl reabsorption in the distal nephron. Therefore, mutations in genes encoding proteins that regulate the NCC proteins disrupt ion homeostasis and cause hypertension by increasing NaCl reabsorption. Thiazide diuretics are currently the main treatment option for Gordon's syndrome. However, they have a number of side effects, and chronic usage can lead to compensatory adaptations in the nephron that counteract their action. Therefore, recent research has focused on developing novel inhibitory molecules that inhibit components of the WNK-SPAK/OSR1-NCC pathway, thereby reducing NaCl reabsorption and restoring normal blood pressure. In this review we provide an overview of the currently reported molecular inhibitors of the WNK-SPAK/OSR1-NCC pathway and discuss their potential as treatment options for Gordon's syndrome.
Collapse
Affiliation(s)
- Archie Brown
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter, EX4 4PS, UK
| | - Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter, EX4 4PS, UK
| | - Zhijuan Wu
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter, EX4 4PS, UK
- Newcastle University Business School, Newcastle University, Newcastle upon Tyne, NE1 4SE, UK
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter, EX4 4PS, UK.
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361004, China.
| |
Collapse
|
18
|
Wan X, Perry J, Zhang H, Jin F, Ryan KA, Van Hout C, Reid J, Overton J, Baras A, Han Z, Streeten E, Li Y, Mitchell BD, Shuldiner AR, Fu M. Heterozygosity for a Pathogenic Variant in SLC12A3 That Causes Autosomal Recessive Gitelman Syndrome Is Associated with Lower Serum Potassium. J Am Soc Nephrol 2021; 32:756-765. [PMID: 33542107 PMCID: PMC7920171 DOI: 10.1681/asn.2020071030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 12/03/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Potassium levels regulate multiple physiologic processes. The heritability of serum potassium level is moderate, with published estimates varying from 17% to 60%, suggesting genetic influences. However, the genetic determinants of potassium levels are not generally known. METHODS A whole-exome sequencing association study of serum potassium levels in 5812 subjects of the Old Order Amish was performed. A dietary salt intervention in 533 Amish subjects estimated interaction between p.R642G and sodium intake. RESULTS A cluster of variants, spanning approximately 537 kb on chromosome 16q13, was significantly associated with serum potassium levels. Among the associated variants, a known pathogenic variant of autosomal recessive Gitelman syndrome (p.R642G SLC12A3) was most likely causal; there were no homozygotes in our sample. Heterozygosity for p.R642G was also associated with lower chloride levels, but not with sodium levels. Notably, p.R642G showed a novel association with lower serum BUN levels. Heterozygotes for p.R642G had a two-fold higher rate of self-reported bone fractures and had higher resting heart rates on a low-salt diet compared with noncarriers. CONCLUSIONS This study provides evidence that heterozygosity for a pathogenic variant in SLC12A3 causing Gitelman syndrome, a canonically recessive disorder, contributes to serum potassium concentration. The findings provide insights into SLC12A3 biology and the effects of heterozygosity on electrolyte homeostasis and related subclinical phenotypes that may have implications for personalized medicine and nutrition.
Collapse
Affiliation(s)
- Xuesi Wan
- Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland,Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - James Perry
- Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Haichen Zhang
- Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Feng Jin
- Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kathleen A. Ryan
- Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | | | | | | | - Aris Baras
- Regeneron Genetics Center, Tarrytown, New York
| | - Zhe Han
- Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Elizabeth Streeten
- Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yanbing Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Braxton D. Mitchell
- Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Mao Fu
- Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
19
|
Gagnon KB, Delpire E. Sodium Transporters in Human Health and Disease. Front Physiol 2021; 11:588664. [PMID: 33716756 PMCID: PMC7947867 DOI: 10.3389/fphys.2020.588664] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Sodium (Na+) electrochemical gradients established by Na+/K+ ATPase activity drives the transport of ions, minerals, and sugars in both excitable and non-excitable cells. Na+-dependent transporters can move these solutes in the same direction (cotransport) or in opposite directions (exchanger) across both the apical and basolateral plasma membranes of polarized epithelia. In addition to maintaining physiological homeostasis of these solutes, increases and decreases in sodium may also initiate, directly or indirectly, signaling cascades that regulate a variety of intracellular post-translational events. In this review, we will describe how the Na+/K+ ATPase maintains a Na+ gradient utilized by multiple sodium-dependent transport mechanisms to regulate glucose uptake, excitatory neurotransmitters, calcium signaling, acid-base balance, salt-wasting disorders, fluid volume, and magnesium transport. We will discuss how several Na+-dependent cotransporters and Na+-dependent exchangers have significant roles in human health and disease. Finally, we will discuss how each of these Na+-dependent transport mechanisms have either been shown or have the potential to use Na+ in a secondary role as a signaling molecule.
Collapse
Affiliation(s)
- Kenneth B. Gagnon
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
| | - Eric Delpire
- Department of Anesthesiology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
20
|
Xu S, Li J, Yang L, Wang CJ, Liu T, Weinstein AM, Palmer LG, Wang T. Sex difference in kidney electrolyte transport III: Impact of low K intake on thiazide-sensitive cation excretion in male and female mice. Pflugers Arch 2021; 473:1749-1760. [PMID: 34455480 PMCID: PMC8528772 DOI: 10.1007/s00424-021-02611-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 08/01/2021] [Indexed: 12/14/2022]
Abstract
We compared the regulation of the NaCl cotransporter (NCC) in adaptation to a low-K (LK) diet in male and female mice. We measured hydrochlorothiazide (HCTZ)-induced changes in urine volume (UV), glomerular filtration rate (GFR), absolute (ENa, EK), and fractional (FENa, FEK) excretion in male and female mice on control-K (CK, 1% KCl) and LK (0.1% KCl) diets for 7 days. With CK, NCC-dependent ENa and FENa were larger in females than males as observed previously. However, with LK, HCTZ-induced ENa and FENa increased in males but not in females, abolishing the sex differences in NCC function as observed in CK group. Despite large diuretic and natriuretic responses to HCTZ, EK was only slightly increased in response to the drug when animals were on LK. This suggests that the K-secretory apparatus in the distal nephron is strongly suppressed under these conditions. We also examined LK-induced changes in Na transport protein expression by Western blotting. Under CK conditions females expressed more NCC protein, as previously reported. LK doubled both total (tNCC) and phosphorylated NCC (pNCC) abundance in males but had more modest effects in females. The larger effect in males abolished the sex-dependence of NCC expression, consistent with the measurements of function by renal clearance. LK intake did not change NHE3, NHE2, or NKCC2 expression, but reduced the amount of the cleaved (presumably active) form of γENaC. LK reduced plasma K to lower levels in females than males. These results indicated that males had a stronger NCC-mediated adaptation to LK intake than females.
Collapse
Affiliation(s)
- Shuhua Xu
- grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale School of Medicine University, 333 Cedar Street, P.O. Box 208026, New Haven, CT 06520-8026 USA
| | - Jing Li
- grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale School of Medicine University, 333 Cedar Street, P.O. Box 208026, New Haven, CT 06520-8026 USA
| | - Lei Yang
- grid.5386.8000000041936877XDepartment of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY USA
| | - Claire J. Wang
- grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale School of Medicine University, 333 Cedar Street, P.O. Box 208026, New Haven, CT 06520-8026 USA
| | - Tommy Liu
- grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale School of Medicine University, 333 Cedar Street, P.O. Box 208026, New Haven, CT 06520-8026 USA
| | - Alan M. Weinstein
- grid.5386.8000000041936877XDepartment of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY USA
| | - Lawrence G. Palmer
- grid.5386.8000000041936877XDepartment of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY USA
| | - Tong Wang
- grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale School of Medicine University, 333 Cedar Street, P.O. Box 208026, New Haven, CT 06520-8026 USA
| |
Collapse
|
21
|
Deletion of the transcription factor Prox-1 specifically in the renal distal convoluted tubule causes hypomagnesemia via reduced expression of TRPM6 and NCC. Pflugers Arch 2020; 473:79-93. [PMID: 33200256 PMCID: PMC7782375 DOI: 10.1007/s00424-020-02491-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/25/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022]
Abstract
The renal distal convoluted tubule (DCT) is critical for the fine-tuning of urinary ion excretion and the control of blood pressure. Ion transport along the DCT is tightly controlled by posttranscriptional mechanisms including a complex interplay of kinases, phosphatases, and ubiquitin ligases. Previous work identified the transcription factor Prox-1 as a gene significantly enriched in the DCT of adult mice. To test if Prox-1 contributes to the transcriptional regulation of DCT function and structure, we developed a novel mouse model (NCCcre:Prox-1flox/flox) for an inducible deletion of Prox-1 specifically in the DCT. The deletion of Prox-1 had no obvious impact on DCT structure and growth independent whether the deletion was achieved in newborn or adult mice. Furthermore, DCT-specific Prox-1 deficiency did not alter DCT-proliferation in response to loop diuretic treatment. Likewise, the DCT-specific deletion of Prox-1 did not cause other gross phenotypic abnormalities. Body weight, urinary volume, Na+ and K+ excretion as well as plasma Na+, K+, and aldosterone levels were similar in Prox-1DCTKO and Prox-1DCTCtrl mice. However, Prox-1DCTKO mice exhibited a significant hypomagnesemia with a profound downregulation of the DCT-specific apical Mg2+ channel TRPM6 and the NaCl cotransporter (NCC) at both mRNA and protein levels. The expression of other proteins involved in distal tubule Mg2+ and Na+ handling was not affected. Thus, Prox-1 is a DCT-enriched transcription factor that does not control DCT growth but contributes to the molecular control of DCT-dependent Mg2+ homeostasis in the adult kidney.
Collapse
|
22
|
Wei KY, Gritter M, Vogt L, de Borst MH, Rotmans JI, Hoorn EJ. Dietary potassium and the kidney: lifesaving physiology. Clin Kidney J 2020; 13:952-968. [PMID: 33391739 PMCID: PMC7769543 DOI: 10.1093/ckj/sfaa157] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Indexed: 02/07/2023] Open
Abstract
Potassium often has a negative connotation in Nephrology as patients with chronic kidney disease (CKD) are prone to develop hyperkalaemia. Approaches to the management of chronic hyperkalaemia include a low potassium diet or potassium binders. Yet, emerging data indicate that dietary potassium may be beneficial for patients with CKD. Epidemiological studies have shown that a higher urinary potassium excretion (as proxy for higher dietary potassium intake) is associated with lower blood pressure (BP) and lower cardiovascular risk, as well as better kidney outcomes. Considering that the composition of our current diet is characterized by a high sodium and low potassium content, increasing dietary potassium may be equally important as reducing sodium. Recent studies have revealed that dietary potassium modulates the activity of the thiazide-sensitive sodium-chloride cotransporter in the distal convoluted tubule (DCT). The DCT acts as a potassium sensor to control the delivery of sodium to the collecting duct, the potassium-secreting portion of the kidney. Physiologically, this allows immediate kaliuresis after a potassium load, and conservation of potassium during potassium deficiency. Clinically, it provides a novel explanation for the inverse relationship between dietary potassium and BP. Moreover, increasing dietary potassium intake can exert BP-independent effects on the kidney by relieving the deleterious effects of a low potassium diet (inflammation, oxidative stress and fibrosis). The aim of this comprehensive review is to link physiology with clinical medicine by proposing that the same mechanisms that allow us to excrete an acute potassium load also protect us from hypertension, cardiovascular disease and CKD.
Collapse
Affiliation(s)
- Kuang-Yu Wei
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Internal Medicine, Division of Nephrology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Martin Gritter
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Liffert Vogt
- Department of Internal Medicine, Division of Nephrology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Martin H de Borst
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Joris I Rotmans
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
23
|
Altered Sphingolipids Metabolism Damaged Mitochondrial Functions: Lessons Learned From Gaucher and Fabry Diseases. J Clin Med 2020; 9:jcm9041116. [PMID: 32295103 PMCID: PMC7230936 DOI: 10.3390/jcm9041116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022] Open
Abstract
Sphingolipids represent a class of bioactive lipids that modulate the biophysical properties of biological membranes and play a critical role in cell signal transduction. Multiple studies have demonstrated that sphingolipids control crucial cellular functions such as the cell cycle, senescence, autophagy, apoptosis, cell migration, and inflammation. Sphingolipid metabolism is highly compartmentalized within the subcellular locations. However, the majority of steps of sphingolipids metabolism occur in lysosomes. Altered sphingolipid metabolism with an accumulation of undigested substrates in lysosomes due to lysosomal enzyme deficiency is linked to lysosomal storage disorders (LSD). Trapping of sphingolipids and their metabolites in the lysosomes inhibits lipid recycling, which has a direct effect on the lipid composition of cellular membranes, including the inner mitochondrial membrane. Additionally, lysosomes are not only the house of digestive enzymes, but are also responsible for trafficking organelles, sensing nutrients, and repairing mitochondria. However, lysosomal abnormalities lead to alteration of autophagy and disturb the energy balance and mitochondrial function. In this review, an overview of mitochondrial function in cells with altered sphingolipid metabolism will be discussed focusing on the two most common sphingolipid disorders, Gaucher and Fabry diseases. The review highlights the status of mitochondrial energy metabolism and the regulation of mitochondria-autophagy-lysosome crosstalk.
Collapse
|
24
|
Hoorn EJ, Gritter M, Cuevas CA, Fenton RA. Regulation of the Renal NaCl Cotransporter and Its Role in Potassium Homeostasis. Physiol Rev 2020; 100:321-356. [PMID: 31793845 DOI: 10.1152/physrev.00044.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Daily dietary potassium (K+) intake may be as large as the extracellular K+ pool. To avoid acute hyperkalemia, rapid removal of K+ from the extracellular space is essential. This is achieved by translocating K+ into cells and increasing urinary K+ excretion. Emerging data now indicate that the renal thiazide-sensitive NaCl cotransporter (NCC) is critically involved in this homeostatic kaliuretic response. This suggests that the early distal convoluted tubule (DCT) is a K+ sensor that can modify sodium (Na+) delivery to downstream segments to promote or limit K+ secretion. K+ sensing is mediated by the basolateral K+ channels Kir4.1/5.1, a capacity that the DCT likely shares with other nephron segments. Thus, next to K+-induced aldosterone secretion, K+ sensing by renal epithelial cells represents a second feedback mechanism to control K+ balance. NCC’s role in K+ homeostasis has both physiological and pathophysiological implications. During hypovolemia, NCC activation by the renin-angiotensin system stimulates Na+ reabsorption while preventing K+ secretion. Conversely, NCC inactivation by high dietary K+ intake maximizes kaliuresis and limits Na+ retention, despite high aldosterone levels. NCC activation by a low-K+ diet contributes to salt-sensitive hypertension. K+-induced natriuresis through NCC offers a novel explanation for the antihypertensive effects of a high-K+ diet. A possible role for K+ in chronic kidney disease is also emerging, as epidemiological data reveal associations between higher urinary K+ excretion and improved renal outcomes. This comprehensive review will embed these novel insights on NCC regulation into existing concepts of K+ homeostasis in health and disease.
Collapse
Affiliation(s)
- Ewout J. Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Martin Gritter
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Catherina A. Cuevas
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Robert A. Fenton
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
25
|
Jenkins R, Tackitt S, Gievers L, Iragorri S, Sage K, Cornwall T, O'Riordan D, Merchant J, Rozansky D. Phthalate-associated hypertension in premature infants: a prospective mechanistic cohort study. Pediatr Nephrol 2019; 34:1413-1424. [PMID: 31028470 PMCID: PMC6579777 DOI: 10.1007/s00467-019-04244-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/05/2019] [Accepted: 03/18/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Phthalates are associated with increased blood pressure in children. Large exposures to di-(2-ethylhexyl) phthalate (DEHP) among premature infants have been a cause for concern. METHODS We conducted a prospective observational cohort study to determine if DEHP exposures are related to systolic blood pressure (SBP) in premature infants, and if this exposure is associated with activation of the mineralocorticoid receptor (MR). Infants were monitored longitudinally for 8 months from birth. Those who developed idiopathic hypertension were compared with normotensive infants for DEHP exposures. Appearance of urinary metabolites after exposure was documented. Linear regression evaluated the relationship between DEHP exposures and SBP index and whether urinary cortisol/cortisone ratio (a surrogate marker for 11β-HSD2 activity) mediated those relationships. Urinary exosomes were quantified for sodium transporter/channel expression and interrogated against SBP index. RESULTS Eighteen patients met the study criteria, nine developed transient idiopathic hypertension at a postmenstrual age of 40.6 ± 3.4 weeks. The presence of urinary DEHP metabolites was associated with prior IV and respiratory tubing DEHP exposures (p < 0.05). Both IV and respiratory DEHP exposures were greater in hypertensive infants (p < 0.05). SBP index was related to DEHP exposure from IV fluid (p = 0.018), but not respiratory DEHP. Urinary cortisol/cortisone ratio was related to IV DEHP and SBP index (p < 0.05). Sodium transporter/channel expression was also related to SBP index (p < 0.05). CONCLUSIONS Increased blood pressure and hypertension in premature infants are associated with postnatal DEHP exposure. The mechanism of action appears to be activation of the MR through inhibition of 11β-HSD2.
Collapse
MESH Headings
- 11-beta-Hydroxysteroid Dehydrogenases/metabolism
- Administration, Intravenous/adverse effects
- Administration, Intravenous/instrumentation
- Airway Management/adverse effects
- Airway Management/instrumentation
- Blood Pressure/drug effects
- Diethylhexyl Phthalate/toxicity
- Female
- Humans
- Hypertension/chemically induced
- Hypertension/diagnosis
- Hypertension/epidemiology
- Hypertension/metabolism
- Infant, Newborn
- Infant, Premature
- Infant, Premature, Diseases/chemically induced
- Infant, Premature, Diseases/diagnosis
- Infant, Premature, Diseases/epidemiology
- Male
- Plasticizers/toxicity
- Prospective Studies
- Receptors, Mineralocorticoid/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Randall Jenkins
- Department of Pediatrics, Oregon Health & Science University, 707 SW Gaines Road, Mail Code CDRC-P, Portland, OR, 97239, USA.
| | | | - Ladawna Gievers
- Department of Pediatrics, Oregon Health & Science University, 707 SW Gaines Road, Mail Code CDRC-P, Portland, OR, 97239, USA
| | - Sandra Iragorri
- Department of Pediatrics, Oregon Health & Science University, 707 SW Gaines Road, Mail Code CDRC-P, Portland, OR, 97239, USA
| | - Kylie Sage
- Biostatistics and Design Program, School of Public Health, Oregon Health & Science University, Portland, OR, USA
| | - Tonya Cornwall
- Department of Pediatrics, Oregon Health & Science University, 707 SW Gaines Road, Mail Code CDRC-P, Portland, OR, 97239, USA
| | | | | | - David Rozansky
- Department of Pediatrics, Oregon Health & Science University, 707 SW Gaines Road, Mail Code CDRC-P, Portland, OR, 97239, USA
| |
Collapse
|
26
|
Tyrosine phosphorylation modulates cell surface expression of chloride cotransporters NKCC2 and KCC3. Arch Biochem Biophys 2019; 669:61-70. [PMID: 31145900 DOI: 10.1016/j.abb.2019.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 11/22/2022]
Abstract
Cellular chloride transport has a fundamental role in cell volume regulation and renal salt handling. Cellular chloride entry or exit are mediated at the plasma membrane by cotransporter proteins of the solute carrier 12 family. For example, NKCC2 resorbs chloride with sodium and potassium ions at the apical membrane of epithelial cells in the kidney, whereas KCC3 releases chloride with potassium ions at the basolateral membrane. Their ion transport activity is regulated by protein phosphorylation in response to signaling pathways. An additional regulatory mechanism concerns the amount of cotransporter molecules inserted into the plasma membrane. Here we describe that tyrosine phosphorylation of NKCC2 and KCC3 regulates their plasma membrane expression levels. We identified that spleen tyrosine kinase (SYK) phosphorylates a specific N-terminal tyrosine residue in each cotransporter. Experimental depletion of endogenous SYK or pharmacological inhibition of its kinase activity increased the abundance of NKCC2 at the plasma membrane of human embryonic kidney cells. In contrast, overexpression of a constitutively active SYK mutant decreased NKCC2 membrane abundance. Intriguingly, the same experimental approaches revealed the opposite effect on KCC3 abundance at the plasma membrane, compatible with the known antagonistic roles of NKCC and KCC cotransporters in cell volume regulation. Thus, we identified a novel pathway modulating the cell surface expression of NKCC2 and KCC3 and show that this same pathway has opposite functional outcomes for these two cotransporters. The findings have several biomedical implications considering the role of these cotransporters in regulating blood pressure and cell volume.
Collapse
|
27
|
Cao J. Molecular Evolution of the Vacuolar Iron Transporter ( VIT) Family Genes in 14 Plant Species. Genes (Basel) 2019; 10:E144. [PMID: 30769903 PMCID: PMC6409731 DOI: 10.3390/genes10020144] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022] Open
Abstract
The vacuolar iron transporter (VIT) proteins are involved in the storage and transport of iron. However, the evolution of this gene family in plants is unknown. In this study, I first identified 114 VIT genes in 14 plant species and classified these genes into seven groups by phylogenetic analysis. Conserved gene organization and motif distribution implied conserved function in each group. I also found that tandem duplication, segmental duplication and transposition contributed to the expansion of this gene family. Additionally, several positive selection sites were identified. Divergent expression patterns of soybean VIT genes were further investigated in different development stages and under iron stress. Functional network analysis exhibited 211 physical or functional interactions. The results will provide the basis for further functional studies of the VIT genes in plants.
Collapse
Affiliation(s)
- Jun Cao
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
28
|
The interplay of renal potassium and sodium handling in blood pressure regulation: critical role of the WNK-SPAK-NCC pathway. J Hum Hypertens 2019; 33:508-523. [DOI: 10.1038/s41371-019-0170-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/18/2018] [Accepted: 01/03/2019] [Indexed: 12/19/2022]
|
29
|
Capdevila JH, Falck JR. The arachidonic acid monooxygenase: from biochemical curiosity to physiological/pathophysiological significance. J Lipid Res 2018; 59:2047-2062. [PMID: 30154230 PMCID: PMC6210905 DOI: 10.1194/jlr.r087882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/10/2018] [Indexed: 12/19/2022] Open
Abstract
The initial studies of the metabolism of arachidonic acid (AA) by the cytochrome P450 (P450) hemeproteins sought to: a) elucidate the roles for these enzymes in the metabolism of endogenous pools of the FA, b) identify the P450 isoforms involved in AA epoxidation and ω/ω-1 hydroxylation, and c) explore the biological activities of their metabolites. These early investigations provided a foundation for subsequent efforts to establish the physiological relevance of the AA monooxygenase and its contributions to the pathophysiology of, for example, cancer, diabetes, hypertension, inflammation, nociception, and vascular disease. This retrospective analyzes the history of some of these efforts, with emphasis on genetic studies that identified roles for the murine Cyp4a and Cyp2c genes in renal and vascular physiology and the pathophysiology of hypertension and cancer. Wide-ranging investigations by laboratories worldwide, including the authors, have established a better appreciation of the enzymology, genetics, and physiologic roles for what is now known as the third branch of the AA cascade. Combined with the development of analytical and pharmacological tools, including robust synthetic agonists and antagonists of the major metabolites, we stand at the threshold of novel therapeutic approaches for the treatment of renal injury, pain, hypertension, and heart disease.
Collapse
Affiliation(s)
- Jorge H Capdevila
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - John R Falck
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
30
|
Wardak H, Tutakhel OAZ, Van Der Wijst J. Role of the alternative splice variant of NCC in blood pressure control. Channels (Austin) 2018; 12:346-355. [PMID: 30264650 PMCID: PMC6207291 DOI: 10.1080/19336950.2018.1528820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The renal thiazide-sensitive sodium-chloride cotransporter (NCC), located in the distal convoluted tubule (DCT) of the kidney, plays an important role in blood pressure regulation by fine-tuning sodium excretion. The human SLC12A3 gene, encoding NCC, gives rise to three isoforms, of which only the third isoform (NCC3) has been extensively investigated so far. However, recent studies unraveled the importance of the isoforms 1 and 2, collectively referred to as NCC splice variant (NCCSV), in several (patho)physiological conditions. In the human kidney, NCCSV localizes to the apical membrane of the DCT and could constitute a functional route for renal sodium-chloride reabsorption. Analysis of urinary extracellular vesicles (uEVs), a non-invasive method for measuring renal responses, demonstrated that NCCSV abundance changes in response to acute water loading and correlates with patients’ thiazide responsiveness. Furthermore, a novel phosphorylation site at serine 811 (S811), exclusively present in NCCSV, was shown to play an instrumental role in NCCSV as well as NCC3 function. This review aims to summarize these new insights of NCCSV function in humans that broadens the understanding on NCC regulation in blood pressure control.
Collapse
Affiliation(s)
- Hila Wardak
- a Department of Physiology , Radboud Institute for Molecular Life Sciences, Radboud university medical center , Nijmegen , The Netherland
| | - Omar A Z Tutakhel
- a Department of Physiology , Radboud Institute for Molecular Life Sciences, Radboud university medical center , Nijmegen , The Netherland.,b Department of Translational Metabolic Laboratory , Radboud university medical center , Nijmegen , The Netherlands
| | - Jenny Van Der Wijst
- a Department of Physiology , Radboud Institute for Molecular Life Sciences, Radboud university medical center , Nijmegen , The Netherland
| |
Collapse
|
31
|
Bao M, Cai J, Yang X, Ma W. Genetic screening for Bartter syndrome and Gitelman syndrome pathogenic genes among individuals with hypertension and hypokalemia. Clin Exp Hypertens 2018; 41:381-388. [PMID: 29953267 DOI: 10.1080/10641963.2018.1489547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE Bartter syndrome (BS) and Gitelman syndrome (GS) are hereditary diseases characterized by hypokalemia with decreased or normal blood pressure (BP). However, BS or GS patients who present with elevated BP levels have been increasingly reported recently. Therefore, this study aimed to investigate the presence of BS and GS among individuals with unexplained hypokalemia with hypertension in a clinical setting. METHODS Patients presented with unexplained hypertension and hypokalemia admitted to Hypertension Center of Fuwai Hospital from November 2015 to February 2017 were enrolled. High-throughput sequencing for five BS and GS causative genes were performed. Variants were classified using American College of Medical Genetics (ACMG) consensus guidelines. RESULTS Thirty-four patients with unexplained hypertension and hypokalemia were included for genetic analysis. A total number of 10 rare variants were identified in six individuals (mutation detection rate, 17.65%). One homozygous variant carried by one of the 34 patients, KCNJ1 c.941A> G (p.Tyr314Cys), were categorized as likely pathogenic variant and resulted in a diagnostic yield of 2.94%. Eight of the remaining nine variants were predicted to be deleterious by ≥ three bioinformatics software and may give additional potential diagnostic yields. CONCLUSIONS This is the first study performing combined genetic screening for BS and GS pathogenic genes among individuals with unexplained hypertension and hypokalemia. Our data suggested that BS or GS may contribute to the etiology of patients presented with hypertension and hypokalemia. Genetic testing for BS and GS pathogenic genes are recommended to facilitate precision diagnoses and targeted treatment.
Collapse
Affiliation(s)
- Minghui Bao
- a Department of Cardiology, Chaoyang Hospital , Capital Medical University , Beijing , China
| | - Jun Cai
- b Hypertension Center of Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Xinchun Yang
- a Department of Cardiology, Chaoyang Hospital , Capital Medical University , Beijing , China
| | - Wenjun Ma
- b Hypertension Center of Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| |
Collapse
|
32
|
Future considerations based on the information from Barrter's and Gitelman's syndromes. Curr Opin Nephrol Hypertens 2018; 26:9-13. [PMID: 27798456 DOI: 10.1097/mnh.0000000000000285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Bartter and Gitelman syndromes are typical normotensive salt losing hypokalaemic tubulopathies. Their pathogenesis was gradually deciphered in the past 5 decades, first by typical salt balance studies and histopathology, followed by genetic characterization and discovery of the affected different ion channels. Although the different genotypic subtypes were originally thought to show a similar phenotype, important clinical and biochemical differences can now be found. New findings on the regulation of these channels, as well as the recent discovery of newly affected genes, merit an update on this topic. RECENT FINDINGS Na-K-2CL cotransporter and NaCl cotransporter, the two main luminal channels in the thick ascending limb and distal convoluted tubule were found to be regulated by Ste 20-related proline alanine-rich kinase and oxidative stress response kinase. Knockout mice to these channels express a Bartter-like phenotype. MAGE-D2 is new gene found to cause severe polyhydramnios and transient postnatal Bartter-like syndrome. Variants in the different channels causing Bartter syndromes/Gitelman syndromes may also confer susceptibility for hypertension or protect against it. SUMMARY It remains to be determined if polymorphism or epigenetic changes in these genes and proteins may affect salt handling, explaining, apart from Bartter syndromes and Gitelman syndromes, also hypertension or stroke tendency, or both.
Collapse
|
33
|
Maruyama H, Taguchi A, Nishikawa Y, Guili C, Mikame M, Nameta M, Yamaguchi Y, Ueno M, Imai N, Ito Y, Nakagawa T, Narita I, Ishii S. Medullary thick ascending limb impairment in the Gla tmTg(CAG-A4GALT) Fabry model mice. FASEB J 2018; 32:4544-4559. [PMID: 29553830 PMCID: PMC6071062 DOI: 10.1096/fj.201701374r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A main feature of Fabry disease is nephropathy, with polyuria an early manifestation; however, the mechanism that underlies polyuria and affected tubules is unknown. To increase globotriaosylceramide (Gb3) levels, we previously crossbred asymptomatic Glatm mice with transgenic mice that expressed human Gb3 synthase (A4GALT) and generated the GlatmTg(CAG-A4GALT) symptomatic Fabry model mice. Additional analyses revealed that these mice exhibit polyuria and renal dysfunction without remarkable glomerular damage. In the present study, we investigated the mechanism of polyuria and renal dysfunction in these mice. Gb3 accumulation was mostly detected in the medulla; medullary thick ascending limbs (mTALs) were the most vacuolated tubules. mTAL cells contained lamellar bodies and had lost their characteristic structure (i.e., extensive infolding and numerous elongated mitochondria). Decreased expression of the major molecules—Na+-K+-ATPase, uromodulin, and Na+-K+-2Cl− cotransporter—that are involved in Na+ reabsorption in mTALs and the associated loss of urine-concentrating ability resulted in progressive water- and salt-loss phenotypes. GlatmTg(CAG-A4GALT) mice exhibited fibrosis around mTALs and renal dysfunction. These and other features were consistent with pathologic findings in patients with Fabry disease. Results demonstrate that mTAL dysfunction causes polyuria and renal impairment and contributes to the pathophysiology of Fabry nephropathy.—Maruyama, H., Taguchi, A., Nishikawa, Y., Guili, C., Mikame, M., Nameta, M., Yamaguchi, Y., Ueno, M., Imai, N., Ito, Y., Nakagawa, T., Narita, I., Ishii, S. Medullary thick ascending limb impairment in the GlatmTg(CAG-A4GALT) Fabry model mice.
Collapse
Affiliation(s)
- Hiroki Maruyama
- Department of Clinical Nephroscience, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsumi Taguchi
- Department of Clinical Nephroscience, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Matrix Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yuji Nishikawa
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Chu Guili
- Department of Clinical Nephroscience, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mariko Mikame
- Department of Clinical Nephroscience, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaaki Nameta
- Electron Microscope Core Facility, Niigata University, Niigata, Japan
| | | | - Mitsuhiro Ueno
- University Health Center, Joetsu University of Education, Joetsu, Japan
| | - Naofumi Imai
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yumi Ito
- Department of Health Promotion Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoshi Ishii
- Department of Matrix Medicine, Faculty of Medicine, Oita University, Yufu, Japan.,GlycoPharma Corporation, Oita, Japan
| |
Collapse
|
34
|
Abbott GW. Chansporter complexes in cell signaling. FEBS Lett 2017; 591:2556-2576. [PMID: 28718502 DOI: 10.1002/1873-3468.12755] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022]
Abstract
Ion channels facilitate diffusion of ions across cell membranes for such diverse purposes as neuronal signaling, muscular contraction, and fluid homeostasis. Solute transporters often utilize ionic gradients to move aqueous solutes up their concentration gradient, also fulfilling a wide variety of tasks. Recently, an increasing number of ion channel-transporter ('chansporter') complexes have been discovered. Chansporter complex formation may overcome what could otherwise be considerable spatial barriers to rapid signal integration and feedback between channels and transporters, the ions and other substrates they transport, and environmental factors to which they must respond. Here, current knowledge in this field is summarized, covering both heterologous expression structure/function findings and potential mechanisms by which chansporter complexes fulfill contrasting roles in cell signaling in vivo.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
35
|
Rosenbaek LL, Rizzo F, MacAulay N, Staub O, Fenton RA. Functional assessment of sodium chloride cotransporter NCC mutants in polarized mammalian epithelial cells. Am J Physiol Renal Physiol 2017; 313:F495-F504. [DOI: 10.1152/ajprenal.00088.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/03/2017] [Accepted: 05/15/2017] [Indexed: 12/21/2022] Open
Abstract
The thiazide-sensitive sodium chloride cotransporter NCC is important for maintaining serum sodium (Na+) and, indirectly, serum potassium (K+) levels. Functional studies on NCC have used cell lines with native NCC expression, transiently transfected nonpolarized cell lines, or Xenopus laevis oocytes. Here, we developed the use of polarized Madin-Darby canine kidney type I (MDCKI) mammalian epithelial cell lines with tetracycline-inducible human NCC expression to study NCC activity and membrane abundance in the same system. In radiotracer assays, induced cells grown on filters had robust thiazide-sensitive and chloride dependent sodium-22 (22Na) uptake from the apical side. To minimize cost and maximize throughput, assays were modified to use cells grown on plastic. On plastic, cells had similar thiazide-sensitive 22Na uptakes that increased following preincubation of cells in chloride-free solutions. NCC was detected in the plasma membrane, and both membrane abundance and phosphorylation of NCC were increased by incubation in chloride-free solutions. Furthermore, in cells exposed for 15 min to low or high extracellular K+, the levels of phosphorylated NCC increased and decreased, respectively. To demonstrate that the system allows rapid and systematic assessment of mutated NCC, three phosphorylation sites in NCC were mutated, and NCC activity was examined. 22Na fluxes in phosphorylation-deficient mutants were reduced to baseline levels, whereas phosphorylation-mimicking mutants were constitutively active, even without chloride-free stimulation. In conclusion, this system allows the activity, cellular localization, and abundance of wild-type or mutant NCC to be examined in the same polarized mammalian expression system in a rapid, easy, and low-cost fashion.
Collapse
Affiliation(s)
- Lena L. Rosenbaek
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Federica Rizzo
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and
- National Centre of Competence in Research “Kidney.ch,” Lausanne, Switzerland
| | - Nanna MacAulay
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Olivier Staub
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and
- National Centre of Competence in Research “Kidney.ch,” Lausanne, Switzerland
| | - Robert A. Fenton
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
36
|
Li H, Sun S, Chen J, Xu G, Wang H, Qian Q. Genetics of Magnesium Disorders. KIDNEY DISEASES 2017; 3:85-97. [PMID: 29344503 DOI: 10.1159/000477730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/23/2017] [Indexed: 12/30/2022]
Abstract
Background Magnesium (Mg2+), the second most abundant cation in the cell, is woven into a multitude of cellular functions. Dysmagnesemia is associated with multiple diseases and, when severe, can be life-threatening. Summary This review discusses Mg2+ homeostasis and function with specific focus on renal Mg2+ handling. Intrarenal channels and transporters related to Mg2+ absorption are discussed. Unraveling the rare genetic diseases with manifestations of dysmagnesemia has greatly increased our understanding of the complex and intricate regulatory network in the kidney, specifically, functions of tight junction proteins including claudin-14, -16, -19, and -10; apical ion channels including: TRPM6, Kv1.1, and ROMK; small regulatory proteins including AC3 and ANK3; and basolateral proteins including EGF receptor, γ-subunit (FXYD2) of Na-K-ATPase, Kir4.1, CaSR, CNNM2, and SLC41A. Although our understanding of Mg2+ handling of the kidney has expanded considerably in the last two decades, many questions remain. Future studies are needed to elucidate a multitude of unknown aspects of Mg2+ handling in the kidney. Key Message Understanding rare and genetic diseases of Mg2+ dysregulation has expanded our knowledge and furthers the development of strategies for preventing and managing dysmagnesemia.
Collapse
Affiliation(s)
- Heng Li
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xian, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Goushuang Xu
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xian, China
| | - Hanmin Wang
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xian, China
| | - Qi Qian
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
37
|
Sugano Y, Cianciolo Cosentino C, Loffing-Cueni D, Neuhauss SCF, Loffing J. Comparative transcriptomic analysis identifies evolutionarily conserved gene products in the vertebrate renal distal convoluted tubule. Pflugers Arch 2017; 469:859-867. [PMID: 28656378 DOI: 10.1007/s00424-017-2009-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 12/11/2022]
Abstract
Understanding the molecular basis of the complex regulatory networks controlling renal ion transports is of major physiological and clinical importance. In this study, we aimed to identify evolutionarily conserved critical players in the function of the renal distal convoluted tubule (DCT) by a comparative transcriptomic approach. We generated a transgenic zebrafish line with expression of the red fluorescent mCherry protein under the control of the zebrafish DCT-specific promoter of the thiazide-sensitive NaCl cotransporter (NCC). The mCherry expression was then used to isolate from the zebrafish mesonephric kidneys the distal late (DL) segments, the equivalent of the mammalian DCT, for subsequent RNA-seq analysis. We next compared this zebrafish DL transcriptome to the previously established mouse DCT transcriptome and identified a subset of gene products significantly enriched in both the teleost DL and the mammalian DCT, including SLCs and nuclear transcription factors. Surprisingly, several of the previously described regulators of NCC (e.g., SPAK, KLHL3, ppp1r1a) in the mouse were not found enriched in the zebrafish DL. Nevertheless, the zebrafish DL expressed enriched levels of related homologues. Functional knockdown of one of these genes, ppp1r1b, reduced the phosphorylation of NCC in the zebrafish pronephros, similar to what was seen previously in knockout mice for its homologue, Ppp1r1a. The present work is the first report on global gene expression profiling in a specific nephron portion of the zebrafish kidney, an increasingly used model system for kidney research. Our study suggests that comparative analysis of gene expression between phylogenetically distant species may be an effective approach to identify novel regulators of renal function.
Collapse
Affiliation(s)
- Yuya Sugano
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Chiara Cianciolo Cosentino
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Dominique Loffing-Cueni
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Stephan C F Neuhauss
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| | - Johannes Loffing
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
- Swiss National Center of Competence in Research "Kidney.CH", Zurich, Switzerland.
| |
Collapse
|
38
|
Bachmann S, Mutig K. Regulation of renal Na-(K)-Cl cotransporters by vasopressin. Pflugers Arch 2017; 469:889-897. [DOI: 10.1007/s00424-017-2002-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
|
39
|
Li J, Hatano R, Xu S, Wan L, Yang L, Weinstein AM, Palmer L, Wang T. Gender difference in kidney electrolyte transport. I. Role of AT 1a receptor in thiazide-sensitive Na +-Cl - cotransporter activity and expression in male and female mice. Am J Physiol Renal Physiol 2017; 313:F505-F513. [PMID: 28566500 DOI: 10.1152/ajprenal.00087.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/11/2017] [Accepted: 05/30/2017] [Indexed: 11/22/2022] Open
Abstract
We studied gender differences in Na+-Cl- cotransporter (NCC) activity and expression in wild-type (WT) and AT1a receptor knockout (KO) mice. In renal clearance experiments, urine volume (UV), glomerular filtration rate, absolute Na+ (ENa) and K+ (EK), and fractional Na+ (FENa) and K+ excretion were measured and compared at peak changes after bolus intravenous injection of hydrochlorothiazide (HCTZ; 30 mg/kg). In WT, females responded more strongly than males to HCTZ, with larger fractional increases of UV (7.8- vs. 3.4-fold), ENa (11.7- vs. 5.7-fold), FENa (7.9- vs. 4.9-fold), and EK (2.8- vs. 1.4-fold). In contrast, there were no gender differences in the responses to the diuretic in KO mice; HCTZ produced greater effects on male KO than on WT but similar effects on females. In WT, total (tNCC) and phosphorylated (pNCC) NCC protein expressions were 1.8- and 4.6-fold higher in females compared with males (P < 0.05), consistent with the larger response to HCTZ. In KO mice, tNCC and pNCC increased significantly in males to levels not different from those in females. There were no gender differences in the expression of the Na+/H+ exchanger (NHE3) in WT; NHE3 protein decreased to similar extents in male and female KO animals, suggesting AT1a-mediated NHE3 expression in proximal tubules. The resulting increase in delivery of NaCl to the distal nephron may underlie increased NCC expression and activity in mice lacking the AT1a receptor.
Collapse
Affiliation(s)
- Jing Li
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut.,Department of Basic Medical Science, Chengdu Medical College, Chengdu, China
| | - Ryo Hatano
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Shuhua Xu
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Laxiang Wan
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Lei Yang
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, Ithaca, New York; and
| | - Alan M Weinstein
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, Ithaca, New York; and
| | - Lawrence Palmer
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, Ithaca, New York; and
| | - Tong Wang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut;
| |
Collapse
|
40
|
Hadchouel J, Ellison DH, Gamba G. Regulation of Renal Electrolyte Transport by WNK and SPAK-OSR1 Kinases. Annu Rev Physiol 2016; 78:367-89. [PMID: 26863326 DOI: 10.1146/annurev-physiol-021115-105431] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery of four genes responsible for pseudohypoaldosteronism type II, or familial hyperkalemic hypertension, which features arterial hypertension with hyperkalemia and metabolic acidosis, unmasked a complex multiprotein system that regulates electrolyte transport in the distal nephron. Two of these genes encode the serine-threonine kinases WNK1 and WNK4. The other two genes [kelch-like 3 (KLHL3) and cullin 3 (CUL3)] form a RING-type E3-ubiquitin ligase complex that modulates WNK1 and WNK4 abundance. WNKs regulate the activity of the Na(+):Cl(-) cotransporter (NCC), the epithelial sodium channel (ENaC), the renal outer medullary potassium channel (ROMK), and other transport pathways. Interestingly, the modulation of NCC occurs via the phosphorylation by WNKs of other serine-threonine kinases known as SPAK-OSR1. In contrast, the process of regulating the channels is independent of SPAK-OSR1. We present a review of the remarkable advances in this area in the past 10 years.
Collapse
Affiliation(s)
- Juliette Hadchouel
- INSERM UMR970, Paris Cardiovascular Research Center, 75015 Paris, France.,Faculty of Medicine, Paris Descartes University, Sorbonne Paris Cité, 75006 Paris, France
| | - David H Ellison
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City 14080, Mexico;
| |
Collapse
|
41
|
Channel-transporter complexes: an emerging theme in cell signaling. Biochem J 2016; 473:3759-3763. [PMID: 27789743 DOI: 10.1042/bcj20160685c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/02/2016] [Indexed: 11/17/2022]
Abstract
In a recent edition of Biochemical Journal, Mistry et al. described the discovery of a novel protein complex, formed from the epithelial sodium channel (ENaC) and the sodium chloride cotransporter (NCC) [Mistry et al. (2016) Biochem. J. 473, 3237–3252]. The importance of these two proteins in the regulation of salt balance and blood pressure has long been known, as has their overlapping expression in the distal convoluted tubule of the kidney. The new study by Mistry et al. now demonstrates their physical interaction in the kidney and when heterologously co-expressed. Furthermore, the authors demonstrate some degree of functional co-dependence between ENaC and NCC, with pharmacological inhibition of the latter diminishing activity of the former when the two are co-assembled. This novel and potentially important interaction adds to a growing number of recently identified channel-transporter ('chansporter') complexes, which together constitute an emerging theme in cell signaling.
Collapse
|
42
|
Moreno E, Plata C, Rodríguez-Gama A, Argaiz ER, Vázquez N, Leyva-Ríos K, Islas L, Cutler C, Pacheco-Alvarez D, Mercado A, Cariño-Cortés R, Castañeda-Bueno M, Gamba G. The European Eel NCCβ Gene Encodes a Thiazide-resistant Na-Cl Cotransporter. J Biol Chem 2016; 291:22472-22481. [PMID: 27587391 DOI: 10.1074/jbc.m116.742783] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/25/2016] [Indexed: 12/21/2022] Open
Abstract
The thiazide-sensitive Na-Cl cotransporter (NCC) is the major pathway for salt reabsorption in the mammalian distal convoluted tubule. NCC plays a key role in the regulation of blood pressure. Its inhibition with thiazides constitutes the primary baseline therapy for arterial hypertension. However, the thiazide-binding site in NCC is unknown. Mammals have only one gene encoding for NCC. The eel, however, contains a duplicate gene. NCCα is an ortholog of mammalian NCC and is expressed in the kidney. NCCβ is present in the apical membrane of the rectum. Here we cloned and functionally characterized NCCβ from the European eel. The cRNA encodes a 1043-amino acid membrane protein that, when expressed in Xenopus oocytes, functions as an Na-Cl cotransporter with two major characteristics, making it different from other known NCCs. First, eel NCCβ is resistant to thiazides. Single-point mutagenesis supports that the absence of thiazide inhibition is, at least in part, due to the substitution of a conserved serine for a cysteine at position 379. Second, NCCβ is not activated by low-chloride hypotonic stress, although the unique Ste20-related proline alanine-rich kinase (SPAK) binding site in the amino-terminal domain is conserved. Thus, NCCβ exhibits significant functional differences from NCCs that could be helpful in defining several aspects of the structure-function relationship of this important cotransporter.
Collapse
Affiliation(s)
- Erika Moreno
- From the Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, 14080 Mexico City, Mexico
| | - Consuelo Plata
- From the Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, 14080 Mexico City, Mexico
| | - Alejandro Rodríguez-Gama
- the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, 14080 Mexico City, Mexico
| | - Eduardo R Argaiz
- From the Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, 14080 Mexico City, Mexico.,the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, 14080 Mexico City, Mexico
| | - Norma Vázquez
- From the Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, 14080 Mexico City, Mexico.,the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, 14080 Mexico City, Mexico
| | - Karla Leyva-Ríos
- the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, 14080 Mexico City, Mexico
| | - León Islas
- the Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Coyoacan, Mexico City, Mexico
| | - Christopher Cutler
- the Biology Department, Georgia Southern University, Statesboro, Georgia 30460
| | | | - Adriana Mercado
- the Department of Nephrology, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, 14080 Mexico City, Mexico, and
| | - Raquel Cariño-Cortés
- the School of Medicine, Universidad Autónoma del Estado de Hidalgo, 42034 Pachuca, Hidalgo, México
| | - María Castañeda-Bueno
- From the Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, 14080 Mexico City, Mexico
| | - Gerardo Gamba
- From the Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, 14080 Mexico City, Mexico, .,the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, 14080 Mexico City, Mexico
| |
Collapse
|
43
|
Lou Y, Zhang F, Luo Y, Wang L, Huang S, Jin F. Serum and Glucocorticoid Regulated Kinase 1 in Sodium Homeostasis. Int J Mol Sci 2016; 17:ijms17081307. [PMID: 27517916 PMCID: PMC5000704 DOI: 10.3390/ijms17081307] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022] Open
Abstract
The ubiquitously expressed serum and glucocorticoid regulated kinase 1 (SGK1) is tightly regulated by osmotic and hormonal signals, including glucocorticoids and mineralocorticoids. Recently, SGK1 has been implicated as a signal hub for the regulation of sodium transport. SGK1 modulates the activities of multiple ion channels and carriers, such as epithelial sodium channel (ENaC), voltage-gated sodium channel (Nav1.5), sodium hydrogen exchangers 1 and 3 (NHE1 and NHE3), sodium-chloride symporter (NCC), and sodium-potassium-chloride cotransporter 2 (NKCC2); as well as the sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) and type A natriuretic peptide receptor (NPR-A). Accordingly, SGK1 is implicated in the physiology and pathophysiology of Na+ homeostasis. Here, we focus particularly on recent findings of SGK1’s involvement in Na+ transport in renal sodium reabsorption, hormone-stimulated salt appetite and fluid balance and discuss the abnormal SGK1-mediated Na+ reabsorption in hypertension, heart disease, edema with diabetes, and embryo implantation failure.
Collapse
Affiliation(s)
- Yiyun Lou
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang, China.
| | - Fan Zhang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Yuqin Luo
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Liya Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Shisi Huang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
- Key Laboratory of Reproductive Genetics, National Ministry of Education (Zhejiang University), Women's Reproductive Healthy Laboratory of Zhejiang Province, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
44
|
Blood pressure-independent renoprotection in diabetic rats treated with AT1 receptor-neprilysin inhibition compared with AT1 receptor blockade alone. Clin Sci (Lond) 2016; 130:1209-20. [PMID: 27129187 DOI: 10.1042/cs20160197] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 04/18/2016] [Indexed: 11/17/2022]
Abstract
ARNI [dual AT1 (angiotensin II type 1) receptor-neprilysin inhibition] exerts beneficial effects on blood pressure and kidney function in heart failure, compared with ARB (AT1 receptor blockade) alone. We hypothesized that ARNI improves cardiac and kidney parameters in diabetic TGR(mREN2)27 rats, an angiotensin II-dependent hypertension model. Rats were made diabetic with streptozotocin for 5 or 12 weeks. In the final 3 weeks, rats were treated with vehicle, irbesartan (ARB) or irbesartan+thiorphan (ARNI). Blood pressure, measured by telemetry in the 5-week group, was lowered identically by ARB and ARNI. The heart weight/tibia length ratio in 12-week diabetic animals was lower after ARNI compared with after ARB. Proteinuria and albuminuria were observed from 8 weeks of diabetes onwards. ARNI reduced proteinuria more strongly than ARB, and a similar trend was seen for albuminuria. Kidneys of ARNI-treated animals showed less severe segmental glomerulosclerosis than those of ARB-treated animals. After 12 weeks, no differences between ARNI- and ARB-treated animals were found regarding diuresis, natriuresis, plasma endothelin-1, vascular reactivity (acetylcholine response) or kidney sodium transporters. Only ARNI-treated rats displayed endothelin type B receptor-mediated vasodilation. In conclusion, ARNI reduces proteinuria, glomerulosclerosis and heart weight in diabetic TGR(mREN2)27 rats more strongly than does ARB, and this occurs independently of blood pressure.
Collapse
|
45
|
Seyberth HW. Pathophysiology and clinical presentations of salt-losing tubulopathies. Pediatr Nephrol 2016; 31:407-18. [PMID: 26178649 DOI: 10.1007/s00467-015-3143-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/01/2015] [Accepted: 06/05/2015] [Indexed: 12/21/2022]
Abstract
At least three renal tubular segments are involved in the pathophysiology of salt-losing tubulopathies (SLTs). Whether the pathogenesis starts either in the thick ascending limb of the loop of Henle (TAL) or in the distal convoluted tubule (DCT), it is the function of the downstream-localized aldosterone sensitive distal tubule (ASDT) to contribute to the adaptation process. In isolated TAL defects (loop disorders) ASDT adaptation is supported by upregulation of DCT, whereas in DCT disorders the ASDT is complemented by upregulation of TAL function. This upregulation has a major impact on the clinical presentation of SLT patients. Taking into account both the symptoms and signs of primary tubular defect and of the secondary reactions of adaptation, a clinical diagnosis can be made that eventually leads to an appropriate therapy. In addition to salt wasting, as occurs in all SLTs, characteristic features of loop disorders are hypo- or isosthenuric polyuria and hypercalciuria, whereas characteristics of DCT disorders are hypokalemia and (symptomatic) hypomagnesemia. In both SLT categories, replacement of urinary losses is the primary goal of treatment. In loop disorders COX inhibitors are also recommended to mitigate polyuria, and in DCT disorders magnesium supplementation is essential for effective treatment. Of note, the combination of a salt- and potassium-rich diet together with an adequate fluid intake is always the basis of long-term treatment in all SLTs.
Collapse
Affiliation(s)
- Hannsjörg W Seyberth
- Department of Pediatrics and Adolescent Medicine, Philipps University, Marburg, Germany. .,, Lazarettgarten 23, 76829, Landau, Germany.
| |
Collapse
|
46
|
Rojas-Vega L, Gamba G. Mini-review: regulation of the renal NaCl cotransporter by hormones. Am J Physiol Renal Physiol 2016; 310:F10-4. [DOI: 10.1152/ajprenal.00354.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renal thiazide-sensitive NaCl cotransporter, NCC, is the major pathway for salt reabsorption in the distal convoluted tubule. The activity of this cotransporter is critical for regulation of several physiological variables such as blood pressure, serum potassium, acid base metabolism, and urinary calcium excretion. Therefore, it is not surprising that numerous hormone-signaling pathways regulate NCC activity to maintain homeostasis. In this review, we will provide an overview of the most recent evidence on NCC modulation by aldosterone, angiotensin II, vasopressin, glucocorticoids, insulin, norepinephrine, estradiol, progesterone, prolactin, and parathyroid hormone.
Collapse
Affiliation(s)
- Lorena Rojas-Vega
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; and
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; and
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
47
|
Terker AS, Yarbrough B, Ferdaus MZ, Lazelle RA, Erspamer KJ, Meermeier NP, Park HJ, McCormick JA, Yang CL, Ellison DH. Direct and Indirect Mineralocorticoid Effects Determine Distal Salt Transport. J Am Soc Nephrol 2015; 27:2436-45. [PMID: 26712527 DOI: 10.1681/asn.2015070815] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/17/2015] [Indexed: 11/03/2022] Open
Abstract
Excess aldosterone is an important contributor to hypertension and cardiovascular disease. Conversely, low circulating aldosterone causes salt wasting and hypotension. Aldosterone activates mineralocorticoid receptors (MRs) to increase epithelial sodium channel (ENaC) activity. However, aldosterone may also stimulate the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC). Here, we generated mice in which MRs could be deleted along the nephron to test this hypothesis. These kidney-specific MR-knockout mice exhibited salt wasting, low BP, and hyperkalemia. Notably, we found evidence of deficient apical orientation and cleavage of ENaC, despite the salt wasting. Although these mice also exhibited deficient NCC activity, NCC could be stimulated by restricting dietary potassium, which also returned BP to control levels. Together, these results indicate that MRs regulate ENaC directly, but modulation of NCC is mediated by secondary changes in plasma potassium concentration. Electrolyte balance and BP seem to be determined, therefore, by a delicate interplay between direct and indirect mineralocorticoid actions in the distal nephron.
Collapse
Affiliation(s)
- Andrew S Terker
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - Bethzaida Yarbrough
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - Mohammed Z Ferdaus
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - Rebecca A Lazelle
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - Kayla J Erspamer
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - Nicholas P Meermeier
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - Hae J Park
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - Chao-Ling Yang
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon; and Renal Section, Veterans Affairs Portland Health Care System, Portland, Oregon
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon; and Renal Section, Veterans Affairs Portland Health Care System, Portland, Oregon
| |
Collapse
|
48
|
Roles of Akt and SGK1 in the Regulation of Renal Tubular Transport. BIOMED RESEARCH INTERNATIONAL 2015; 2015:971697. [PMID: 26491696 PMCID: PMC4600925 DOI: 10.1155/2015/971697] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/06/2015] [Indexed: 01/31/2023]
Abstract
A serine/threonine kinase Akt is a key mediator in various signaling pathways including regulation of renal tubular transport. In proximal tubules, Akt mediates insulin signaling via insulin receptor substrate 2 (IRS2) and stimulates sodium-bicarbonate cotransporter (NBCe1), resulting in increased sodium reabsorption. In insulin resistance, the IRS2 in kidney cortex is exceptionally preserved and may mediate the stimulatory effect of insulin on NBCe1 to cause hypertension in diabetes via sodium retention. Likewise, in distal convoluted tubules and cortical collecting ducts, insulin-induced Akt phosphorylation mediates several hormonal signals to enhance sodium-chloride cotransporter (NCC) and epithelial sodium channel (ENaC) activities, resulting in increased sodium reabsorption. Serum- and glucocorticoid-inducible kinase 1 (SGK1) mediates aldosterone signaling. Insulin can stimulate SGK1 to exert various effects on renal transporters. In renal cortical collecting ducts, SGK1 regulates the expression level of ENaC through inhibition of its degradation. In addition, SGK1 and Akt cooperatively regulate potassium secretion by renal outer medullary potassium channel (ROMK). Moreover, sodium-proton exchanger 3 (NHE3) in proximal tubules is possibly activated by SGK1. This review focuses on recent advances in understanding of the roles of Akt and SGK1 in the regulation of renal tubular transport.
Collapse
|
49
|
A Systems Level Analysis of Vasopressin-mediated Signaling Networks in Kidney Distal Convoluted Tubule Cells. Sci Rep 2015; 5:12829. [PMID: 26239621 PMCID: PMC4523861 DOI: 10.1038/srep12829] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/10/2015] [Indexed: 01/06/2023] Open
Abstract
The kidney distal convoluted tubule (DCT) plays an essential role in maintaining body sodium balance and blood pressure. The major sodium reabsorption pathway in the DCT is the thiazide-sensitive NaCl cotransporter (NCC), whose functions can be modulated by the hormone vasopressin (VP) acting via uncharacterized signaling cascades. Here we use a systems biology approach centered on stable isotope labeling by amino acids in cell culture (SILAC) based quantitative phosphoproteomics of cultured mouse DCT cells to map global changes in protein phosphorylation upon acute treatment with a VP type II receptor agonist 1-desamino-8-D-arginine vasopressin (dDAVP). 6330 unique proteins, containing 12333 different phosphorylation sites were identified. 185 sites were altered in abundance following dDAVP. Basophilic motifs were preferential targets for upregulated sites upon dDAVP stimulation, whereas proline-directed motifs were prominent for downregulated sites. Kinase prediction indicated that dDAVP increased AGC and CAMK kinase families’ activities and decreased activity of CDK and MAPK families. Network analysis implicated phosphatidylinositol-4,5-bisphosphate 3-kinase or CAMKK dependent pathways in VP-mediated signaling; pharmacological inhibition of which significantly reduced dDAVP induced increases in phosphorylated NCC at an activating site. In conclusion, this study identifies unique VP signaling cascades in DCT cells that may be important for regulating blood pressure.
Collapse
|
50
|
Wang L, Dong C, Xi YG, Su X. Thiazide-sensitive Na+-Cl- cotransporter: genetic polymorphisms and human diseases. Acta Biochim Biophys Sin (Shanghai) 2015; 47:325-34. [PMID: 25841442 DOI: 10.1093/abbs/gmv020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 02/26/2015] [Indexed: 12/16/2022] Open
Abstract
The thiazide-sensitive Na(+)-Cl(-) cotransporter (TSC) is responsible for the major sodium chloride reabsorption pathway, which is located in the apical membrane of the epithelial cells of the distal convoluted tubule. TSC is involved in several physiological activities including transepithelial ion absorption and secretion, cell volume regulation, and setting intracellular Cl(-) concentration below or above its electrochemical potential equilibrium. In addition, TSC serves as the target of thiazide-type diuretics that are the first line of therapy for the treatment of hypertension in the clinic, and its mutants are also reported to be associated with the hereditary disease, Gitelman's syndrome. This review aims to summarize the publications with regard to the TSC by focusing on the association between TSC mutants and human hypertension as well as Gitelman's syndrome.
Collapse
Affiliation(s)
- Linghong Wang
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, China
| | - Chao Dong
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, China
| | - Ya-Guang Xi
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, China
| | - Xiulan Su
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, China
| |
Collapse
|